15
International Journal of Water Sciences Assessment of Spring Chinook Salmon Habitat Suitability in the San Joaquin River Using a 2-D Depth-Averaged Model Regular Paper Lubo Liu 1,* and Joaquin Ramirez 1 1 Department of Civil and Geomatics Engineering, Lyles College of Engineering, California State University Fresno, Fresno, US * Corresponding author E-mail: [email protected] Received 9 Sep 2013; Accepted 22 Nov 2013 DOI: 10.5772/57437 © 2013 Liu and Ramirez; licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract The San Joaquin River Restoration Program (SJRRP) provides adult Chinook salmon with a passage to upstream spawning beds and a safe route for juveniles returning to the Delta. A two dimensional depthaveraged hydrodynamic model based on the RMA10 scheme was developed to simulate the hydraulic properties (current velocities, depth, water surface elevation) of three proposed alternative migration pathways to explore flow patterns and offer useful insights into the effects of hydrodynamic alterations of the channel, a critical capability for determining the best passage for migration. The finite element model reasonably described the hydrodynamic conditions and calculated a Suitability Index (SI) for the habitat for springrun Chinook salmon, with a Nash Sutcliffe Coefficient (NSC) of 0.75 for discharge and 0.56 for water surface elevation (WSE) respectively. The alternatives analysed were found to be characterized by similar SI distributions under the same boundary conditions. Alternatives 2 and 3 had higher overall Weighted Area Habitat Suitability Index (WAHSI) values and would thus be expected to provide better environments for salmon migration than Alternative 1. Normalized cross correlation calculations revealed fair correlations between the WAHSI values and upstream discharge or downstream water surface elevation. The hydrodynamic model may also provide a reference for similar suitability studies of salmon habitat in other inland rivers. Keywords Hydrodynamic Model, Habitat Suitability, Salmon Migration, Correlation 1. Introduction As the second longest river in California, the San Joaquin River (SJR) is a vital natural resource for numerous residents and industries. It provides an array of utilities within the Central Valley and is home to some of California’s most productive agricultural areas [1]. Headwaters for the river originate in the high Sierra Nevada, mainly from snowmelt and runoff [2]. Eventually the SJR conjoins with the Sacramento River to form the largest river delta on the west coast of North America [3]. 1 Lubo Liu and Joaquin Ramirez: Assessment of Spring Chinook Salmon Habitat Suitability in the San Joaquin River Using a 2-D Depth-Averaged Model www.intechopen.com ARTICLE www.intechopen.com Int. j. water sci., 2013, Vol. 2, 5:2013

Doc

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Doc

International Journal of Water Sciences

Assessment of Spring Chinook Salmon Habitat Suitability in the San Joaquin River Using a 2-D Depth-Averaged Model Regular Paper

Lubo Liu1,* and Joaquin Ramirez1

1 Department of Civil and Geomatics Engineering, Lyles College of Engineering, California State University Fresno, Fresno, US * Corresponding author E-mail: [email protected]

Received 9 Sep 2013; Accepted 22 Nov 2013 DOI: 10.5772/57437 © 2013 Liu and Ramirez; licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract   The   San   Joaquin   River   Restoration   Program  (SJRRP)  provides  adult  Chinook  salmon  with  a  passage  to   upstream   spawning   beds   and   a   safe   route   for  juveniles   returning   to   the   Delta.   A   two-­‐‑   dimensional  depth-­‐‑averaged   hydrodynamic   model   based   on   the  RMA10   scheme   was   developed   to   simulate   the  hydraulic   properties   (current   velocities,   depth,   water  surface   elevation)   of   three   proposed   alternative  migration   pathways   to   explore   flow   patterns   and   offer  useful   insights   into   the   effects   of   hydrodynamic  alterations   of   the   channel,   a   critical   capability   for  determining   the   best   passage   for   migration.   The   finite  element  model   reasonably  described   the  hydrodynamic  conditions  and  calculated  a  Suitability  Index  (SI)  for  the  habitat   for   spring-­‐‑run   Chinook   salmon, with   a   Nash-­‐‑Sutcliffe  Coefficient  (NSC)  of  0.75  for  discharge and  0.56  for   water   surface   elevation   (WSE)   respectively.   The  alternatives  analysed  were  found  to  be  characterized  by  similar   SI   distributions   under   the   same   boundary  conditions.   Alternatives   2   and   3   had   higher   overall  Weighted   Area   Habitat   Suitability   Index   (WAHSI)  values   and   would   thus   be   expected   to   provide   better  environments   for   salmon  migration   than  Alternative   1.  

Normalized  cross-­‐‑   correlation  calculations   revealed   fair  correlations   between   the   WAHSI   values   and   upstream  discharge   or   downstream   water   surface   elevation.   The  hydrodynamic  model  may   also   provide   a   reference   for  similar   suitability   studies   of   salmon   habitat   in   other  inland  rivers.      

Keywords   Hydrodynamic   Model,   Habitat   Suitability,  Salmon  Migration,  Correlation  

1.  Introduction    

As  the  second  longest  river  in  California,  the  San  Joaquin  River   (SJR)   is   a   vital   natural   resource   for   numerous  residents   and   industries.   It   provides   an   array  of  utilities  within   the   Central   Valley   and   is   home   to   some   of  California’s   most   productive   agricultural   areas   [1].  Headwaters   for   the   river   originate   in   the   high   Sierra  Nevada,   mainly   from   snowmelt   and   runoff   [2].  Eventually  the  SJR  conjoins  with  the  Sacramento  River  to  form   the   largest   river   delta   on   the   west   coast   of   North  America  [3].    

1Lubo Liu and Joaquin Ramirez: Assessment of Spring Chinook Salmon Habitat Suitability in the San Joaquin River Using a 2-D Depth-Averaged Model

www.intechopen.com

ARTICLE

www.intechopen.com Int. j. water sci., 2013, Vol. 2, 5:2013

Page 2: Doc

The  river  is  crucial  for  the  propagation  and  survivability  of   Chinook   salmon   and   other   aquatic   species   and  wildlife,   but   over   the   years   it   has   experienced  considerable  hydrologic  disconnection  along   its  reaches  due   to   extensive   water   diversion.   Indigenous   salmon  populations  have  suffered  as  a  result  and  their  numbers  have   decreased   significantly   due   to   insufficient   flows  and   anthropogenic   activities   [4].   In   order   to   restore  salmon   and   other   fish   populations   to   a   point   of   self-­‐‑sustainment,  the  San  Joaquin  River  Restoration  Program  (SJRRP)   was   established   in   2006   to   maintain   a  continuous   flow   from   the   Friant  Dam   to   its   confluence  with   the   Merced   River.   Due   to   practical   limitations,  routing  the  flow  along  several  alternative  pathways  has  been  considered  [5].  A  critical  task  for  the  SJRRP,  the  so-­‐‑called   “Reach   4B   Project”,  was   to  modify   and   improve  the   channel   capacity   of   Reach   4B   (which   is   separated  into   4B1   and   4B2,   shown   in   Figure   1)   of   the   SJR.  Multiple  scenarios  for  the  restoration  of  the  river  and  for  modifications   of   existing   SJR   channels   were   designed  and   studied   to   ensure   fish   passage   and   adequate   flow  throughout  the  study  area  [6].    

