42
Chapter 4: Coynting Methods Lessmi 4 1: C-Mniiog Principles, p a g e 2 3 5 khaki black red red/khaki red/black blue biue/khaki blue/black greer green/khaki green/black Each X represents a different combination. There are 6 x's; therefore, there are six different vanations of the outfit to choose from, b) The number of outfit variations, O, is related to the '-"r of shirts and the number of shorts; O .number of shirts) • (number of shorts) 2 Ml I' are six different variations of the outfit to choose from. This matches the part a) result. 2. a) Upholstery leather cloth Colour red •.il.-. r red 1 .1 ,1' It •.V-xt.- 8 u Thereto".• thf ro 0 Mpholstery-colour choices that are available. b) The number of upholstery-colour choices, U, is related to the number of colours and the number of kinds of upholstery; U - (Ml mber of colours) • (number of upholstery) iJ 1 2 8 There are 8 upholstery-colour choices that are available. This matches the part a) result. 3. a) The Fundamental Counting Pnnciple does not apply because tasks in this situation are related by the word OR. b) The Fundamental Counting Pnnciple does apply because tasks in this situation are related by the word AND. c) The Fundamental Counting Pnnciple does not apply because tasks in this situation are related by the word OR. d) The Fundamental Counting Pnnciple does apply because tasks in this situation are related by the word AND. 4. a) Game 1 win Game 2 Game 3 Series Result win loss win loss win win loss win loss loss loss b) By looking at the tree diagram. I can see there are 2 ways in which Kim's team can win the series despite losing one game. 5. The number of colour-size vanations, C, is related to the number of colours and the number of sizes; C = (number of colours) • (number of sizes) C = 5-4 C- 20 There are 20 colour-size variations that are available. 6. The number of computer systems, S, the employees can build for their customers is related to the number of desktop computers (dc), the number of monitors (m), the number of printers (p), and the number of software packages (sp); - (# of y) (# of m) (# of p) (# of sp) ^ S 4 f. 3 .5 -• .}uO rhfciufo;u, Ihe employees can build 360 different computer systems for their customers. 7. The number of possible meals. M, is related to the number of soups (s), the number of sandwiches (sw), the number of drinks (dr), and the number of desserts (P): M = (# of s) - (# of sw) (# of dr) (# of d) /W = 3 5 4 2 M= 120 Therefore, there are 120 different meal possibilities. 8. Event A: Selecting a rap CD OR Event B: Selecting a classic rock CD n{A u B) = n{A) + n{B) n{A ;„„ B) = 8 + 10 n{A u B) = 18 Therefore, Chadene can select from 18 CDs to play in her car stereo that will match Tom's musical tastes. 9. a) The number of different PIN combinations, C. is related to the number of digits from which to select for each digit of the PIN. F: C = Pl P2--P3- P4- Ps C = 9 9 9 9 9 C = 59 049 There are 59 049 different five-digit PIN combinations. Foundations of Mathemati'. s «/ solutions Manual 4-1

Counting methods solutions

Embed Size (px)

Citation preview

Page 1: Counting methods solutions

C h a p t e r 4 : C o y n t i n g M e t h o d s

L e s s m i 4 1 : C - M n i i o g P r i n c i p l e s ,

p a g e 2 3 5

khaki b lack red red/khak i red/b lack blue b iue/khaki b lue/b lack greer g reen/khak i g reen/b lack

Each X represen ts a d i f ferent comb ina t i on . The re a re 6 x 's ; there fore , there are six d i f ferent vana t ions of the outf i t to choose f r o m ,

b) T h e n u m b e r of outf i t var ia t ions, O, is re la ted to the

' - " r of shi r ts and the n u m b e r of shor ts ;

O . n u m b e r of shi r ts) • ( number of shor ts )

2

Ml I ' a re six d i f ferent var ia t ions of the outf i t to c h o o s e f rom. Th is ma tches the part a ) result .

2. a)

Upholstery

leather

cloth

Colour

red

•.il.-. r

red

1.1,1' It

•.V-xt.-

8 u Thereto" . • thf ro 0 Mpholstery-colour cho ices that are ava i lab le .

b) T h e n u m b e r of upho ls te ry -co lour cho ices , U, is re la ted to the n u m b e r of co lours and the n u m b e r of k inds of upho ls te ry ;

U - ( M l mbe r of co lours) • (number of upho ls te ry )

iJ 1 2

8

The re are 8 upho ls te ry -co lour cho ices that are

ava i lab le . Th is ma tches the part a) resul t .

3. a) T h e Fundamen ta l Coun t ing Pnnc ip le does not app ly b e c a u s e tasks in th is s i tuat ion are re la ted by the w o r d O R .

b) T h e F u n d a m e n t a l Coun t ing Pnnc ip le does app ly because tasks in th is s i tuat ion are re lated by the wo rd A N D .

c ) T h e Fundamen ta l Coun t ing Pnnc ip le does not app ly because tasks in th is s i tuat ion are re la ted by the w o r d O R .

d) T h e F u n d a m e n t a l Coun t ing Pnnc ip le d o e s app ly because tasks in th is s i tuat ion are re la ted by the wo rd A N D .

4. a) Game 1

win

Game 2 Game 3 Series Result

win

loss

win

loss

win

win

loss

win

loss

loss loss

b) By look ing at the t ree d i a g r a m . I can see there are

2 w a y s in wh ich K im 's t e a m can w in the ser ies

desp i te los ing one g a m e .

5. T h e n u m b e r of co lour -s ize vana t ions , C, is re la ted

to the n u m b e r of co lours and the n u m b e r of s izes ;

C = (number of co lours ) • ( numbe r of s izes)

C = 5 - 4

C - 20

The re are 20 co lour -s ize var ia t ions that a re ava i lab le .

6. T h e number of c o m p u t e r sys tems , S, the

e m p l o y e e s can bui ld for the i r cus tomers is re la ted to

the n u m b e r of desk top c o m p u t e r s (dc), the n u m b e r of

mon i to rs (m) , the n u m b e r of pr in ters (p) , and the

n u m b e r of so f tware p a c k a g e s (sp) ;

- (# of y ) (# of m) • (# of p ) • (# of sp)

^ S 4 f. 3

.5 -• .}uO

rh fc iu fo ;u , Ihe e m p l o y e e s can bui ld 360 d i f ferent

compu te r sys tems for thei r cus tomers .

7. T h e n u m b e r of poss ib le mea ls . M, is re la ted to the

n u m b e r of soups (s) , the n u m b e r of s a n d w i c h e s (sw), the

number of dr inks (dr), and the n u m b e r of desser ts (P):

M = (# of s) - (# of sw) • (# of dr) • (# of d)

/W = 3 5 • 4 2

M= 120

There fo re , there a re 120 d i f ferent mea l possib i l i t ies.

8. Event A: Se lec t ing a rap C D

O R

Event B: Se lec t ing a c lass ic rock C D

n{A u B) = n{A) + n{B)

n{A ;„„ B) = 8 + 10

n{A u B) = 18

There fo re , C h a d e n e can se lec t f r om 18 C D s to p lay in

her car s tereo that wi l l ma tch T o m ' s mus ica l tas tes .

9. a) T h e n u m b e r of d i f fe rent P IN comb ina t i ons , C. is re lated to the n u m b e r of d ig i ts f r om w h i c h to se lect for each digi t of the P IN . F:

C = P l • P2--P3- P4- Ps C = 9 9 9 9 9

C = 59 049

There are 59 049 d i f ferent f ive-digi t P IN comb ina t i ons .

F o u n d a t i o n s of Mathemati'. s «/ s o l u t i o n s Manual 4-1

Page 2: Counting methods solutions

b) llv: n i i r n lH j r o ! <ii lferont P IN c fm ib ina t ions , N. )s

n.' lali ' f l to l l u ' i i i in ibcr o l d ig i ts I torn w h i r j i to s t ; l t ) r j for

each d iy i l o l l l i r ; P IN . D'

N ' / ) i n, / ) ; D t Di

N M p. / 0 5

W 15 17f)

Iht jK.- or<: only 1f» 120 d i f fo ron i l ivc- f f ig i t P IN

f ;urnl) inol i f ) i is in w h i d i the dig i ts canno t repea l .

10 . f ho n(jrnt)t;r of d i f ferent t)ytes that can bo c rea ted ,

N. IS rolatfHl l o I f ie n u m b e r of d ig i ts f rom wh ich to

f .hoosf! for e a c h di t j i ! of the by te . B:

N - th H • / i . B i Bs • Bf, B, By.

N - 7 2 2 2 2 2 2 - 2

N • 256 Thf .Tutonj . 2b6 d i f ferent by les can bo creaUid

1 1 . a) 1 he f iu rn twf of d i f ferent upper-~caso letter

f .ossibi l i t ips. H. IS re lated to the n u m b e r of uppe r - case

let ters f t om wh ich to choose for each o d d pos i t ion of

the coun t ry ' s posta l code , P:

W - P i P ; P .

H 26 • 26 26

A/-- 1 / 57t>

T l i e n u m b e r of d i f ferent digi t possib i l i t ies. D, is re la ted

to the n u m b e r of d ig i ts f rom wh ich to c h o o s e for e a c h

even pos i t ion of the coun t ry ' s posta l c o d e , P;

D'^P'- Pi Pf.

D-- - ^10-10 10

O 1000

The n u m b e r of d i f ferent posta l codes that are poss ib le

in th is count ry . C. is re la ted to the n u m b e r of upper ­

case letter possib i l i t ies, N, and the n u m b e r o f digi t

possib i l i t ies, D:

C W • D

C = 17 576 • 1000

C ^ 17 576 000

T t i c re fo re , 1 7 576 000 posta l codes a re poss ib le ,

b ) T l i e n u m b e r of d i f ferent upper -case letter

possib i l i t ies, N. is re la ted to the n u m b e r of uppe r - case

let ters f r om w h i c h to choose for each odd pos i t ion of

the coun t ry ' s posta l code , P;

Al = P, Po • Pf,

A / - 2 1 - 2 1 - 2 1

N = 9261

T h e n u m b e r of d i f ferent digit possib i l i t ies, D, rema ins

the s a m e s ince all d ig i ts can be u s e d . T h e n u m b e r o f

d i f ferent posta l codes that are poss ib le in C a n a d a , C, is

re lated io the number of uppercase letter possib i l i t ies,

Ay. and the n u m b e r of digit fK)SSibi!ities, D;

C = N D

0 = 9261 1000

C = 9 261 000

There fo re . 9 261 000 posta l codes are poss ib le in

C a n a d a .

12 . T o answe r this ques t i on , I need U) de te rm ine how

many digi t r-.oml.nnations t t ioro a rc for the last four

d ig i ts of one ot these two p h o n e n u m l j e i s . and then

mul t ip ly it by 2,

The number ot digit comb ina t i ons . C, is ro ln ted to the number of poss ib le d ig i ts for each of the last four d ig i ts of o n e of tho p h o n o n u m b e r s , P' c \ p , . p... p . , . f>,

C = 10 - 10 - 10 - 10

C-^ 10 0 0 0

T h e n u m b e r of p h o n e n u m t j e r s is 2C s ince there an)

two g iven tt.nnplates for the phone n u m b e r s in tho

ques t ion .

2 C 2(10 0 0 0 )

2 C =̂ 20 0 0 0

There fo re . 20 000 d i f fe rent p h o n e n u m b e r s are

poss ib le for th is t o w n ,

13 . T h e n u m b e r of d i f fe rent codes , C. is re lated to

n u m b e r of pos i t ions f r o m w h i c h to se lec t for each

swi tch of the ga r age doo r opener . G:

C^Gi- G2- Ga • G,, • Gr, • Gr, • G, - Gr; G:.

C = 3 • 3 - 3 - 3 ^ 3 • 3 • 3 - 3 3

C - 19 683 There fo re , 19 683 d i f ferent c o d e s a re poss ib le .

14 . Even t A ; Se lec t ing a p ickup t ruck O R

Event B: Se lec t ing a p a s s e n g e r v a n O R

Event C: Se lec t ing a car O R

Event D: Se lec t ing a spor ts uti l i ty veh ic le

n{A UBKJC u D ) = n{A) + n(B) + n{C) + n (D )

n{A u B u C i.j D) = 8 + 10 + 35 + 12

niA uBu G>j D) = 65

There fo re , a c u s t o m e r has 65 cho ices w h e n rent ing

jus t o n e veh ic le .

15 . a) Mul t ip ly the n u m b e r of s izes o f the crust , by the

n u m b e r of t ypes o f the crust , by the n u m b e r of t ypes

of cheese , by the n u m b e r of t ypes of t oma to sauce .

2 • 2 - 2 • 2 = 16

Mul t ip ly th is n u m b e r by the n u m b e r of d i f ferent

topp ings .

1 6 - 2 0 = 320

There fo re , the re a re 3 2 0 d i f fe ren t p i zzas that can be

m a d e wi th any crust , c h e e s e , tomato sauce , and

1 topp ing .

b ) Mul t ip ly the n u m b e r of t y p e s of c h e e s e by the

n u m b e r of t ypes of t o m a t o s a u c e .

2 - 2 = 4

There fo re , there are 4 d i f ferent p i zzas tha t can be

made wi th a th in w h o l e - w h e a t crust , t o m a t o sauce ,

cheese , a n d no t opp ings .

4-2

Page 3: Counting methods solutions

1 i . a | T h e n u m b e r of d i f ferent ypper-^case letter

possib i l i t ies, N, is re lated to the n u m b e r of upper^case

let ters f r o m w h i c h to choose for each of the f irst th ree

pos i t ions of the A lber ta l i cence plate, P:

W = 24 - 24 • 24

N= 13 824

f l . . . n u m b e r of d i f ferent digit possib i l i t ies, O, is re la ted

so In. - number of digi ts f r om w h i c h to c h o o s e for e a c h of

H..- I . r i th ree pos i t ions of the A lber ta l i cence p late. P

D - P.-P^^Ps

- ••0 - 10 - 10

P' m o o

T h e n u m b e r of d i f ferent poss ib le A lber ta l icence p la tes,

I = -I J ! the n u m b e r of upper^case letter

, / ; and the n u m b e r of digi t possib i l i t ies, O; ^ / i O

< ' , i ' ' ' , I f . 0 0

1 ; i.j'i CO.' A lber ta l i cence p la tes are poss ib le ,

b) I he n u m b e r of d i f ferent upper -case letter

possib i l i t ies, N, rema ins the s a m e s ince the n u m b e r of

let ters in the p la tes and the n u m b e r of let ters that can

be used is the s a m e as in a) .

T h e n u m b e r of d i f ferent digi t possib i l i t ies, 0 , is re lated

to the n u m b e r of d ig i ts f r o m w h i c h to c h o o s e for each of

the last four pos i t ions of the A lber ta l icence p late. P;

D = P4 • Ps • Fe • P?

D = 10 • 10 • 10 - 10

D = 10 000

T h e n u m b e r of d i f ferent poss ib le A lber ta l i cence p la tes,

C, is re la ted to the n u m b e r of uppe r - case letter

possib i l i t ies. N, and the n u m b e r of digi t possib i l i t ies, D:

C = N- D

C = 13 824 - 10 0 0 0

C = 138 240 000

138 240 000 13 824 000 = 124 4 1 6 000

So , 124 416 000 more l icence p la tes a re poss ib le ,

17 . e g, , If mul t ip le tasks are re la ted by A N D , it m e a n s

the F u n d a m e n t a l Coun t ing Pnnc ip le can be used and

the total n u m b e r of so lu t ions is the p roduc t of the

so lu t ions to each task. For e x a m p l e , A 4-dig i t P IN

invo lves choos ing the 1st digi t A N D the 2nd digi t A N D

the 3rd digi t A N D the 4 th digit . So the n u m b e r of

so lu t ions IS 10 10 10 10 = 10 000 . O R m e a n s the

so lu t ion mus t mee t at least one cond i t ion so you mus t

add the n u m b e r of so lu t ions to each cond i t ion , and

then subt rac t the n u m b e r of so lu t ions that mee t all

cond i t ions . For examp le : Ca lcu la t ing the n u m b e r of

4-dig i t P INs that star t w i th 3 O R end wi th 3. T h e

so lu t ion IS the n u m b e r of P INs that start w i th 3, p lus

the n u m b e r of P INs that end wi th 3. m inus the n u m b e r

of P INs that both start and end wi th 3:

1000 + 1 0 0 0 - 100 = 1900.

18. a) i) Even t A D raw ing a k ing O R

Event B; D raw ing a q u e e n

r i f / . = n(A) + niB)

n{A u e ) = 4 + 4

n{A u e ) = 8

L ike l ihood = ^ 52

L ike l ihood = ^ 13

There fo re , there is a 2 in 13 c h a n c e that a k ing or a q u e e n wi l l be d r a w n .

ii) Even t A: D r a w i n g a d i a m o n d

OR

Event B: D raw ing a c lub

I >'•'"• P) -•.'/• I I''p.)

n{A u S) = 26

L ike l ihood = ^ 2

There fo re , there is a 1 m 2 c h a n c e that a d i a m o n d or a c lub wi l l be d r a w n ,

iii) Even t A: D raw ing an A c e O R

Event B: D raw ing a s p a d e

n(A u B) = n{A) + n(B) - n{A n B)

n(Au B) = 4 +13^1

n(A u e ) = 16

L ike l ihood = ^ 52

L ike l ihood = 13

There fo re , there is a 4 in 13 c h a n c e that an ace or a

s p a d e wil l be d r a w n .

b) No . e.g. . because the F u n d a m e n t a l Coun t i ng

Pr inc ip le on ly app l ies w h e n tasks are re la ted by the

wo rd A N D .

19. e .g. . T o beg in , there are 90 two-d ig i t n u m b e r s .

The re are 10 wi th a 1 in the tens c o l u m n , 10 wi th a 2

in the tens c o l u m n , and th is pat tern con t inues unti l I

reach the 10 w i th a 9 in the tens c o l u m n . Next . I mus t

de te rm ine the n u m b e r s that are d iv is ib le by e i ther 2 or

5. I know that eve ry o ther n u m b e r is even and thus

d iv is ib le by 2. Th is m e a n s that or 4 5 of the t w o -2

digi t n u m b e r s are d iv is ib le by 2. T h e two-d ig i t

n u m b e r s that are d iv is ib le by 5 can be f ound by

star t ing at the f irst two-d ig i t number , 10, and then

coun t ing by 5 unti l I get to a three-d ig i t number .

By do ing th is . I can de te rm ine that the two-d ig i t

n u m b e r s that are d iv is ib le by 5 a re : 10, 15, 20 , 25 . 30 .

35 , 40 , 45 . 50 . 55 , 60 . 65 , 70 . 75 , 80 , 85 . 90 . 95 .

The re are 18 of t h e m . I see that half of t hem 'o r 9 are

even and thus d iv is ib le by 2.

