46
Copyright Carl Zweben 2010 Slide 1 INTRODUCTION TO COMPOSITE MATERIALS Carl Zweben, PhD Life Fellow ASME Fellow SAMPE and ASM Associate Fellow, AIAA Composites & Thermal Materials Consultant 62 Arlington Road Devon, PA 19333-1538 Phone: 610-688-1772 E-mail: [email protected] http://sites.google.com/site/zwebenconsulting

Introduction to Composite Materials

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 1

INTRODUCTION TO COMPOSITE MATERIALS

Carl Zweben, PhD Life Fellow ASME

Fellow SAMPE and ASMAssociate Fellow, AIAA

Composites & Thermal Materials Consultant 62 Arlington Road

Devon, PA 19333-1538 Phone: 610-688-1772

E-mail: [email protected]://sites.google.com/site/zwebenconsulting

Page 2: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 2

The information in these slides is part of a short course on composite materials that is presented

publicly and in-house

Contact author for information

Page 3: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 3

OUTLINE

• Introduction• Key fibers and composites• Status of PMCs, MMCs, CAMCs, CMCs• Applications• Appendix

Page 4: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 4

INTRODUCTION

Page 5: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 5

COMPOSITE MATERIAL

1. Two or more materials bonded together (Anthony Kelly)– Distinguishes composites from alloys

2. A material consisting of any combination of fibers, whiskers and particles in a common matrix

Page 6: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 6

WHY COMPOSITES?

• High specific strength (strength/density)• High specific modulus (modulus/density)• Fatigue resistance• Creep and creep rupture resistance• Low, tailorable coefficient of thermal expansion• High temperature capability • Wear resistance• Corrosion resistance• Tailorable electrical conductivity

– Very low to very high

Page 7: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 7

WHY COMPOSITES? (continued)

• Tailorable thermal conductivity – very low to extremely high

• Tailorable mechanical and thermal properties• Unique combinations of properties• Great design flexibility• Formable to complex shapes• Low cost (some)• Enabling technology for many applications, e.g.

– Lightweight vehicle and aerospace structures– High-performance thermal management– Lightweight optical systems– Infrastructure repair

Page 8: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 8

DESIGN FLEXIBILITY

Page 9: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 9

CLASSES OF COMPOSITE MATERIALS

MATRIX

REINFORCEMENTPolymer Metal Ceramic Carbon

Polymer X X X XMetal X X X X

Ceramic X X X XCarbon X X X X

Polymer Matrix Composites (PMCs)Metal Matrix Composites (CMCs)Ceramic Matrix Composite (CMC)

Carbon Matrix Composites (CAMCs)Carbon/Carbon Composites (CCCs)

Page 10: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 10

REINFORCEMENTS

Continuous Fibers

Particles

Discontinuous Fibers, Whiskers

Fabrics, Braids, etc.

Page 11: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 11

TERMINOLOGY

• Advanced composite: composite with properties superior to those of glass fiber-reinforced polymer (GFRP)

• Specific property– Absolute property divided by density (or

specific gravity, which is dimensionless)

Page 12: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 12

BRIEF HISTORY OF COMPOSITES

• Straw--reinforced mud cited in Old Testament– Organic fiber-reinforced CMC

• GFRP well established by 1950s• R&D on advanced composites: CCCs, PMCs,

MMCs and CMCs started 1960s-1970s• Carbon fiber-reinforced polymers (CFRPs)

became dominant advanced composites in 1970s• CCCs established for thermal protection ~ 1970s• MMCs used in specialty applications

– Automobile engines– Electronics thermal management

Page 13: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 13

BRIEF HISTORY OF COMPOSITES (continued)

• CMCs used in specialty applications• GFRP most widely used composite, by far• CFRP dominates high-performance applications• Composites now baseline in numerous aerospace

and commercial applications• Industrial applications now largest sector

– Everything except aerospace and sports– Wind turbine blades, infrastructure, etc.

Page 14: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 14

COMMON TYPES OF LAMINATESCOMMON TYPES OF LAMINATES

Page 15: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 15

KEY FIBERS AND COMPOSITES

Page 16: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 16

KEY FIBERS

• Glass– E-glass most widely used fiber by orders of

magnitude– Others: high-strength, chemical-resistant

• Carbon– Workhorse high-performance fibers– Many types: polyacrylonitrile (PAN), pitch,

CVD, etc.)• Boron• Silicon carbide-based• Alumina-based

Page 17: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 17

KEY FIBERS (continued)

• High-modulus synthetic organics– Aramid (aromatic polyamide)– High density polyethylene– PBO– M5 PIPD

• Natural organic fibers, e.g.• Flax, jute, hemp and kenaf, wood, etc.