Natural   Chinook   salmon   runs   along   the   SJR   (above   the  Merced   River   Confluence)   originally   occurred   in   fall,  spring  and  in  late  autumn  for  some  species.  However,  all  runs  had  ceased  by  the  late  1940s  due  to  water  diversion  [7].   In  a  natural  river  system,  salmonids  have  evolved  to  exploit   natural   flow   patterns   in   streams   so   that  migrations  can   take  place  when  water  characteristics  are  ideal   [8].  However,   anthropogenic  activities  alter  natural  settings   and   offset   the   timing   of   advantageous   river  conditions   and  hence   salmonid  migration   [9].  As  part   of  the  effort  to  restore  the  river’s  natural  conditions,  a  great  deal  of  research  has  been  devoted  to  the  study  of  habitat  and  flow  relationships  in  recent  years  [9-­‐‑11].  In  relation  to  California’s  waterways,   researchers   have  mainly   focused  on   the   delta   region   with   only   limited   investigations  conducted  for  the  SJR,  especially  for  the  middle  section  of  the   river   [12].   When   salmon   return   to   their   spawning  grounds,   they   must   complete   their   migration   within   a  certain   amount   of   time   and   with   adequate   reserves   of  energy   in   order   to   complete   their   life   cycle   [13].  Hydrodynamic   conditions   affecting   salmon   passage  include  the  water  velocity,  depth  and  water  quality,  all  of  which  are  important  factors  for  their  migration.  Sustained  water   velocity   and   water   depth   provide   opportune  passage  conditions  for  the  successful  upstream  migration  of   adult   salmon   [14,   15].   An   in-­‐‑depth   hydrodynamic  investigation   is   therefore   essential   to   support   efforts   to  better   delineate   the   impact   of   flow   characteristics   on  salmon  migration  and  habitat  conditions.      

Modelling  methods  have  been  very  effective  tools  for  this  type  of  riverine  study  and  several  hydrodynamic  models  have   been   constructed   for   the   SJR.  However,  most   have  

been   one-­‐‑dimensional   [12,   16],   providing   a   large-­‐‑scale  overview   of   the   river   network.   Considering   the  complexity   and   heterogeneous   properties   of   the   SJR,   a  two-­‐‑dimensional   model   is   more   suitable   for   describing  detailed   local   conditions   such   as   those   critical   for   the  progress  of  salmon  migration  [17-­‐‑20].    

The   goal   of   the   SJRRP’s   Reach   4B   was   to   provide   a  passage   for   adult   Chinook   salmon   to   spawning   beds  further   upstream   and   a   safe   route   for   juveniles   to   the  delta   [5].   To   this   end,   the   objective   of   this   research  was  therefore   to   model   the   stream   conditions,   including  current  velocity,  depth  and  water  surface  elevation  (WSE),  for   each   of   the   three   alternatives   proposed   in  Project   4B  under   the   same   hydrologic/hydraulic   boundary  conditions.   A   two-­‐‑dimensional   depth-­‐‑averaged   model  incorporating   disconnected   portions   of   the   SJR   was  developed   based   on   the   RAM10   scheme   and   used   to  simulate  these  local  river  characteristics  and  conditions  to  further   explore   the   correlations   between   river   flow   and  salmon   migration   under   the   different   alternatives  proposed.   The   model   facilitates   the   development   of   a  better  understanding  of   the  effects  of  different  boundary  conditions,   both   upstream   and   downstream,   on   salmon  habitat   suitability,   survival   and   migration   conditions.  Model  simulations  allow  the  exploration  of  flow  patterns  and   enable   users   to   compare   alternative   scenarios.  Modelling   results   also   provides   insights   into   the  hydrodynamic   behaviour   that   would   result   from  proposed  river  alterations  and  support  the  prediction  and  analysis   of   the   consequent   impact   on   the   conditions   for  Chinook  salmon  runs.  

2.  Description  of  study  area  

The  study  area  lies  within  the  Middle  San  Joaquin-­‐‑Lower  Chowchilla   watershed   and   extends   approximately   57.6  river  miles   (92.2   km)   from  monitoring   stations   SJR   near  Dos  Palos  (SDP)  to  SJR  at  the  Fremont  Ford  Bridge  (FFB)  near   California   Highway   140.   The   SJR   is   divided   into  different   river  segments   in   this  area,  designated  Reaches  4A,  4B1,  4B2  and  5,  Eastside  Bypass  and  Mariposa  Bypass  (see  Figure  1).  Initially,  the  channel  of  pathway  of  the  SJR  consisted  of  Reaches  4A,  4B1,  4B2  and  5.  Descriptions  of  each  river  reach  are  listed  in  Table  1.  The  original  Eastside  Bypass   and   Mariposa   Bypass   were   utilized   as   flood  control   channels.   However,   the   Eastside   Bypass   now  conveys  all  water  from  upstream  as  a  portion  of  the  river  and  Reach  4B1  is  hydraulically  disconnected.  The  portion  of   the  Eastside  Bypass  within  our   scope  of   study  begins  directly  downstream  of  Reach  4A  near  SWA  and  extends  to  Reach  5  of  the  SJR.  Mariposa  Bypass  is  another  channel  designed  to  convey  flood  flow  and  connects  the  Eastside  Bypass   to  Reach  4B2.  Under  normal   flow  conditions,   the  river  flows  from  Reach  4A  to  the  Eastside  Bypass  and  re-­‐‑enters  the  SJR  at  Reach  5.  

2 Int. j. water sci., 2013, Vol. 2, 5:2013 www.intechopen.com

Page 3: Doc

121.0 120.8 120.6 120.436.9

37.0

37.1

37.2

37.3

37.4

Longitude, oW

Lati

tud

e, o

N

Mariposa Bypass

San Joaquin River

Eastside Bypass

Reach 4B1

Reach 4B2

SDP

SWA

EBM

FFB

Reach 4A

Reach 5

J2

J1

5 miles

Alt1/2/3

Alt1/3

Alt1

Alt2

Alt2/3

Alt1/2/3

Alt3

North

Figure  1.  Geographic  map  showing  the  reaches  in  the  modelling  domain  of  the  San  Joaquin  River  (SJR)  (Alt  –  Alternative,  1  mile  =  1.6  km).  Monitoring  stations  (SDP,  SWA,  EBM  and  FFB)  are  described  in  Table  2.    

Reach/bypass  Length  (miles)  

Flow  capacity  (cfs)  

Connections   Usage  CurrentStatus

Reach  4A   13.5   4500   SDP**  –  SWA** River  flow   F  

Reach  4B1   21.3   Unknown   SWA  –  J1*Runoff,  receiving  water  from  agricultural  practices  and  rain  events  

NF  

Reach  4B2   11.4   10000   J1  –  J2    Occasional  flood  water  received  from  the  Eastside  Bypass  and  backflow  from  Reach  5  

F

Reach  5   17.5   26000   J2  –  FFB**  

River  flow  received  from  the  Eastside  Bypass,  Reach  4B2  and  agricultural  return  flows  

F

Eastside  Bypass   21.8   15700  (average)   SWA–EBM**–J2   Flood  control  and  SJR  flow   F  MariposaBypass  

3.4   8000   EBM–J1    Flood  flow,  transporting  water  from  the  Eastside  Bypass  to  the  SJR  

F

F:  Functional;  NF:  Not  Functional;   *:   J1  and  J2  -­‐‑  Junction  points;   **:  SDP  -­‐‑  SJR  near  Dos  Palos,  EBM  -­‐‑  Eastside  Bypass  below  Mariposa  Bypass,  SWA  -­‐‑  SJR  near  Washington  Rd,  FFB  -­‐‑  SJR  near  Washington  Rd.  

