159
Phylogenetic Paleobiology: What do we stand to gain from integrating fossils and phylogenies in macroevolutionary analyses? Smithsonian National Museum of Natural Histor y Graham Slater Department of Paleobiology, National Museum of Natural History www.fourdimensionalbiology.com @grahamjslater

Graham Slater's Phyloseminar Slides 12-10-2013

Embed Size (px)

DESCRIPTION

Slides from my phyloseminar on phylogenetic paleobiology, given 12-10-2013. Watch the seminar at http://www.youtube.com/watch?v=RDe2wbkSv5Q

Citation preview

Page 1: Graham Slater's Phyloseminar Slides 12-10-2013

Phylogenetic Paleobiology: What do we stand to gain from integrating fossils and

phylogenies in macroevolutionary analyses?

SmithsonianNational Museum of Natural History

Graham SlaterDepartment of Paleobiology, National Museum of Natural History

SmithsonianNational Museum of Natural Historywww.fourdimensionalbiology.com

@grahamjslater

Page 2: Graham Slater's Phyloseminar Slides 12-10-2013
Page 3: Graham Slater's Phyloseminar Slides 12-10-2013
Page 4: Graham Slater's Phyloseminar Slides 12-10-2013
Page 5: Graham Slater's Phyloseminar Slides 12-10-2013
Page 6: Graham Slater's Phyloseminar Slides 12-10-2013

40 30 20 10 0

get a time-calibrated phylogeny

Page 7: Graham Slater's Phyloseminar Slides 12-10-2013

gather some trait data

40 30 20 10 0

Page 8: Graham Slater's Phyloseminar Slides 12-10-2013

fit some models

Page 9: Graham Slater's Phyloseminar Slides 12-10-2013

“insert_model” explains the evolution of “insert_trait” in

“insert_clade” !

Page 10: Graham Slater's Phyloseminar Slides 12-10-2013

LETTERdoi:10.1038/nature10516

Multiple routes to mammalian diversityChris Venditti1, Andrew Meade2 & Mark Pagel2,3

The radiation of themammals provides a 165-million-year test casefor evolutionary theories of how species occupy and then fill eco-logical niches. It is widely assumed that species often divergerapidly early in their evolution, and that this is followed by alonger, drawn-out period of slower evolutionary fine-tuning asnatural selection fits organisms into an increasingly occupiedniche space1,2. But recent studies have hinted that the processmay not be so simple3–5. Here we apply statistical methods thatautomatically detect temporal shifts in the rate of evolutionthrough time to a comprehensive mammalian phylogeny6 and dataset7 of body sizes of 3,185 extant species. Unexpectedly, themajorityof mammal species, including two of the most speciose orders(Rodentia and Chiroptera), have no history of substantial and sus-tained increases in the rates of evolution. Instead, a subset of themammals has experienced an explosive increase (between 10- and52-fold) in the rate of evolution along the single branch leading tothe common ancestor of their monophyletic group (for exampleChiroptera), followed by a quick return to lower or backgroundlevels. The remaining species are a taxonomically diverse assem-blage showing a significant, sustained increase or decrease in theirrates of evolution.These results necessarily decouplemorphologicaldiversification from speciation and suggest that the processes thatgive rise to the morphological diversity of a class of animals are farmore free to vary than previously considered. Niches do not seem tofill up, and diversity seems to arise whenever, wherever and at what-ever rate it is advantageous.Our approach uses a generalized least-squares model8,9 of trait

evolution in a Bayesian reversible-jump10 framework that allows ratesof evolution to vary in individual branches or entire monophyleticsubgroups of a phylogeny (Supplementary Information). This allowsus to trace the evolutionary history of shifts in the rate and timing ofevolutionwithout specifying in advancewhere these events are located,and to derive posterior probability density estimates of their magni-tudes and probability of occurrence (Supplementary Information).The null model states that evolution has proceeded at a constant ratethroughout the classMammalia. Applied to log-transformed body sizedata (n5 3,185 species) arrayed on the mammalian tree6 , this modelreturns a Bayesian posterior density of log-likelihoods with a mean of2939.346 0.99 (Fig. 1a), and a mean instantaneous rate of body sizeevolution of 1.02 g per million years. If rates are allowed to varythroughout the tree, the posterior density improves to a mean log-likelihood of 2364.136 23.01 (log(Bayes factor)5 993.51; values.10 considered ‘very strong’ support11; Fig. 1a). We detect evidencefor a shift or change in the rate of evolution in approximately one-third, or 1,494 branches, of the tree, where to be included in this countbranches had to either experience a change in rate in that branch orinherit that change from its immediate ancestral lineage, in at least 95%of the trees in the posterior sample. These shifts range from a 3-folddecrease to a 52-fold increase in the rate of evolution along a branch(Fig. 1b).It has long been believed that the radiation of extant mammals

underwent a burst of body-size evolution that occurred early in itshistory and coincided with the appearance of the mammalian orders,

and that this was followed by a gradual slowdown towards the pre-sent4,12–14. Explanations for this pattern suppose that mammals movedinto a largely unoccupied niche and geographical space as they came tobe the dominant vertebrate group on Earth. Then, as time went on,niche space and unexplored geographical regions became scarce,reducing opportunities for diversification4. In striking contrast to thispicture, we do not find any evidence for either a generalized burst ofevolution early inmammalian evolution or for the rates of evolution todecrease as time moves towards the present (Fig. 2a). Instead, rates ofevolution were low and stable for about the first 60 million years, onlystarting to increase around 90million years ago and then showing onlyabout a twofold increase over the previous ‘baseline’ rate. This increaseoccurred before the origin of the present-daymammalian orders and is

1Department of Biological Sciences, University of Hull, Hull HU6 7RX, UK. 2School of Biological Sciences, University of Reading, Reading RG6 6BX, UK. 3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe,New Mexico 87501, USA.

