139
 Robust 3D gravity gradient inversion by planting anomalous densities Leonardo Uieda Valéria C. F. Barbosa September, 2011 Observatório Nacional

Robust 3D gravity gradient inversion by planting anomalous densities

Embed Size (px)

DESCRIPTION

Paper presented at the 2011 SEG Annual Meeting

Citation preview

Page 1: Robust 3D gravity gradient inversion by planting anomalous densities

   

Robust 3D gravity gradient inversionby planting anomalous densities

Leonardo Uieda

Valéria C. F. Barbosa

September, 2011

Observatório Nacional

Page 2: Robust 3D gravity gradient inversion by planting anomalous densities

   

Outline

Page 3: Robust 3D gravity gradient inversion by planting anomalous densities

   

Forward Problem

Outline

Page 4: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inverse ProblemForward Problem

Outline

Page 5: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inverse Problem Planting AlgorithmForward Problem

Inspired by René (1986)

Outline

Page 6: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inverse Problem Planting Algorithm

Synthetic Data

Forward Problem

Inspired by René (1986)

Outline

Page 7: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inverse Problem Planting Algorithm

Synthetic Data Real Data

Forward Problem

Inspired by René (1986)

Outline

Quadrilátero Ferrífero, Brazil

Page 8: Robust 3D gravity gradient inversion by planting anomalous densities

   

Forward problem

Page 9: Robust 3D gravity gradient inversion by planting anomalous densities

   

Observed gαβ

gαβ

Page 10: Robust 3D gravity gradient inversion by planting anomalous densities

   

Observed gαβ

gαβ

Page 11: Robust 3D gravity gradient inversion by planting anomalous densities

   

Observed gαβ

gαβ

Anomalous density

Page 12: Robust 3D gravity gradient inversion by planting anomalous densities

   

Observed gαβ

gαβ

Anomalous densityWant to model this

Page 13: Robust 3D gravity gradient inversion by planting anomalous densities

   

Interpretative model

Page 14: Robust 3D gravity gradient inversion by planting anomalous densities

   

Interpretative model

Right rectangular prism

Δρ=p j

Page 15: Robust 3D gravity gradient inversion by planting anomalous densities

   Prisms with not shown

p j=0

Page 16: Robust 3D gravity gradient inversion by planting anomalous densities

   

p=[p1

p2

pM]

Prisms with not shown

p j=0

Page 17: Robust 3D gravity gradient inversion by planting anomalous densities

   

Predicted gαβ

dαβ

p=[p1

p2

pM]

Prisms with not shown

p j=0

Page 18: Robust 3D gravity gradient inversion by planting anomalous densities

   

Predicted gαβ

dαβ

p=[p1

p2

pM]

dαβ=∑j=1

M

p j a jαβ

Prisms with not shown

p j=0

Page 19: Robust 3D gravity gradient inversion by planting anomalous densities

   

Predicted gαβ

dαβ

p=[p1

p2

pM]

dαβ=∑j=1

M

p j a jαβ

Contribution of jth prism

Prisms with not shown

p j=0

Page 20: Robust 3D gravity gradient inversion by planting anomalous densities

   

d xx

d xy

d xz

d yy

d yz

d zz

More components:

Page 21: Robust 3D gravity gradient inversion by planting anomalous densities

   

d

d xx

d xy

d xz

d yy

d yz

d zz

More components:

Page 22: Robust 3D gravity gradient inversion by planting anomalous densities

   

d

d xx

d xy

d xz

d yy

d yz

d zz

=∑j=1

M

p j a j

More components:

Page 23: Robust 3D gravity gradient inversion by planting anomalous densities

   

d

d xx

d xy

d xz

d yy

d yz

d zz

=∑j=1

M

p j a j =A p

More components:

Page 24: Robust 3D gravity gradient inversion by planting anomalous densities

   

d

d xx

d xy

d xz

d yy

d yz

d zz

=∑j=1

M

p j a j =A p

Jacobian (sensitivity) matrix

More components:

Page 25: Robust 3D gravity gradient inversion by planting anomalous densities

   

d

d xx

d xy

d xz

d yy

d yz

d zz

=∑j=1

M

p j a j =A p

Column vector of

More components:

A

Page 26: Robust 3D gravity gradient inversion by planting anomalous densities

   