F o u n d a t i o n s of Mathemati ' ^ V - . . lu t ions Manual 4-3

Page 4: Counting methods solutions

There fo re , the re are 9 n u m b e r s tha t a re d iv is ib le by 5

a n d not by 2. If I add th is toge ther w i th the n u m b e r of

two-d ig i t n u m b e r s that a re d iv is ib le by two (45) . I see

that there are 54 two-^digit n u m b e r s d iv is ib le by 2 or 5,

W h a t e v e r is le f tover f r o m the two digi t n u m b e r s a re

the ones that a re not d iv is ib le by e i ther 2 or 5, Th is

a m o u n t is:

90 54 = 36 . T h u s , there a re 36 two-d ig i t n u m b e r s

that are not d iv is ib le by e i ther 2 or 5.

20. T h e n u m b e r of d i f fe rent o u t c o m e s for a s tudent ' s

test . N, is re la ted to the n u m b e r of poss ib le a n s w e r s

for each ques t ion on the test . T:

W = Tl • 12 • Ta • T4 - Ts - Te • T/ • Te • Tg • Tn

IV = 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2

IV = 1024

A per fect score is on ly 1 ou t of t hese 1024 o u t c o m e s ;

there fo re , there is a 1 in 1024 chance that the s tuden t

wi l l get a per fect sco re .

2 1 . Th is ques t ion is so l ved by cons tan t app l ica t ion of

the F u n d a m e n t a l Coun t i ng Pnnc ip le .

If an i tem f rom each ca tegory is se lec ted :

0 = 3 5 4 2

0 = 120

If no soup is se lec ted :

0 = 5 4 2

0 = 40

If no sandw ich is se lec ted :

0 = 3 4 2

0 = 24

If no dr ink is se lec ted :

0 = 3 5 2

0 = 30

If no desser t is se lec ted :

0 = 3 5 - 4

O = 60

If no s o u p or s a n d w i c h is se lec ted :

0 = 4 2

0 = 8

If no soup or dr ink se lec ted :

0 = 5 2

0 = 10

If no soup or desser t is se lec ted :

0 = 5 4

0 = 20

If no sandw ich or d n n k is se lec ted :

0 = 3 2

0 = 6

If no sandw ich or desser t is se lec ted :

0 = 3 4

0 = 1 2

If no dnnk or desser t is se lec ted :

0 = 3 5

0 = 1 5

If on ly n <^nur s a n d w i r h dr ink or desser t is se lec ted :

0 • :\ 5, 4 2 f,.,,., - 120 4 40 t ;•-•} t M) . 60 + 8 + 10 + 20 + 6 + 12

-I 1 h 4 3 < S i- 4 • 2

,1 - 350

1 he re fu re , 3 5 9 mea ls a re poss ib le if y o u d o not have

to c h o o s e an i tem f r o m a ca tegory .

L e s s o n 4 . 2 : I n t r o d u c i n g P e r m u t a t i o n s a n d

F a c t o r i a l N o t a t i o n , p a g e 2 4 3

1 . a) 6! = 6 - 5 - 4 • 3 - 2 - 1

61 = 720

b) 9 - 8 ! = 9 - ( 8 - 7 - 6 - 5 - 4 - 3 - 2 - l )

9 - 8 ! = 9 - 4 0 3 2 0

9 8! 3 6 2 8 8 0

3 '7 I

^ 2 1

. 5! c ) — =•

' 3 !

5

3!

5!

3!

5!

3!

5!

3!

8 !

— = 5 4 3 2 1

5 - 4 . M 3!

^ = 5 - 4 . 1

- 2 0

a /• b j j 4 J 2 1

f b 5 4 3 2 r

7 6 <.i 4 3

^y 8

/ 6 71

7!

2 1

8 1

8!

7!

8!

7!

8!

7!

7!

e) 3 ! - 2 ! = ( 3 - 2 - l ) - ( 2 - l )

3 ! - 2 ! = 6 - 2

3 t - 2 ! = 12

9 ! ^ 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1

' 413! ^ l 4 ^ 3 ^ 2 l H 3 ^ ^ ^ ^

9 ^ 9 8 7 g g 4 3 2 1

413! 3 2 1 ' ' 4 3 2 1

4 ! 3 ! 3 2 4 !

413! 3 2

9!

413!

9!

413!

= 3 - 4 - 7 - 6 - 5

2520

4-4 C h a p t e r 4: C o u n t i n g Methods

Page 5: Counting methods solutions

Posst ioJ ! Ptji^ilmn *^(jsitifm

I ' f i rmi i . i tK t t i

1

P e r m i H a t i o i i 2

P e r m i i f a t i o r i

3 K.I

P e r m u t a t t o r * 4

Permuta t , i r , n

5

Permuta t ion 6

Raj Sarah Ken

b) Let L rep resen t the total n u m b e r of pe rmuta t ions :

1 = 3 - 2 - 1

L = 3!

3. .

b)

D !

c) 15 H i j 1 ' . 1 :

A < 2 ! 4 :*,

IS M I I ' l !

4 J 2 1 l^'t-lf

98 !

1 0 0 - 9 9 = 100!

9 8 !

4. Exp ress ions a) , c ) , and d) a re unde f ined because

factor ia l no ta t ion is on ly de f ined for natura l n u m b e r s ,

5. a) 8-7-»^d S / 1̂ 3

8 - 7 - 6 f H / / X I

8 - 7 - 6 ! = 5 6 - 7 2 0

8 - 7 - 6 ! - 4 0 3 2 0

h i 1?1 ''^ 1 I 10 y 3 7 fi 5 4 / 1

10! ^ ' 1 0 " F 8 " " / 6 5^4 3^2^ 1

1 2 ! ^ -12 ^-1 10 9 8 7 6 5 4 3 2 1

10! ' " 10 9 8 7 6 5 4 3 2 1

1 ^ = 1 2 1 1 . 1 ^ 10! 10 !

12!

10!

12!

10!

= 12-11-1

132

8 ! 8 ^ 6 !

2 ! - 6 ! 2 6!

2 ! - 6 ! 2

: 4 - 7

28

d)

8!

2 ! - 6 !

8 !

21 -6 !

/ • ' r ,

5! " •)

5!

5! 5! 7 ^

5!

7 - 6 !

5! 42

e)

9! 91

\ ' i ;

1 '.

11 % 4 '<

2 1

2 i

^1 ;

6 !

2 ! - 2 !

6 !

2 ! - 2 !

6 !

= 4 ( 3 - 5 - 4 - 3 )

= 4 ( 1 8 0 )

4 1 = 720 2 ! - 2 ! ;

f | 4 ! + 3 ! + 2 ! + 1 ! = ( 4 - 3 - 2 - l ) - f ( 3 - 2 - l ) + ( 2 - l ) + 1

4 ! + 3 ! + 2 ! + 1 ! = 24 + 6-f 2 + 1

4!-f 3 ! + 2 ! + 1 ! = 33

e . a ) ^ . M ! L - ; ) ( " - ^ ) ( " ' f ) ; - ( ^ ) ( ^

( n - 1 ) ! ( n - l ) ( n - 2 ) ( „ - 3 ) . . . ( 3 ) ( 2 ) ( l )

n !

( n - 1 ) !

F o u n d a t i o n s of Mathemat ics V/ S o l u t i o n s IVIanual

Page 6: Counting methods solutions

b) , •• + 2 | !

1,1 41b; . ,.({n + 2){n + i)(n)in^i}...(3)i2}{t

in-. 4 1 '

( o . 1)1 ( / n n i n p 1)(» ? | (3 ) (2 ) (1 )

m in)(n ~1](n ?] l 3 ) ( 2 ) ( l )

p i i 1!'

c)

/: ^ 1

' ' ^ l i y ^ P 4 | ( n ^ 5 ) . . . ( 3 ) ( 2 ) ( l )

i | ! (/) 3 ) ( r , 4 H r r : i ^ 3 ) ( 2 ) ( i r

,1 ^ ^ ( n ) ( r i ^ l ) ( / i 2)(,/ rf

n-Z]\

I

e )

in

\i, i 5 ) ' \n I ^ 4 J ( f n 3 } ( f ) j 2 ) ( u + l ) . - . ( 3 ) ( 2 ) ( l )

( , 1 - 3 ) ! " " ^ " ! o , 3 ) ( i i r 2 ) ( o i 1 i (3 ) (2 ) {1 )

( . 0 , 5 ) ' {n , 5 ) ( / j , 4 ) ( / / ,

( /H 111 - 3.'

f f l 5)1

f n .4)!

^ = (r i + 5 ) ( / i + 4 )

= f)2 + 9o + 20

[n I f . { V i ^ 2 ) ( n - ^ 3 ) ( 0 ^ 4 ) . . . { 3 ) ( 2 ) ( 1 )

>̂ ( . r i , r ( , r i ) ( ; ^ r 2 ) ( ^ ^

(rt 1)! ( n - l ) { n - - 2 ) !

( » ^ 2 ) ! ^ 1

(/? 1 ) ! ^ n - - 1

7. The re a re n ine s tuden ts in the l ineup, so there are

n ine poss ib le pos i t ions . Let L represent the total

n u m b e r of pe rmuta t ions :

L = 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1

L = 9!

l = 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1

L = 72 • 7 • 30 • 4 • 6

L = 72 • 210 • 24

1 = 362 880

The re are 362 8 8 0 pe rmuta t i ons for the n ine s tuden ts

at the Ca lgary S t a m p e d e .

8. The re a re f ive s tuden ts in t he c lub and there a re

f ive poss ib le pos i t ions . Let L rep resen t the total

n u m b e r of pe rmu ta t i ons :

L = 5 4 3 2 1

/

/ - -b 4 3 • 2 • 1

- 2 0 - 6

/ - 120 T h e r e are 120 d i f ferent w a y s to se lec t m e m b e r s for the f ive pos i t ions . 9 . The re are six act iv i t ies to d o and there are six days . Let L represen t the total n u m b e r of pe rmuta t ions :

h i

.' H 5 - 4 • 3 - 2 • 1

I • : i . 4 6

•' 1 / 0 - 6

/ - 7-'0

1 ht ;ru a re 720 d i f ferent w a y s they can s e q u e n c e

ihos(< act iv i t ies ove r the six days .

10. The re a re 28 mov ies , so the re a re 28 poss ib le

spo ts for the mov ies to go . Let L represen t the total

n u m b e r of pe rmu ta t i ons :

L = 28 !

L = 3 .048 . . . X 10^®

The re are abou t 3.05 x 10^® poss ib le pe rmuta t i ons of

the mov ie list.

f l !

(n + l ) ( n ) ( i i ^ l ) . . . ( 3 ) ( 2 ) ( l )

(V r+ l ) (n ! )

nl

1 1 . a) 10

10

- - 10

10

Check n = 9

LS RS

(y 1 l l ! 10

91

10!

9!

10 9 '

9!

10 The re is one so lu t ion . n = 9.

4-6 C h a p t e r 4" C o u n t i n g Methods

Page 7: Counting methods solutions

b) (11 + 2 ) ! = 9

n!

( i i K o ^ i ) : . ( 3 p ) ( i )

(o + 2 ) ( i i + l ) ( i i ! )

( n + :

+ n + 2n + 2 = 6

n'' + 3 n + 2 = 6

n^ + 3 r i - 4 = 0

(n + 4 ) ( f i - l ) = 0

ri + 4 = 0 or f i - 1 = 0

n = - 4 II = 1

Check n = LS

"'-_4 2 ] !

s unde f ined

Check n = 1

LS RS

< i 1 2)1 (.

1!

3!

11

3 - 2 - 1 !

1!

3 2

6

The re is one so lu t ion , ri = 1 .

c ,

t z 3 ^ " - ) ( ^ ^ 3 ) . . . ( 3 ) ( 2 ) : 1 i

{n 2](n J ) . . . (3 ) (2) (1)

( n ^ 2 ) i

n-^1 = 8

n = 9

RS

126

126

- 1 2 6

8! 71

i l l : 7!

8

The re is one so lu t ion , n = 9,

CJ) ±7l i . 1,:

3 ( o + l ) ( r i ) ( n ^ l ) ( o ^ 2 ) , „ ( 3 ) f 2 ) ( l )

. - h { / . ^ 2) { 3 ) ( 2 i r i )

3 ( o + l ) ( o ) ( i T ^

3 { i i + l ) ( n ) = 126

3 ( n ' + n ) = 126

3(f,2 + n ) - ^ 1 2 6 - 0

3 ^ ( n ^ + n ) ^ 4 2 l = 0

3 ( f i ' + n - 4 2 ) = 0

3 ( n + 7 ) ( r 7 ^ 6 ) - 0

f i + 7 - 0 o r n - 6 = 0

n = -7 n - 6

Check n = - 7

LS RS

3 ( ^ 7 + 1)! 126

( ^ 7 - 1 ) 1

8 - j - ^ y - IS unde f ined

C h e c k n = 6

LS R S

3 ( 6 + 1)1 126

( 6 ^ 1 ) !

3 (7 ! )

5!

3 - ( 7 - 6 - 5 ! )

5!

3 - 7 - 6

126

The re is o n e so lu t ion , n = 6.

F o u n d a t i o n s o f M a t h e m a t i c s 12 S o l y t i o n s M a n u a l 4 -7

Page 8: Counting methods solutions

L • r p i e s u i il t i l l ni

I a / (, L 4

I

1 - 8 / h H 1

L 8 A? 20

12. Ihcu: .Ko '»nht more p layers left to o rgan ize so

It (OH- c>ifih! i r iore spo ts left in the bat t ing order . Let

mber of pe rmu ta t i ons :

3 2 1

3 - 2 - 1

L - :VAb 120

L = 40 320 The re are 4 0 320 poss ib le bat t ing o rders .

13. The re are 7 poss ib le dig i ts to use and there are 7

dig i ts in each ser ia l number . Let L rep resen t the

n u m b e r of pe rmuta t ions :

1 = 7 - 6 - 5 - 4 - 3 - 2 - 1

1 = 7!

The re a re 7! poss ib le ser ia l n u m b e r s . Th is m a k e s sense

because , e .g . , the in teger in the factor ia l (7 in th is case)

for the n u m b e r of pe rmuta t i ons is norma l l y equa l to the

n u m b e r of spo ts in w h i c h there are th ings to p lace. The re

a re seven spo ts in the ser ia l n u m b e r so th is m e a n s that

the n u m b e r of pe rmuta t ions shou ld be 7! w h i c h ma tches

the answe r that w a s f o u n d .

14. The re are 5 cars to be a r ranged b e t w e e n the

eng ine and the c a b o o s e so there are 5 spo ts in wh i ch

the cars can be l ined up . Let L rep resen t the n u m b e r

of pe rmuta t ions :

1 = 5 4 3 2 1

1 = 5!

1 = 5 4 - 3 2 1

1 = 20 6

1 = 120

The re are 120 w a y s for the cars to be a r ranged

be tween the eng ine and the c a b o o s e .

15. The re w o u l d be 7 c h u c k w a g o n s beh ind Brant 's so

there are 7 spo ts w h e r e the o ther dnve rs cou ld f in ish .

Let 1 represen t the n u m b e r of pe rmu ta t i ons :

l = 7 - 6 - 5 - 4 - 3 - 2 - 1

1 = 7!

l = 7 - 6 - 5 - 4 - 3 - 2 - 1

1 = 42 • 20 6

1 = 42 - 120

1 = 5040

If Brant 's w a g o n w ins , there are 5040 d i f ferent o rders

in w h i c h the e ight c h u c k w a g o n s can f in ish .

16. a) e .g. . Y K O N U , Y U K N O , Y K N O U b) The re are f ive let ters so the re a re f ive spo ts to put the

let ters. Let 1 represen t the n u m b e r of pe rmuta t ions :

1 = 5 - 4 3 2 1

1 = 5!

The re are 5! poss ib le pe rmuta t ions . Th is m a k e s

sense because e.g. . t he in teger in the fac toha l (5 in

th is case) for the n u m b e r of pe rmuta t ions is normal ly

equa l to the n u m b e r of spo ts in w h i c h there are th ings

to p lace. The re a re f ive spo ts to p lace the let ters so

th is m e a n s that the n u m b e r of pe rmuta t i ons shou ld be

5! wh i ch ma tches the a n s w e r that w a s f o u n d .

17. a) e .g . . Us ing tna l and error . I have the fo l lowing

ca lcu la t ions:

1 ! = 1,2^ = 2 ; 2 ! = 2 , 2" = 4 ;

3! = 6. 2 ' = 8; 4 ! = 24 . 2'' = 16

I not ice that for n = 4 , nl is g rea te r than 2". Th is

con t inues for n > 4 because 2** wi l l keep get t ing

mul t ip l ied by 2. wh i le 4 ! wi l l keep get t ing mul t ip l ied by

n u m b e r s g rea te r t han 2 to ob ta in the h igher fac tona ls .

b) e .g . . Us ing w h a t I have in a ) , I k n o w that for n < 4,

nl IS not g rea te r t han 2". T h e ca lcu la t ions for t hese

va lues of n a re s h o w n in a ) . T h u s for n = { 1 , 2 . 3} . nl is

less t han 2" .

18. e .g. , First, f igure ou t how m a n y w a y s D a d e n e a n d

Arno ld can be p laced next to e a c h o ther in the l ine.

Th in cnn ho f ound us ing a t i b l o

A r n o l d i

2

3

4

D a r l o n c

1

6

F rom the tab le I can see that there are 18 d i f ferent

w a y s for D a d e n e and Arno ld to be p laced next to

each o ther in the l ine. For every o n e of t hose

18 w a y s , there a re 8 o ther dance rs to be p laced in

8 d i f fe rent spo ts in the l ine. Let 1 represen t the

n u m b e r of pe rmuta t ions :

6 5 4 3 2

- 4

6)

3 - 2

1)

1)

1 - 1-3(8 - 7

I 18(8!)

1 18(8 7 6 5

L • 18(8 • 42 20

I, = 18(336 • 120)

1 - 13(40 320 )

/ - / 2 5 760

The re a re 725 7 6 0 poss ib le a r r a n g e m e n t s of the

dance rs for the R e d River J ig .

4-8 C h a p t e r 4: C o u n t i n g Methods

Page 9: Counting methods solutions

L e s s o n 4 . 3 : P e r m u t a t i o n s W h e n A l l O b j e c t s

A r e D i s t i n g u i s h a b l e , p a g e 2 5 5

i a , P 5!

^ ^ ( 5 ^ 2 ) !

5 !

5 ^

31

5 4 3!

3!

, 1 ^ - 2 0

8!

)!

8 !

2!

c)

1 0 ^

10!

5!

, 1.) / •

P = 1 0 - 9 - 8 - 7 - 6

^Q.̂ g 3 b 2 ! 0

9!

° ( 9 ^ 0 ) 1

p . 9 1 ^ ° 9!

7!

( 7 ^ 7 ) 1

P . I ! ^ ^ 0 !

, P , = 7!

^P^ = 7 - 6 - 5 - 4 - 3 - 2 - 1

, P , = 5040

15!