Log-likelihood

Fold rate increase or decrease

500

1,000

1,500

2,000

2,500

12,000

–970 –870 –770 –670 –570 –470 –370 –270

0 5 10 15 20 25 30 35 40 45 50 55

Variable-rates model

Equal-rates modela

Freq

uenc

y

100

200

300

400

2,250b

Figure 1 | Log-likelihood of trait models when rates are allowed to vary.a, Posterior distribution of log-likelihoods from a model with equal rates ofevolution (red), compared with the posterior distribution of log-likelihoodsfrom the model in which evolutionary rates are allowed to vary (green):log(Bayes factor)5 993.51 (calculated from the log-harmonic means of thelikelihoods); values.10 considered ‘very strong’ support. b, The coloured barsshow distributions of rates for the one-third of the branches (1,494) for whichthe posterior probability of having a rate shift was greater than 0.95. Blue barssignify x-fold rate increases and yellow bars indicate x-fold rate decreases. Greybars show the distribution of the mean fold rates for all the branches in themammal phylogeny, independent of the level of posterior support.

0 0 M O N T H 2 0 1 1 | V O L 0 0 0 | N A T U R E | 1

Macmillan Publishers Limited. All rights reserved©2011

Page 11: Graham Slater's Phyloseminar Slides 12-10-2013

phylogenies don’t really look like this

40 30 20 10 0

Page 12: Graham Slater's Phyloseminar Slides 12-10-2013

they look like this

40 30 20 10 0

Page 13: Graham Slater's Phyloseminar Slides 12-10-2013
Page 14: Graham Slater's Phyloseminar Slides 12-10-2013

Finarelli and Flynn 2006 Sys. Biol.

adding fossils improves ancestral state estimates

Page 15: Graham Slater's Phyloseminar Slides 12-10-2013

do those extinct things matter for testing macroevolutionary

hypotheses?

Page 16: Graham Slater's Phyloseminar Slides 12-10-2013

do those extinct things matter for testing macroevolutionary hypotheses?

Page 17: Graham Slater's Phyloseminar Slides 12-10-2013

do those extinct things matter for testing macroevolutionary hypotheses?

• how much macroevolutionary information do fossils hold relative to extant taxa?

Page 18: Graham Slater's Phyloseminar Slides 12-10-2013

do those extinct things matter for testing macroevolutionary hypotheses?

• how much macroevolutionary information do fossils hold relative to extant taxa?

• does a paleontological perspective change the way we formulate our hypotheses?

Page 19: Graham Slater's Phyloseminar Slides 12-10-2013

do those extinct things matter for testing macroevolutionary hypotheses?

• how much macroevolutionary information do fossils hold relative to extant taxa?

• does a paleontological perspective change the way we formulate our hypotheses?

• can we use fossil information when we have no phylogeny including extinct species?

Page 20: Graham Slater's Phyloseminar Slides 12-10-2013

do those extinct things matter for testing macroevolutionary hypotheses?

• how much macroevolutionary information do fossils hold relative to extant taxa?

• does a paleontological perspective change the way we formulate our hypotheses?

• can we use fossil information when we have no phylogeny including extinct species?

Page 21: Graham Slater's Phyloseminar Slides 12-10-2013
Page 22: Graham Slater's Phyloseminar Slides 12-10-2013
Page 23: Graham Slater's Phyloseminar Slides 12-10-2013

simulate trait evolution

Page 24: Graham Slater's Phyloseminar Slides 12-10-2013

prune to extant taxa only

simulate trait evolution

Page 25: Graham Slater's Phyloseminar Slides 12-10-2013

prune to extant taxa only

fit models

simulate trait evolution

Page 26: Graham Slater's Phyloseminar Slides 12-10-2013

prune to extant taxa only

replace a proportion of extant taxa for fossils

simulate trait evolution

Page 27: Graham Slater's Phyloseminar Slides 12-10-2013

prune to extant taxa only

fit models

simulate trait evolution

replace a proportion of extant taxa for fossils

Page 28: Graham Slater's Phyloseminar Slides 12-10-2013

TimeTime

Phen

otyp

eBrownian motion

Time

Page 29: Graham Slater's Phyloseminar Slides 12-10-2013

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

swapping fossils for extant taxa has no effect if BM is the true model of evolution