Forward problem:

p dd=∑j=1

M

p j a j

Page 27: Robust 3D gravity gradient inversion by planting anomalous densities

   

p̂ g?Inverse problem:

Page 28: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inverse problem

Page 29: Robust 3D gravity gradient inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−dResidual vector

Page 30: Robust 3D gravity gradient inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−dResidual vector

Data­misfit function:

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

Page 31: Robust 3D gravity gradient inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−dResidual vector

Data­misfit function:

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

 ℓ2­norm of r

Page 32: Robust 3D gravity gradient inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−dResidual vector

Data­misfit function:

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

 ℓ2­norm of r

Least­squares fit

Page 33: Robust 3D gravity gradient inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−dResidual vector

Data­misfit function:

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

 ℓ2­norm of r

Least­squares fit

ϕ( p)=∥r∥1=∑i=1

N

∣gi−d i∣

 ℓ1­norm of r

Page 34: Robust 3D gravity gradient inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−dResidual vector

Data­misfit function:

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

 ℓ2­norm of r

Least­squares fit

ϕ( p)=∥r∥1=∑i=1

N

∣gi−d i∣

 ℓ1­norm of r

Robust fit

Page 35: Robust 3D gravity gradient inversion by planting anomalous densities

   

ill­posed problem

non­existent

non­unique

non­stable

Page 36: Robust 3D gravity gradient inversion by planting anomalous densities

   

ill­posed problem

non­existent

non­unique

non­stable

constraints

Page 37: Robust 3D gravity gradient inversion by planting anomalous densities

   

ill­posed problem

non­existent

non­unique

non­stable

well­posed problem

exist

unique

stable

constraints

Page 38: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact

Page 39: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

Page 40: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

Page 41: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms● Given density contrasts● Any # of ≠ density contrasts

ρs

Page 42: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms● Given density contrasts

3. Only 

● Any # of ≠ density contrasts

orp j=0 p j=ρs

ρs

Page 43: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms● Given density contrasts

3. Only 

● Any # of ≠ density contrasts

orp j=0 p j=ρs

ρs

4.  of closest seed p j=ρs

Page 44: Robust 3D gravity gradient inversion by planting anomalous densities

   

Well­posed problem: Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Page 45: Robust 3D gravity gradient inversion by planting anomalous densities

   

Well­posed problem: Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Data­misfit function

Page 46: Robust 3D gravity gradient inversion by planting anomalous densities

   

Well­posed problem: Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

(Tradeoff between fit and regularization)Regularizing parameter

Page 47: Robust 3D gravity gradient inversion by planting anomalous densities

   

Well­posed problem: Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Regularizing function

θ( p)=∑j=1

M p j

p j+ϵl j

β

Page 48: Robust 3D gravity gradient inversion by planting anomalous densities

   

Well­posed problem: Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Regularizing function

θ( p)=∑j=1

M p j

p j+ϵl j

βSimilar to Silva Dias et al. (2009)

Page 49: Robust 3D gravity gradient inversion by planting anomalous densities

   

Well­posed problem: Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Regularizing function

θ( p)=∑j=1

M p j

p j+ϵl j

βSimilar to Silva Dias et al. (2009)

Distance between jth prism and seed

Page 50: Robust 3D gravity gradient inversion by planting anomalous densities

   

Well­posed problem: Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Regularizing function

θ( p)=∑j=1

M p j

p j+ϵl j

βSimilar to Silva Dias et al. (2009)

Distance between jth prism and seed

Imposes:

● Compactness ● Concentration around seeds

Page 51: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact

2. Concentrated around “seeds”Regularization

3. Only  orp j=0 p j=ρs

4.  of closest seed p j=ρs

Page 52: Robust 3D gravity gradient inversion by planting anomalous densities

   

Constraints:

1. Compact

2. Concentrated around “seeds”Regularization

Algorithm3. Only  orp j=0 p j=ρs

4.  of closest seed p j=ρs Based on René (1986)

Page 53: Robust 3D gravity gradient inversion by planting anomalous densities

   

Planting Algorithm

Page 54: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup: g = observed data

Page 55: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup:Define interpretative model

Interpretative model

g = observed data

Page 56: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup:Define interpretative model