Table  1.  Reaches  and  bypasses  in  the  middle  of  the  San  Joaquin  River  (SJR)  (1  mile  =  1.6  km;  1  cfs  =  0.028  cms)  

3Lubo Liu and Joaquin Ramirez: Assessment of Spring Chinook Salmon Habitat Suitability in the San Joaquin River Using a 2-D Depth-Averaged Model

www.intechopen.com

Page 4: Doc

Station  Description   Station  ID   Reach/confluence  Station  Location,  

NAD83  Agency

SJR  near  Dos  Palos   SDP   4A   36.9949,  -­‐‑120.501   CADWR*

SJR  near  Washington  Rd   SWA   4A   37.1114,  -­‐‑120.591   CADWR  Eastside   Bypass   below   Mariposa  Bypass  

EBM   Eastside  Bypass   37.2060,  -­‐‑120.697   CADWR  

SJR  at  Fremont  Ford  Bridge   FFB   Reach  5   37.3099,  -­‐‑120.931   USGS**:  CADWR  -­‐‑  California  Department  of  Water  Resources,  USGS  -­‐‑  U.  S.  Geological  Survey  

Table  2.  Monitoring  stations  in  the  study  river  reaches    

The   data   used   for   the   model   development   and  calibration,   including  bathymetry,   channel   flow   rate   and  WSE,   were   obtained   from   the   U.S.   Geological   Survey  (USGS),   the  U.S.  Bureau  of  Reclamation   (USBR)   and   the  California   Department   of   Water   Resources   (CADWR).    Bathymetry  data  were  collected  during  2010  and  2011  by  USBR   using   GPS   and   the   Acoustic   Doppler   Current  Profiler   (ADCP)   at   a   spatial   interval   of   20   feet.   Flowrate  and   river   stage   data  were   collected   for   the   year   of   2011  (from  January  1st  to  September  30th)  by  the  four  CADWR  and  USGS  in-­‐‑situ  river  gauge  stations  located  in  the  study  area  at  15  minute  intervals.  Station  descriptions  are  listed  in   Table   2.   The   year   2011   was   selected   for   model  calibration  because  adequate  interim  flows  were  released  from  upstream   and   the   data   for   this   period   are   quality-­‐‑assured  by  reporting  agencies.  The  geographic  boundary  of  the  SJR  was  determined  using  coordinates  from  Google  Earth  based  on   the  WGS84  global   reference   system.  The  data   collected   from  multiple   government   agencies   were  converted   and   georeferenced   using   the   same   coordinate  system  and  reference  datum,  namely  the  North  American  Vertical   Datum   NAVD   88   and   California   State   Plane,  Zone  3,  North  American  horizontal  Datum  NAD  83.      

3.  Hydrodynamic  model  

A   vertically-­‐‑integrated   hydrodynamic   model   was  developed  using  the  finite  element  scheme  RMA10  [21]  to  describe   the   flow   velocity,   water   depth   and   WSE.   The  governing   equations   in   the   x and y   directions   are   as  follows:  

0)( =!!+

!!+

!!+

!!+

!!

y

V

x

Uh

y

hV

x

hU

t

h

           (1)

2 2 22

1/3

1 ( ) ( )

( )( ) cos

xx xy

U U Uh hU hV fVht x y

U Uh hx x y y

Ugn U Va hgh Wx x h

" "#

$ %

! ! !+ + & =! ! !

! ! ! != +! ! ! !

+! !& + & +! !

(2)

2 2 22

1/3

1 ( ) ( )

( )( ) sin

yx yy

V V Vh hU hV fUht x y

V Vh hx x y y

Vgn U Va hgh Wy y h

" "#

$ %

! ! !+ + + =! ! !

! ! ! != +! ! ! !

+! !& + & +! !

(3)

Where VU ,   are   the   depth-­‐‑averaged   velocities   in   the  yx, directions;   h   is   the   water   depth   and   a   is   the  

bottom   surface   elevation;   g   is   the   acceleration   due   to  

gravity;  W  is  the  wind  velocity;  %  is  the  wind  direction;  $  is  an  empirical  wind  coefficient;  and   f  is  the  Coriolis  parameter.   n   denotes   the   Manning’s   roughness  coefficient   and   "   is   the   depth-­‐‑averaged   eddy   viscosity.  Horizontal  mixing  was  described  using  the  Smagorinsky  eddy  parameterization:  

!!+

!!+

!!+

!!== )(

212

22

x

V

y

U

y

V

x

UAA

mS'"

(4)

where S"   is   the   eddy  viscosity;   '   is   a   constant   in   the  

range   0.01-­‐‑0.5   ( 05.0=' was   used   for   this   study)   and  A   is   the   area   of   the   current   element.   The   horizontal  turbulent  mixing  of  momentum  was  typically   ignored  in  some  previous  hydrodynamic  models  of  the  SJR  [22,  23].  Our   results   suggest   that   the   model   is   insensitive   to   the  eddy   viscosity   within   a   range   from   0   to   10   m2/s,   so   a  constant   value   of   1.0   m2/s   was   used   for   the   minimum  eddy  viscosity.  Values  in  the  different  regions  were  varied  depending  on  the  element  size  and  the  velocity  gradients  according   to  Equation   4.  Wind   stress   and  Coriolis   force,  both  of  which  typically  play  a  critical  role   in   large  water  bodies   such   as   oceans   or   lakes,   were   neglected   in   this  model  of  a  small-­‐‑scale  river  section.  

For   the   initial   conditions   for   the  model,   it  was   assumed  that   the   river   was   at   rest   at   the   start   and   it   took   a  considerable  time  (ten  days  in  this  case)  for  the  model  to  

4 Int. j. water sci., 2013, Vol. 2, 5:2013 www.intechopen.com

Page 5: Doc

  Alternative  1   Alternative  2   Alternative  3  Element  #   2483   1841   2134  Node  #   9568   7056   8209  

Reaches  included  (Figures  1  and  2)  

Reach  4A    Eastside  Bypass  Reach  5    

Reach  4A    Reaches  4B1  and  4B2  Reach  5    

Reach  4A  Eastside  Bypass  Mariposa  Bypass    Reach  4B2  Reach  5    

Table  3.  Finite  Element  Model  (FEM)  information  

Salmon  Species  Swimming  Speed   Minimum  Depth    

Cruising  Velocity1* Sustained  Velocity2*   Darting  Velocity3*

Spring  Salmon  0  –  3.41  (ft/s)  0  –  1.04  (m/s)  

3.41  –  10.79  (ft/s)  1.04  –  3.29  (m/s)  

10.79  –  22.41  (ft/s)  3.29  –  6.83  (m/s)  

0.80  (ft)  0.24  (m)  

Autumn  Salmon  0  –  3.41  (ft/s)  0  –  1.04  (m/s)  

3.41  –  10.79  (ft/s)  1.04  –  3.29  (m/s)  

10.79  –  22.41  (ft/s)  3.29  –  6.83  (m/s)  

0.80  (ft)  0.24  (m)  

1*: Cruising speed  is  the  speed  at  which  a  fish  can  swim  for  an  extended  period  of  time,  usually  hours.  2*: Sustained  is  a  speed  that  can  be  maintained  for  minutes.  3*: Darting represents  a  single  effort  or  burst  which  is  not  maintainable.  

Table  4.  Salmon  swimming  capabilities  (velocity,  depth)  reported  in  the  literature  [9,  13,  15]  

reach   the   actual   initial   conditions.   The   boundary  conditions   for   the   hydrodynamic   simulation   included   a  no   leakage   condition   across   the   surface   and   the   bottom,  no  wind  stress  and  zero  pressure  at  the  free  water  surface,  a   drag   stress   condition   at   the   bottom   of   the   river,   a  discharge  condition  at  the  upstream  and  a  WSE  condition  at  the  downstream.    

In   order   to   accurately   delineate   the   complex   physical  boundaries   of   the   SJR,   a   finite-­‐‑element   mesh   was   used  (see  Table  3)  for  this  model.  The  sizes  of  the  non-­‐‑uniform  elements  were  between  1  and  100  feet  (Figure  2d).    

4.  Hydrodynamic  considerations  for  salmon  migration  

To   address   the   hydrodynamic   impact   on   salmon   in   a  river,   Bell   [15]   divided   the   swimming   capabilities   of  salmon   into   three   speed   categories   (Table   4).   Fish  normally   travel   at   a   cruising   speed   for   several   hours  during   migration,   at   a   sustainable   speed   over   a   few  minutes   for   navigation   through   difficult   areas   and   at   a  darting   speed   for   feeding   or   escape   [15].   Based   on   this  behaviour,  velocity   can  be  manipulated   for  use  as   either  an   artificial   barrier   or   as   a  means   to   attract   fish.   Ideally,  cruising   speed   can   be   considered   attractive,   while  sustained   speed   can   become   a   barrier   over   an   extended  distance   and   darting   speed   an   immediate   barrier   if   the  transition   is   rapid   [15].   The   ranges   of   velocity   values   of  these   three   categories   are   listed   in   Table   4.   A   suitable  minimum   depth   of   0.8   ft   (0.244m)   has   also   been  recommended   for   the   passage   of   adult   spring   Chinook  salmon   (Table   4)   [14].   Although   salmon   have   been  observed  travelling  at  depths  less  than  those  indicated  in  Table   4,   at   depths   of   less   than   0.8   feet   fish   may   suffer  

injuries  and  compromise  their  migration  [24].  In  addition,  when  fish  are  not  fully  submerged  they  partially  lose  the  ability   to   generate   thrust   [25].   In   Thompson’s   model,   it  was  assumed  that  a  safe  passage  depth  of  greater  than  0.8  ft  must  be  maintained  over  25%  of  the  stream  width  and  must  remain  continuous  for  10%  of  the  cross  section  [14].  