P = 15 5 ^Q,

( 1 5 - 5 ) !

15!

1 5 - 1 4 - 1 3 - 1 2 - 1 1 - 1 0 !

10!

^ ^ P g = 1 5 - 1 4 - 1 3 - 1 2 - 1 1

^ g P g - 3 6 0 3 6 0

2 ;/t <- i:

• Pt-rn i i i t i i f ic»r i

' J

i ^ ; 11}

' 12

P r e s i d e n t ^V ice P r e s i d e n t "

K,4j i

K.i tr i f ia

Knt r r vl

,lf">r

N e l / l f

_ N. i / i r

M o t u i m a d

M(>\um\ai:y

Mt.har f idd

N j / i i

Katrsn.'^

J t .

hat i i r t ; ,

_ Jess

b) „ p - ^

4 !

It a p res ident and v ice-

(4^2)1

4 !

2 !

4 ^ 3 ^

2!

, P , - 4 . 3

, P , = 1 2

T h e fo rmula for „Pr g ives an answe r of 12. Th is

ma tches my resul ts f r om part a)

3. a) ' ^ {n-r)l

P. = 6!

( 6 ^ 4 ) !

P h f. 4 3 2!

, P , 6 5 4 - 3

J'] 360

There are 360 diOerent w a y s the choco la te bars can

be d is t r ibu ted.

b ) P = r ^

« ^ ( 6 ^ 1 ) !

6!

5 !

6 - 5 !

5 !

T h e choco la te bars can be d is t r ibuted in 6 d i f ferent w a y s .

p =

F o u n d a t i o n s of Ma themat ics 12 S o l u t i o n s Manual 4-9

Page 10: Counting methods solutions

4 . loFs is larger, e .g . , I k n o w th is by look ing at the

fo rmu la for „Pr. T h e numera to r is the s a m e for both

va lues s ince n is the s a m e . T h e d e n o m i n a t o r wi l l be

smal le r for the f irst va lue s ince it has a g rea te r r. W h e n

you d iv ide a numera to r by t w o d i f ferent denom ina to r s ,

the f inal va lue is g rea te r for the o n e w i th the smal le r

denomina to r . B a s e d o n th is . I k n o w that WPB has the

larger va lue s ince its e x p a n s i o n has the smal le r

denomina to r .

9 IJ ci . As^-unimg that any o f t h e 10 d ig i ts can be put

in any i,\ tbp 'o rema in ing spo ts for the S I N s , let S

fct.ff.'M-(it t in- n u m b e r of soc ia l i nsu rance n u m b e r s :

S - 10 10 HJ !(i 10 1(1 10 10

- K l '

S 1f'(J DUO 000

ri»M-f. . i ro 100 0 0 0 000 d i f ferent S INs that can be

r(;fji.'.t';r<!<l in cMch of t hese g roups of p rov inces a n d

lerri ! f)nf); '

5. , / '

J'

P

9 ]

6!

fd

/ ' L 0 /

,P 'M\

The re are 504 d i f ferent w a y s the pos i t ions can be f i l led,

M.O 4) .

10. a) } '

P « - 11 !

1 5 ^ =

1 5 - 1 4 - 1 3 - 1 2 - 1 1 t

11!

^gP^ = 1 5 - 1 4 - 1 3 - 1 2

, , P , - 3 2 7 6 0

The re a re 32 760 poss ib le execu t i ve commi t t ees .

7. 3P3 8!

^ ( 8 - 8 ) 1

8!

^ 0 !

P 3 '

1

P tJ

P H 7 b

, P, - 40 520

There fo re , 4 0 320 d i f ferent s igna ls cou ld be c rea ted .

' ( 5 0 0 0 - 3 ) !

p ^ 5 0 0 0 ! 5000 3 4 g g 7 ,

5000^3 =

5 0 0 0 - 4 9 9 9 - 4 9 9 8 - 4 9 9 7 !

4 9 9 7 !

5 0 0 0 - 4 9 9 9 - 4 9 9 8

5Qj,j,P3 = 124 925 010 000

The re are abou t 124 9 2 5 010 000 d i f ferent w a y s the

t ickets can be d r a w n .

1 1 / f)H

12 '

/ •

12 11 10 q 7!

/ I

12 n Ui 0 f-'

0504(1

The re are 95 040 w a y s the coach can se lec t the

s tar t ing f ive p layers .

b l A

P^

( 1 1 ^ 4 ) 1

11!

7!

1 1 - 1 0 - 9 - 8 - 7 !

7!

„ F ^ = 1 T 1 0 - 9 - 8

, , P , - 7 9 2 0

T h e r e a re 7 9 2 0 w a y s the coach can se lec t the

s tar t ing f ive p layers , if the ta l lest s tuden t mus t star t at

the cent re pos i t ion .

p . 1 ^ 10^3 7,

p ^ 1 0 - 9 - 8 - 7 !

7!

^ j , P 3 = 1 0 - 9 - 8

, „ P 3 = 7 2 0

Mul t ip ly by 2, s ince S a n d y and Na tasha can p lay the

guard pos i t ions in e i ther order . (720) (2 ) = 1440

The re a re 1440 w a y s in w h i c h the c o a c h can se lec t

the star t ing f ive p layers , if S a n d y a n d Na tasha mus t

p lay the two guard pos i t ions.

1 1 . a ) n > 0 a n d

n - 1 > 0

n> 1

The re fo re , the express ion is de f ined for n > 1 ,

w h e r e n e I.

b ) n + 2 > 0

f i > - 2

The re fo re , the express ion is de f ined for n > - 2 ,

w h e r e n e I,

4-10 C h a p t e r 4 I o u n t i n g M e t h o d s

Page 11: Counting methods solutions

c ) ri + 1 > 0 A N D n >0

n> 1

There fo re , the exp ress ion is de f ined fc

w h e r e n e L

d) n + 5 > 0 A N D n + 3 > 0

n > - 5 n > - 3

The re fo re , the exp ress ion is de f ined for n > ^ 3 ,

w h e r e n e I.

12 . a) ^,P,

6 ^

6!

6 ^ =

( 6 ^ 4 ) 1

6 !

2!

6 - 5 - 4 - 3 - 2 !

2!

6 - 5 - 4 - 3

360

T h e r e are 360 w a y s to d r a w the four marb les if you do

not rep lace the marb le each t ime.

b | Let L represent the n u m b e r of w a y s :

L = 6 • 6 - 6 - 6

L = 6'

L = 1296

T h e r e are 1296 w a y s to d raw the four marb les if you

rep lace the marb le each t ime.

c ) e .g. , Y e s ; if you rep lace the marb le , there are more

possib i l i t ies for the next d raw.

13. a)

2 0 - 1 9 - 1 8 - 1 7 - 1 6 - 1 5 !

15!

2„P5 = 2 0 - 1 9 - 1 8 - 1 7 - 1 6

20 Pg = 1 8 6 0 4 8 0

The re are 1 860 4 8 0 di f ferent w a y s to awa rd the

scho la rsh ips .

b) Let L represen t the n u m b e r of w a y s :

1 = 20 - 20 - 20 - 20 - 20

L = 20^

1 = 3 200 000

The re a re 3 200 0 0 0 d i f ferent w a y s to awa rd the

scho la rsh ips .

14 . a ) ^„P, 10!

1 0 ^

10^4 =

( 1 0 - 4 ) !

10!

6!

1 0 - 9 - 8 - 7 - 6 !

6 !

^qP^ = 1 0 - 9 - 8 - 7

^pP^ = 5 0 4 0

b) Sub t rac t the total poss ib le n u m b e r s by the a n s w e r

to part a ) .

104 = 10 000

10 000 - 5040 - 4960

The re a re 4 9 6 0 d i f ferent phone n u m b e r s .

15 u) • I eed to so lve . ^ = 20 ( n - 2 ) !

fi r ^tiO 1 1 ^ 2 > 0

r i > 2

nl There fo re ,

( n ^ 2 ) !

{n){n^i):n - ' j p ; , h h ) (2)(1

"i'^ \ ' ] ( ' ' ' ; ( t )

{ „ ) ( „ :

20 is de f ined for n > 2. w h e r e n e I.

T- = 20

20

^ = 20 (11^2) !

( n ) ( n ^ l ) = 20

0 ^ - 0 = 20

n " ^ f i ^ 2 0 = 0

( n + 4 ) ( n - 5 ) = 0

/? > 4 0 or n - 5 = 0

n -4 n = 5

T h e root n = -4 is not a so lu t ion to n > 2

C h e c k f l = 5 LS RS

5P2 20

5!

( 5 ^ 2 ) 1

5!

3!

5 - 4 - 3 !

3!

5 - 4

20

The re is one so lu t ion , n = = 5.

b) 1 need to so 'vo {n t

in 1 1

1'

2)1

n - f 1 > 0 A N D n '\-Z -? 0

n>-1 11 1 - 0

n > 1

There fo re ,

n e I.

( n + 1 ^ 2 ) ! 72 IS de f ined for n > 1 , w h e r e

T h e r e are 5040 d i f ferent phone numbers poss ib le .

F o u n d a t i o n s of Mathemati u t ions Manual 4 t <

Page 12: Counting methods solutions

: . . I - >)<

(r, + l ) !

C h e c k f = 2

72

72

72

= 72

(11^1).

( r i + 1 | ( / / l ( » 1 i | u - ••') t . J ) i 2 | i l )

2 ) " V ' ) ( 2 | ( 1 )

( i i + l ) ( n ) = 72

+ n = 72

n ^ + n - 7 2 = 0

(o + 9 ) ( f i - - 8 ) = 0

n + 9 = 0 o r f i - ^ 8 = 0

n = - 9 f l = 8

T h e root n = 9 is not a so lu t ion to n > 1.

Check n = 8

LS RS

8 +1P2 72

9P2

(9 2)1

9!

7!

9 - 8 - 7 !

JI

9 - 8

72 The re is o n e so lu t ion , n = 8.

1 e. a l T h e equa t i on I need to so lve = 30 .

^ 0 - r)l

6 - r > 0

r < 6

There fo re . = 30 is de f ined for 0 < r < 6, w h e r e ' ( 6 - - f ) l

re I.

'.e «

6 J ^ 4 3 2 1

16 r i !

720

M

30

= 30

( 6 ^ r ) . = I 2 0

30

( 6 - f ) ! = 24

= 4

r 2

LS RS

6P2 30

6!

( 6 ^ 2 ) !

6!

4 !

6 - 5 - 4 !

4 !

6 - 5

30 The re is o n e so lu t ion , r = 2.

b ) I h<- ....luation I need to so lve is 2

7 r 0

7! 420

Th<.i.-f.,rf; 2

w h e r e r e l .

7! 420 IS de f ined f o rO < r < 7.

2 -if

71

>'/ ,n

7 6 - 5 - 4 3 2 1

, 1 !

5040

( 7 ^ r r

( 7 ^ f ) i :

420

210

210

210

5040

210

( 7 - f ) ! = 24

7 r - 4

r 3

Check r = 3

LS R S

2(^P^ 4 2 0

( 7 - 3 )

7 - 6 - 5 - 4 !

4 !

2 ( 7 - 6 - 5 )

2 ( 2 1 0 )

4 2 0

The re is one so lu t ion , r = 3.

4-12 C h a p t e r 4 : C o u n t i n g M e t h o d s

Page 13: Counting methods solutions

1? I : RS

nfn nPn ^ 1

nl f l !

nl n!

0 ! [ f l + 1

nl n!

1 1! n! nl

1

n! LS = R S

18. a) e .g. , The fo rmu las for both „P„ and r,Pr have a

numera to r of nl. However , the fo rmu la for „ P „ has a

denom ina to r of 1 and the fo rmu la for „Pr has a

denomina to r of ( o ^ r ) L

b ) e .g . , A g roup of f r iends each o rder a d i f ferent

f lavour of ice c r e a m f rom a shop wi th 12 f lavours .

H o w m a n y possib i l i t ies are there if the g roup is 12

peop le? If the g roup is 7 peop le?

19. a) n = 52 and r = 5

P ^ 52 !

' ( 5 2 ^ 5 ) !

5 ^ 52 5

^.^:,^l: .50.,: '*.9,:48-47!

4 7 !

52P5 = 5 2 - 5 T 5 0 - 4 9 - 4 8

ggPg^ 3 1 1 8 7 5 2 0 0

The re a re 311 875 200 poss ib le a r rangemen ts ,

b) n = 26 and r = 5

26 !

( 2 6 ^ 5 ) 1

2 6 !

2« ' 2 1 !

As = 2 6 - 2 5 - 2 4 - 2 3 - 2 2 - 2 1 !

2 1 !

^ePg = 2 6 - 2 5 - 2 4 - 2 3 - 2 2

26P5 = 7 8 9 3 6 0 0

L ike l ihood = 7 893 600

•100% 311 875 200

L ike l ihood = 0 .025. . . -100%

L ike l ihood = 2 . 5 3 1 . . . %

There fo re , there is abou t a 2 . 5 3 % chance that an

a r rangemen t con ta ins b lack cards only.

1 -•

p - i ^ ' - : 11 l u y

P \ ' r U l l

U K e l , h o o d = J ^ ^ . . . 1 0 0 % 3 1 1 8 7 5 2 0 0

L ike l ihood = 0 , 0 0 0 , , . - 1 0 0 %

L ike l ihood = 0 . 0 4 9 . . . %

There fo re , there is abou t a 0 . 0 5 % chance that an

a r rangemen t conta ins h o n d ^ only.

20 . e .g. . „ . , P , ^ ^ /

n - 1 - n

^ n - o - - 1 - n - ^ 2 . ( f f ; 1 -11

= n{n)

= n^

2 1 . e .g. , „ P . , =

(7 - 157

nl

(n7 I j i

nl ( n - r - l ) ! n-r

{n^rjnl

= ( r , ^ r ) „ P

M a t h i n A c t i o n , p a g e 2 5 7

a) e.g. , Janua ry 5, Apr i l 23 , Ju ly 24 , and Oc tobe r 15 w o u l d be 5, 113, 2 0 5 , and 2 8 8 .

b) 365 • 365 • 365 • 365 = 17 748 900 630

c) i) = 0.983.. . or about 9 8 . 4 % 365

i i) 1 ^ ^ ^ = 0.016,. , or about 1.6% 365

F o u n d a t i o n s o f M a t h e m a t i c s 12 S o l u t i o n s M a n u a l 4^13

Page 14: Counting methods solutions

d ) e .g . : i | ^ = 0 J 6 6 . . . or 9 6 . 7 % 30

i i ) 1 ^ ^ = 0.033.. . or 3 .3% ' 30

e) For e x a m p l e , they w e r e c lose but not the s a m e .

M i d - C h a p t e r R e v i e w , p a g e 2 5 9

1 . T h e n u m b e r of subs to c h o o s e f r o m , S, is based on

the n u m b e r of buns (b). the n u m b e r of co ld cu ts (cc) ,

the n u m b e r of c h e e s e s (c) , the n u m b e r of topp ings (f) ,

and the n u m b e r of sauces (s) :

S = (# of b) • (# of cc) - (# of c) • (# of t) - (# of s)

S = 3 - 5 • 3 - 12 - 3

S = 1620 So , Mar io can c h o o s e f r o m 1620 d i f ferent subs .

2 «; (J V o u < ;ii< lis* on»- ot K W and C 1r)f the f irst

'Ji.ir.-K.tr-i o i l . ; n j VC ,j(>perooM lottr j rs lor the

s.'-cond .md third oh.mjcto 'c ; , nod one i d tho

yj] u() f« ' to. iso loUfMs Ol o b lank for t f io lost charac ter .

l u o m this I g.; l I t io l o l l owmg calc utat ion

ft o\ . lot ion f .omos - :< 2() 26 ?f

li i-l . tdt ion i .nmoh 04 / u b

I ho to fo ro , .station n a m e s are poissible.

3. t vent A Rol l ing a 2 O R h v e n l B- Rol l ing 10

1 1 i 2_ 3 4 5 6~

2 ') %j

4 5^ 6 7

[ 2 ' 3 6 7 ' 8

i 3 4 b " e 7^ 8 9

r 4 ^ ' " h i 7 8 " 9 "10

[ 5 6 f ^ 8 9 ' J O ^ ' 11 "

7 " 8 10^ U ~ 12 "

F r o m the tab le a b o v e , the re is o n e w a y to roll a s u m

o l I w i lh a pair f)f d i r e a n d th ree w a y s to roll a s u m of

10 wi th a pa i ! of d ice .

fi(A ' >B)- niA) < 0 ( 8 )

n(A . ' 8 ) ' 1 + 3

niA ' B) - 4

There a rc 4 w a y s that a s u m of 2 or a s u m of 10 can

be rol led w i th a pair of d ice .

4 , 1 0 - 9 - 8 = 720

The re are 720 w a y s to se lec t 3 ho rses to c o m e f irst,

s e c o n d , th i rd in a 10-horse race.

5. a) 8!

8!

b ) 6! • 3!

6! • 3!

6! • 3!

8 - 7 - 6 - 5 - 4 - 3 - 2 - 1

40 320

(6 • 5 • 4 • 3 • 2 • 1) • (3 • 2

( 7 2 0 ) • ( 6 )

4 3 2 0

1)

^ = 9 - 8 - 7 - 1

d )

9!

6!

9!

6!

9 !

6!

91

6!

9!_

6!

I l l

5

10

'E'

11 5-

l i

5

10

5-

10

5-

f: / h ) 4 3 2 1

fi f- 4 3 2 1

r. f. 4 3 2 1 = b il {

(i ') 4 3 2 1

504

10 i f ) 8 / fi f) 4 3 2 I I

U (8 / b 5 4 3 2 11

1 ^ 9 5 8 !

3 7 a

b / 6

8 !

4 3 z

4 3 2

^ 1 0

^ 5

2 - 9

18

9 1

6. The re are n ine p layers on the t e a m so the re are 9

d i f ferent pos i t ions. Let L represent the n u m b e r of

(>ormutations:

I - 9 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1

L -

L 9 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1

£ - / 2 - 42 • 20 • 6

L - 362 880

The re are 362 880 d i f fe rent l ineups tha t can be

f o rmed by n ine p layers on a sof tbal l t e a m .

7. a) ( f i + 5 ) ( n + 4 ) !