Akaik

e Weig

hts

proportion of taxa that are extinct

Page 30: Graham Slater's Phyloseminar Slides 12-10-2013

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

swapping fossils for extant taxa has no effect if BM is the true model of evolution

Akaik

e Weig

hts

proportion of taxa that are extinct

Page 31: Graham Slater's Phyloseminar Slides 12-10-2013

BM is a special case of most current models

Page 32: Graham Slater's Phyloseminar Slides 12-10-2013

AIC = 2k - 2ln(L)

BM is a special case of most current models

# parameters Likelihood

Page 33: Graham Slater's Phyloseminar Slides 12-10-2013

trend

Time

Phen

otyp

e

Page 34: Graham Slater's Phyloseminar Slides 12-10-2013

trend

Time

Phen

otyp

e

Page 35: Graham Slater's Phyloseminar Slides 12-10-2013

Benson et al. 2013 PLoS ONE

Cope’s rule -- an evolutionary trend

Page 36: Graham Slater's Phyloseminar Slides 12-10-2013

no trends can be detected from extant taxa only

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

Akaik

e Weig

hts

root - tip increase in mean

0/100 fossils

Page 37: Graham Slater's Phyloseminar Slides 12-10-2013

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

but a few fossils have a substantial effectAk

aike W

eight

s

0/100 fossils

5/100

root - tip increase in mean

Page 38: Graham Slater's Phyloseminar Slides 12-10-2013

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

and more fossils improves ability to detect weaker trends

Akaik

e Weig

hts

0/100 fossils

5/100

50 /100

95 /100

root - tip increase in mean

Page 39: Graham Slater's Phyloseminar Slides 12-10-2013

Early Burst - Declining rates

Time

Phen

otyp

e

Page 40: Graham Slater's Phyloseminar Slides 12-10-2013

Early Burst - Declining rates

Time

Phen

otyp

e

Page 41: Graham Slater's Phyloseminar Slides 12-10-2013

ORIGINAL ARTICLE

doi:10.1111/j.1558-5646.2010.01025.x

EARLY BURSTS OF BODY SIZE AND SHAPEEVOLUTION ARE RARE IN COMPARATIVEDATALuke J. Harmon,1,2,3 Jonathan B. Losos,4 T. Jonathan Davies,5 Rosemary G. Gillespie,6 John L. Gittleman,7

W. Bryan Jennings,8 Kenneth H. Kozak,9 Mark A. McPeek,10 Franck Moreno-Roark,11 Thomas J. Near,12

Andy Purvis,13 Robert E. Ricklefs,14 Dolph Schluter,2 James A. Schulte II,11 Ole Seehausen,15,16

Brian L. Sidlauskas,17,18 Omar Torres-Carvajal,19 Jason T. Weir,2 and Arne Ø. Mooers20

1Department of Biological Sciences, University of Idaho, Moscow, Idaho 838442Biodiversity Centre, University of British Columbia, Vancouver, BC V6T1Z4, Canada

3E-mail: [email protected] of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 021385National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, 735 State Street, Suite 300,

Santa Barbara, California 931016Department of Environmental Science, Policy and Management, University of California, Berkeley, California 947207Odum School of Ecology, University of Georgia, Athens, Georgia 306028Department of Biological Sciences, Humboldt State University, Arcata, California 955219Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, Minnesota 5510810Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 0375511Department of Biology, Clarkson University, Potsdam, New York 1369912Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 0652013Division of Biology, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY United Kingdom14Department of Biology, University of Missouri—St. Louis, St. Louis, Missouri 6312115Institute of Ecology & Evolution, Division of Aquatic Ecology & Macroevolution, University of Bern, CH-3012 Bern,

Switzerland16Eawag Centre of Ecology, Evolution and Biogeochemistry, Department of Fish Ecology & Evolution, Seestrasse 79,

CH-6047 Kastanienbaum, Switzerland17National Evolutionary Synthesis Center, Durham, North Carolina 2770518Oregon State University, Department of Fisheries and Wildlife, 104 Nash Hall, Corvallis, Oregon, 9733119Escuela de Biologıa, Pontificia Universidad Catolica del Ecuador, Apartado 17-01-2184, Quito, Ecuador20Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A1S6, Canada

Received May 11, 2009

Accepted February 21, 2010

2 3 8 5C⃝ 2010 The Author(s). Journal compilation C⃝ 2010 The Society for the Study of Evolution.Evolution 64-8: 2385–2396