5.  Results  and  discussion  

The  model   simulated  hydrodynamic   flow   characteristics  under  the  three  alternative  water  pathways  for  the  spring  Chinook  salmon  run.  The  two-­‐‑dimensional  finite  meshes  for  the  three  alternatives  are  shown  in  Figure  2.  Figure  2a  shows   the  Alternative   1  which   has   flow   from   Reach   4A  through   the   Eastside   Bypass   (passing   through   stations  SWA   and   EBM)   to   Reach   5   and   the   RMA10   model   for  Alternative   1   does   not   include   any   finite-­‐‑element   mesh  for  Reaches  4B1  and  4B2.  Alternative  2  (Fig.  2b)  has  flow  from   Reach   4A   through   the   original   course   of   the   SJR  (Reaches   4B1   and   4B2)   to   Reach   5   and   the   model   for  Alternative  2  does  not  include  any  mesh  for  the  Eastside  Bypass.   Figure   2c   includes   all   sections   of   the   study  domain.   The   currently   preferred   option   (Alternative   3)  consists   of   conveying   a   small   amount   of   flow   through  reach  4B1,  with  the  remaining  restoration  flow  continuing  down  the  Eastside  Bypass,  transferring  into  the  Mariposa  Bypass   and   re-­‐‑entering   the   SJR   in   Reach   4B2   [26].  Therefore,   the   major   fish   route   in  Alternative   3   follows  Reach  4A,  Eastside  Bypass,  Mariposa  Bypass,  Reach  4B2  and  Reach  5.  Figure  2d  shows  an  enlarged  portion  of  the  two-­‐‑dimensional  mesh  in  the  area  around  station  SWA.    

The   model   was   calibrated   using   the   2011   data   set   and  deemed   applicable   for   modelling   the   investigation   of  

5Lubo Liu and Joaquin Ramirez: Assessment of Spring Chinook Salmon Habitat Suitability in the San Joaquin River Using a 2-D Depth-Averaged Model

www.intechopen.com

Page 6: Doc

hydrodynamic   conditions   affecting   salmon  migration   in  the   SJR.  The  discharge  data  were  used   for   the  upstream  boundary   condition   at   station   SDP   and   the   WSE   data  were   used   for   the   downstream   boundary   condition   at  station  FFB.  These  data   sets  were   recorded   at   15-­‐‑minute  intervals  between   January  1st   and  September  1st   2011,  by  CADWR   and   USGS.   Figure   3   shows   these   boundary  conditions.  In  the  convergence  test,  0.1%  and  0.05%  were  set   as   the   convergence   criteria   for   current   velocities   and  WSE  respectively,  for  each  iteration  within  the  same  time  

level.  The  data   indicate   that   little   flow  (less  than  100  cfs)  occurred  upstream  at  SDP  in  early  spring  until  late  March  2011   (before   the   80th   day   of   the   simulation   period).   In  2011,   the  most   abundant   flow  occurred   from   late   spring  to   late   summer,   the   period   when   the   adult   Chinook  salmon  in  the  spring  run  enter  the  freshwater  to  spawn  in  the  autumn.  The  model   simulated   the  discharge  and   the  WSE  in  this  period  utilizing  a  time  step  (15  minutes)  that  was   the   same   as   the   data   collection   interval   for  calibration.    

SJR

EBM

FFB

SWA

SDP

Eastside Bypass

FFB

(a)

SJR

EBM

FFB

SWA

SDP

4B2

Eastside Bypass

4B1

(c)

SJR

EBM

FFB

SWA

SDP

(b)

SWA

Eastside Bypass4B1

(d)

Figure   2.   Finite   element   meshes   of   three   flow   pathways:   (a)  Alternative   1;   (b)  Alternative   2;   (c)  Alternative   3;   and   (d)   Enlarged   2-­‐‑dimensional  finite  element  meshes  in  the  SJR  near  Washington  Rd  (SWA)  region.  

6 Int. j. water sci., 2013, Vol. 2, 5:2013 www.intechopen.com

Page 7: Doc

0 20 40 60 80 100 120 140 160 180 2000

1000

2000

3000

4000

5000Upstream condition: Discharge at SDP

(a)

Dis

cha

rge

(cfs

)

0 20 40 60 80 100 120 140 160 180 20050

60

70

80Downstream condition: WSE at FFB

(b)

Julian days, 2011

WS

E (

ft)

Figure   3.   Boundary   conditions:   (a)  Upstream   condition:  Discharge   at   the   SJR  near  Dos   Palos   (SDP);   and   (b)  Downstream   condition:  Water  Surface  Elevation  (WSE)  at  the  SJR  at  Fremont  Ford  Bridge  (FFB).  (1ft  =  0.3048  m,  1  cfs  =  0.0283  cms)  

Data  Stations   SWA  (Discharge)   SWA  (WSE)   EBM  (WSE)   SDP  (WSE)  

MinimumRMSE 0.47   0.017   0.014   0.064  

NSC 0.75   0.56   0.42   0.34  

Table  5.   RMSE  and   NSC results  

The   Manning   roughness   coefficient   of   the   channel   was  manually   adjusted   to   calibrate   the   model   using   the  method   of   minimum   normalized   Root   Mean   Squared  Error  (RMSE),  which  is  defined  as  follows:    

o

N

t

i

o

i

m

X

XXN

RMSE=

!= 1

2)(1    (5)  

where i

mX   and   i

oX   are   the   modelled   and   observed  

discharge/WSE   at   time   it   while   N   is   the   number   of  

observations.   oX is   the   average   of   the   observed   values.  

By   varying   the   values   of   the   roughness   coefficient   in  Equations   2   and   3,   we   obtained   the   optimum   value   of  0.035,  which  resulted  in  the  minimum RMSE .

In   addition,   to   quantitatively   describe   the   accuracy   of  model   output,   the   Nash-­‐‑Sutcliffe   Coefficient   (NSC)   was  calculated  as  follows,  

2

1

2

1

)(

)(1

o

N

i

i

o

i

m

N

i

i

o

XX

XX

NSC

=

=

!

!!=                    (6)  

where, NSC   is   the   Nash-­‐‑Sutcliffe   model   efficiency  Coefficient.   The   error   results   including   the   minimum  RMSE   and   the   corresponding   NSC are   reported   in  Table  5.  

Figure   4   compares   the   observed   data   for   the   discharge  (Figure   4a)   and   WSE   (Figure   4b)   at   SWA   with   the  modelling   results.   Figures   5a   and   5b   compare   observed  WSE  at  SDP  and  at  EBM,  respectively,  with  the  modelling  results.   The   results   obtained   from   the   hydrodynamic  model   were   generally   found   to   be   consistent   with   the  observed  data  and  found  to  reasonably  describe  both  the  WSE   and   the   discharge   at   the   observing   stations.  While  the  WSE   values   (Figures   4b,   5a   and   5b)  were   simulated  fairly   accurately,   simulating   the  discharge  was   relatively  challenging  due   to   the   lack  of  discharge  data   for   several  minor   tributaries   along   the   river   in   the   study   area.   The  water   surface   elevation   abruptly   dropped   from   93   ft  (28.35   m)   to   57   ft   (17.37   m)   and   then   rose   up   to   117   ft  (35.66   m)   between   days   22   and   35   at   Station   EBM   in  Figure   5;   these   results   appear   to   represent   equipment  malfunction   or   error.   The  water   surface   elevation   (WSE)  fluctuation  of  more  than  50  ft  (15.24  m)  during  these  days  was  not  reflected  by  the  nearest  functional  gauge  stations  (see   Figure   4b   for   upstream   at   SWA   and   Figure   3b   for  downstream  at  FFB).  