= (f, + 5 ) [ ( r i + 4 ) ( r ) + 3 ) ( r i + 2 ) . . . ( 3 ) ( 2 ) { l f

= (n + 5 ) ( r , + 4 ) { i i + 3 ) ( n + 2 ) . . . ( 3 ) ( 2 ) ( l )

= ( n + 5) i

( n i 4 ) ( i i + 3 ) ( n + 2 ) ( o - M ) ( i i ) . . . ( 3 ) ( 2 ) ( l

- ~ , n . 2 ) ( n ^ ( n f i 3 ) m

= ( n + 4 ) ( n + 3 )

n' r 4n I 3n r 1 2

= n" + 7 n + 12

4 -14 C h a p t e r 4 : C o u n t i n g M e t h o d s

Page 15: Counting methods solutions

1 (.

d )

I nl

{n + 2}i

nl

{n + 2]i

nl

nl

I ' j ' u ' / A ^ - j ' - > v 2 ) ( i )

2 ) ( r , + l )

= + n + 2n + 2

= i i " + 3 o + 2

8. a) = 72

( r i ) { / i ^ l ) ( i i - 2 ) ( i i - 3 ) . . . | a n 2 H l |

( n ^ 2 ; ( 2 ; ( r , l 2 ) f i :

( i i ) ( r , ^ l ) ( r , ^ 2 ) ! 72

n + 8 = 0 o r / i - 9 = 0

n = - 8 f l = 9

Check n = 8 I s RS

( Bj- 72

t 8 } ! r - , is unde f ined f 10)!

Check 17 = 9

LS R S

9! 72

( 9 ^ 2 ) !

9 !

7!

9 - 8 - 7 !

7!

9 8

72

I

111

;.< , -J - I -

L'c

1-4 1,1

1-4

{ Oj.

Check A? = 7

" '\\j> i ) h ' ' - -1) ( ' d ( 2 i i : i j

( f i - l ) ( n ^ 2 ) = 30

n ' - 2 f i ^ n + 2 = 30

n ^ - 3 / i + 2 = 30

f i ^ - 3 f i - 2 8 = 0

( f i + 4 ) { f i ^ 7 ) = 0

/. f _ 0

i R S

unde f ined

30

LS RS

( 7 - 1 ) ! 30

( 7 - 3 ) !

6!

4 !

6 - 5 - 4 I

4 !

6 5

30

The re is o n e so lu t ion , n = 7.

i . a , P . 9 !

9 ! 9 ^ 2 7!

9 - 8 - 7 !

7 !

, P , = 9 - 8

A = 72

4 !

1 2 - 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 !

4 !

^.Pg = 1 2 - 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5

^^Pg = 1 9 9 5 8 4 0 0

The re is one so lu t ion , n = 9.

4^15

Page 16: Counting methods solutions

12!

( 1 2 - 1 0 ) !

p . 1 2 !

« 2!

IV 11 I f ) iJ a 7 6 0 4 .5 >'i

P !>' I 1 If) 9 p. / C, 0 1 i 12 10

^2P,o = 2 3 9 5 0 0 8 0 0

10. a) i: f. • 5 0 ANIJ / i 4 ('

I! f; _ I

rhs- »:i|jr*;'. lois I • fl«'fin(id lot n - 1 A f i e re n e I.

t.- ' / I 4 C' A N ! 1 / 1 2 0

/!_ -I /* 2

r i i f cxpt ;sMi-'!i I'. dufit ioO for n - w h e r e n e !.

r,; r» '1 - 0 A N [ ) tt 5 0

n > 4 n > 5

T h e exp ress ion is de f ined for n > 5, w h e r e n g I,

d : n + 2 > 0 A N D n s 0

f i > - 2

T h e exp ress ion is de f ined for n > 0, w h e r e ne L

b ) a : n > 0 A N D n ^ 2 > 0

n>2

T h e exp ress ion is de f ined for n > 2, w h e r e n g I.

b: r7 ---1 > 0 A N D n - 3 > 0

n > 1 n > 3

T h e exp ress ion is de f ined for n > 3. w h e r e n e I.

11. n = 20 and r = 6

20 !

( 2 0 - 6 ) !

p . 2 ^ 20 e 14!

2 0 ^ = 20 19 IB 17 16 15 14!

~ l ' 4 !

2oPg = 2 0 - 1 9 - 1 8 - 1 7 - 1 6 - 1 5

„,P ,̂ 2 7 9 0 7 2 0 0

Renn ie can load his C D p layer in 27 907 2 0 0 d i f ferent w a y s .

12. n = 14 and f = 2

14!

P - 13?

T h e n ; a i o 182 w a y s that M a n n y and 2 o ther p layers

(,;in line up to rece ive the c h a m p i o n s h i p t rophy .

13 . A. j t fH ' o g . T h e n u m b e r of w a y s to c h o o s e a

pr..'!>i!irnt . ir.d a v ice-pres iden t f r om a g r oup of f ive

5! s tuden ts is 20 . I cou ld a lso use the

F u n d a m e n t a l Coun t i ng Pnnc ip le b e c a u s e the re a re

f ive cho ices for p res ident and four cho ices rema in ing

for v ice-pres ident : 5 • 4 = 20 .

L e s s o n 4 . 4 : P e r m u t a t i o n s W h e n O b j e c t s A r e

I d e n t i c a l , p a g e 2 6 6

l . a )

b)

.'! 7 6 5 4 .3 2 1

3 !2 ! (3 2 1) l 2 1)

71 7 3 2J 4Ji

3197 " ( 3 2 I I

7!

l ' 2 l

7!

3 !2 !

8! _ f w 6y 4J 2 '

2 2 V :

7 4

420

2 ! 2 ! 2 !

8!

2 ! 2 ! 2 !

8!

- ^ 8 M i fs <

5040

c)

2 !2 !2 !

10! 10 9 8 7 6 5 4 3 2 J

4T3T2"! 1 3 2 1 3 2 1 2 1

10!

4 ! 3 ! 2 !

10!

10 9 7 4

: 12600

d)

4 ! 3 ! 2 !

12! 1 2 - 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1

2 ! 4 ! 5 !

12!

21415!

12!

2 ! 4 ! 5 !

2 - 1 - 4 - 3 - 2 - 1 - 5 - 4 - 3 - 2 - 1

= 1 2 - 1 1 - 1 0 - 9 - 7

83160

4 16 C h a p t e r 4 : C o u n t i n g M e t h o d s

Page 17: Counting methods solutions

— * • ' ie a r r a n g e m e n t of 6 f lags : r r angemen ts :

7 4-7-

•i r iu ic i j i ^ UU Gi i lo icnt s ignals that can be m a d e f r o m the 6 f lags hung in a ver t ical l ine,

3. Let C represent the n u m b e r of w a y s :

6!

3 L 3 !

C = 20

The re are 20 d i f ferent w a y s th ree co ins land as h e a d s and th ree co ins land as tai ls,

4 . Let R represent the n u m b e r of w a y s :

18! R

R =

1 0 ! 5 ! 3 !

1 8 - 1 7 - 1 6 - 1 5 - 1 4 - 1 3 - 1 2 - 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 !

1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 5 - 4 - 3 - 2 - 1 - 3 !

l? = 1 7 - 1 4 - 1 3 - 1 T 9 - 8

R 2 450 448

The re are 2 4 5 0 4 4 8 w a y s that this record cou ld have occur red

5. Let C represen t the n u m b e r of w a y s :

2 ! 3 ! 4 !

'? : 3 •' 1 1 V '

f" 0 ( {, !

C 1260

The re are 1260 w a y s that No rm can d is tnbu te 1 cook ie to each g randch i ld ,

6. a) Let A represent the n u m b e r of a r r angemen ts : A = 5!

/ \ = 5 4 • 3 2 1

A = 120

The re are 120 di f ferent a r rangemen ts that can be

m a d e us ing all the let ters.

b) Let A represent the n u m b e r of a r rangemen ts :

2 !

^ 7 6 - 5 - 4 - 3 - 2 !

A ^ 7 6 - 5 4 - 3

A 2520

1 here a re 2 5 2 0 d i f ferent a r rangemen ts that can be m a d e us ing all the let ters.

8 - 7 - 6 - 5 - 4 - 3 - 2 !

/• ., ' i f

inu.f i f , ' , ,,i , . li men ts that can be

d ; i • 7i ' • • [ ) ! ' • <>nr m.• ..iifnU.-- • „ . r rangements :

2 -1 -3 2 1

A 3 9 9 1 6 8 0 0

The re are 39 916 800 d i f ferent a r r a n g e m e n t s that can be m a d e us ing all the let ters.

7. a) Let A represent the n u m b e r of a r r angemen ts :

5 !5 !5 !

, 11 n f 1 1 "f •. f. ^ ^ 'I . 2

-% .1 - • 4 '. V : c . ll o T

14 r . ! ! » / C

A 7 5 6 7 5 6

The re a re 756 756 d i f ferent w a y s he can a r range the books on the shelf . h i ^'.r.-iJi. l lu sets of 5 together .

A - ' 2 \

A = B

rays he can a r range the books ,

8. e g, , A sh ish kabob skewe r has 4 p ieces of beef,

2 p ieces of g reen pepper , and 1 p iece each of

m u s h r o o m and on ion . How m a n y d i f ferent

comb ina t i ons a re poss ib le?

R

R

9. a) Let R represent the n u m b e r of routes :

9f

5'4"!

9 HJ 6 - 5 4 3• 2• 1

5 4 3 2 '̂i 4 3 2 [

R - 7 6 4 3

R 126

The re are 126 routes t ravel l ing f r om point A to point B if you t ravel on ly sou th or east .

4-17

Page 18: Counting methods solutions

b) Let R rep resen t the n u m b e r of rou tes :

13!

7 !6 !

1 i 1 11 I f) u .". . (•) u 4 ; / 1 R ~ - - - - -

I f, 4 2 1 n 0 1 A ? 1 L i 1 ! 4

H I / ' l b

!h»,-ic. ;i ir- i r i r . l ou tes t ravel l ing f r o m point A to

|ic)ini H ll '/'HI i rave l on ly sou th or east .

10. Let R rep resen t the n u m b e r of routes :

„ 13 !

8 !5 !

I ' l IV 1 ' 1(8 u .3 / h 'J 4 :̂ 2 1

f, { \] '-. 4 / T ' 1 5 4 3 / 1

/< !:•• 11 t«

R = 1287

The re are 1287 routes t ravel l ing f r o m the house of

Jess to the house of her f r iend if she t rave ls on ly

nor th or wes t .

11 - a) o.g I dl .vw th« fo l lowing d i ag ram to show the

n u m b e r of w a y s to get to each in tersect ion

B , :^ . : : ;HJ.. !s: .

e4

^ 4--

1 ; t !i

T h e s u m of t he n u m b e r s on the top r ight and bo t tom

left co rners of e a c h b lock is equa l to t he n u m b e r of

routes to the top left co rner of each b lock. The re are

560 d i f ferent rou tes f r o m A to B. if you t rave l on ly

nor th or wes t .

b) I need to go nor th tw ice and wes t four t imes , for a

tota l of 6 m o v e s , to t rave l the f irst 2 by 4 b lock of the

route. I need to g o nor th once and w e s t o n c e , for a

tota l of 2 m o v e s , to t ravel the next 1 by 1 b lock of the

route. I need to g o nor th tw ice and wes t tw ice , for a

tota l of 4 m o v e s , to t rave l the last 2 by 2 b lock of the

route.

Let R represen t the n u m b e r of routes :

R 61 „ 4 !

4 ' 2 ' 2 0 "

4 5 V I 2 I 2 1 2 1 '

R -15 | 2 i i l ) !

P - 180

The re are 180 d i f ferent rou tes f r o m A to B. if you

t ravel on ly nor th or wes t .

12. Let P represen t the n u m b e r of pe rmuta t ions :

r 5 '3 i 8 ' V. r. 4 i ^ 1

^ r. 4 3 2 1 .3 2

p -i 2

P - 5 6

The re a re 56 d i f ferent pe rmuta t i ons of a n s w e r s that

the teache r can c rea te .

13. a) Let P rep resen t the n u m b e r of pe rmuta t ions : p = 7l

P = 7 - 6 - 5 - 4 - 3 - 2 - 1

P = 5040

The re a re 5040 d i f ferent a r r a n g e m e n t s poss ib le for

the new to tem po le .

b) Let P represen t the n u m b e r of pe rmuta t ions :

7!

2 !2 I

/ R .h • 4 3_ ^ 1

2 1 . ]

P - / 6 •

P 1260

f here are i2bO d i f te ien t a r r angemen ts poss ib le for

the new to tem po le .

14. e .g. , nPn wi l l be too h igh ; it g ives the n u m b e r of

a r r angemen ts of all n i tems, but s o m e of the

a r rangemen ts wil l be ident ica l because of the

a ident ica l i tems in the g roup .

15. a) e .g. , I a m a s s u m i n g that the co ins of the s a m e

denomina t i on a re cons ide red ident ical ob jec ts . Let A represent the n u m b e r of a r rangemen ts :

9!

P

P

4 ! 3 ! 2 !

9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1

4 - 3 - 2 - 3 - 2 - 2

A 1260

The re are 1260 w a y s the 9 co ins can be a r ranged in a

l ine.

i - i 3 C h a p t e r 4 : C o u n t i n g Methods

Page 19: Counting methods solutions

11 ' i g that the co ins of the s a m e

flsidered ident ica l ob jec ts . Let A if o f a r r a n g e m e n t s :

1 ' •.

A = 35

The re are 35 w a y s ns can be a r ranged in a l ine.

1S. T h e n u m b e r of w a y s to d iv ide the 8 rema in ing

f reez ies a m o n g s t the o ther 8 ch i ld ren is w h a t I want .

Let P represent the n u m b e r of pe rmuta t ions :

215!

^ 2 - 1 - 5 - 4 - 3 - 2 - 1

F = 7 - 6 - 4

P 168

The re are 168 w a y s to d is t r ibute the 10 f reez ies

1 / , t; ifW mber of pe rmuta t ions :

p ^ y f ' : •<

P 560

The re are 560 pe rmuta t ions poss ib le if you must star t w i th A and end w i th C.

b) e g. , If you start by put t ing the I's in the f irst and

second pos i t ions, and then in the second and th i rd

pos i t ions, and so on and so for th up unti l you put t h e m in

the ninth and tenth pos i t ions , there are 9 d i f ferent

a r rangemen ts of the I's just on thei r o w n . T h e n u m b e r of

d i f ferent a r rangemen ts of all the let ters in e a c h of t hese

9 a r rangemen ts is the n u m b e r of w a y s to o rgan ize the

other 8 let ters. S ince the o ther 8 let ters a re a lways the

s a m e , the n u m b e r of pe rmuta t ions of the let ters for each

a r rangemen t of the I's is the s a m e . Let P represen t the

number of pe rmuta t ions :

P 9 I 313!

P = 9 • 7 - 6 - 6 - 4 - 3 - 2 - 1

3 - 2 - 1 - 3 - 2 - 1

P 9 ( 8 7 5 - 4 )

P 9 (1120)

P 10080

The re are 10 080 permuta t ions poss ib le if the two I's mus t be together .

18. e .g . , B A N D I T S has 7 d i f ferent let ters, so the

n u m b e r of pe rmuta t ions is 7! B A N A N A S a lso has 7

let ters, but there are 3 A s and 2 Ns so you must

d iv ide 7! by 3! - 2 ! = 12,

19. T h e shor tes t poss ib le route con ta ins 3 m o v e s

d iagona l l y to tho r ight, 3 m o v e s d iagona l ly to the left,

a n d 3 m o v e s d o w n Let R represent the n u m b e r of

routes :

f: U U.'.f

U .'• ,' t . •. i:

3 ! .

P :. i ; / 1̂

1 •» ii ' d».''.u j . ri the top rear ver tex of the

• . t". Ml. '< >.-j •'. '••'•'ll of the cube ,

20. a) e .g. , Th is is the s a m e as a r rang ing the

20 p layers t hen d iv id ing by 2 ! ten t imes because the o rder of pa i rs d o e s not mat ter . Let T represen t the n u m b e r of pa i rs :

2 P

r = 2 ,375 . . , x10 ' ^

T h e r e a re abou t 2 .38 x 10^^ w a y s to ass ign 20

p layers to 10 doub le rooms .

b) e .g . , Th is is the s a m e as a r rang ing the 20 p layers

then d iv id ing by 4 ! f ive t imes because the o rder of

pai rs does not mat ter . Let T represent the n u m b e r of

pa i rs ;

- f

r = 3 . 0 5 5 . , . x l O "

The re are abou t 3.06 x 10^^ w a y s to ass ign 20

p layers to 5 guad rup le rooms

21. a) e .g. , I can m a k e a tab le to show all o f t h e a r r a n g e m e n t s that cou ld be m a d e . Pos i t ion 1 in the tab le be low is the le f tmost pos i t ion , and posi t ion 4 is the r igh tmost pos i t ion.

Pos i t ion

2

R

R

K

W

W

R

R

\N

W

w

Pos i t ion

3

' l ~.

W

w

R

Pos i t ion 4

W

R

R

w VV

R

R

W

W

R

R

"vv

w

w

w

R

W

R

w

w

ut ions Manual 4-19

Page 20: Counting methods solutions

From the tab le , I see that 14 d i f ferent a r r a n g e m e n t s

migh t be m a d e .

b) e .g . , F r o m the tab le a b o v e , 1 out of the

14 a r rangemen ts , f r o m left to right, w o u l d be red ,

wh i te , wh i te , red . The re fo re , there is a 1 in 14 c h a n c e

that the a r rangemen t , f r om left to right, w o u l d be red ,

wh i te , wh i te , red .

Apply ing Prob lem-So lY ing St ra teg ies , page 27©

A . 4 0 4 4 pa ths

b)

C a n n e d ' G o o d s I n u t s a n d

G o o d s V e g e t a b l e s

B n a n Rache l le 1 i:ili

B n a n 1 inh RachoHo

Rache l le Br ian ' l i n h

Rache l le Linh Hi

Linh R a c h f l i o B n a n

Linh Br ian j Rache l le

c ) S ince all 3 vo lun teers are be ing used to he lp

un load the veh ic les , there is only o n e w a y they can be

c h o s e n for th is j ob ,

d) Par t a ) a n d b) invo lve permuta t ions a n d part c)

invo lved comb ina t i ons . I k n o w because in par t a ) and

b) , the o rder in wh i ch the vo lun teers w e r e se lec ted for

the jobs ma t te red . In part c ) the o rder d id not s ince all

the vo lun tee rs w e r e be ing se lec ted to d o the s a m e

job .

2. e .g. , T h e ma in d i f fe rence is that for the permuta t ions ,

the o rder of the 4 ob jec ts mat te rs , a n d for the

comb ina t i ons , it does not. For the pe rmuta t i ons , you

cou ld have mul t ip le a r r a n g e m e n t s w i th the s a m e

ob jec ts s ince there is m o r e t han one w a y to o rder a

g roup of four d i f ferent ob jec ts . Th is is not poss ib le for

comb ina t i ons s ince you jus t need one a r r a n g e m e n t for

each g r oup of 4 , regard less of the order ,

3. Let C represen t the n u m b e r of d a n c e commi t t ees

poss ib le :

c - ; io The re are 210 w a y s that 4 of the m e m b e r s can be

c h o s e n to se rve on the d a n c e commi t t ee .

B. 2 (924) + 2 ( 2 5 0 8 ) + 2 ( 3 4 9 8 ) = 13 860 pa ths

C . Yes . The re a re 2 (3936 ) , or 7872 . pa ths tha t lead to

no m o n e y at a l l , but 17 904 pa ths that resul t in the

con tes tan t w inn ing s o m e t h i n g . T h e con tes tan t has a

bet ter chance of w inn ing some th ing than no th ing , so

it's a fair g a m e f r o m the con tes tan t ' s point of v iew.