Page 42: Graham Slater's Phyloseminar Slides 12-10-2013

Slater and Pennell (in press) Syst. Biol

early bursts need lots of taxa and big changes in rate

Page 43: Graham Slater's Phyloseminar Slides 12-10-2013

Slater and Pennell (in press) Syst. Biol

Akaike Weight

0.2

0.4

0.6

0.8

1.0

weight

50 100 150 200

0

2

4

6

8

10

number of taxa

# of

hal

f liv

es

0

2

4

6

8

10

0.2

0.4

0.6

0.8

# elapsedrate half lives

50 100 150 200

# taxa

1.0

early bursts need lots of taxa and big changes in rate

Page 44: Graham Slater's Phyloseminar Slides 12-10-2013

Slater and Pennell (in press) Syst. Biol

Akaike Weight

0.2

0.4

0.6

0.8

1.0

weight

50 100 150 200

0

2

4

6

8

10

number of taxa

# of

hal

f liv

es

0

2

4

6

8

10

0.2

0.4

0.6

0.8

# elapsedrate half lives

50 100 150 200

# taxa

1.0

early bursts need lots of taxa and big changes in rate

Page 45: Graham Slater's Phyloseminar Slides 12-10-2013

Slater and Pennell (in press) Syst. Biol

Akaike Weight

0.2

0.4

0.6

0.8

1.0

weight

50 100 150 200

0

2

4

6

8

10

number of taxa

# of

hal

f liv

es

0

2

4

6

8

10

0.2

0.4

0.6

0.8

# elapsedrate half lives

50 100 150 200

# taxa

1.0

0.2

0.4

0.6

0.8

1.0

weight

50 100 150 200

0

2

4

6

8

10

number of taxa

# of

hal

f liv

es

early bursts need lots of taxa and big changes in rate

Page 46: Graham Slater's Phyloseminar Slides 12-10-2013

0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

we need a lot of fossils to detect weaker early bursts

Akaik

e Weig

hts

# elapsed rate half-lives

0/100

5/100

50 /10

095

/100

Page 47: Graham Slater's Phyloseminar Slides 12-10-2013

Time

Phen

otyp

eLate Burst - Accelerating rates

Page 48: Graham Slater's Phyloseminar Slides 12-10-2013

Time

Phen

otyp

eLate Burst - Accelerating rates

Page 49: Graham Slater's Phyloseminar Slides 12-10-2013

0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

Akaik

e Weig

hts

# elapsed rate doubling times

no ability to detect accelerating rates from ultrametric trees

0/100 fossils

Page 50: Graham Slater's Phyloseminar Slides 12-10-2013

0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

Akaik

e Weig

hts

# elapsed rate doubling times

no ability to detect accelerating rates from ultrametric trees

0/100 fossils

Page 51: Graham Slater's Phyloseminar Slides 12-10-2013

0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

Akaik

e Weig

hts

# elapsed rate doubling times

and may be mistaken for other “low-signal” processes like Ornstein-Uhlenbeck

0/100 fossils

Page 52: Graham Slater's Phyloseminar Slides 12-10-2013

0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

Akaik

e Weig

hts

# elapsed rate doubling times

swapping extant tips for fossils increases support for accelerating rates over OU

5/100 fossils

Page 53: Graham Slater's Phyloseminar Slides 12-10-2013

0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

Akaik

e Weig

hts

# elapsed rate doubling times

swapping extant tips for fossils increases support for accelerating rates over OU

50/100 fossils

Page 54: Graham Slater's Phyloseminar Slides 12-10-2013

0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0

Akaik

e Weig

hts

# elapsed rate doubling times

swapping extant tips for fossils increases support for accelerating rates over OU

95/100 fossils

Page 55: Graham Slater's Phyloseminar Slides 12-10-2013

how much macroevolutionary information do fossils hold relative to extant taxa?

Page 56: Graham Slater's Phyloseminar Slides 12-10-2013

how much macroevolutionary information do fossils hold relative to extant taxa?

on a “per-taxon” basis, fossils contribute more macroevolutionary

information than extant taxa

Page 57: Graham Slater's Phyloseminar Slides 12-10-2013

how much macroevolutionary information do fossils hold relative to extant taxa?

on a “per-taxon” basis, fossils contribute more macroevolutionary

information than extant taxa

impact of fossils depends on the underlying evolutionary process

Page 58: Graham Slater's Phyloseminar Slides 12-10-2013

do those extinct things matter for testing macroevolutionary hypotheses?

• how much macroevolutionary information do fossils hold relative to extant taxa?

• does a paleontological perspective change the way we formulate our hypotheses?

• can we use fossil information when we have no phylogeny including extinct species?

Page 59: Graham Slater's Phyloseminar Slides 12-10-2013
Page 60: Graham Slater's Phyloseminar Slides 12-10-2013

do we test the right models?

Page 61: Graham Slater's Phyloseminar Slides 12-10-2013

How fast...do animals evolve...? That is one of

the fundamental questions regarding

evolution

Photo: Florida Museum of Natural HistorySimpson (1944, 1953)

Page 62: Graham Slater's Phyloseminar Slides 12-10-2013
Page 63: Graham Slater's Phyloseminar Slides 12-10-2013

Illustration by Mark Hallet

Page 64: Graham Slater's Phyloseminar Slides 12-10-2013

Eoce

neO

ligoc

ene

Mio

cene

Page 65: Graham Slater's Phyloseminar Slides 12-10-2013

Alroy (1999) Systematic Biology

fossils suggest an increase in mean and variance of body size after the K-Pg

K Pg Ng K Pg Ng

standard deviation massmean mass

Page 66: Graham Slater's Phyloseminar Slides 12-10-2013

Venditti et al. (2011) Nature

K Pg NgJ

relative rate

Phylogenetic approaches find no rate increase in the Cenozoic

Page 67: Graham Slater's Phyloseminar Slides 12-10-2013

do we really think mammals changed their rate of body

size evolution?