All parameters zero

Interpretative model

g = observed data

Page 57: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup:

seedsN S

Define interpretative model

All parameters zero

Interpretative model

g = observed data

Page 58: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Prisms with not shown

p j=0

g = observed data

Page 59: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

Prisms with not shown

p j=0

g = observed data

d = predicted data

Page 60: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

Prisms with not shown

p j=0

g = observed data

Predicted by seeds

d = predicted data

Page 61: Robust 3D gravity gradient inversion by planting anomalous densities

   

Setup:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

Prisms with not shown

p j=0

g = observed data

d = predicted data

r(0)=g−(∑s=1

N S

ρs a jS)

Page 62: Robust 3D gravity gradient inversion by planting anomalous densities

   

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−(∑s=1

N S

ρs a jS)

Prisms with not shown

g = observed data

d = predicted data

NeighborsFind neighbors of seeds

p j=0

Setup:

Page 63: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

Try accretion to sth seed:

p j=0

Growth:

Page 64: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

Choose neighbor:

p j=0

Growth:

Page 65: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Choose neighbor:

p j=0

Growth:

(New elements)

j

Page 66: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Choose neighbor:

p j=0

Growth:

(New elements)

j

Update residuals

r(new)=r(old )

− p j a j

Page 67: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Choose neighbor:

p j=0

Growth:

(New elements)

j

Update residuals

r(new)=r(old )

− p j a j

Contribution of j

Page 68: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Choose neighbor:

p j=0

Growth:

(New elements)

j

Update residuals

r(new)=r(old )

− p j a j

Variable sizes

None found = no accretion

Page 69: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

p j=0

Growth:

(New elements)

Page 70: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

p j=0

Growth:

j

(New elements)

Page 71: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

p j=0

Growth:

j

(New elements)

Page 72: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes

p j=0

Growth:

j

(New elements)

Page 73: Robust 3D gravity gradient inversion by planting anomalous densities

    Prisms with not shown

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

Growth:

Done!

j

(New elements)

Page 74: Robust 3D gravity gradient inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

Page 75: Robust 3D gravity gradient inversion by planting anomalous densities

   

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Page 76: Robust 3D gravity gradient inversion by planting anomalous densities

   

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

No matrix multiplication (only vector +)

Page 77: Robust 3D gravity gradient inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Page 78: Robust 3D gravity gradient inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Calculate only when needed

Page 79: Robust 3D gravity gradient inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Calculate only when needed & delete after update

Page 80: Robust 3D gravity gradient inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Calculate only when needed

Lazy evaluation

& delete after update

Page 81: Robust 3D gravity gradient inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

Page 82: Robust 3D gravity gradient inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

No matrix multiplication (only vector +)

Lazy evaluation of Jacobian

Page 83: Robust 3D gravity gradient inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

No matrix multiplication (only vector +)

Lazy evaluation of Jacobian

Fast inversion + low memory usage

Page 84: Robust 3D gravity gradient inversion by planting anomalous densities

   

Synthetic Data

Page 85: Robust 3D gravity gradient inversion by planting anomalous densities

   

Data set:

● 3 components

● 51 x 51 points

● 2601 points/component

● 7803 measurements

● 5 Eötvös noise

Page 86: Robust 3D gravity gradient inversion by planting anomalous densities

   

Model:

Page 87: Robust 3D gravity gradient inversion by planting anomalous densities

   

Model: ● 11 prisms

Page 88: Robust 3D gravity gradient inversion by planting anomalous densities

   

Model: ● 11 prisms ● 4 outcropping

Page 89: Robust 3D gravity gradient inversion by planting anomalous densities

   

Model: ● 11 prisms ● 4 outcropping

Page 90: Robust 3D gravity gradient inversion by planting anomalous densities

   

Model: ● 11 prisms ● 4 outcropping

Page 91: Robust 3D gravity gradient inversion by planting anomalous densities

   

● Strongly interfering effects

Page 92: Robust 3D gravity gradient inversion by planting anomalous densities

   

● Strongly interfering effects

● What if only interested in these?