• Basalt

Page 18: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 18

CARBON FIBER IMPROVEMENTS 1965 - 2005

1965** 2005Max modulus, GPa (MSI) 380 (55) 965 (140)Max tens str, GPa (KSI) 2.3 (330) 6.9 (1000)No. of PAN-based fibers 3 DozensNo. of pitch-based fibers 0 ManyMax therm cond, W/m.K 30 2000Max fiber length 1m ContinuousMinimum cost $2000/Kg $16/Kg

** Carbon fibers were experimental in 1965

Page 19: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 19

ELECTRICAL AND THERMAL CONDUCTIVITY

Page 20: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 20

SPECIFIC TENSILE STRENGTH vs SPECIFIC MODULUS (Tensile strength/density vs. Modulus/density)

0 100 200 3000

1000

2000

2500

1500

500

Specific Modulus (MPa)

Spec

ific

Tens

ile S

tren

gth

(GPa

)UHS PAN C/Ep

SM PAN C/Ep

SiCp /AlBe

Boron/EpUHM PAN C/Ep

UHM Pitch C/Ep

E-Glass/EpAluminum, Steel,

Titanium, Magnesium

Aramid/Ep

UnidirectionalQuasi-Isotropic

Page 21: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 21

MAXIMUM USE TEMPERATURE vs. DENSITY

Page 22: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 22

CONTINUOUS FIBERS MAKE CERAMICS AND CARBON USEFUL STRUCTURAL MATERIALS

Page 23: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 23

0 20 40 60 80 100

PARTICLE VOLUME FRACTION (%)

CO

EFFI

CIE

NT

OF

THER

MA

L EX

PAN

SIO

N (p

p m/K

)

25

20

15

10

5

0

Aluminum

Copper

Beryllium

Titanium, SteelAluminaSilicon

Powder MetallurgyInfiltration

CTE OF SILICON-CARBIDE-PARTICLE-REINFORCED ALUMINUM (Al/SiC) vs PARTICLE VOLUME FRACTION

E-glass PCB

NEW MATERIAL

Page 24: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 24

Silver

Copper

Aluminum

E-glass PCB

SiC/Al (Al/SiC)

C/Al

C/Cu

C/C

C/Ep

Cu/W

Kovar

Si, GaAs, Silica, Alumina, Beryllia, Aluminum Nitride, LTCC

Si-Al

Diamond-Particle-Reinforced Metals and Ceramics

SiC/Cu

HO

PG

(170

0)

-5 0 5 10 15 20 25COEFFICIENT OF THERMAL EXPANSION (ppm/K)

THER

MA

L C

ON

DU

CTI

VITY

(W/m

K)

100

200

300

400

500

600

0 Invar

THERMAL CONDUCTIVITY vs CTE FOR PACKAGING MATERIALS

1200

Page 25: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 25

APPLICATIONS

Page 26: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 26

STATUS OF COMPOSITES

• PMCs workhorse materials for structures– Wide range of commercial and aerospace

applications– E-glass and carbon key fibers– Thermosets key resins– Increasing use of thermoplastics– Natural fibers in automotive secondary parts– Nanoclay/thermoplastics in automobiles

• Carbon matrix composites– CCCs well established for thermal protection– SiC/carbon in aircraft engine parts

Page 27: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 27

STATUS OF COMPOSITES (cont.)

• CMCs– Challenging CAMCs– Limited, but significant use

• MMCs– Cermets (ceramic/metal) widely used

• E.g. “tungsten carbide” cutting tools– Used in Honda and Toyota auto engines– Limited use of fiber- and particle-reinforced

materials in structures and machine parts– Transmission lines in early production– Widely used in electronic packaging

Page 28: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 28

KEY ADVANCED COMPOSITES APPLICATIONS

• Aerospace & defense structures– Aircraft– Spacecraft– Missiles and launch vehicles– Ships– Optical systems

• Aircraft engines• Sports equipment• Natural gas vehicle fuel tanks• Wind turbine blades

Page 29: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 29

KEY ADVANCED COMPOSITES APPLICATIONS (cont)

• Infrastructure• Biomedical equipment• Precision machinery• Oil exploration and production• Automobile engines• High-end automobile structures and brakes• Machinery• Electronics and photonics thermal management