Page 68: Graham Slater's Phyloseminar Slides 12-10-2013

From Simpson (1953)

Simpson’s adaptive zones

Page 69: Graham Slater's Phyloseminar Slides 12-10-2013

Mesozoic CenozoicT J PgK Ng

body sizethe mammalian adaptive zone

Page 70: Graham Slater's Phyloseminar Slides 12-10-2013

Mesozoic CenozoicT J PgK Ng

body sizethe mammalian adaptive zone

Page 71: Graham Slater's Phyloseminar Slides 12-10-2013

variation in tempo

Mesozoic CenozoicT J PgK Ng

body size

Page 72: Graham Slater's Phyloseminar Slides 12-10-2013

variation in tempo

evolution slow

Mesozoic CenozoicT J PgK Ng

body size

Page 73: Graham Slater's Phyloseminar Slides 12-10-2013

variation in tempo

evolution slow

evolution fast

Mesozoic CenozoicT J PgK Ng

body size

Page 74: Graham Slater's Phyloseminar Slides 12-10-2013

images from http://dinosaurs.about.com

Mesozoic CenozoicT J PgK Ng

body size

Page 75: Graham Slater's Phyloseminar Slides 12-10-2013

variation in mode

images from http://dinosaurs.about.com

Mesozoic CenozoicT J PgK Ng

body size

Page 76: Graham Slater's Phyloseminar Slides 12-10-2013

variation in mode

images from http://dinosaurs.about.com

evolution constrained

Mesozoic CenozoicT J PgK Ng

body size

Page 77: Graham Slater's Phyloseminar Slides 12-10-2013

variation in mode

images from http://dinosaurs.about.com

evolution constrained

evolution unconstrained

Mesozoic CenozoicT J PgK Ng

body size

Page 78: Graham Slater's Phyloseminar Slides 12-10-2013

3 paleo-motivated models for mammalian body size evolution

Slater (2013) Methods Ecol. Evol.

Page 79: Graham Slater's Phyloseminar Slides 12-10-2013

3 paleo-motivated models for mammalian body size evolution

Mesozoic Cenozoic

BM rate 1 BM rate 2

K-Pg Shift

Slater (2013) Methods Ecol. Evol.

Page 80: Graham Slater's Phyloseminar Slides 12-10-2013

3 paleo-motivated models for mammalian body size evolution

Mesozoic Cenozoic

BM rate 1 BM rate 2

K-Pg Shift

Mesozoic Cenozoic

Ornstein-Uhlenbeck BM

ecological release

Slater (2013) Methods Ecol. Evol.

Page 81: Graham Slater's Phyloseminar Slides 12-10-2013

3 paleo-motivated models for mammalian body size evolution

Mesozoic Cenozoic

BM rate 1 BM rate 2

K-Pg Shift

Mesozoic Cenozoic

Ornstein-Uhlenbeck BM

ecological release

Mesozoic Cenozoic

BM*

release and radiate

Ornstein-Uhlenbeck

Slater (2013) Methods Ecol. Evol.

Page 82: Graham Slater's Phyloseminar Slides 12-10-2013

Q

Ng

Pg

K

J

T

P

02.59

23

66

145

201.3

252.2

264.94

time calibrated phylogeny of living and fossil mammals

Cenozoic

Mesozoic

Pz

Slater (2013) Methods Ecol. Evol.

Page 83: Graham Slater's Phyloseminar Slides 12-10-2013

Q

Ng

Pg

K

J

T

P

02.59

23

66

145

201.3

252.2

264.94

Cenozoic

Mesozoic

Pz

Slater (2013) Methods Ecol. Evol.

Page 84: Graham Slater's Phyloseminar Slides 12-10-2013

standard models paleo-inspired models

BrownianMotion

Directional Trend

Ornstein Uhlenbeck

AC /DC

White Noise

K-Pg shift

Ecological release

Release & radiate

0.0

0.2

0.4

0.6

0.8

1.0

Aka

ike

Wei

ghts

Page 85: Graham Slater's Phyloseminar Slides 12-10-2013

release & radiate fits best

standard models paleo-inspired models

BrownianMotion

Directional Trend

Ornstein Uhlenbeck

AC /DC

White Noise

K-Pg shift

Ecological release

Release & radiate

0.0

0.2

0.4

0.6

0.8

1.0

Aka

ike

Wei

ghts

Page 86: Graham Slater's Phyloseminar Slides 12-10-2013

Parameters Mesozoic Cenozoic

rate (σ2) 0.97 0.1

OU param (α) 0.01 -

faster rates of body size evolution in the Mesozoic?

Page 87: Graham Slater's Phyloseminar Slides 12-10-2013

Parameters Mesozoic Cenozoic

rate (σ2) 0.97 0.1

OU param (α) 0.01 -

faster rates of body size evolution in the Mesozoic?