Page 93: Robust 3D gravity gradient inversion by planting anomalous densities

   

● Common scenario

Page 94: Robust 3D gravity gradient inversion by planting anomalous densities

   

● Common scenario

● May not have prior information

● Density contrast

● Approximate depth

Page 95: Robust 3D gravity gradient inversion by planting anomalous densities

   

● Common scenario

● May not have prior information

● Density contrast

● Approximate depth

● No way to provide seeds

Page 96: Robust 3D gravity gradient inversion by planting anomalous densities

   

● Common scenario

● May not have prior information

● Density contrast

● Approximate depth

● No way to provide seeds

● Difficult to isolate effect of targets

Page 97: Robust 3D gravity gradient inversion by planting anomalous densities

   

Robust procedure:

Page 98: Robust 3D gravity gradient inversion by planting anomalous densities

   

Robust procedure:● Seeds only for targets

Page 99: Robust 3D gravity gradient inversion by planting anomalous densities

   

Robust procedure:● Seeds only for targets

Page 100: Robust 3D gravity gradient inversion by planting anomalous densities

   

Robust procedure:● Seeds only for targets

●  ℓ1­norm to “ignore” non­targeted

Page 101: Robust 3D gravity gradient inversion by planting anomalous densities

   

Robust procedure:● Seeds only for targets

●  ℓ1­norm to “ignore” non­targeted

Page 102: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 13 seeds ● 7,803 data

Page 103: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 13 seeds ● 7,803 data

Page 104: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 13 seeds ● 7,803 data

Page 105: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 13 seeds ● 7,803 data

Page 106: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 13 seeds ● 7,803 data

Page 107: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 13 seeds ● 7,803 data ● 37,500 prisms

Page 108: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

Only prisms with zerodensity contrast not shown

Page 109: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

Only prisms with zerodensity contrast not shown

Page 110: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

Only prisms with zerodensity contrast not shown

Page 111: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

Only prisms with zerodensity contrast not shown

Page 112: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

Only prisms with zerodensity contrast not shown

Page 113: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

● Recover shape of targets

Only prisms with zerodensity contrast not shown

Page 114: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

● Recover shape of targets

● Total time = 2.2 minutes (on laptop) Only prisms with zerodensity contrast not shown

Page 115: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

Predicted data in contours

Page 116: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 7,803 data ● 37,500 prisms● 13 seeds

Predicted data in contours

Effect of true targeted sources

Page 117: Robust 3D gravity gradient inversion by planting anomalous densities

   

Real Data

Page 118: Robust 3D gravity gradient inversion by planting anomalous densities

   

Data:

● 3 components

● FTG survey

● Quadrilátero Ferrífero, Brazil

Page 119: Robust 3D gravity gradient inversion by planting anomalous densities

   

Data:

● 3 components

● FTG survey

● Quadrilátero Ferrífero, Brazil

Targets:

● Iron ore bodies

● BIFs of Cauê Formation

Page 120: Robust 3D gravity gradient inversion by planting anomalous densities

   

Data:

● 3 components

● FTG survey

● Quadrilátero Ferrífero, Brazil

Targets:

● Iron ore bodies

● BIFs of Cauê Formation

Page 121: Robust 3D gravity gradient inversion by planting anomalous densities

   

Data:

Seeds for iron ore:

● Density contrast 1.0 g/cm3

● Depth 200 m

Page 122: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion:O

bser

ved

Pre

dict

ed● 46 seeds ● 13,746 data

Page 123: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 124: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 125: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 126: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 127: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 128: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 129: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Only prisms with zerodensity contrast not shown

Page 130: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Only prisms with zerodensity contrast not shown

Page 131: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Only prisms with zerodensity contrast not shown

Page 132: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 133: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

Page 134: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

● Agree with previous interpretations

(Martinez et al., 2010)

Page 135: Robust 3D gravity gradient inversion by planting anomalous densities

   

Inversion: ● 46 seeds ● 13,746 data ● 164,892 prisms

● Agree with previous interpretations

(Martinez et al., 2010)

● Total time = 14 minutes

(on laptop)

Page 136: Robust 3D gravity gradient inversion by planting anomalous densities

   

Conclusions

Page 137: Robust 3D gravity gradient inversion by planting anomalous densities

   

● New 3D gravity gradient inversion● Multiple sources● Interfering gravitational effects● Non­targeted sources● No matrix multiplications● No linear systems● Lazy evaluation of Jacobian matrix

Conclusions

Page 138: Robust 3D gravity gradient inversion by planting anomalous densities

   

● Estimates geometry● Given density contrasts● Ideal for:

● Sharp contacts● Well­constrained physical properties

– Ore bodies– Intrusive rocks– Salt domes

Conclusions

Page 139: Robust 3D gravity gradient inversion by planting anomalous densities

   

Thank you