31
Energy Flow Food Chains, Food Webs, Trophic Levels, Energy Loss

Energy flow (bd mod)

Embed Size (px)

Citation preview

Page 1: Energy flow (bd mod)

Energy FlowFood Chains, Food Webs, Trophic Levels,

Energy Loss

Page 2: Energy flow (bd mod)

All ecosystems depend on the input of energy.

This energy is in most cases from the sun. Living things are needed to convert solar energy from the sun into chemical energy for use by living organisms.

Energy is needed by all living things

All energy originally comes from the sun

Page 3: Energy flow (bd mod)

Energy is used in a variety of ways. It is released from glucose in the process of respiration.

Energy is used by organisms for: ◦ movement of muscles ◦ to keep warm◦ To create proteins, enzymes, fats and hormones ◦ Growth and repair ◦ Chemical reactions in organs. ◦ Movement of chemical in and out of cells

Where the energy is used most will depend on the organism and the stage of its life cycle.

So why is energy important?

Page 4: Energy flow (bd mod)

AutotrophsAnother way of saying producer

Page 5: Energy flow (bd mod)

Living things that convert solar energy to chemical energy include plants, algae and cyanobacteria.

They use chlorophyll found within their cells to trap visible light (red and blue light) and use it to produce organic compounds from inorganic compounds taken from their environment.

These organisms supply all the organic material on which other organisms in an ecosystem rely. These organisms are known as producers.

Producers

Cyanobacteria

Page 6: Energy flow (bd mod)

Photosynthesis can be represented by the word equation:

carbon dioxide + water + sunlight → glucose + oxygen

or as the balanced chemical equation:

6CO2 + 6H2O → C6H12O6 + 6O2

Producers use Photosynthesis

Page 7: Energy flow (bd mod)

The Photosynthesis Equation

6CO2 + 6H2O → C6H12O6 + 6O2

++6x Carbon Dioxide 6x Water Glucose 6x Oxygen

Water

Oxygen

Chlorophyll

Light

Carbon Dioxide

Glucose

Page 8: Energy flow (bd mod)

Not all of the sunlight energy (ie. the sunlight that falls on the plant) is successfully trapped: ◦ Some is reflected off the waxy surface of the leaf◦ It can be transferred to the water in the leaf◦ Or it may be the wrong wavelength of light and

can’t be absorbed by the chlorophyll in each plant cell.

Overall a plant traps only about 2% of the sunlight that falls on it.

The amount of energy that does get trapped (in glucose molecules) is called the gross primary productivity of the plant .

Problems with photosynthesis

Page 9: Energy flow (bd mod)

Gross primary productivity (GPP) represents the rate that producers capture and store energy in an ecosystem. It is a way of measuring the photosynthesis process.

The rate of GPP is affected by how efficient photosynthesis is in a given ecosystem. ◦ Tropical rainforests for example have a very high GPP

as the rainforest has everything plants need to photosynthesize.

Not all GPP produced in a system is available to the organisms that depend on it (consumers).

The amount of biomass available if referred to as net primary productivity (NPP).

Gross Primary Productivity

Page 10: Energy flow (bd mod)
Page 11: Energy flow (bd mod)

HetrotrophsAnother way of saying consumer

Page 12: Energy flow (bd mod)

Organisms such as ourselves cannot create organic compounds from inorganic materials and we are known as heterotrophs.

Heterotrophs consume other organisms to obtain their organic material. They are known as consumers.

They may obtain these materials by consuming the producer directly or by consuming an organism that has consumed a producer. These consumers include animals, fungi and many kinds of bacteria.

Heterotrophs

Page 13: Energy flow (bd mod)

From the simple compounds and mineral nutrients they consume, consumers create the complex compounds they rely on for growth and repair of damaged tissue.

The energy need to do this is supplied by the breakdown of some of the carbohydrates made in photosynthesis.

The process is called respiration- the release of energy in the bonds of glucose. This process also produces heat which is lost to the surroundings.

 

Respiration

Page 14: Energy flow (bd mod)

Food Chains and Webs

Page 15: Energy flow (bd mod)

As one organism feeds on another a food chain is formed.

Each link in the chain is known as a trophic level.