7Lubo Liu and Joaquin Ramirez: Assessment of Spring Chinook Salmon Habitat Suitability in the San Joaquin River Using a 2-D Depth-Averaged Model

www.intechopen.com

Page 8: Doc

0 20 40 60 80 100 120 140 160 180 2000

2000

4000(a)

SJR Discharge at SWA

Dis

charg

e (c

fs)

observed

modeling

0 20 40 60 80 100 120 140 160 180 20090

100

110

120SJR WSE at SWA

Julian days, 2011

WS

E (

ft)

observed

modeling

Figure  4.  Comparison  of  observed  and  modelling  results  of:  (a)  San  Joaquin  River  (SJR)  discharge  at  the  SJR  near  Washington  Rd  (SWA);  and  (b)  SJR  Water  Surface  Elevation  (WSE)  at  SWA.  (1ft  =  0.3048  m,  1  cfs  =  0.0283  cms)  

120 130 140 150 160 170 180 190 20090

100

110

120

130

(a)

SJR WSE at SDP

WS

E (

ft)

observed

modeling

0 20 40 60 80 100 120 140 160 180 200

60

80

100

120SJR WSE at EBM

(b)

Julian days, 2011

WS

E (

ft)

observed

modeling

Figure  5.  Comparison  of  observed  and  modelling  results  for:  (a)  San  Joaquin  River  (SJR)  Water  Surface  Elevation  (WSE)  at  the  SJR  near  Dos  Palos  (SDP);  and  (b)  SJR  WSE  at  Eastside  Bypass  below  Mariposa  Bypass  (EBM).  (1ft  =  0.3048  m)  

The  output  from  the  validated  and  calibrated  model  was  used   to  assess   the  habitat   suitability  of   the  river  channel  for   the   spring   Chinook   salmon   run.   Historically,   there  were   four   distinct   salmon   runs   in   the   Sacramento-­‐‑San  Joaquin  River  system,  designated  according  to  the  season  in  which  the  majority  of  the  run  entered  the  freshwater  as  adults   [27].   The   spring-­‐‑run  Chinook   salmon   entered   the  water   system   from   late  March   through   September,  with  adults  staying  in  cool  water  habitats  through  the  summer  

and   then   spawning   in   the   autumn   from   mid-­‐‑August  through   early   October.   For   this   run,   therefore,   the  hydrodynamic   scenario   in   the   summer   season   is  especially   critical   for   the   salmon   migrating   from   the  ocean   to   upstream   spawning   grounds.   In   this   research,  the   hydrodynamic   model   simulated   water   depth   and  velocity  between   late  March  and   late   June   (between  day  90  and  day  181  of  the  simulation  period)  of  2011  and  the  corresponding   habitat   suitability   for   salmon   was  

8 Int. j. water sci., 2013, Vol. 2, 5:2013 www.intechopen.com

Page 9: Doc

quantified   using   the   habitat   Suitability   Index   (SI)   [27].  Figures   6a   and   6b   were   developed   by   the   California  Department   of   Fish   and   Wildlife   (CADFW)   [28,   29]   and  show   the   standard   habitat   SI   for   Chinook   salmon   for  velocity   (Velocity   SI)   and   depth   (Depth   SI),   respectively.  The  range  of  the  dimensionless  SI  at  any  location  in  a  river  is   between   1   and   0,   representing   the   best   and   the   worst  habitat   quality,   respectively.   To   align   with   the   standard  

convention  in  the  literature,  metric  units  were  used  for  the  SI   calculations,   so   velocities   between   12.2   cm/s   and   21.3  cm/s  and  depths  between  30.5  cm  and  61  cm  constitute  the  best   ranges   for   Chinook   salmon   (Figure   6).   The   best  velocities   in   this   method   all   support   cruising   velocity,  which  is  consistent  with  the  literature  (Table  4).  Figures  6a  and  6b   show   that   the  best  velocity   ranges  of  velocity  and  depth  are  12  –  22  cm/s  and  35  –  60  cm,  respectively.    

0 10 20 30 40 50 60 70 80 90 1000.0

0.2

0.4

0.6

0.8

1.0

1.2(a)

SI

Velocity (cm/s)

0 20 40 60 80 100 120 140 160 180 2000.0

0.2

0.4

0.6

0.8

1.0

1.2(b)

SI

Depth (cm)

Figure  6.  Suitability  Index  (SI)  curves  for  Chinook  salmon:  (a)  Velocity;  and  (b)  Depth  suitability  (By  California  Department  of  Fish  andWildlife  (CADFW)  [28]).      

80 100 120 140 160 180 2000.0

0.2

0.4

0.6

0.8

1.0(a)

Vel

oci

ty W

AH

SI

Alternative 1

Alternative 2

Alternavite 3

80 100 120 140 160 180 2000.0

0.2

0.4

0.6

0.8

1.0(b)

Dep

th W

AH

SI

Alternative 1

Alternative 2

Alternavite 3

80 100 120 140 160 180 2000.0

0.4

0.8

1.2

1.6

2.0(c)

Julian days, 2011

Ov

era

ll W

AH

SI

Alternative 1

Alternative 2

Alternavite 3

Figure  7.  Model  Weighted  Area  Habitat  Suitability  Index  (WAHSI)  for  three  alternatives  for:  (a)  Velocity  suitability;  (b)  Depth  suitability;  and  (c)  Overall  suitability.  

9Lubo Liu and Joaquin Ramirez: Assessment of Spring Chinook Salmon Habitat Suitability in the San Joaquin River Using a 2-D Depth-Averaged Model

www.intechopen.com

Page 10: Doc

The   representative   values   of   velocity   and   depth   for   each  element  were  the  values  at  its  centre,  which  were  calculated  by  interpolating  the  values  at  all  nodes  of  the  element  to  the  centre  using  Inverse  Distance  Weighted  method  (IDW).  The  calculated  velocity  and  depth  for  each  element  were  used  for  determining   its   SIs   at  different   times  using   Figures   6a   and  6b.   The   values   of   velocity   SI,   depth   SI   and   the   overall   SI  (velocity   SI   +depth   SI)   for   the   entire   domain   under  investigation  can  be  calculated  using  the  following  weighted  average  habitat  suitability  index  (WAHSI ),

=

=

!

!"=

M

i

i

M

i

iji

j

A

ASI

WAHSI

1

1, )(

                     (7)  

where j   =1   for   velocity,   2   for   depth   and   3   for   the  combined  WAHSI   for   velocity   and   depth;   M   is   the  total  number  of  wetted  finite  elements;  and   A  is  the  area  of  element.  

Figures   7a,   7b   and   7c   show   the   time   variation   of  WAHSI  values  derived  from  the  velocity  SI,  depth  SI  and  the  overall  SI,  respectively,  for  all  three  of  the  proposed  alternatives.  In  the  late  spring  (day  90)  and  early  summer  (day  181),  neither  velocity  (with  WAHSI  around  0.3)  nor  depth  (with  WAHSI  around   0.1)   was   deemed   suitable   for   salmon   migration.  Under   the  conditions  obtaining   in   the  summer  of  2011,   the  SIs  of  all  the  proposed  alternatives  increased  from  Day  90  to  Day   145,   then   maintained   these   peak   values   for   about   30  days.   After   this   point,   the   hydrodynamic   conditions   for  salmon   fluctuate   and   deteriorate,   so   the   period   between  mid-­‐‑May   and  mid-­‐‑June   of   that   year  would   have   been   the  best   period   for   Chinook   salmon   migration.   Generally,   the  impact  of  velocity  is  more  stable  than  that  of  depth.  Among  the   three   proposed   alternatives,   the   WAHSI   values   of  Alternatives  2  and  3  were  generally  equal  to  or  higher  than  those   of   Alternative   1,   which   incorporates   the   Eastside  Bypass.   The   similar   shapes   of   the   depth   (Figure   7b)   and  overall  (Figure  7c)  WAHSIs  indicate  that  the  overall  WAHSI  in   this   case   is   controlled   by  water   depth,   which  was   thus  more   critical   for   aquatic   life   than   the   velocity   under   the  insufficient   discharge   conditions   experienced   during   the  modelling  period.  