L e s s o n 4 . 5 : E x p l o r i n g C o m b i n a t i o n s ,

p a g e 2 7 2

1. a) Let l/V represen t the number of w a y s :

W= 3!

W/= 3 2 1

W=6

There are 6 d i f ferent w a y s that B n a n , Rache l le , and

L inh can be c h o s e n for t hese j obs .

4. Let C represen t the n u m b e r of comb ina t i ons :

C = 12C3

C = 220

T h e r e are 2 2 0 w a y s 3 of the 12 dogs can be se lec ted

to appear .

L e s s o n 4 . 6 : C o m b i n a t i o n s , p a g e 2 8 0

1 -a)

F l a v o u r 1 F l a v o u r 2

vani l la s t rawber ry

vani l la choco la te

vani l la bu t te rsco tch

s t rawber ry vani l la

s t rawber ry choco la te

s t rawber ry bu t te rsco tch

choco la te vani l la

choco la te s t rawber ry

choco la te bu t te rsco tch

but tersco l vani l la

lu t terscotch s t rawber ry

' lu t terscotch hoco la te

4-20 C h a p t * ' » . -unt ing Methods

Page 21: Counting methods solutions

b)

I kfvom 1

•.Ml l.l! t

f l . i vcu f 2

• IV,. {.I.lf«.-

rKj t tcm. ot( h

l i ie huf t iUcI Ul l/vU-lldVOUi OUIllblhalluUS buUdUSe

each two- f lavour comb ina t i on can be wr i t ten in two

d i f ferent w a y s

2 « ;sent the n u m b e r of c o m m i t t e e s :

3. Let T rep resen t the n u m b e r of poss ib le t e a m s :

( , (11/

b ' I 1 1 . ' i:

i: •] i 2 1

*, 4 ;•- 2 I

J / 1 . c /

1 l i f .u - i!if H,^4 w a y . h peop le can be se lec ted f r o m a

y r u u p ot i z lo f o n n a dodge-ba l l t e a m .

4 . a) C = 5!

The re are 10 poss ib le commi t t ees .

) resent the n u m b e r of c o m m i t t e e s :

2 1 ( 5 ^ 2 ) !

2 «

L 0 2

C - 1 0 T h e r e are 10 poss ib le commi t t ees ,

c ) e .g. , My a n s w e r s for parts a ) and b) a re the s a m e .

Th is occur red because the s u m of 2 and 3 is 5.

' 3 ! ( 5 - 3 ) !

^ mil

C = l ± l i s " 312 1

c , 03 = 5 - 2

b) 9C3 9!

8 ! ( 9 - 8 ) !

9!

811!

9 8!

8!1

9

1

,.C, =

A =

A =

6!

4 ! ' h

6!

4 ! 2 !

6 - 5 - 4 !

4 ! 2 - 1

6^5

2 -1

e C , = 3 . 5

X , = 1 5

0 !10!

i o C o = 1

10!

01(10--0)1

10!

12!

61112- Oi!

12!

« 6 ! 6 !

C ^ 1 2 : 1 1 : 1 0 - 9 - 8 - 7 - 6 !

"̂2 6 ^ b 5 4 3 2 I 6 !

C ' ^ 2 - 1 l 1 0 - 9 - 8 - 7

" ' ' ^ " 6 - 5 - 4 - 3 - 2 - 1

, 2 C g = 2 - 1 1 - 5 - 3 - 2 .

, , C , = 9 2 4

8!

1 ! (8 -1 ) !

8 !

1!7!

8 - 7 !

1-7!

1

a = B

F o u n d a t i o n s o f Ma themat i ^ i l y f i o n s M a n y a l 4 -21

Page 22: Counting methods solutions

5. Let C represen t the n u m b e r of comb ina t i ons :

i I -

10'

I C

u"4<

1IJ U / l . l

f . ' f 0 ? 1

10 U H /

1 ? i

I [, .'. -J ^

210

: li«>re are 2 1 0 w a y s 6 p layers can be c h o s e n to star t

,1 vol leybal l g a m e f r o m a t e a m of 10.

6. Let C represen t the n u m b e r of comb ina t i ons :

C = 55C5

C =

c

55!

55!

5 ! -50 !

5 1 5 i 52 C1 5 0 !

5 i 2 2 fo-O!

55 04 52 :.J ',}

5 4 2. 2 1

c: - 1 • 27 (.3 13 1 /

C 3 478 761

The re are 3 4 7 8 761 d i f ferent comb ina t i ons of h ip -hop

songs you can d o w n l o a d for f ree .

7. Let H represen t the n u m b e r of hands :

^ = 5 2 ^ 8

H

H

H

52!

B ! ( 5 2 - 8 ) !

52 !

8 ' 44 !

5 2 - 5 T 5 0 - 4 9 - 4 8 - 4 7 - 4 6 - 4 5 - 4 4 !

B 7 h 5 4 3 T I 4 4 '

5 2 - 5 1 - 5 0 - 4 9 - 4 8 - 4 7 - 4 6 - 4 5

8 - 7 - 6 - 5 - 4 - 3 - 2 - 1

H = 1 3 - 1 7 - 1 0 - 7 - 4 7 - 4 5 - 2 3

W = 752 5 3 8 1 5 0

The re are 752 538 150 d i f ferent 8~card hands that

can be deal t .

b) Let L rep resen t the n u m b e r of d i f ferent l ineups,

n = 14 and r = 8 because Conn ie mus t be the p i tcher

of the s tar t ing l ineup.

L

= . .C „

14!

8f(l4-8)! 141

HIU!

14 L i 12 11 10 9 8!

o n ; S 4 2 I

11 'H \7 .1 1 0 - 9

0 i> 4 3 2 1

i:-. I I .5

3003

T h e r e are 3 0 0 3 w a y s that the coach can c h o o s e his

s tar t ing l ineup of 9 p layers , if Conn ie mus t be the

pi tcher.

9. a) Yes , I do ag ree .

e.g. ,

L =

LS RS

6C2

6! 6!

2 1 ( 6 ^ 2 ) ! 4 ! l 6 4 l i

6! 01

2! 4 !

0 f; i '

2 1 / " 1 ' 2 1

6 5

2 1

3 5

15 15

LS - K S

b) e .g. , S o m e o ther cases w i th the s a m e re la t ionsh ip

as par t a ) are aCi = gC?, eCo = eCe, a n d 12C7 = 12C5.

I not ice that if you have two comb ina t i ons w i th the

s a m e n, and the s u m of the 2s for t hose comb ina t i ons

is equa l to n, then the va lue of the comb ina t i ons wi l l

be the s a m e .

c) e.g. , n

n - r

8. a) T h e p rob lem invo lves comb ina t i ons e.g. ,

because it does not s tate that the o rder of the star t ing

l ine mat ters .

4-22 C h a p i unt ing Methods

Page 23: Counting methods solutions

10.

Let T represen t the Let S represen t the

n u m b e r of comb ina t i ons n u m b e r of comb ina t i ons

' • . ' .M= hers . for the s tuden ts ;

• I

8!

3 !5 !

8 / '• '

•• i

8 / C

sent the n u m c

S - 4

S 56

commi t t ees ;

; - 10

3

I l.t,tu are 560 g radua t ion c o m m i t t e e s that the

pr inc ipal has to choose f r o m .

' ' a i Let C represen t the n u m b e r of commi t t ees ;

c

10!

5 ! ( l 0 - 5 ) !

10!

5 !5 !

1 0 - 9 - 8 - 7 - 6

/ ' ,

C 252

The re are 252 commi t t ees that can be f o rmed if there are no cond i t ions , b)

Let W represent the

n u m b e r of comb ina t i ons

for the w o m e n ;

Let M represen t the n u m b e

o f comb ina t i ons for the mer

M = 4 !

M

M

21(4-^2) !

4 !

2 ! - 2 !

4 - 3 - 2 !

M

2 - 1 - 2 !

i l l 2-1

M = 2 - 3

6 M =

Let C represen t the n u m b e r of commi t t ees :

C=W-M

C = 20 6

C= 120

The re are 120 commi t t ees that can be f o r m e d if there mus t be exact ly 3 w o m e n .

c ) Let C represent the n u m b e r of commi t t ees :

6!

1 ! ( 6 -1 ) !

6!_

1!-5!

6 5!

1-5!

6

1

C = 6

The re are 6 commi t t ees that can be f o r m e d if t he re mus t be exact ly 4 m e n .

d ) Let C represent the n u m b e r of commi t t ees ;

c = . a

c

c =

c

c = -

c = 6!

c =

c =

c

5 1 ( 6 - 5 ) !

6!

5 ! - 1 !

6 5!

5!-1

6

1

C 6

The re a re 6 commi t t ees that can be f o r m e d if t he re can be no m e n .

e) e .g. , C a s e 1 : 3 m e n and 2 w o m e n

4 ! 6!

3 ! - 1 ! ' 2 ! - 4 !

60 C,

C a s e 2 : 4 m e n and 1 w o m a n

' ' ' ' 4 ! - 0 ! I I 5!

, q - , ^ = 1-6

4 C , - e q = 6

N u m b e r of commi t t ees = 60 + 6 N u m b e r of commi t t ees = 66

66 5 -person commi t t ees can be f o rmed if there mus t be at least 3 m e n .

F o u n d a t i o n s o f M a t h e m a t i c s =2 S o l u t i o n s M a n u a l 4-23

Page 24: Counting methods solutions

12 . e . g . Let 's say I w a n t to ass ign s tuden ts to the 0 ! 1!

r o o m wi th 5 beds f irsL Let A represent the n u m b e r of «l o H ^ ^ ^ j , " I i H o i ( l - ^0)«

w a y s to ass ign the 12 s tuden ts to the 5 beds : ' n ^'

5 ! M : ' .'dt 0 ^ 0 - ^ 1 ^ 0 - ^

12! C = 1 n = l /A 0 0

5 ! -7 !

I M I In ' I d ,C, =

' b A M

1!

1!

1L0 !

A-,> I I 2 2 4 ^C, = ;J C=1

N(»w H i c i f ,m-' 12 - s or 7 s tuden ts left to ass ign . Let 's ^

. i sMf jh s tuo ' j t ; ! ' . to 'hu r o o m wi th 4 beds n e x t Let B iCo, i C i = 1 , 1

-111 t l i r 1 IMI ll KM of w a y s to ass ign the ., ^ -^^ n ..... ...^AL^

7 s t H d e n 1 s h - i ! H ; 4 h r d s : ' "^ ^ ° 0 ! ( 2 ^ 0 ) ! ' ' " " " t i l - i ) !

c

J ' ; / - 4 H 1 ^ 2 J !

4 1 2 ' X = 1 ^ 2

41 3 2 i ,C, 2

2 I " 2 2 2 1 ( 2 - 2 ) 1

B - 35 2 2 2 ! -0 !

N o w there are 7 - 4 or 3 s tuden ts left to ass ign to the

room w i th 3 beds . S ince all of these s tuden ts wil l be A =

ass igned to the r o o m , there is on ly one comb ina t i on

for t h e m . Let C n o w represen t the n u m b e r of d i f ferent 2 M = '

ass ignmen ts : 2C0, 2C1, 2C2= 1 , 2, 1

C = 792 . 35 0 1 ( 3 ^ 0 ) ! ^"^^ ^ 1 ! ( 3 ^ l ) ! C = 27 720 01 31 T h e r e are 27 720 w a y s the 12 s tuden ts can be C = 3 = '

ass igned to t hese r o o m s . 0 ! -3 ! ' ' 1!-2!

13 . a | i ) 5 ob jec ts , 3 in each comb ina t i on s M ^ 3^1 , | ,2 i

i i ) 10 ob jec ts , 2 in e a c h comb ina t i on ^ ^ .| 3

i i i ) 5 ob jec ts , 3 in each comb ina t i on ^ ° a ^ M

b ) e.g. , i) H o w m a n y w a y s can you c h o o s e 3 co ins ^ ^ o

f r om a bag con ta in ing a penny , a n icke l , a d i m e , a 3 ^ ^ ^

guar ter , and a loon ie2

4-24 C h a p t e . 4 t . c u n t i n g M e t h o d s

Page 25: Counting methods solutions

3^2 3!

3C3 3!

3^2 2 ! ( 3 ^ 2 ) !

3C3

3^2 3!

2 ! - 1 !

3!

3 ! -0 !

^ 3 - 2 !

"""''mi 3^3 ^ 1

^ ' 1

^ 3 - ^

3^3 = 1

:p2 = 3

3C0, 3C1,3C2, 3C3= 1 . 3, 3, 1

4 ! „ 4 !

01(4^0)! ^^ •̂̂ ^11(4--1)1

C ^'

C

, q = 4

4! 4!

2 1

- ^ ^ ^ 2 . 1

, q = 2 - 3

4 C M 6

^ ^ ^ ^ 4 ! ( i r 4 ) ,

C " * 4 ! - 0 !

c ^ J L

" ' 3! 1

4Co, 4C1, 4C2, 4C3, 4C3 = 1 , 4 , 6 , 4 . 1

c ) e .g. , T h e n u m b e r s on the left and r ight s ides are all 1s; every o ther n u m b e r is the s u m of the two n u m b e r s above it.

d ) s ixth row: 1 , 5, 10, 10, 5,1 seven th row: 1 , 6, 15, 20 , 15, 6, 1

e) e.g. , T h e n u m b e r in each square of Pasca l ' s Tr iang le is equa l to the n u m b e r of pa thways to it f rom the top square .

« a l T h e equat ion I need to so lve is nl

2 ! ( o ^ 2 ) ! '

II • ' 4 j D n - 2 > 0

n > 2

15 IS de f ined for n > 2, w h o r e n e N.

15

2 ! ( n ^ 2 ) !

nl

V / - r;;

nl

; c - M ) l

nl

nl

= 15

= 1 5 - 2 !

= 1 5 ( 2 )

= 30 ( n ^ 2 ) !

n(n~^i){n^2,y J i j \ i 2 n i .

(n^2]{„A] n}(2){\f'

n ( i i - 1 ) = 30

n " - / i = 30

(o + 5 ) ( o - 6 ) = 0

11 + 5 = 0 O R n - 6 = 0

n = - 5 n = 6

Based on the rest r ic t ions, n = -5 canno t be a so lu t ion .

There fo re , n = 6 is the so lu t ion to the equa t i on .

F o y n d a t i o n s o f M a t h e m a t i c s 12 S o l u t i o n s M a n y a ! 4^25

Page 26: Counting methods solutions

b) T h e equa t ion I need to so lve is n !

4 ! i p 4)1 = 3 5 .

I) AN I ^ n 4 f

An,! .} 3:3 c, du f i i i ed for n > 4 . w h e r e n e N.

35

35 41

840

840

840

840

.,(.•,. mn ?){n i)(n-4i(n^5).„{3)(2)m

4\in -51 . ( i l p f l )

M n - l ) ( n - 2 ! i r / 3)

n* - 5n ' ' + 6n' - r f + bit - 6 n = 840

„ M + 1 1 l l " ^ 6 f i - 8 4 0 = 0

W n t e out all of the fac to rs of - 8 4 0 ; ± 1 , ± 2 , ±3 . ±4 . ±5 ,

±6 . ±7 , ±8 . ± 1 0 . ±12 , ± 1 4 , ±15 . ± 2 0 , ± 2 1 , ±24 . ±28 ,

± 3 0 , ± 3 5 , ± 4 0 , ±42 . ±56 , ± 6 0 , ± 7 0 , ± 8 4 , ± 1 0 5 , ± 1 2 0 ,

± 1 4 0 , ±168 . ±210 . ±280 . ± 4 2 0 . ±840 . T h e s e are all

the poss ib le roots of the equa t i on . Subst i tu te t h e m

into the equa t ion and if the equa t ion g o e s to 0, then I

have a root of the equa t ion . By tr ial a n d error, the

roots are -4 and 7. T h e o ther roots are not rea l . S ince

4 is out of the d o m a i n , the on ly real so lu t ion is n = 7.

c ) T h e egu. i t ion I need to so lve is

n! j 1 " ' >'|! _

2 \ { n - / f \ 3 ! i / < ' 2 3 ) ! '

n > 0 kU\) 2 0 A N l i / ; 2 (:

n _ ? // ^ -2

A N D r n 2 3 = i

0

1

( n + 2 ) !

r ^ -1

n

1

2 ! ( / 7 - 2 ) t

w h e r e n e N

3 ! (n i 2 3 ) ! is de f ined for n > 2,

_̂ ! "/J i

2 ! (n 2 ' i ' " 'AH,; :> ' iH

/2 i n ^ 2)1

2(f7 21 ' 6 ( » ^ 2 31 '

2 n ! «n . -21!

( n - 2 , ) ! " 6 ( u - r 2 - 3 ) !

2n ! I n 1 2)1

( n ~ 2 H " " 6 l n - l H

2n(M 1) (/; 1 2 H , 7 f l ) ( n )

6

12/11/' 1) 1-5 • 2 ) ( n + l ) ( n )

1 2 ( n - l ) - ( n + 2 ) i / ; +1) 0

1 2 n - 1 2 - ( n ^ + n + 2 u i 2) <'

1 2 n - 1 2 - n ^ - o - 2 ' i ^ 0

~ n ' + 9 n 11 0

An-2)iii 7 t 0

n 2 0 or n - 7 0

n 2 11 = 7

Both the roots are w i th in the d o m a i n , so there are two

so lu t ions , n = 2 and n = 7. 6!

d ) T h e equa t ion I need to so lve is i ( 6 - r ) !

15 .

r > 0 A N D 6

6! 15 is de f ined for 0 < r < 6, w h e r e r e I.

15

r ! ( 6 - r ) ! =

r ! ( 6 - ^ f ) !

r ! ( 6 ^ r ) !

6!

6!

15

720

15

r ! ( 6 - f ) ! = 4 8

By subst i tu t ing each of the in tegers r for 0 < r < 6, I

get r = 2 or r = 4.

16 . a) 1 , e .g . , the p layer can on ly w in if the six

n u m b e r s t hey c h o o s e are the s a m e and in the s a m e

order as the six n u m b e r s d r a w n .

66 ! b)

6 1 ( 6 6 - 6 ) !

66 !

6160!

6 6 - 6 5 - 6 4 - 6 3 - 6 2 - 6 1 - 6 0 !

6 - 5 - 4 - 3 - 2 - 1 - 6 0 !

66 65 64 63 62 61

6 - 5 - 4 - 3 - 2 - 1

ggCe = 1 1 - 1 3 - 1 6 - 2 1 - 3 1 - 6 1

9 0 8 5 8 7 6 8

The re are 90 8 5 8 7 6 8 d i f ferent w a y s the p layer can

w in .