Page 88: Graham Slater's Phyloseminar Slides 12-10-2013

Brownian motion is a diversifying process

time

phen

otyp

e

Page 89: Graham Slater's Phyloseminar Slides 12-10-2013

Brownian motion is a diversifying process

time

phen

otyp

e

starting state

Page 90: Graham Slater's Phyloseminar Slides 12-10-2013

Brownian motion is a diversifying process

time

phen

otyp

e

rate σ2

starting state

Page 91: Graham Slater's Phyloseminar Slides 12-10-2013

Brownian motion is a diversifying process

time

phen

otyp

e

rate σ2

starting state

Page 92: Graham Slater's Phyloseminar Slides 12-10-2013

Brownian motion is a diversifying process

time

phen

otyp

e

rate σ2

starting state starting state

Page 93: Graham Slater's Phyloseminar Slides 12-10-2013

Brownian motion is a diversifying process

time

phen

otyp

e

rate σ2

starting state starting state

σ2 * time

Page 94: Graham Slater's Phyloseminar Slides 12-10-2013

time

phen

otyp

e

OU is an equilibrium process

Page 95: Graham Slater's Phyloseminar Slides 12-10-2013

time

phen

otyp

e

OU is an equilibrium process

starting state

Page 96: Graham Slater's Phyloseminar Slides 12-10-2013

time

phen

otyp

e

OU is an equilibrium process

rate σ2

starting state

Page 97: Graham Slater's Phyloseminar Slides 12-10-2013

time

phen

otyp

e

rubber band parameter α

OU is an equilibrium process

rate σ2

starting state

Page 98: Graham Slater's Phyloseminar Slides 12-10-2013

time

phen

otyp

e

rubber band parameter α

OU is an equilibrium process

rate σ2

starting state

Page 99: Graham Slater's Phyloseminar Slides 12-10-2013

time

phen

otyp

e

rubber band parameter α

OU is an equilibrium process

rate σ2

starting state starting state

Page 100: Graham Slater's Phyloseminar Slides 12-10-2013

time

phen

otyp

e

σ2 / 2α

rubber band parameter α

OU is an equilibrium process

rate σ2

starting state starting state

Page 101: Graham Slater's Phyloseminar Slides 12-10-2013

time

phen

otyp

eBrownian motionOrnstein-Uhlenbeck

BM and OU simulated at the same rate give very different disparities

Page 102: Graham Slater's Phyloseminar Slides 12-10-2013

the OU process has an equilibrium disparity

250 200 150 100 50 0

variance

millions of years ago

CenozoicMesozoic

Page 103: Graham Slater's Phyloseminar Slides 12-10-2013

the OU process has an equilibrium disparity

250 200 150 100 50 0

variance

millions of years ago

CenozoicMesozoic

Page 104: Graham Slater's Phyloseminar Slides 12-10-2013

250 200 150 100 50 0

variance

millions of years ago

CenozoicMesozoic

a low BM rate increases disparity

Page 105: Graham Slater's Phyloseminar Slides 12-10-2013

do we really think mammals changed their rate of body

size evolution?

Page 106: Graham Slater's Phyloseminar Slides 12-10-2013

do we really think mammals changed their rate of body

size evolution?✗

Page 107: Graham Slater's Phyloseminar Slides 12-10-2013

How fast...do animals evolve...? That is one of

the fundamental questions regarding

evolution

Photo: Florida Museum of Natural HistorySimpson (1944, 1953)

Page 108: Graham Slater's Phyloseminar Slides 12-10-2013

How fast...do animals evolve...? That is one of

the fundamental questions regarding

evolution

Photo: Florida Museum of Natural HistorySimpson (1944, 1953)