Page 30: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 30

COMPOSITES ARE THE MATERIALS OF THE HERE AND NOW

Page 31: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 31

APPENDIX 1 PROPERTIES OF SELECTED

COMPOSITE MATERIALS

Page 32: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 32

PROPERTIES OF SELECTED COMPOSITES

• Thousands of different materials in production• Polymer matrix composites• Metal matrix composites• Carbon matrix composites

– Carbon/carbon composites• Ceramic matrix composites

Page 33: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 33

PROPERTIES OF UNIDIRECTIONAL ULTRAHIGH- STRENGTH PAN CARBON/ POLYMER

Axial extensional modulus = 25 MSI (170 GPa)Transverse extensional modulus = 1.5 MSI (10 GPa)Axial shear modulus = 0.6 MSI (4.1 GPa)Axial Poisson’s ratio = 0.25Axial tensile strength = 510 KSI (3530 MPa)Transverse tensile strength = 6 KSI (41 MPa)Axial compression strength = 200 KSI (1380 MPa)Transverse compression strength = 25 KSI (170 MPa)Axial CTE = 0.3 PPM/F (0.5 PPM/K)Transverse CTE = 15 PPM/F (27 PPM/K)Axial Thermal Conductivity = 6 BTU/h-ft-F (10 W/mK)Transverse Thermal Cond = 0.3 BTU/h-ft-F (0.5 W/mK)Density = 0.058 PCI (1.61g/cm3)

Page 34: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 34

PROPERTIES OF QUASI-ISOTROPIC ULTRAHIGH- STRENGTH PAN CARBON/ POLYMER

Extensional modulus = 9.1 MSI (63 GPa)Shear modulus = 3 MSI (21 GPa)Poisson’s ratio = 0.32Tensile strength = 200 KSI (1350 MPa)Compression strength = 84 KSI (580 MPa)Inplane CTE = 1.3 PPM/F (2.3 PPM/K)Inplane thermal cond = 3 BTU/h-ft-F (6 W/mK)Density = 0.058 PCI (1.61 g/cm3)

Page 35: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 35

PROPERTIES OF UNIDIRECTIONAL ULTRAHIGH- MODULUS PITCH CARBON/POLYMER

Axial extensional modulus = 70 MSI (480 GPa)Transverse extensional modulus = 1.5 MSI (10 GPa)Axial shear modulus = 0.6 MSI (4.1 GPa)Axial Poisson’s ratio = 0.25Axial tensile strength = 130 KSI (900 MPa)Transverse tensile strength = 3 KSI (20 MPa)Axial compression strength = 40 KSI (280 MPa)Transverse compression strength = 15 KSI (100 MPa)Inplane shear strength = 6 KSI (41 MPa)Axial CTE = - 0.6 PPM/F (-1.1 PPM/K)Transverse CTE = 15 PPM/F (27 PPM/K)Axial Thermal Conductivity = 380 BTU/h-ft-F (660 W/mK)Transverse Thermal Cond = 6 BTU/h-ft-F (10 W/mK)Density = 0.065 PCI (1.8 g/cm3)

Page 36: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 36

PROPERTIES OF QUASI-ISOTROPIC ULTRAHIGH MODULUS PITCH CARBON/ POLYMER

Extensional modulus = 24 MSI (165 GPa)Shear modulus = 9.2 MSI (9.2 GPa)Poisson’s ratio = 0.32Tensile strength = 45 KSI (310 MPa)Compression strength = 14 KSI (96 MPa)Inplane CTE = - 0.2 PPM/F (-0.4 PPM/K)Inplane therm cond = 195 BTU/h-ft-F (335 W/mK)Density = 0.065 PCI (1.80 g/cm3)

Page 37: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 37

PROPERTIES OF SELECTED UNIDIRECTIONAL MMCs

Fiber Matrix Density Axial Trans Axial Trans Axial g/cm3 Mod Mod Tens Tens Comp

GPa GPa Str Str Str (Msi) (Msi) MPa MPa MPa

(Msi) (Ksi) (Ksi)

UHM Carb Al 2.4 450 15 690 15 340(pitch) (65) (5) (100) (5) (50)

Boron Al 2.6 210 140 1240 140 1720(30) (20) (180) (20) (250)

Alumina Al 3.2 240 130 1700 120 1800(35) (19) (250) (17) (260)

SiC Ti 3.6 260 170 1700 340 2760 (38) (25) (250) (50) (400)

Page 38: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 38

PROPERTIES OF ALUMINUM, TITANIUM AND SILICON CARBIDE-PARTICLE REINFORCED ALUMINUM

Aluminum Titanium Composite(6061-T6) (6Al-4V) Particle Vf (%)