0.200.160.140.120.100.080.060.040.020.00

SWA4B1

(e) Depth SI forAlternative 2

0.200.160.140.120.100.080.060.040.020.00

SWA

Eastside Bypass

(f) Depth SI forAlternative 3

1.000.950.900.850.800.750.700.650.600.550.500.450.400.350.30

SWA4B1

(b) Velocity SI forAlternative 2

1.000.950.900.850.800.750.700.650.600.550.500.450.400.350.30

SWA

Eastside Bypass

(c) Velocity SI forAlternative 3

0.200.160.140.120.100.080.060.040.020.00

SWA

Eastside Bypass

(d) Depth SI forAlternative 1

1.000.950.900.850.800.750.700.650.600.550.500.450.400.350.30

SWA

Eastside Bypass

(a) Velocity SI forAlternative 1

Figure  8.  Spatial  distribution  of  Suitability  Index  (SI)  in  the  region  at  the  SJR  near  Washington  Rd  (SWA)  at  day  130  for:  (a)  Velocity  SIfor  Alternative   1;   (b)   Velocity   SI   for  Alternative   2;   (c)   Velocity   SI   for  Alternative   3;   (d)   Depth   SI   for  Alternative   1;   (e)   Depth   SI   for  Alternative  2;  and  (f)  Depth  SI  for  Alternative  3.        

10 Int. j. water sci., 2013, Vol. 2, 5:2013 www.intechopen.com

Page 11: Doc

0.200.160.140.120.100.080.060.040.020.00

SWA4B1

(e) Depth SI forAlternative 2

0.200.160.140.120.100.080.060.040.020.00

SWA

Eastside Bypass

(f) Depth SI forAlternative 3

1.000.950.900.850.800.750.700.650.600.550.500.450.400.350.30

SWA4B1

(b) Velocity SI forAlternative 2

1.000.950.900.850.800.750.700.650.600.550.500.450.400.350.30

SWA

Eastside Bypass

(c) Velocity SI forAlternative 3

1.000.950.900.850.800.750.700.650.600.550.500.450.400.350.30

SWA

Eastside Bypass

(a) Velocity SI forAlternative 1

0.200.160.140.120.100.080.060.040.020.00

SWA

Eastside Bypass

(d) Depth SI forAlternative 1

Figure  9.  Spatial  distribution  of  Suitability  Index  (SI)  in  the  region  at  the  SJR  near  Washington  Rd  (SWA)  at  day  170  for:  (a)  Velocity  SIfor  Alternative   1;   (b)   Velocity   SI   for  Alternative   2;   (c)   Velocity   SI   for  Alternative   3;   (d)   Depth   SI   for  Alternative   1;   (e)   Depth   SI   for  Alternative  2;  and  (f)  Depth  SI  for  Alternative  3.        

Since  the  SWA  confluence  region  (Figure  2)  is  common  to  all   three   alternative   flow   paths,   it   was   used   to   compare  the  spatial  distributions  of  the  SIs  at  specific  times.  Figure  8   (a   through   f)   shows   the   distribution   of   SI   in   the   SWA  confluence  region  on  Day  130,  when  SI  started  to  rise,  for  velocity  SI  (Figures  8a,  8c  and  8e  for  Alternatives  1,  2  and  3  respectively)  and  for  depth  SI  (Figures  8b,  8d  and  8f  for  Alternatives  1,   2  and  3   respectively).  Figure  9   shows   the  corresponding   distributions   on   day   170,   when   the   SIs  started  to  fall  near  the  end  of  the  most  suitable  period.  All  SIs  generally   increased  over   the  period   from  Day  130   to  Day   170.   Figure   10   shows   the   corresponding   velocity  vectors  and  depth  distributions  at  day  130.  Figures  8  and  9  show  the  significant  improvement  of  the  SIs  for  all  three  alternatives  during  the  period.  The  areas  with  higher  SIs  increased   in   both   velocity   SIs   and   depth   SIs.   Most  locations   in   the   river   reach   on   day   170   have   higher  

velocity  SIs  (greater  than  0.6)  than  those  on  day  130.  The  improvement  of  the  depth  SI  was  not  as  significant  as  that  of  the  velocity  SI.  Figures  8  and  9  show  an  improvement  of   0.12   -­‐‑   0.2   for   depth   SI   and   0.2   –   0.4   for   velocity   SI   in  many   regions   during   this   period.   These   observations  were  consistent  with  Figure  7.                  

Interestingly,   there   is   some   similarity   between   the   time  variation   trend   for   the   boundary   conditions   (Figure   3)  and   that   of   the   WAHSIs   (Figure   7)   during   the   salmon  migration  period  between  Day   90   and  Day   180,  with   an  expected   lag   time.   For   example,   the   peak   values   of   the  discharge  at  SDP  and  the  WSE  at  FFB  occurred  at  around  Day   100   and  Day   87,   respectively.   To   better   understand  how   the   boundary   conditions   impact   salmon   migration  and   thus   predict   the   suitability   for   salmon   migration  (WAHSI)   based   on   the   upstream   incoming   flow   or  

11Lubo Liu and Joaquin Ramirez: Assessment of Spring Chinook Salmon Habitat Suitability in the San Joaquin River Using a 2-D Depth-Averaged Model

www.intechopen.com

Page 12: Doc

downstream   WSE,   it   is   necessary   to   identify   any   cross-­‐‑correlations.   The   normalized   cross-­‐‑correlation   between  discharge  or  WSE  and  WAHSI  was  defined  as  follows  [30]:  

[ ] [ ]==

!

=

"

+=

N

i

N

i

kN

n

iuiw

nwknu

NCC

1

2

1

2

1

)()(

)()(

  (8)  

where NCC   is   the   normalized   cross-­‐‑correlation  function  and  has  a  value  between  -­‐‑1  and  1,  with  0  being  completely   unrelated   and   1   or   -­‐‑1   highly   correlated;  

meanwhile   )(iw and )(iu  are  the  WAHSI  and  discharge  

or  WSE  at   the  time  step,  respectively;   i is   the  number  of  model  data  points;  and   n  is  the  number  of  lag  time  steps  between  two  correlated  parameters.  

100 cm/s

SWA4B1

(e) Velocity vector forAlternative 2

100 cm/s

SWA

Eastside Bypass

(f) Velocity vector forAlternative 3

5.00 m4.00 m3.50 m3.00 m2.50 m2.00 m1.50 m1.00 m0.50 m

SWA4B1

(b) Depth forAlternative 2

5.00 m4.50 m4.00 m3.50 m3.00 m2.50 m2.00 m1.50 m1.00 m0.50 m

SWA

Eastside Bypass

(c) Depth forAlternative 3

5.00 m4.50 m4.00 m3.50 m3.00 m2.50 m2.00 m1.50 m1.00 m0.50 m

SWA

Eastside Bypass

(a) Depth forAlternative 1

100 cm/s

SWA

Eastside Bypass

(d) Velocity vector forAlternative 1

Figure  10.  Spatial  distribution  of  depth  and  velocity  vector  in  the  region  at  the  SJR  near  Washington  Rd  (SWA)  at  day  130  for:  (a)  Depth  for  Alternative  1;   (b)  Depth   for  Alternative  2;   (c)  Depth   for  Alternative  3;   (d)  Velocity  vector   for  Alternative  1;   (e)  Velocity  vector   for  Alternative  2;  and  (f)  Velocity  vector  for  Alternative  3.        