Page 109: Graham Slater's Phyloseminar Slides 12-10-2013

...hang on a minute

Page 110: Graham Slater's Phyloseminar Slides 12-10-2013

D

A

B

C

8 6 4 2 0

Page 111: Graham Slater's Phyloseminar Slides 12-10-2013

D

A

B

C

8 6 4 2 0

B

C

D

Page 112: Graham Slater's Phyloseminar Slides 12-10-2013

A B C D

A 8.24 0.00 0.00 0.00

B 0.00 8.24 0.61 0.61

C 0.00 0.61 4.65 4.10

D 0.00 0.61 4.10 8.24

B

C D

D

A

B

C

8 6 4 2 0

B

C

D

Page 113: Graham Slater's Phyloseminar Slides 12-10-2013

A B C D

A 8.24 0.00 0.00 0.00

B 0.00 8.24 0.61 0.61

C 0.00 0.61 4.65 4.10

D 0.00 0.61 4.10 8.24

B

C D

D

A

B

C

8 6 4 2 0

B

C

D

Page 114: Graham Slater's Phyloseminar Slides 12-10-2013

A B C D

A 8.24 0.00 0.00 0.00

B 0.00 8.24 0.61 0.61

C 0.00 0.61 4.65 4.10

D 0.00 0.61 4.10 8.24

B

C D

D

A

B

C

8 6 4 2 0

B

C

D

Page 115: Graham Slater's Phyloseminar Slides 12-10-2013

A B C D

A 4.04 0.00 0.00 0.00

B 0.00 4.04 0.18 0.13

C 0.00 0.18 3.03 1.75

D 0.00 0.13 1.75 4.04D

A

B

C

8 6 4 2 0

OU VCV transformation DC

BB

C

D

Page 116: Graham Slater's Phyloseminar Slides 12-10-2013

A B C D

A 4.04 0.00 0.00 0.00

B 0.00 4.04 0.18 0.13

C 0.00 0.18 3.03 1.75

D 0.00 0.13 1.75 4.04D

A

B

C

8 6 4 2 0

OU VCV transformation DC

BB

C

D

Page 117: Graham Slater's Phyloseminar Slides 12-10-2013

A B C D

A 4.04 0.00 0.00 0.00

B 0.00 4.04 0.18 0.13

C 0.00 0.18 3.03 1.75

D 0.00 0.13 1.75 4.04D

A

B

C

8 6 4 2 0

OU VCV transformation DC

BB

C

D

Page 118: Graham Slater's Phyloseminar Slides 12-10-2013

A B C D

A 4.04 0.00 0.00 0.00

B 0.00 4.04 0.18 0.13

C 0.00 0.18 3.03 1.75

D 0.00 0.13 1.75 4.04D

A

B

C

8 6 4 2 0

OU VCV transformation DC

BB

C

D

Page 119: Graham Slater's Phyloseminar Slides 12-10-2013

A B C D

A 4.04 0.00 0.00 0.00

B 0.00 4.04 0.13 0.13

C 0.00 0.13 1.48 1.22

D 0.00 0.13 1.22 4.04D

A

B

C

8 6 4 2 0

OU branch length transformation DC

BB

C

D

Page 120: Graham Slater's Phyloseminar Slides 12-10-2013

BrownianMotion

Directional Trend

Ornstein Uhlenbeck

AC /DC

White Noise

K-Pg shift

Ecological release

Release & radiate

0.0

0.2

0.4

0.6

0.8

1.0

Aka

ike

Wei

ghts

standard models paleo-inspired models

release & radiate still fits best...

Page 121: Graham Slater's Phyloseminar Slides 12-10-2013

BrownianMotion

Directional Trend

Ornstein Uhlenbeck

AC /DC

White Noise

K-Pg shift

Ecological release

Release & radiate

0.0

0.2

0.4

0.6

0.8

1.0

Aka

ike

Wei

ghts

standard models paleo-inspired models

but ecological release is almost as good

Page 122: Graham Slater's Phyloseminar Slides 12-10-2013

Parameters Mesozoic Cenozoic

rate (σ2) 0.2 0.1

OU param (α) 0.03 -

a less pronounced rate decrease ...

Page 123: Graham Slater's Phyloseminar Slides 12-10-2013

250 200 150 100 50 0

variance

millions of years ago

CenozoicMesozoic

but σ2 / 2α makes more sense

Page 124: Graham Slater's Phyloseminar Slides 12-10-2013

250 200 150 100 50 0

variance

millions of years ago

CenozoicMesozoic

but σ2 / 2α makes more sense

Page 125: Graham Slater's Phyloseminar Slides 12-10-2013
Page 126: Graham Slater's Phyloseminar Slides 12-10-2013

Tree transformations under OU don’t work for non-ultrametric

trees!

Page 127: Graham Slater's Phyloseminar Slides 12-10-2013

do those extinct things matter for testing macroevolutionary hypotheses?

• how much macroevolutionary information do fossils hold relative to extant taxa?

• does a paleontological perspective change the way we formulate our hypotheses?

• can we use fossil information when we have no phylogeny including extinct species?

Page 128: Graham Slater's Phyloseminar Slides 12-10-2013

a touch of realism

Page 129: Graham Slater's Phyloseminar Slides 12-10-2013

most comparative biologists don’t have this

40 30 20 10 0

Page 130: Graham Slater's Phyloseminar Slides 12-10-2013

40 30 20 10 0

but have this

††

Page 131: Graham Slater's Phyloseminar Slides 12-10-2013

40 30 20 10 0

Page 132: Graham Slater's Phyloseminar Slides 12-10-2013

40 30 20 10 0

Page 133: Graham Slater's Phyloseminar Slides 12-10-2013

40 30 20 10 0

Page 134: Graham Slater's Phyloseminar Slides 12-10-2013

40 30 20 10 0

density.default(x = X)

-4 -2 0 2 4 6

0.00

0.10

0.20

0.30

ln(mass)

Density

Page 135: Graham Slater's Phyloseminar Slides 12-10-2013

caniform carnivores span a huge range of body sizes

Page 136: Graham Slater's Phyloseminar Slides 12-10-2013

caniform carnivores span a huge range of body sizes

30-250 grams

Page 137: Graham Slater's Phyloseminar Slides 12-10-2013

caniform carnivores span a huge range of body sizes

30-250 grams > 3, 000 Kg

Page 138: Graham Slater's Phyloseminar Slides 12-10-2013

Finarelli and Flynn 2006 Sys. Biol.

do caniform carnivores exhibit a trend towards large body size?