Property 25 55 70Modulus, GPa 69 100 114 186 265Tens yield, MPa 275 1000 400 495 -Tens Ult, Mpa 310 1100 485 530 225Elongation, % 15 5 3.8 0.6 0.1Cond, W/m-K 180 6.7 ~200 ~200 ~200CTE, PPM/K 23 9 16.4 10.4 6.2 Density (g/cm3) 2.77 4.43 2.88 2.96 3.00

Page 39: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 39

TITANIUM CARBIDE PARTICLE-REINFORCED STEEL (“FERRO-TIC”)

Tool Steel “Ferro-TiC”Density, g/cm3 7.9 6.60Elastic modulus, GPa 200 290Modulus/density, GPa 25 44Tensile strength, GPa 0.6-2.0 1.5Comp strength, GPa - 3.6

Source: Alloy Technology

Page 40: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 40

ULTRAHIGH-THERMAL-CONDUCTIVITY MATERIALS

k CTE Specific k/SGMATERIAL (W/m-K) (ppm/K) Gravity (W/m-K)Copper 400 17 8.9 45Diamond/Al 325-600 7-9 3-4 93-171Diamond/Cu 400-1200 5-7.7.7 5.5-7 62-185Diamond/Co >600 3.0 4.1 >146Diamond/Ag 550-650 5-8 6-7 85-100Diamond/SiC 600-680 1.8 3.3 182-206---------------------------------------------------------------------------------------Diamond/Si 525 4.5 - -Diamond/Mg 575 5.5 - -Diamond+SiC/Al 575 5 - -

Materials below line are experimental

Page 41: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 41

MECHANICAL PROPERTIES OF 2D ACC-4 ADVANCED CARBON/CARBON (0/90)

PROPERTYTensile modulus 103 GPa 15 MsiCompression modulus 103 GPa 15 MsiInplane shear modulus 17 GPa 2.5 MsiInterlaminar tensile modulus 10 GPa 1.5 MsiTensile strength 276 MPa 40 KsiCompression strength 165 MPa 24 KsiInplane shear strength 41 MPa 2.5 KsiInterlaminar shear strength 10 MPa 1.5 KsiInterlaminar tensile strength 10 MPa 0.9 Ksi

Source: H.G. Maahs, “Carbon-Carbon Composites”, Flight Vehicle Materials, Structures and Dynamics, vol. 3, ASME, New York, 1992

Page 42: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 42

PROPERTIES OF ENHANCED SiC/SiC

Reinforcement: CG “Nicalon” plain weave fabricProcess: chemical vapor infiltrationProprietary materials added to matrix to protect fibersDensity: 2.30 g/cm3 (0.083 lb/in3)Axial tensile modulus, GPa (Msi): 140 (20)Inplane shear modulus, GPa (Ksi) : 70 (10)Tensile strength, MPa (Ksi): 225 (33)Compressive strength, MPa (Ksi): 500 (73)Inplane shear strength MPa, (Ksi) : 180 (26)Through-thickness tensile strength, MPa (Ksi): >13 (>1.9)Interlam. shear strength, MPa (Ksi): 30 (4.3)

Source: AlliedSignal/Honeywell Advanced Composites/GE Power Systems

Page 43: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 43

APPENDIX 2 ABBREVIATIONS AND TERMINOLOGY

Page 44: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 44

TERMINOLOGY

• Homogeneous– Properties constant throughout material

• Heterogeneous– Properties vary throughout material– E.g. different in matrix and reinforcement– Composites always heterogeneous

• Isotropic– Properties the same in every direction– Particulate composites can be isotropic

Page 45: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 45

TERMINOLOGY (continued)

• Anisotropic– Properties vary with direction– Fiber-reinforced materials typically anisotropic– May be inplane isotropic (transversely

isotropic)• Specific property

– Absolute property divided by density (or specific gravity, which is dimensionless)

Page 46: Introduction to Composite Materials

Copyright Carl Zweben 2010 Slide 46

KEY ABBREVIATIONS• PMC: polymer matrix composite• CMC: ceramic matrix composite• MMC: metal matrix composite• CAMC: carbon matrix composite• CCC: carbon/carbon composite• CFRP: carbon fiber-reinforced polymer• GFRP: glass fiber-reinforced polymer• AFRP: aramid fiber-reinforced polymer• C: carbon• CNT: carbon nanotube• PAN: polyacrylonitrile• Ep: epoxy• BMI: bismaleimide• PI: polyimide• DRA: discontinuously reinforced aluminum USAF

– SiC particle-reinforced aluminum– Called Al/SiC in electronic packaging industry