Parameter  Upstream  Discharge  (SDP)   Downstream  WSE  (FFB)  

Velocity Depth Overall Velocity Depth Overall

NCC 0.834   0.895   0.855   0.926   0.765   0.895  Lag  Time  (days)   -­‐‑50.7   -­‐‑47.6   -­‐‑47.8(53)   0.0   0.0   0.0  

Table  6.  Maximum  and  corresponding  lag  time  for  three  alternatives  

12 Int. j. water sci., 2013, Vol. 2, 5:2013 www.intechopen.com

Page 13: Doc

!2500 !2000 !1500 !1000 !500 0 500 1000 1500 2000 25000

0.2

0.4

0.6

0.8

1

(a)

NN

C (

Vel

oci

ty)

Alternative 1

Alternative 2

Alternative 3

!2500 !2000 !1500 !1000 !500 0 500 1000 1500 2000 25000

0.2

0.4

0.6

0.8

1

(b)

NN

C (

Dep

th)

Alternative 1

Alternative 2

Alternative 3

!2500 !2000 !1500 !1000 !500 0 500 1000 1500 2000 25000

0.2

0.4

0.6

0.8

1

(c)

Lag time (Hours)

NN

C (

Over

all

)

Alternative 1

Alternative 2

Alternative 3

Figure   11.   Correlations   between   upstream   discharge   and   Model   Weighted   Area   Habitat   Suitability   Index   (WAHSI)   for   the   three  alternatives  for:  (a)  Velocity  WAHSI;  (b)  Depth  WAHSI;  and  (c)  Overall  WAHSI  

!2500 !2000 !1500 !1000 !500 0 500 1000 1500 2000 25000

0.2

0.4

0.6

0.8

1

(a)

NN

C (

Vel

oci

ty)

Alternative 1

Alternative 2

Alternative 3

!2500 !2000 !1500 !1000 !500 0 500 1000 1500 2000 25000

0.2

0.4

0.6

0.8

1

(b)

NN

C (

Dep

th)

Alternative 1

Alternative 2

Alternative 3

!2500 !2000 !1500 !1000 !500 0 500 1000 1500 2000 25000

0.2

0.4

0.6

0.8

1

(c)

Lag time (Hours)

NN

C (

Over

all

)

Alternative 1

Alternative 2

Alternative 3

Figure  12.  Correlations  between  downstream  Water  Surface  Elevation  (WSE)  and  Weighted  Area  Habitat  Suitability  Index  (WAHSI)  of  three  alternatives  for:  (a)  Velocity  WAHSI;  (b)  Depth  WAHSI;  and  (c)  Overall  WAHSI.    

13Lubo Liu and Joaquin Ramirez: Assessment of Spring Chinook Salmon Habitat Suitability in the San Joaquin River Using a 2-D Depth-Averaged Model

www.intechopen.com

Page 14: Doc

Figure   11   shows   the   correlations   represented   by   the  different   lag   times   between   WAHSIs   (Figures   11a,   11b,  11c   for   velocity,   depth   and   the   overall   WAHSI,  respectively)   and   the   discharge   boundary   condition  (incoming   flow).   The   figures   demonstrate   fairly   similar  correlations  for  each  of  the  three  alternatives.  The  values  for  the  best  correlations  and  their  corresponding  lag  times  are   listed   in  Table  6.  All   the  best  values  are  greater   than  0.8,   indicating   reasonably  good   correlations   between   the  upstream   flow   condition   at   SDP   and   the   salmon   habitat  suitability  expressed  by  the  WAHSI  values.  However,  the  best  correlations  occur  at  a  time  lag  of  about  50  days  (1200  hours)   between   these   two   parameters.   For   example,   the  salmon   habitat   suitability   based   on   velocity  considerations  (represented  by  the  velocity  WAHSI)  fully  responds   to   upstream   discharges   in   about   50   days.   The  second   peak   values   (all   less   than   0.5)   occurring   near   a  zero  time  lag  represent  only  the  local  best  values  and  are  not  optimized  correlations  on  a  global  scale.    

Figure   12   shows   the   correlations   represented   by   the  NCC   between   the  WAHSI   and   the   downstream  WSE  values  at  FFB  for  different  lag  times.  The  velocity  WAHSI  (Figure   12a)   correlates   better   with   downstream   WSE,  exhibiting   a   higher     value   (0.926)   than   either   the   depth  WAHSI   (=   0.765,   Figure   12b)   or   the   overall   WAHSI   (=  0.895,  Figure  12c).  All  the  best  correlations  are  observed  at  a   zero   lag   time   for   each   of   the   three   alternatives.   This  indicates   almost   synchronized   responses   between   the  downstream  WSE  and  the  WAHSI  values.      

6.  Conclusions  

The  two-­‐‑dimensional  hydrodynamic  model  using  a  finite  element   scheme   developed   in   this   study   reasonably  described   the   hydrodynamic   conditions   in   the   middle  reaches  of   the  San   Joaquin  River   (SJR).   It   can  be  used   to  calculate   the   habitat   suitability   in   terms   of   Suitability  Index   (SI)   for   the  spring  Chinook  salmon  run  within   the  investigation   domain   of   the   SJR.   Three   proposed  alternatives   for   the   San   Joaquin   River   Restoration  Program   (SJRRP)   were   compared   based   on   both   their  hydrodynamic   and   SI   aspects.   All   three   alternatives  showed  similar  SI  distributions  under  the  same  boundary  conditions.  Alternatives  2  and  3  produced  higher  overall  Weighted  Area  Habitat  Suitability  Index  (WAHSI)  values  than  Alternative  1,  indicating  that  these  alternatives  could  lead  to  a  better  environment  for  salmon  migration.  There  exist  fair  correlations  between  the  WAHSI  values  and  the  boundary  conditions.  The  lag  time  that  produced  the  best  correlation   between   salmon   habitat   suitability   and  upstream   discharge   was   around   50   days   based   on   the  cross-­‐‑correlation   calculations.   The   WAHSI   and   the  downstream   Water   Surface   Elevation   (WSE)   values  change   synchronically.   This   study  demonstrates   that   the  boundary  conditions  may  help  predict  habitat  suitability  

for  salmon  by  using  the  hydrodynamic  model  for  the  SJR.  The   modelling   method,   together   with   the   correlation  results  reported  here,  may  provide  a  reference  for  similar  suitability  studies  of  salmon  habitat  in  other  inland  rivers.    

7.  Acknowledgements    

The  observed  data,  including  the  discharge,  water  surface  elevation   and   bathymetry   data,   used   in   this   paper   for  model   validation   and   calibration   were   provided   by   the  California   Department   of   Water   Resources,   the   U.S.  Geological   Survey   (USGS)   and   the   U.S.   Bureau   of  Reclamation   (USBR),   respectively.   Special   thanks   go   to  our   colleague,  Dr   John  Suen  of   the  Department  of  Earth  and   Environmental   Sciences   of   California   State  University,   Fresno,   whose   help   in   reviewing   the  manuscript  and  the  many  stimulating  exchanges  we  have  enjoyed   during   the   course   of   this   project   have   greatly  improved  the  outcome.  

8.  References  

[1]   California  Water  Plan  Update  2009  Integrated  Water  Management   (2009)   San   Joaquin  River  Hydrological  Region  Vol.  3  Available:    

  http://www.waterplan.water.ca.gov/.   Accessed   2013  April  10.  

[2]   Gronberg   JM,   Dubrovsky   NM,   Kratzer   CR,  Domagalski   JL,   Brown   LR,   Burow   KR   (1998)  Environmental   Setting   of   the   San   Joaquin-­‐‑Tulare  Basins,   California.   U.S.   Geological   Survey   Water-­‐‑Resources  Investigations  Report  97-­‐‑4205,  45  p.  

[3]   Herbold   B,   Moyle   PB   (1989)   The   Ecology   of   the  Sacramento-­‐‑San   Joaquin   Delta:   A   Community  Profile.  Report  prepared   for   the  U.S.  Department   of  the   Interior,   Fish   and   Wildlife   Service.   Biological  Report  85(7.22).  107  p.  