4 -26 C h a p t e r 4 : C o u n t i n g M e t h o d s

Page 27: Counting methods solutions

c | e , g „ No , Even if e v e r y o n e in the c i t y p l a y s , it is

very u n l i k e l y that a n y o n e wil l w i n s i n c e each p l a y e r

•>-'v I !•! 'K, / 6 7 c h a n c e o f w inn ing .

' *' ' t} I .':«• ! i , in , in- : ;:t s ides in a p o l y g o n is e q u a l to

' • • • » ! : l -. f \\i t t ie n u m b e r o f v e r t i c e s = rt

' • " . , ( , !• n •..( 'u / •.' . . d i a g o n a l is f o r m e d b y e l i n e

' -ni: i ' ; r . : \nu h i iq .> v e r t e x t h a t is not d i r e c t l y

s ic . i d . - t l i . t i ^ Uu u u m b e r o f v e r t i c e s t h a t w i l l m a k e

. H j o t , , j i vvifr \. II. in ( < - s i d e d p o l y g o n is n - 2.

t ry iug i - lm „ W >N\i\i the v a l u e s f r om t h e p o l y g o n s

on the s ide of t h e t e x t b o o k p a g e , t h e r e is a p a t t e r n ;

(d = n u m b e r of d i a g o n a l s )

. a =

I 6 I 2 I 15 I 9

• U4H < 15 fl /» -i

Rea r rang ing , d = „C2- n. T h u s , the n u m b e r of

d iagona ls for an n-s ided po lygon can be de te rm ined

us ing nC-i-n.

18. a) C a s e 1: 2 boys and 3 girts

C c - ^ ' ' " " ^ 2 !5 ! 3110!

7 ^ 2 - 1 3 ^ 3 = 2 1 - 2 8 6

, C , - „ C 3 = 6006

C a s e 2: 3 boys and 2 girts

' ' 2 3 ! 4 ! 2 !11 !

X 3 - „ q = 3 5 - 7 8

, 0 3 - , 3 C , = 2730

C a s e 3: 4 boys and 1 giri

c c = ^ i l L

' " ' 4 ! 3 ! 1!12!

, q - „ C , = 3 5 - 1 3

, C , - „ C , = 455

C a s e 4 : 5 boys and 0 gir is

C C " 5 ° 5 !2 ! 0113!

, C , . „ C „ = 2 1 . 1

, q . „ C „ = 2 1

N u m b e r of g roups = 6006 + 2 7 3 0 + 4 5 5 + 21

N u m b e r of g roups = 9212

The re are 9212 d i f ferent g roups of 5 s tuden ts wi th at

least 2 boys to choose f r om.

b) N u m b e r of g r o u p s wi th no cond i t ions ;

' ° 5 ! -15!

C a s e 1 : 1 boy and 4 g i r ls

1 1 6 ! ' 4 1 9 1

. X , - „ C , = 5005

C a s e 2 : 0 boys and 5 girts

7! J 3 ! ^

5 !8 ! . C . = • " 0 !7 !

, C „ - „ C , = 1287

N u m b e r of g roups w i th at least two boys ;

2 0 C 5 - 7 C 1 • 1 3 C 4 - 7Co - 1 3 C 5 = 9 2 1 2

The re a re 9 2 1 2 d i f ferent g roups of 5 s tuden ts w i th at

least 2 boys to choose f r o m .

c ) e .g . . I prefer indirect reason ing because fewer

ca lcu la t ions are n e e d e d .

19. a) e .g . . Comb ina t i ons and pe rmuta t i ons both

invo lve choos ing ob jec ts f r om a g roup . For

pe rmuta t ions , o rder mat te rs . For comb ina t i ons , o rder

d o e s not mat ter . For e x a m p l e , a be and bac a re

d i f ferent pe rmuta t ions , but the s a m e comb ina t i on .

b) D iv ide nPr by rf to get „Cr. For e x a m p l e . e C = i

and oP.i 360 ; 15

20. First, de te rm ine the tota l n u m b e r of o u t c o m e s

poss ib le 111 a s s u m e that o n c e a song is se lec ted , it

canno t be se lec ted aga in . T h e n u m b e r of o u t c o m e s , O.

is;

0 = ^ 5166!

O , 1 3 0 1 9 9 0 9

a) N u m b e r of t imes the even t cou ld occur ;

* ' 5 ! 2 1 !

3,,C, 6 5 7 8 0

Probabi l i ty (P) ;

p 6 5 7 8 0

1 3 0 1 9 9 0 9

P = 0.505. . .%

The re is abou t a 0 . 5 1 % chance that the f ive songs wi l

be f r om C D 2 and C D 4 .

b) N u m b e r of t imes the even t cou ld occur ;

12 14 15 12 18 5 4 4 3 2 0

Probabi l i ty (P) ;

„ 5 4 4 3 2 0

x 1 0 0 %

1 3 0 1 9 9 0 9 x 1 0 0 %

P = 4 .180 . . .%

The re is abou t a 4 . 1 8 % chance that one of the f ive

s o n g s wil l be f rom each C D .

F o u n d a t i o n s of Ma themat ics 12 S o l u t i o n s Manual 4 -27

Page 28: Counting methods solutions

c ) The re is on ly one t ime w h e r e your favour i te song

f r o m each of the 5 C D s wi l l be p layed .

Probabi l i ty (P) :

p = 1 x 1 0 0 % 1 3 0 1 9 9 0 9

P = 0 . 000008%

The re is abou t a 0 , 0 0 0 0 0 8 % or 1 in 13 019 909

c h a n c e that your favour i te s o n g f r o m each of the

5 C D s wi l l be p layed .

2 1 . A + rP2 + A

nl nl nl

3 ! | f i - ^ 2 ! { n - 2 ) ! 1.l(n-l)l

nl nl nl

6 ( n M 3 ) ! ^ 2 { n - ^ 2 ) ! ^ ( / i 1)'

n! 3 n ( i i ^ l ) ( n ^ 3 ) ! - + ^ - - 7 — ^ M + '

6(n^3}l 6(n^3)l 6(/)- 3)'

,OII3P(II 1)(/I 3 ) ! + 6 r t ( n - - 3 ) !

6{rA3)l

i ( n 3 ) '

n ( n - 1 | ( u 2 ) i 3 r t ( u i | , On

6 " ' ~ ^

n{f)2-^2u I M 2 t 3// 3 I 6)

n ( f r I 5 )

6

2 2 . e .g. ,

LS_^

pin 1 r ) !

RS

C^ + Ar

nl nl

r \ { n ^ r f { r ~ ^ l ) { n ^ ( r ^ i ) }

" n - ^ ( f - l ) ] f i l r{n\)

r\\t> (/ 1)]' rl[n Jf

(r) + M f ) f i ! + r ( r i ! )

nl{n i 1 t I r )

f ) l (n + l )

H i n f l r)l

LS - R S

There fo re . „ + i C r = „C, t .C,

L e s s o n 4 . 7 : Solwlng C o y n t i n g P r o b l e m s , page 2 8 8

1 . a) Th is s i tuat ion invo lves comb ina t i ons b e c a u s e the

order of the 3 topp ings on the p izza does not matter .

b ) Th is s i tuat ion invo lves pe rmuta t i ons b e c a u s e the

th ree spo ts for the cand ida tes w h o are se lec ted are all d i f ferent so order mat te rs .

c ) Th is s i tuat ion invo lves pe rmu ta t i ons b e c a u s e for a

g r o u p of 3 n u m b e r s , the re are d i f ferent w a y s to roll

t hose th ree n u m b e r s b e c a u s e of the d i f fe rent co lours

of the d ice ,

d ) Th is s i tuat ion invo lves comb ina t i ons b e c a u s e the

5 ch i ld ren w h o are se lec ted a re all in the s a m e

pos i t ion. No in fo rmat ion is s ta ted in the ques t ion

abou t pos i t ions the ch i ld ren m a y play, so I can on ly a s s u m e that they a re not p lay ing in spec i f ic pos i t ions,

2 , e .g. , S i tuat ion A invo lves comb ina t i ons a n d s i tuat ion B invo lves pe rmuta t ions . For s i tuat ion A ,

o rder does not mat ter s ince the 3 peop le w h o are

se lec ted wil l all be cons ide red equa ls . For s i tuat ion B,

th is is not the case . Each of the 3 peop le w h o are se lec ted wi l l have a d i f ferent pos i t ion w i th a d i f ferent

a m o u n t of power and d i f ferent ro les.

3. a) , C = 3!

3 ! -0 !

3 ^ 3 = 1

There is 1 w a y that M a d d y can bid on 3 i tems if she

bids on on ly her 3 favour i te i tems.

b ) A = ^ ^ « ' 3 ! -5 !

T h e r e are 56 w a y s that M a d d y can bid on 3 i tems if

she b ids on any 3 of the 8 i tems.

13!

( , 3 q f = 2 8 5 6 1

The re are 28 561 d i f ferent four -card hands w i th one

card f r om each suit .

200 ! 5 a) P

200 ^ 5

2 0 0 - 1 9 9 - 1 9 8 - 1 9 7 - 1 9 6 - 1 9 5 !

195!

2„Pg = 200-199-198-197-196

2ooPg = 304 278 004 800

The re a re 304 278 004 800 w a y s that the top f ive

cash pr izes can be a w a r d e d if each t icket is not

rep laced w h e n d r a w n .

4-28 C h a p t e r 4 : C o u n t i n g M e t h o d s

Page 29: Counting methods solutions

b) ( 2 0 0 f = 320 0 0 0 000 000

T h e r e a re 320 000 000 000 w a y s that the top f ive cash pr izes can be a w a r d e d if each t icket is rep laced w h e n d r a w n .

6.

1'./- i)i i ' lO

= 180

The re are 180 w a y s that the 5 star t ing pos i t ions on the basketba l l t e a m can be f i l led.

10 ! 7.

2 ! - 2 ! - 2 ! - 2 ! - 2 !

10!

y 2 2 2 •

= 1 0 - 9 - 7 - 6 - 5 - 3 ' 2 - 1

113400

2 ! - 2 ! - 2 ! - 2 ! - 2 !

_ 10!

2 ! - 2 1 2 1 ^ 2 ! ^ !

T h e r e are 113 4 0 0 w a y s that the f ive d i f ferent pairs of ident ica l t eddy bears can be a r ranged ,

8. C a s e 1 : 3 f lags a re used

5!

^5 I h

5 ^

5 4 3 2 1

5 P 3 = 5 - 4 - 3

60

C a s e 2: 4 f lags a re used

^ ^ ^ ^ ^ ( 5 ^ 4 ) .

5 ^

A 120

5!

' 1!

5!

C a s e 3: 5 f lags are used

•P.', = 5!

5P5= 120

Let S represen t the n u m b e r of d i f ferent s igna ls that

can be sent us ing at least th ree of the f lags;

5 = 60 + 120 + 120

S = 300

The re are 300 d i f ferent s igna ls that can be sent us ing

at least th ree of the f lags.

9 e .g. , First m a k e a tab le to s h o w the n u m b e r of w a y s the two cab in c ru isers can be a r ranged next to each other.

CC 1 C C '• Af i , u \ y i M n c n t 1 ' '

i A r r a t i y e m e i i t 2

A r r a n g e m e n t 3 '

A i r a r i g o i i i c n t 4 A

A r u m g c - m e u t 5 h

Arramnmnmt G i i i

! A r r . m j e m o n l / : p I J - y - '

Ar r ; i nc | . , i nen t 8 ' _ i ; V. " i

: A r r . i n g o m e r i t 9 f, ' " 4

; A r i a n g e m e i i t 10 f. i 7i

For each of these a r r a n g e m e n t s , the n u m b e r of w a y s

the SIX boats can dock is the n u m b e r of w a y s that the

o ther four boats can dock . Let D rep resen t the tota l

m'Tb'jr of w a y s that the boats can dock ;

: 4 '

24 n ..p.

3 240 w a y s that the six boats can dock .

I i . e .g. . Each row of sea ts is d i f ferent , and wi th in a

row, the sea ts are a s s u m e d to be d i f ferent . There fo re , there are 10 d i f ferent peop le be ing sea ted in

10 d i f ferent spots . Let A represen t the n u m b e r of seat ing a r rangemen ts ; A = 10!

71 = 3 628 800

The re are 3 628 800 w a y s that the 10 p layers can sit in the van .

1 1 . ' 2 !

60

The re are 60 d i f ferent a r r a n g e m e n t s that are poss ib le for the letters if there are no cond i t ions . b) 3! = 6

There are 6 d i f ferent a r r a n g e m e n t s that are poss ib le for the let ters if each a r r a n g e m e n t mus t star t and end wi th an N.

12. e g . W h e n there is an even a m o u n t of n u m b e r s ,

hal f o f t h e m wil l be o d d . In th is case there a re

100 poss ib le n u m b e r s that each n u m b e r can be.

There fo re . ^ , or 50 of t h e m are o d d . S ince I w a n t

each n u m b e r to on ly be 1 of these 50 odd n u m b e r s ,

the n u m b e r of s e q u e n c e s S is;

S = 50 50 • 50

S= 125 000

The re a re 125 000 comp le te l y odd s e q u e n c e s .

13. 11!

5h&. = 462 Y o u can take 4 6 2 d i f ferent routes .

F o u n d a t i o n s of Mathemati dut ions Manual 4-29

Page 30: Counting methods solutions

14. e.g. , Let 's ass ign people to ttie 5-person car first.

Let J represent the nunnber of w a y s to ass ign the

people to this car:

5!11!

J = 4368

Now there are 16 - 5 or 11 people left to ass ign to the

remaining two vehicles. Let 's ass ign people to the

4-person car next. Let K represent the number of

w a y s to ass ign the people to this car:

17. e.g. ,

K 11!

4!7!

K = 330

Now there are 11 - 4 or 7 people left to ass ign to the

remaining vehicle. There is only 1 way to ass ign these

people to the 7 -passenger van b e c a u s e all of them

are going to be ass igned to it. Now let T represent the

total number of assignments:

r = J K-1 7 = 4 3 6 8 • 330

7 = 1 441 440

There are 1 441 440 w a y s the 16 people can be

ass igned to the 3 vehic les. Top of Board

2 6 10 6 15.

Start

Number of Paths = 2 + 6 + 10 + 6 Number of Paths = 24 There are 24 paths that the red checker can follow.

16. C a s e 1: 0 hearts and 5 non-hearts: 13C0 • 39C5

C a s e 2: 1 heart and 4 non-hearts: 13C1 39C4

C a s e 3: 2 hearts and 3 non-hearts: 13C2 39C3

C a s e 4: 3 hearts and 2 non-hearts: 13C3 • 39C2

Let H represent the number of hands with at most 3

hearts:

H = 13C0 • 39C5 + 13C1 • 39C4 + 13C2 • 39C3 + 13C3 • 39C2

H = 1 575 757 + 13 82 251 + 78 9139 + 286 741

H = 2 569 788

There are 2 569 788 different five-card hands that

contain at most three hearts that can be dealt.

ords-r in.il'ii l r

yes

'U-.,i' peiuiiit-ition'v, .,r, Civ !)!nl>iii.ni')i

KlfiUlCfll:'

yes

toi inHiti'.Hi

iJ iv ic i , by 1!. -.vf.r-i'. t h e n u n i l H ' i 1

ir.lenUCtll itt.TTl

AND OR

iJbu l-UMdiinu;ntdl CtHuUinq Princ iple. multiply the number

of ways ejir.h tHsk (.rin ocnir

of way; ej< h task f.an occuf

,C„ =

18. Number of Total Outcomes:

13!

6!-7!

i3Ce = 1716

Number of Outcomes Where 3 B o y s and 3 G ids C a n G o :

e 3 T ^ 31.31 31-4!

^ ^ 3 ^ = 700

Probability (P):

700 P = x 1 0 0 %

1716

P = 40.792. . .%

There is about a 4 0 . 8 % c h a n c e that there will be three

boys and three giris on the trip.

19. e.g. . If I have an A a s the first letter, there are 4

possibilities for the second letter: A, L, S , or K.

If A is the second letter:

4 possibilities for the third letter: A, L, S , or K

E a c h one of these h a s 3 possibilities for the fourth

letter. 4 ( 3 ) = 12

If the second letter is L, S , or K: 3 possibilities for the third letter: A and 2 of L, S , and

K (depending on which letter is second) T h e A ' s have 3 possibilities for the fourth letter, and

the other two letters have 2 possibilities for the fourth

letter. 3 + 2(2) = 7

Total for all three second letters that are L, S , or K:

7 ( 3 ) = 21

4-30 C h a p t e r 4: C o u n t i n g Methods

Page 31: Counting methods solutions

Tota l if A i s t t ie f irst letter;

2 33

There fo re , if the f irst let ter is A, there are 33 poss ib le

a r r a n g e m e n t s .

If the f irst let ter is L, S. or K, there are th ree possib i l i t ies

for the s e c o n d letter; A, and 2 of L, S, and K ( the ones

that are not the f irst let ter) . If A is the second letter;

3 possib i l i t ies for the th i rd letter: A, and 2 of L. S. and K T h e A has 3 possib i l i t ies for the four th let ter and the

o ther two let ters have 2 . 3 + 2(2) = 7

If A is not the s e c o n d letter;

/ .sibi i i t ies for t he third letter

T h e A has 2 possib i l i t ies for the four th letter and the

o ther letter has 1. 2 + 1 = 3

Tota l for both s e c o n d let ters that are not A ;

3 (2) = 6

Tota l for one of th ree t imes w h e r e first letter is L, S. or K:

7 + 6 = 1 3

Tota l w h e n f irst let ter is L, S, or K; 3 (13) = 39

Tota l a r r a n g e m e n t s : 39 + 33 = 72

There fo re . 72 four- le t ter a r r a n g e m e n t s can be m a d e us ing all o f the let ters in the w o r d A L A S K A .

20. If I have an O as the f irst letter, there are

4 possib i l i t ies for the second letter, each of wh i ch has 3 possib i l i t ies for the third letter. 4 (3 ) = 12

The re fo re , there ar^; 1 / uo^..sible a r r a n g e m e n t s w h e n

O is the f irst letter.

If the f irst letter is B, K, or S;

The re are 3 possib i l i t ies for the second letter; O, and t w o of B, K. and S (the ones that are not the f irst

let ter) . O has 3 possib i l i t ies for the third let ter wh i le

the o ther 2 have 2. 3 + 2 (2 ) = 7 Tota l if the f irst let ter is B K, or S:

3 ( 7 ) = 21

Tota l a r r a n g e m e n t s :

21 + 12 = 33

There fo re , 33 th reedet te r a r r angemen ts can be m a d e

us ing all of the let ters in the w o r d B O O K S .

H i s t o r y C o n n e c t i o n , p a g e 2 9 0

A . Y e s . Each n u m b e r f rom 0 to 127 is ass igned a

d i f ferent charac te r or s ymbo l on the keyboard . S ince

the n u m b e r s a l ready have an es tab l i shed order , the

charac te rs and s y m b o l s ass igned to these n u m b e r s do , as wel l .