Each animal in the chain feeds on and therefore gains its energy from the organism preceding it in the food chain. In this way matter and energy are passed from one organism to the next.

Food Chains

Page 16: Energy flow (bd mod)

Food Chains

Page 17: Energy flow (bd mod)

Food Chains

Page 18: Energy flow (bd mod)

Animals that feed directly on producers are known as herbivores (or omnivores) or first order consumers.

Those carnivores (or omnivores) that depend on first order consumers are called second order consumers and so on.

The top consumers are not usually preyed upon and die of old age, disease or injury.

Animals that feed on the remains of dead animals are known as scavengers.

Organisms that feed on dead or decaying remains and waste (detritus) are known as detritivores.

Organisms that live on complex molecules by breaking organic material down are known as decomposers.

Food Chains

Page 19: Energy flow (bd mod)

A simple food chain in reality is rare. Think about what would happen if just one of the species in the food chain ran out- the whole system would collapse.

Instead a herbivore will feed on a large number of plants and in turn will be eaten by a range of consumers and so on. These networks of food chains form a food web.

An organism in one food chain may have a different trophic level in another food chain so it can be hard to assign an organism to one trophic level. Food webs are dynamic as ecosystems are open and organisms can move in and out bringing and taking matter and energy with them.

Food Webs

Page 20: Energy flow (bd mod)

Food Webs

Page 21: Energy flow (bd mod)

Food Webs

Page 22: Energy flow (bd mod)

Energy TransferHow efficient is it?

Page 23: Energy flow (bd mod)

The food chain represents the transfer of energy from one organism to the organism that eats it and so on.

However at each trophic level not all of the energy is transferred. Some is lost from the food chain as heat energy released during cell respiration and some as chemical energy in wastes and any left-over dead animal or plant matter (detritus).

This loss of energy means that as you move along the food chain less energy is available to pass on to the next level. Fortunately energy continually flows into the system as producers continue to trap the energy of sunlight.

Transfer of Energy

Page 24: Energy flow (bd mod)

Three hundred trout are needed to support one man for a year. The trout, in turn, must consume 90,000 frogs, that must consume 27 million  grasshoppers that live off of 1,000 tons of grass. 

-- G. Tyler Miller, Jr., American Chemist (1971)

Page 25: Energy flow (bd mod)

The percentage of energy at one trophic level that ends up in the next trophic level is referred to as trophic efficiency.

 

Trophic Efficiency

Page 26: Energy flow (bd mod)

As energy is lost at each trophic level, the more trophic levels in a food chain the more energy is lost and the more lower order organisms must be consumed by the higher order organism for it to obtain its energy requirements. This also makes it more likely that interruptions to the lower order organisms will affect higher order organisms.

The loss of energy also limits a food chain as eventually much of the energy will be lost.

Trophic Efficiency

Page 27: Energy flow (bd mod)

The amount of energy that is available to be passed from one organism to the next varies with the organism. Insects for example pass on more energy as they are ectothermic and do not use energy trying to maintain a constant body temperature. A useful rule is the 10% rule which states that about 10% of the energy at one trophic level is passed on to the next. The remaining 90% is lost as heat energy and chemical energy in wastes.

Measuring trophic efficiency has high relevancy to agriculture. Refer to Figure 11.14 on page 353. Some of the highest trophic efficiencies are found in the ocean. It has been observed that zooplankton feeding on phytoplankton (producer) receive up to 40% of the energy found in the phytoplankton.

Trophic Efficiency

Page 28: Energy flow (bd mod)

Biomass Pyramids

Page 29: Energy flow (bd mod)

Biomass The total mass of the organic matter at

each trophic level is called biomass

Biomass is just another term for potential energy – energy that is to be eaten and used.

The transfer of energy from one level to another is very inefficient (10% Law)

Page 30: Energy flow (bd mod)

Ecological Pyramid

An ecological pyramid shows the relationship between consumers and producers at different trophic levels in an ecosystem

Shows the relative amounts of energy or matter contained at each trophic level

The Pyramid shows which level has the most energy and the highest number of organisms

Page 31: Energy flow (bd mod)

Ecological Pyramid & Energy