[4]   Yoshiyama   R,   Fisher   F,   Moyle   P   (1998)   Historical  Abundance   and   Decline   of   Chinook   Salmon   in   the  Central  Valley  Region  of  California.  North  American  Journal  of  Fisheries  Management,  18(3):  487-­‐‑521  

[5]   California  Department  of  Water  Resources  (2013)  San  Joaquin   River   Restoration   Program   Overview.  Available:  http://www.water.ca.gov/rivers/sanjoaquin/program/.  Accessed  2013  Mar  15.  

[6]   San   Joaquin   River   Restoration   Project   (2011)   Reach  4B,   Eastside   Bypass   and   Mariposa   Bypass   Channel  and   Structural   Improvements   Project   Initial  Alternatives   Technical   Memorandum.   Available:  http://restoresjr.net/activities/site_specific/R4B/index.html.  Accessed  2012  Sept  4.  

[7]   Yoshiyama  RM,  Gerstung   ER,   Fisher   FW,  Moyle   PB  (2001)  Historical  and  Present  Distribution  of  Chinook  Salmon  in  the  Central  Valley  Drainage  of  California.  Contributions   to   the   Biology   of   Central   Valley  Salmonids,  Fish  Bulletin,  179:  71-­‐‑176.  

14 Int. j. water sci., 2013, Vol. 2, 5:2013 www.intechopen.com

Page 15: Doc

[8]   Quinn   TP   (2005)   The   Behaviour   and   Ecology   of  Pacific  Salmon  and  Trout.  University  of  Washington  Press,  Seattle.  378  p.  

[9]   Reiser   D,   Huang   C,   Beck   S,   Gagner   M,   Jeanes   E  (2006)   Defining   Flow   Windows   for   Upstream  Passage   of   Adult   Anadromous   Salmonids   at  Cascades   and   Falls.   Transactions   of   the   American  Fisheries  Society,  135(3):  668-­‐‑679.  

[10]  Geist   D,   Jones   J,   Murray   C,   Dauble   D   (2000)  Suitability   Criteria  Analyzed   at   the   Spatial   Scale   of  Redd   Clusters   Improved   Estimates   of   Fall   Chinook  Salmon   (Oncorhynchus   Tshawytscha)   Spawning  Habitat  Use   in   the  Hanford  Reach,  Columbia  River.  Canadian   Journal  of  Fisheries   and  Aquatic  Sciences,  57(8):  1636-­‐‑1646.  

[11]  Hanrahan   T,   Dauble   DD,   Geist   DR   (2004)   An  Estimate   of   Chinook   Salmon   (Oncorhynchus  Tshawytscha)  Spawning  Habitat  and  Redd  Capacity  Upstream   of   a   Migration   Barrier   in   the   Upper  Columbia   River.   Canadian   Journal   of   Fisheries   and  Aquatic  Sciences,  61(1):  23.  

[12]  Kimmerer   WJ,   Nobriga   ML   (2008)   Investigating  Particle   Transport   and   Fate   in   the   Sacramento-­‐‑San  Joaquin  Delta  Using   a   Particle   Tracking  Model.   San  Francisco   Estuary   and   Watershed   Science,   6(1).  Available:  http://www.escholarship.org/uc/item/547917gn.Accessed  2013  Sept  14.  

[13]  Bjornn  T,  Reiser  DW  (1991)  Habitat  Requirements  of  Salmonids   in   Streams.   American   Fisheries   Society  Special  Publication,  19:  83-­‐‑138.  

[14]  Thompson   K   (1972)   Determining   Stream   Flows   for  Fish   Life.   Pacific   Northwest   River   Basins  Commissions,  20  p.  

[15]  Bell   MC   (1990)   Fisheries   Handbook   of   Engineering  Requirements   and   Biological   Criteria.   Corps   of  Engineers,  Portland  OR,  North  Pacific  Division.  

[16]  Huang   J,   Greimann   BP   (2010)   Sediment   Transport  and  Channel  Morphology  Model   in   the  San   Joaquin  River  From  Friant  Dam  to  Mendota  Dam,  California.  2nd  Joint  Federal  Interagency  Conference,  Las  Vegas,  NV,  June  27  -­‐‑  July  1,  2010.  

[17]  Shen   Y,   Diplas   P   (2008)   Application   of   Two-­‐‑   and  Three-­‐‑dimensional   Computational   Fluid   Dynamics  Models  to  Complex  Ecological  Stream  Flows.  Journal  of  Hydrology,  348(1):  195-­‐‑214.  

[18]  Crowder   DW,   Diplas   P   (2000)   Using   Two-­‐‑dimensional   Hydrodynamic   Models   at   Scales   of  Ecological  Importance.   Journal  of  Hydrology,  230(3):  172-­‐‑191.

[19]  Hardy   TB   (1998)   The   Future   of   Habitat   Modelling  and   Instream   Flow   Assessment   Techniques.  Regulated   Rivers:   Research   &   Management,   14(5):  405-­‐‑420.

[20]  Ghanem   A,   Steffler   P,   Hicks   F,   Katopodis   C   (1996)  Two-­‐‑dimensional   Hydraulic   Simulation   of   Physical  Habitat   Conditions   in   Flowing   Streams.   Regulated  Rivers:  Research  &  Management,  12(2-­‐‑3):  185-­‐‑200.  

[21]  King   IP   (2011)   User   Guide   of   RMA10   -­‐‑   A   Finite  Element   Model   for   Three-­‐‑dimensional   Density  Stratified  Flow.  

[22]  Chua   VP,   Fringer   OB   (2011)   Sensitivity   Analysis   of  Three-­‐‑dimensional  Salinity  Simulations  in  North  San  Francisco   Bay   Using   the   Unstructured-­‐‑grid  SUNTANS  Model.  Ocean  Modelling,  39(3):  332-­‐‑350.  

[23]   Gross  ES,  MacWilliams  ML,  Kimmerer  WJ  (2010)  Three-­‐‑dimensional  Modelling  of  Tidal  Hydrodynamics  in  the  San   Francisco   Estuary.   San   Francisco   Estuary   and  Watershed  Science,  7(2).  Available:    

  http://www.escholarship.org/uc/item/9rv243mg.  Accessed  2013  Sept  14.  

[24]  Mosley   MP   (1982)   Critical   Depths   for   Passage   in  Braided   Rivers,   Canterbury,   New   Zealand.   New  Zealand  Journal  of  Marine  and  Freshwater  Research,  16(3-­‐‑4):  351-­‐‑357.  

[25]  Powers   PD   (1984)  Analysis   of   Barriers   to   Upstream  Fish   Migration.   Master'ʹs   thesis,   Washington   State  University.  

[26]  San   Joaquin   River   Restoration   Program   (SJRRP)  (2012)   Record   of   Decision   -­‐‑San   Joaquin   River  Program.   Available:   http://restoresjr.net/.   Accessed  2013  Jan.  1.    

[27]  California   Department   of   Fish   and   Wildlife  (CADFW)  (2012)  Central  Valley  Spring-­‐‑run  Chinook  Salmon.  Available:    

  http://www.dfg.ca.gov/fish/Resources/Chinook/.Accessed  2013  Jun.  15.  

[28]  Raleigh   RF,   Miller   WJ,   Nelson   PC   (1986)   Habitat  Suitability   Index   Models   and   In   stream   Flow  Suitability  Curves:  Chinook  Salmon.  U.S.  Fish  Wildl.  Serv.  Biol.  Rep.  82(10.122).  64  pp.    

[29]  Armour  CL,  Fisher  RJ,  Terrell  JW  (1984)  Comparison  of   the   Use   of   the   Habitat   Evaluation   Procedures  (HEP)   and   the   Instream   Flow   Incremental  Methodology   (IFIM)   in  Aquatic  Analyses.   U.S.   Fish  Wildlife  Services,  FWS/OBS-­‐‑84/11.  30  pp.  

[30]  Orfanidis  SJ   (1996)  Optimum  Signal  Processing   [M].  2nd  Ed,  Englewood  Cliffs,  NJ:  Prentice-­‐‑Hall.  

15Lubo Liu and Joaquin Ramirez: Assessment of Spring Chinook Salmon Habitat Suitability in the San Joaquin River Using a 2-D Depth-Averaged Model

www.intechopen.com