B. Y e s . Each n u m b e r in ASCI I (p ronounced "askey")

mus t be conver ted into a s tnng of Os and I s to c reate the b inary code , so o rder mat te rs . Each 0 or 1 is

assoc ia ted w i th a pos i t ion in the s tnng . A d i f ferent

pe rmuta t ion of Os and I s represents a d i f ferent

n u m b e r in the A S C I I code sys tem.

C. The re a re 128 n u m b e r s in ASCI I that mus t be

rep resen ted by a st r ing of Os and I s . Y o u need to

de te rm ine the length of the s tnng needed to c reate 128 d i f ferent a r rangemen ts of Os and I s . Y o u can

beg in by th ink ing abou t a s tnng of length of 5.

A b o x d i a g r a r ' j . , f ;an help you de te rm ine the . , i . . : it)fr < - ' ' A S ( , i | n u m b e r s you can represent .

Wi th in each box you can p lace a 0 or a 1. The re a re

two cho ices for each box. s ince repet i t ion of Os and

I s is a l l owed . So for a s tnng length of 5, there a re

2 - 2 - 2 • 2 - 2 = 2^ or 32 A S C I I n u m b e r s that can be

rep resen ted . Obv ious ly , the s tnng mus t be longer for 128 n u m b e r s . If n represen ts the st r ing leng th , and

128 n u m b e r s mus t be rep resen ted , then 2" = 128. By

tr ial a n d error , n = 7.

A b inary s tnng of length 7 is needed to represen t

each ASCI I code .

C h a p t e r S e l f - T e s t , p a g e 291

1 n l Let N represen t the n u m b e r of d i f fe rent ser ia l

numbers :

IV = 26 - 26 • 10 - 10 - 10 - 3

IV = 2 028 000

The re are 2 028 000 d i f ferent ser ia l n u m b e r s

poss ib le , if repet i t ion of charac te rs is a l l owed ,

b) Let N represent the n u m b e r of d i f fe rent sena l

numbers :

IV = 2 5 - 2 4 - 1 0 - 9 - 8 - 3

IV = 1 296 000

T h e r e are 1 2 9 6 000 d i f ferent sena l n u m b e r s

poss ib le , if no repet i t ion is a l l owed .

2. Event A: D raw ing a s p a d e

Event B: D raw ing a d i a m o n d

n(A ' ' m = iiiA) + n(B)

niA H) - 13 + 13

ni'A •• li) ^- ?u

There fo re , there are 26 w a y s to d raw 1 card that is a s p a d e or a d i a m o n d .

3. a) n + 9 > 0

/ 7 > - 9

(n + 10)(n + 9) ! is de f ined for n > - 9 . w h e r e n e I. (n + 10)(n + 9) ! = (n + 10)[ (n + 9) (n + 8) . . . (3 ) (2 ) (1) ]

(n + 10)(n + 9)1 = (n + 10)(n + 9) (n + 8 ) . . . (3 ) (2 ) (1 )

( n + 10)(n + 9) ! = ( n + 10) !

b) n - - 2 > 0 A N D n > 0

n > 2

(n^2)\ ^—A is de f ined for n > 2, w h e r e n c I.

nl

( n - 2 ) ! ( n - 2 ) ( „ ~ 3 ) . . . ( 3 ) ( 2 ) ( l )

n' ^ ; H „ - 1 ) ( „ - 2 ) ( „ - 3 ) . . . ( 3 ) ( 2 ) ( I )

nl n ( n - l )

nl /•?'' - n

F o u n d a t i o n s of Ma themat ics 12 S o l u t i o n s Manual 4-31

Page 32: Counting methods solutions

4 a) hi - 1/0

r hnn : f o ro , there a re 120 d i f ferent w a y s that the 5 cars

t.ai i Ix ; p a i k o d s ide by s ide.

b ) I el B rofJHjsent the n u m b e r of a r r angemen ts ;

B . / f . / ' ,

P ~ 2» 4 '

f i - 2 1 4 3 2 1

[i - 48

1 h(;r(4<)fu, there are 4 8 d i f ferent w a y s the cars can be

pa rked so the 2 b lack ca rs a re next to e a c h other .

The re are 126 d i f ferent four -book se lec t ions that can

be m a d e

( 9 T 4 ) !

0 '

fd

9 8 f o b\

• - V

j \ -M a / h

The re are 3024 d i f ferent four -book se lec t ions can be

a r ranged in o rder of p re fe rence .

c ) e .g. , T h e o rder mat te rs in part b) . The re are still

126 w a y s to choose the four books f rom the n ine

op t ions , but there are a lso 4 ! = 24 w a y s to a r range the

books , (126 • 24 = 3 0 2 4 )

m P ,^ '^pr

P

6. „ P , = 8 4 ( „ q )

( " - 4 ) 1 ( n - 2 j

f ) ( n - l ) ( f ] - - 2 ) ( n - 3 ) = 4 2 n ( n ^ 1 )

( n - ^ 2 ) ( r , - 3 ) = 42

n-' - 3A7 - 2r? t 6 42

fP 5n 36 -:- 0

{ n - r 4 ) ( n - ^ 9 ) = 0

17 + 4 = 0 or n - 9 0

n = - 4 n = 9

Check n = --4

l A

" A

i 4)1

( 4 4)1

is unde f ined

841

84 2 ! ( - 4 2 ) !

C h e c k n = 9 LS

9!

5!

u y, ( h 5!

5!

9 8 7 6

3024

R S

8 4 ( , q

84

84

84

84

9!

21(9 2)1

9!

^2L7!^

g 8 71

2 1 P

g a '

2 1

84i^< 4

3024

The re is one so lu t ion , n = 9.

6 ! 8!

, C , - , C 3 = 8 4 0

The re a re 8 4 0 d i f ferent w a y s that a 5 -person

commi t t ee can be se lec ted if there mus t be 2 boys

and 3 gir is .

b ) C a s e 1 : 2 boys a n d 3 gir is ;

C (• - ^ ' 6 2 n '3 2 !4 I 3 !5 !

ApAS-^Q

C a s e 2 : 3 boys and 2 gir is :

« « 2 3,3, 216!

, C 3 . , C , = 560

C a s e 3 : 4 boys and 1 gir i ;

IL 6 4 - 8 i " ^ 4 ! 2 ! ' i ! 7 !

120

C a s e 4 : 5 boys and 0 girts:

C . c ^ ^ . ^ 6 5 8 0 5 , ^ , Q,8|

As-sCo = Q

Let C represen t the n u m b e r of 5 -person commi t t ees

w i th at least 2 boys :

C = 840 + 560 + 120 + 6

C= 1526

The re a re 1526 d i f ferent w a y s that a 5 -person commi t t ee

can be se lec ted if there mus t be at least 2 boys .

^UA-'''

A, 3 !9 !

220

4-32 Chapter 4 . . r^un t i ng M e t h o d s

Page 33: Counting methods solutions

The re a re 220 d i f ferent w a y s that a 5 -person • .i.'i< ' .11. t . fed if Dav id and S u s a n mus t

d ) C a ^ e 1- i l . V '\ . girts

ni H! { : f :

" P

X „ ' X , = 8 4 0

f ; . :sc 2

f r.

C. = 420

C a s e 3 : 0 boys and 5 gir is

" ° « '"̂ 0 ! 6 ! 5 !3 !

56

Let C represen t the n u m b e r of 5 -person commi t t ees w i th m o r e gir ls t han boys:

C = 840 + 4 2 0 + 56

C = 1316

The re are 1316 d i f ferent w a y s that a 5 -person commi t t ee can be se lec ted if there mus t be more gir is

t han boys,

8. - ^ = 30 2 ! 2 !

T h e r e a re 30 d i f ferent a r r angemen ts of the letters in the w o r d 1 r f 111

9. 5! • 4 ! = 2 8 8 0

The re a re 2880 d i f ferent a r r a n g e m e n t s poss ib le .

C h a p t e r R e v i e w , p a g e 2 9 3

1 . e .g. , T h e Fundamen ta l Coun t i ng Pnnc ip le is used

w h e n a coun t ing p rob lem has d i f ferent tasks re la ted by the wo rd A N D , For e x a m p l e , you can use it to

f igure out how m a n y w a y s you can roll a 3 w i th a d ie

and d raw a red card f rom a deck of cards .

Quarter Toonie

heads

tails

heads

tails

heads

ta.L.

Loonie

Iv.-ads

tails

heads

tails

heads

tails

heads

rails

3 I r-* A : rr ': the n u m b e r of se ts of answe rs :

, 4 - 4 • 4 • 4 • 4 A = 4^° /•. i ' . ; ! . , c / c

" i - • . In. ' . , : I ' . • ) . . l i ve 1 048 576 di f ferent sets of answers .

4 a | /. .• u A N D n > 0

, '- y'f ! • ' ' u f i ned for n > 0, w h e r e n c I.

in^ 2)1 ^ = 20

( f i ) ( i i -^4 ) . . , ( . i i l2) ( l ,

l ) = 20

n^+n I I / 20 = 0

ll . 3// 18 = 0

l) = 0

n + 6 = 0 or n ^ 3 = 0

n = ~6 n 3

T h e root n =• 6 is ou ts ide the res tnc t ions on the

var iab le in the equa t i on , so it canno t be a so lu t ion . The re is one so lu t ion , n = 3. b) T h e s impl i f ied ve rs ion of the egua t ion is

n + 1>0 A N D n - 1 > 0

n > - 1 n > 1

In , 1)1 132 IS de f ined for n > 1, w h e r e r? e I.

// 1 !

132

132

(11-^1)1

{n l ) f u 2 , . (3) (2) (1)

(o + l ) ( n ) = 132

n ' + n = 132

rf * n - 132 0

(r7 + 1 2 ) ( n - 1 l ) = 0

0 + 12 = 0 or n - 11 0

,0 - 1 2 n = 11

T h e root n = - 1 2 is ou ts ide the res tnc t ions on the

vanab le in the egua t i on , so it canno t be a so lu t ion .

The re is one so lu t ion , n = 1 1 , T h e t ree d i a g r a m s h o w s there are 8 poss ib le w a y s

that the th ree co ins can land .

F o u n d a t i o n s of Mathematic • - ' . o iu t ions Manual 4-33

Page 34: Counting methods solutions

5. e .g . , 6 ^ 6 has a larger va lue , e .g . , I k n o w b e c a u s e

^ is the factonat exp ress ion for the permuta t ion 6!

exp ress ion 8 ^ 2 . Here , I have m o r e ob jec ts than for

ePe, but I a m not us ing all o f t h e m . Th is leads to f ewe r

poss ib le a r rangemen ts , or in o ther w o r d s , a lower

8! va lue for

6!

6. Let O represen t the n u m b e r of o rde rs :

0 = 12!

O = 4 7 9 001 600

The re are 4 7 9 001 600 d i f fe rent o rde rs in wh i ch the

s ingers cou ld pe r fo rm the 12 songs .

7. , , P , = 25 ! ^5 3 22 !

25P3 = 1 3 8 0 0

T h e r e a re 13 800 d i f ferent w a y s a d i rec tor of

educa t i on , a super in tenden t of cu r r i cu lum, and a

supenn tenden t of f i nance can be se lec ted .

b) Let A mnrf^cppf ^hn n u m b e r of a r r angemen ts :

10! i n 'I 8 / h > 1 4 2 1

2 ! 2 ! 2 !

10!

/ 1

Vi <' ! i\ 4 ^

= 4 5 3 6 0 0

2 ! 2 ' 2 !

10!

2 ! 2 ! 2 !

The re are 4 5 3 6 0 0 d i f fe rent a r r a n g e m e n t s that a re

poss ib le if al l the let ters a re u s e d , but each

a r r a n g e m e n t mus t beg in w i th the C.

1 1 . a) 14 '

2 5 2 2 5 2 0 2 ! 3 ! 4 ! 5 !

I IKJHJ a re 2 522 520 d i f fe rent w a y s T ina can s tack the

b locks in a s ing le t o w e r if t he re a re no cond i t ions .

b) 2 7 7 2 0 3 ! 4 ! 5 !

The re a re 27 720 d i f ferent w a y s T ina can s tack the

b locks in a s ing le t owe r if there mus t be a ye l low

b lock at the bo t tom of the t owe r and a ye l low b lock at

the top .

25P^o=11 861 676 288 000

2 5 P „ - 1 . 1 8 r K . . x 1 0 "

The re are 11 861 676 2 8 8 0 0 0 or a b o u t 1.2 x 1 0 "

d i f ferent w a y s the test can be c rea ted if there are no

cond i t ions .

23Pg = 19 769 4 6 0 4 8 0

23Pg=1 .976 . . . x10 ' °

T h e r e are 19 769 4 6 0 4 8 0 or abou t 2 .0 x 10^°

d i f ferent w a y s the test can be c rea ted if the eas ies t

gues t ion of the 25 is a lways first and the most di f f icul t

gues t ion is a lways last.

9 p . 5 2 !

.^P^ 3 1 1 8 7 5 2 0 0

The re are 311 875 200 d i f ferent f i ve-card

a r rangemen ts poss ib le .

10. a) Let A represent the n u m b e r of a r r angemen ts :

11! 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1

2 ! 2 ! 2 !

11 !

2 I 2 I 2 !

11!

2 - 1 - 2 - 1 - 2 - 1

1 1 - 1 0 - 9 - 7 - 6 - 5 - 4 - 3 - 2 - 1

4 9 8 9 6 0 0 21212!

The re are 4 9 8 9 600 d i f ferent a r r a n g e m e n t s that are

poss ib le if all the letters are used .

12. ™ 5 5 ! 5 !

ioCs = 252

C

• ^ ^ 7 ! 4 !

= 3 3 0

^5 2 2113!

A 105

The re fo re , nd resu l ts in the g rea tes t va lue .

13. C, =• 20 !

4116!

20 = 4 8 4 5

The re a re 4 8 4 5 d i f ferent se lec t ions of 4 books that

Ruth can c h o o s e .

14. No . e g. , Each comb ina t i on can be a r ranged in

m a n y d i f ferent w a y s to m a k e a pe rmuta t i on , so there

are more pe rmuta t i ons t han comb ina t i ons

15. a) „ C = 19!

4 !15 !

, ,C^ 3876

The re are 3 8 7 6 d i f ferent w a y s that a commi t t ee of

4 peop le can be c h o s e n if there are no cond i t ions .

9! 10 !

2 ! 7 ! ' 2 ! 8 !

. C =36-45

b) A ,C =

c . 1620

The re a re 1620 d i f ferent w a y s that a commi t t ee of

4 peop le can be chosen if there mus t be an equa l

n u m b e r of m e n and w o m e n on the commi t t ee .

' '° ' 4 ! 6 !

. „ C , 210

The re are 210 d i f ferent w a y s tha t a commi t t ee of

4 peop le can be chosen if no m e n can be on the

commi t tee .

4-34 Chapte r 4- C o u n t i n g Methods

Page 35: Counting methods solutions

1S. e .g. , Let A represent the n u m b e r of w a y s to

ass ign teachers to the f irst g roup of 5:

5 !10 !

A = 3003

N o w there are 15 - 5 or 10 teachers left to ass ign .

Lc i f ; i r -p tesent the n u m b e r of w a y s to ass ign the

rema in ing teache rs to the second g roup of 5;

B

• . rs left to ass ign to

1 w a y that th is can

I n u m b e r of w a y s to

10!

5 !5 !

8 252

N o w there ' i-

the last grot f i '- ' h. i-.-

be d o n e . I • ' - i - -i !

ass ign the t

T=A-B

T= 3003 252

T = 756 756

The re are 756 756 d i f ferent w a y s 15 teachers can be

d iv ided into 3 g roups of 5.

17 . c q. . T h e f irst point can be jo ined wi th 11 more

[soinO- to form st ra ight l ines. T h e second point can

then be jo ined wi th 10 more points to f o rm stra ight

l ines (s ince it w a s a l ready jo ined w i th the f irst po int ) .

T h e th i rd point can be jo ined w i th 9 more points to

f o rm st ra ight l ines (s ince it w a s a l ready jo ined w i th the

f irst two po in ts) . Th is pat tern con t inues on unti l I get to

the seconddas t point that can on ly be j o i ned w i th the

last point (s ince it w a s a l ready j o i ned wi th the o ther

10 po in ts) . T h e last point canno t be jo ined any fu r ther

s ince It IS a l ready jo ined to every o ther point in the

c i rc le. Us ing this obse rved pat te rn . I can ca lcu la te the

n u m b e r of s t ra ight l ines (L) :

/. = 11 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1

1 = 66

The re are 66 d i f ferent w a y s the points can be j o i ned

to f o rm st ra ight l ines.

18. a) S ince there is one more boy than there are

gir is, the l ine mus t a lways fo l low this pa t te rn :

B G B G B G B G B G B G B . T h u s the boys are a r ranged in

7 pos i t ions, and the gir is in 6 pos i t ions.

7! 6! = 3 628 800

The re are 3 628 8 0 0 w a y s in wh i ch the ch i ld ren can

be a r ranged in one row if the boys and gir is mus t

a l te rnate pos i t ions .

b) G r o u p the tnp le ts as one . The re are 3! w a y s in

wh i ch the tnp le ts can a r range t hemse l ves . Let B

represen t the n u m b e r of d i f ferent a r rangemen ts :

e = 1 1 ! 3!

6 = 39 916 800 6

B = 2 3 9 500 800

The re are 2 3 9 500 800 w a y s in wh i ch the ch i ld ren can

be a r ranged in one row if the t r ip lets mus t s tand next

to each other.

19. C a s f 1 face ca rds and 3 non- face cards : 12C2 • 40

C a s e 2 : 3 face ca rds and 2 non face ca rds : 12C3 • 40C2

C a s e 3: 4 face ca rds and 1 non- face ca rd : 12C4 - 40C1

C a s e 4: 5 face ca rds and 0 non- face cards : 12C5 • 40Co

Let H represen t the n u m b e r of hands w i th at least 2

t .̂ ca rds :

I'lC'z • 40C3 + 12C3 • 40C2 + 12C4 • 4oCi + 12C5 - 40Co

/ ' 36 • 9 8 8 0 + 2 2 0 • 780 + 4 9 5 • 40 + 792 1

544 272

! L i - .e are 844 2 7 2 d i f ferent f i ve-card hands wi th at

least two face ca rds .

C h a p t e r T a s k , p a g e 2 9 5

A . Comb ina t i ons . T h e order in wh i ch the d ice a re

tossed d o e s not mat ter (note that p layers toss all

8 d ice s imu l taneous ly ) nor does the w a y the d ice a re

a r ranged w h e n they land mat ter . W h a t is impor tan t is

the o u t c o m e of each toss a comb ina t i on of n u m b e r

of d ice that land w i th the s a m e s ide up A N D n u m b e r

of d ice that land w i th a d i f ferent s ide up, for e x a m p l e ,

7 d ice land w i th the s a m e face up A N D 1 d ie w i th the

oppos i te face up .