Page 139: Graham Slater's Phyloseminar Slides 12-10-2013

-2.5 7.5ln(body mass)

50 40 30 20 10 0Millions of Years Ago

Canidae

UrsidaeOdobenidaeOtariidae

Phocidae

MephitidaeAiluridae

Procyonidae

Mustelidae

Slater et al. 2012 Evolution

Page 140: Graham Slater's Phyloseminar Slides 12-10-2013

-2.5 7.5ln(body mass)

50 40 30 20 10 0Millions of Years Ago

Canidae

UrsidaeOdobenidaeOtariidae

Phocidae

MephitidaeAiluridae

Procyonidae

Mustelidae

Slater et al. 2012 Evolution

12 node priors - 11 internal - root

Page 141: Graham Slater's Phyloseminar Slides 12-10-2013

0.1 1 10 100 10000.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100 10000.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100 10000.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100 10000.0

0.2

0.4

0.6

0.8

1.0

BM

OU

Trend

AC/DCextant

nodes

nodes + root

mass mass

mass mass

dens

ityde

nsity

dens

ityde

nsity

ancestral size is too large based on extant taxa ...

Page 142: Graham Slater's Phyloseminar Slides 12-10-2013

0.1 1 10 100 10000.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100 10000.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100 10000.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100 10000.0

0.2

0.4

0.6

0.8

1.0 extantfossilsfossils + root

BM

OU

Trend

AC/DCextant

nodes

nodes + root

... but is more realistic with fossil priors

mass mass

mass mass

dens

ityde

nsity

dens

ityde

nsity

Page 143: Graham Slater's Phyloseminar Slides 12-10-2013

Trend ACDC OU

-10

12

32*

Ln(B

ayes

Fac

tor)

extant.onlyfossilsfossils.plus.root

Trend OUAC/DC

extant

nodes

nodes + root

Page 144: Graham Slater's Phyloseminar Slides 12-10-2013

Trend ACDC OU

-10

12

32*

Ln(B

ayes

Fac

tor)

extant.onlyfossilsfossils.plus.root

Trend OUAC/DC

extant

nodes

nodes + rootpositive

Page 145: Graham Slater's Phyloseminar Slides 12-10-2013

Trend ACDC OU

-10

12

32*

Ln(B

ayes

Fac

tor)

extant.onlyfossilsfossils.plus.root

Trend OUAC/DC

extant

nodes

nodes + root

Page 146: Graham Slater's Phyloseminar Slides 12-10-2013

Trend ACDC OU

-10

12

32*

Ln(B

ayes

Fac

tor)

extant.onlyfossilsfossils.plus.root

Trend OUAC/DC

extant

nodes

nodes + root

Page 147: Graham Slater's Phyloseminar Slides 12-10-2013

root-tip increase in Ln(mass)

dens

itymode = 1.55

-1 0 1 2 3 4 5

0

5

10

15

20

25

the estimated change in mean mass is subtle

Page 148: Graham Slater's Phyloseminar Slides 12-10-2013

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0

Akaik

e Weig

hts

root - tip change in mean

0/100 fossils

5/100

50 /100

95 /100

which is difficult to detect using AIC

Page 149: Graham Slater's Phyloseminar Slides 12-10-2013

-1012345

0.5 1 10ancestral mass (Kg)

root

-tip

incre

ase

in Ln

(mas

s)

joint marginal distribution of root state and trend parameter

Page 150: Graham Slater's Phyloseminar Slides 12-10-2013

-1012345

0.5 1 10ancestral mass (Kg)

joint marginal distribution of root state and trend parameter

root

-tip

incre

ase

in Ln

(mas

s)

Page 151: Graham Slater's Phyloseminar Slides 12-10-2013

PP(Mu> 0) = 0.97

-1012345

0.5 1 10ancestral mass (Kg)

joint marginal distribution of root state and trend parameter

root

-tip

incre

ase

in Ln

(mas

s)

Page 152: Graham Slater's Phyloseminar Slides 12-10-2013

no fossils with fossils

ancestral size

mode of evolution

how do fossils change our picture of caniform size evolution?

Page 153: Graham Slater's Phyloseminar Slides 12-10-2013

no fossils with fossils

ancestral size large (~25kg) small (~2 kg)

mode of evolution

how do fossils change our picture of caniform size evolution?

Page 154: Graham Slater's Phyloseminar Slides 12-10-2013

no fossils with fossils

ancestral size large (~25kg) small (~2 kg)

mode of evolution Brownian motionBrownian motion + trend to large

size

how do fossils change our picture of caniform size evolution?

Page 155: Graham Slater's Phyloseminar Slides 12-10-2013

can we use fossil information when we have no phylogeny including extinct species?

Page 156: Graham Slater's Phyloseminar Slides 12-10-2013

can we use fossil information when we have no phylogeny including extinct species?

even using fossil traits as informative node priors improves model fitting

Page 157: Graham Slater's Phyloseminar Slides 12-10-2013

do those extinct things matter for testing macroevolutionary

hypotheses?

Page 158: Graham Slater's Phyloseminar Slides 12-10-2013

today’s model systems for macroevolutionary studies

images: wikipedia

Page 159: Graham Slater's Phyloseminar Slides 12-10-2013

tomorrow’s model systems for macroevolutionary studies

images: www.amnh.oig., wikipedia