B . Each o u t c o m e can h a p p e n two w a y s . For examp le .

8 wi th the s a m e s ide up cou ld occu r as 8 of the

u n m a r k e d s ides face up or 8 of the marked s ides face

up. Tha t is w h y each ca lcu la t ion is the s u m of two

comb ina t i on va lues :

8 d ice land w i th the s a m e s ide up

^ f + or 1 + 1 or 2

7 d ice land w i th the s a m e s ide up

i f f

, 1

6 d ice land wi th the s a m e s ide up

r i . ^

1 i ^ l 7 or 8 + 8 or 16

or 28 + 28 or 56 8V21^ 8 ¥ 2

^6)l2j''"i6ji2^ 5 d ice land w i th the s a m e s ide up

or 56 + 56 or 112

4 d ice land w i th the s a m e s ide up

8 ¥ 4 '

3 d ice land wi th the s a m e s ide up

+ I 4 J I

or 70 + 70 or 140

or 56 + 56 or 112

F o u n d a t i o n s of Ma themat ics 12 S o l u t i o n s Manual 4-35

Page 36: Counting methods solutions

C . Y e s , i th ink it is fair.

O u t c o m e P o i n t s N u m b e r of W a y s O u t c o m e C a n

O c c u r

8 d ice land s a m e

s ide up

10 2

7 d ice land s a m e

s ide up

4 16

6 d ice land s a m e

s ide up

2 56

5, 4 , or 3 d ice

land s a m e s ide up

0 364

T h e h ighest n u m b e r of b e a n s (10) is a w a r d e d for the

o u t c o m e that can h a p p e n in the least n u m b e r of

w a y s , 8 d ice land ing s a m e s ide up ; 4 b e a n s a re

a w a r d e d for the o u t c o m e that can h a p p e n in the

second fewes t n u m b e r of w a y s , 7 d ice land ing s a m e

s ide up; 2 beans a re a w a r d e d for the o u t c o m e that

can h a p p e n in the th i rd f ewes t n u m b e r of w a y s , 6 d ice

land ing s a m e s ide up. T h e mos t l ikely o u t c o m e s of 5,

4 , a n d 3 d ice land ing s a m e s ide up ail rece ive the

lowest n u m b e r of beans (0 ) . So the point s ys tem

rewards the least l ikely o u t c o m e s wi th t he mos t beans

and the mos t l ikely o u t c o m e s wi th the f ewes t beans .

C h a p t e r 4 D i a g n o s t i c T e s t , T R p a g e 2 6 9

1 . a )

Coin

heads

t a i l s

30 i*o>u^b«« OutoEMnet

heads and red

heads and o range

heads and pu rp le

heads and yeUa<H heads and green

ta i ls irdi red ta i ls and orange

ta i ls and pu rp le

ta i ls andyellOK^f

ta i ls and green gf een

b) b) e .g. . By look ing at the t ree d i a g r a m , there is one

w a y he cou ld f l ip a head and sp in g r e e n , and ten

poss ib le o u t c o m e s .

P (heads and g reen ) = ^ 10

or 1 0 % .

2. a)

C h i l d 1 C h i l d 2 C h i l d 3

B B B

B G B

B B G

G B B

G G B

G B G

B G G

G G G

b) The re a re \wo w a y s all t h ree ch i ld ren wi l l be the

s a m e gender , e i ther all boys or all g ids , and there are

e ight poss ib le o u t c o m e s .

2 P(al l boys or all g ids) = - or 2 5 % c h a n c e , a s s u m i n g

8

that hav ing a boy or g id is egua l ly l ikely.

3. a) B ' = { the set of e l emen ts not in S}

B ' = {a , b, c, d, e, i, o, u} b) Au B = { the set of e l emen ts in A and B}

Au B = {a, b, c, d, e, i, o, u, x, y, z} c) Ar\B = { the set of e l emen ts in both A and B}

AnB = {y}

4-36 C h a p t e r 4: C o u n t i n g Methods

Page 37: Counting methods solutions

5 . e .g. , Let x be the n u m b e r of g o o d s ingers w i thout

danc ing ski l ls. Let A be the set of s ingers and B the

set of dance rs .

n{A) = X + 6

n{B) = 10 + 6 or 16

niAnB) =6

niAuB) = 2 4

niA KJB) =niA) + niB) - niA n B)

24 = x + 6 + 1 6 - 6

24 = x + 16

8 = x

Use a V e n n d i a g r a m to help so lve the p rob lem.

c ) ii) the in tersect ion of sets A and S

atuditioning gsr Is

s f e r i c m ' ^ ^ singers \ ^

10 + 6 + x = 2 4

1 6 + x = 2 4

X = 8

The re we re 8 g ids w h o w e r e g o o d s ingers but not g o o d dancers .

R e v i e w o f T e r m s a n d C o n n e c t i o n s ,

T R p a g e 2 7 2

1. a) v ) d is jo int sets A and B

d) i) t ree d i a g r a m

first coin Mcofid eofci

e) iv) o u t c o m e tab le

1 2 3 4 5 6 t 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6 7 8 9 10 11 12

F o u n d a t i o n s of Ma themat ics 12 S o l u t i o n s Manual 4-37

Page 38: Counting methods solutions

7. e .g. , / is the un iversa l set of in tegers . E is the

subse t of e v e n in tegers . O is the subse t of odd

in tegers .

3. a) n{A uB) = n{A) + n{B) - niA n B)

niA)=^2, niB) = 9, niAnB) = 5

r)(/\u 8 ) = 12 + 9 - 5 = 16

b) niA u 8 ) = n ( ^ ) + n (B) - niA n B)

niA) = 23 , n ( 8 ) = 16, n(>\ n 8 ) = 1

niA uB) = 23+ 1 6 - 1 = 3 8

4. a) Let S represen t t he un iversa l se t of al l s tuden ts .

Let A rep resen t the s tuden ts w h o a t tended the f irst

schoo l d a n c e , a n d let 8 represen t s tuden ts w h o

a t tended the s e c o n d schoo l d a n c e . T h e n niA u 8 ) is

the n u m b e r of s tuden ts w h o wen t to o n e of the f irst

t w o schoo l d a n c e s .

niA uB) = niA) + niB) - niA n 8 )

niA) = 4 2 0 , niB) = 4 8 0 , niA nB) = 285

niA u 8 ) = 4 2 0 + 4 8 0 - 2 8 5 = 615

6 1 5 s tuden ts w e n t to o n e of the f irst two schoo l

d a n c e s of the year .

b) niA u 8 ) ' is the n u m b e r of s tuden ts w h o d id not

a t tend e i ther d a n c e .

niA u 8 ) ' = S - niA u 8 )

S = 1200 , n { A u 8 ) = 6 1 5

n ( / \ u 8 ) ' = 1 2 0 0 - 6 1 5 = 585

585 s tuden ts d id not a t tend e i ther d a n c e .

5. a) B = {set of b lack face ca rds in a s tandard deck of

p lay ing cards } = { J * , Q * , K * , J * , Q A , K * }

b) D = {set of d i f fe rent three-d ig i t n u m b e r s us ing the

dig i ts 1 , 3, and 5} = {135 , 153, 315 , 3 5 1 , 513 , 531}

c ) S = {set of al l poss ib le s u m s w h e n a pair of d ice is

ro l led} = {2 , 3 , 4 , 5, 6, 7, 8, 9, 10, 1 1 , 12}

d) T = {set of al l t he days of the w e e k w i th n a m e s that

beg in w i th T} = {Tuesday , Thu rsday }

6. a) { } , { red} , {b lue} , { red , b lue}

b) { } . {2} , {4} , {6} , {8} , {2 , 4 } , {2 , 6} , {2 , 8} , {4 , 6} ,

{4 , 8} , {6 , 8} , {2 , 4 , 6} , {2 , 4 , 8} , {4 , 6, 8} , {2 , 4 , 6, 8}

c ) { } , {Apn l } , {May } , {June} , {AphI , May} , {Apn l , June} ,

{May , June } , {Apn l , May , June }

d) { } , {100}

8. S = { l , N , T , E, R, S, C O }

a) A = {set of vowe l s in S}

A = { I , E, 0 }

b) 8 = {set of let ters in S E C T I O N }

8 = {S , E, C, T , I, O, N}

c ) A u 8

= {set of vowe l s in S a n d set of let ters in S E C T I O N }

= {S , E, C, T , I, O, N}

d) A 8 = {e lemen ts in bo th A a n d 8 }

A n 8 = {t, E, 0 }

e) A ' u 8 ' = {e lemen ts not in A and e l e m e n t s not in 8 }

A'uB'= { N , T, R, S, C, E, I, 0 }

f) A ' n 8 ' = {e lemen ts in ne i ther A nor 8 } = { N , T , R}

9. a ) S = { 1 , 2 , 3, 4 , 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14}

A = {2 , 4 , 6, 8, 10}

8 = { 1 , 3 , 5, 7, 9, 1 1 , 13}

A' = { the e l emen ts of S not in A}

A ' = { 1 , 3, 5, 7, 9, 1 1 , 12, 13, 14}

8 ' = { the e lemen ts of S not in 8 } = {2 , 4 , 6, 8, 10, 12, 14}

S

4-38 C h a p t e r 4: C o u n t i n g Methods

Page 39: Counting methods solutions

A u B = { the e lemen ts of A and B}

= { 1 , 2 , 3 , 4 , 5, 6, 7, 8, 9, 10, 1 1 , 13}

A n B = { the e lemen ts in both A and 6 } = { }

b) S = { A * , 2 * , 3 * , 4 A , 5 A , 6 A , 7 A , 8 A , 9 A , 1 0 A ,

A * , 2 * , 3 * , 4 A , 5 * , 6 * , 7 * , 8 * , 9 * , 1 0 * ,

A v , 2 ¥ , 3 ¥ , 4 ¥ , 5 ¥ , 6 ¥ , 7 ¥ , 8 ¥ , 9 ¥ , 1 0 ¥ ,

A * , 2 * . 3 4 , 4 * , 5 * , 6 » , 7 * , 8 * , 9 * , 1 0 * }

A = { 3 A , 6 A , 9 A , 3 A , 6 * , 9 * , 3 ¥ , 6 ¥ , 9 ¥ , 3 * , 6 * , 9 * }

e = { 2 A , 4 A , 6 A , 8 A , 1 0 A , 2 * , 4 * , 6 * , 8 * , 1 0 * ,

2 ¥ , 4 ¥ , 6 ¥ , 8 ¥ , 1 0 ¥ , 2 * , 4 » , 6 » , 8 » , 1 0 * }

A ' = { the e lemen ts of S not in A}

A' = { A A , 2 A , 4 A , 5 A , 7 A , 8 A , 1 0 A , A A , 2 * . 4 * ,

5 * , 7 * , 8 * , 1 0 A , A ¥ , 2 ¥ , 4 ¥ , 5 ¥ , 7 ¥ , 8 ¥ ,

1 0 ¥ , A * , 2 * , 4 * , 5 * , 7 * , 8 » , 1 0 * }

A'

e ' = { the e lemen ts of S not in B} = { A A , 3 A , 5 A , 7 A ,

9 A , A A , 3 A , 5 A , 7 A , 9 A , A ¥ , 3 ¥ , 5 ¥ , 7 ¥ , 9 ¥ ,

A * , 3 * , 54, 7 * , 9 * }

S

A u B = { the e l emen ts of A a n d S} = { 2 A , 3 A , 4 A , 6 A ,

8 A , 9 A , 1 0 A , 2 A , 3 A , 4 A , 6 A , 8 A , 9 A , 1 0 A ,

2 ¥ , 3 ¥ , 4 ¥ , 6 ¥ , 8 ¥ , 9 ¥ , 1 0 ¥ . 2 * , 3 * , 4 * ,

6 * , 8 * , 9 * , 1 0 * }

A n B = { the e l emen ts in bo th A and S}

A n B = { 6 A , 6 A , 6 ¥ , 6 * }

s

/ I \

A i \ { \ B )

\ /

10. e .g. ,

a) S is the un iversa l set of all s tuden ts in my ma th c lass.

A is the subse t o f s tuden ts w h o a re tal ler t han 6 ft .

6 is the subse t of all s tuden ts w i th b lack hair.

A n B ( shaded) is the subse t of s tuden ts w h o are

tal ler than 6 ft and have b lack hair.

b) S is the un iversa l se t of all ca rds in a s tandard

deck of p lay ing ca rds .

A is the subse t of all f ace ca rds .

B is the subse t of all red ca rds .

Au B ( shaded) is the subse t of all f ace ca rds and all

red cards .

11. Let S represent the un iversa l se t of all f i rs t -year s tuden ts .

Let C represen t the s tuden ts w h o take ca lcu lus .

Let A represen t the s tuden ts w h o take a lgebra . T h e n

n ( C u A)' wil l be the n u m b e r of f i rs t -year s tuden ts

w h o take ne i ther ca lcu lus nor a lgebra .

n{S) = 2 0 0

n (C) = 110

n{A) = 75

n ( C r ^ A ) = 60

n{C uA) = n{C) + n{A) - n{C n A)

n{CuA) = 110 + 7 5 - 6 0

n{CuA)= 125

n{CuAy = S-n{CuA)

r 7 ( C u A ) ' = 2 0 0 - 1 2 5

n{CuAY = 75

The re are 75 f i rs t -year s tuden ts w h o take nei ther ca lcu lus nor a lgebra .

F o u n d a t i o n s of Ma themat ics 12 S o l u t i o n s Manual 4-39

Page 40: Counting methods solutions

Chapter 4 Test, TR page 282 1. e .g . , T h e tab le s h o w s the poss ib le w ins a n d losses

of o n e of the t e a m s . S h a d e d cel ls ind icate g a m e s that

w o u l d not ac tua l ly be p layed , s ince o n e of the t e a m s

wi l l have a l ready w o n or lost two g a m e s . Tha t m e a n s

there are on ly six d i f fe rent o u t c o m e s .

G a m e 1 G a m e 2 G a m e 3 O u t c o m e s

W W W 1 o u t c o m e

W W

w L w 1 o u t c o m e

w L L 1 o u t c o m e

L W W 1 o u t c o m e

L W L 1 o u t c o m e

L L W 1 o u t c o m e

L L

b) T h e r e a re bNO d i f fe rent w a y s a t e a m can lose

exac t l y one g a m e but stil l w i n the c h a m p i o n s h i p :

W L W or L W W .

2. a) T h e s a n d w i c h has fou r e l emen ts : e g g sa lad or

ch i cken sa lad , le t tuce or t oma to , but ter or

m a y o n n a i s e , and w h o l e w h e a t bun or w h o l e gra in

bage l or s e s a m e seed bun . Us ing the F u n d a m e n t a l

Coun t i ng Pnnc ip le :

2 2 2 3 = 24 w a y s to m a k e a s a n d w i c h . I a s s u m e d

that the s a n d w i c h has exac t l y one i tem f r o m e a c h of

set of cho ices .

b) For each of the four d ig i ts , there are six op t ions

a n d repet i t ion is a l l owed . Us ing the F u n d a m e n t a l

Coun t i ng Pnnc ip le :

6 • 6 • 6 6 = 1296 w a y s to m a k e a p a s s w o r d . I

a s s u m e d star t ing the p a s s w o r d w i th a 0 w a s a l l owed .

c ) The re are 13 hear ts and 13 c lubs in a s tandard

deck of 52 ca rds , and the se ts of hear ts and c lubs are

d is jo int . The re are 13 + 13 = 26 w a y s to d raw a hear t

or c lub. I m a d e no assump t i ons .

d) The re are f ive let ters in T E E T H w i th bo th T and E

repeat ing tw ice . The re a re = 30 a r r a n g e m e n t s of

the let ters. I m a d e no assump t i ons .

e) The re are 25 d i f ferent t opp ings , and J im mus t

c h o o s e 3. O rde r d o e s not mat ter . J im can o rder

25 2300 d i f ferent p izzas . I a s s u m e d he w o u l d

c h o o s e exac t ly th ree topp ings and each w o u l d be

d i f ferent .

5 ! ( l 0 - 5 ) !

1 0 - 9 - 8 - 7 6 5!

5 I 5 - 4 - 3 - 2 - 1

^ 1 0 9 - 8 - 7 6

" 5 - 4 - 3 - 2 - 1

^ 30 2 4 0

120

= 252

3. a) S ince o rder d o e s not mat ter :

' 1 0 1 10!

. 5

10

5

noi 5

10

5

10

5^

The re a re 252 se lec t ions tha t can be m a d e .

b) S ince o rder mat te rs :

'° ' ( 1 0 - 5 ) !

1 0 - 9 - 8 - 7 6 5 !

1 0 ^ 5 = 1 0 . 9 . 8 - 7 . 6

1 0 ^ - 3 0 240

The re a re 30 2 4 0 se lec t ions if the se lec t ions a re

o rde red by p re fe rence .

c ) e.g. , O rde r does not mat te r in part a ) but it d o e s

mat te r in part b) , so part a ) invo lves comb ina t i ons ,

w h e r e a s part b) invo lves pe rmuta t i ons .

d) e .g. . T h e a n s w e r to par t a ) is 5! or 120 t imes

smal le r than the a n s w e r to par t b) . Th is is because

the 30 240 f i ve-nove l se lec t ions f rom part b) mus t be

d iv ided by 5! to e l im ina te comb ina t i ons that a re the

s a m e , because o rder d o e s not mat ter .

4. T o so lve the p rob lem, look at the wa lk in th ree

sec t ions . In the f irst sec t ion , M a h a has to wa lk th ree

b locks eas t and th ree b locks sou th for a tota l o f six

b locks ; in the second sec t ion she has to wa lk one

block eas t and one b lock sou th for a total of t w o

b locks; in the th i rd sec t ion she has to wa lk t w o b locks

east a n d hwo b locks sou th for a total o f four b locks .

First sec t ion :

6 ! _ 6 - 5 4 3!

3 ! 3 ! " " 3 ! 3 - 2 1

6 ! _ 6 - 5 4

3 ! 3 ! ~

6 !

3 !3 !

6 !

3 !3 !

S e c o n d sec t ion :

1 ! 1 ! ^ 1-1

_2!^

1!1!

3 2 1

5 4

20

= 2

4-40 C h a p t e r 4: C o u n t i n g Methods

Page 41: Counting methods solutions

2 3

21

2!

2 ! 2 !

2 ! 2 !

Us ing the Fundamen ta l Coun t ing Pr inc ip le :

20 • 2 • 6 = 240

S h e can wa lk 240 d i f ferent v /ays.

Th is p rob lem can a lso be so lved us ing a pa thway d i ag ram;

5. a) Order does not matter , so this is a comb ina t i on

p rob lem. The re are (5 2 ) w a y s to choose two boys

f rom f ive, and (6 2) w a y s to choose two gir is f r om six.

2 i! / I

f

f, ,

f ,

• 4 - 3 ! 6 - 5 - -

'••2 ' t h '

4 D O

- 1 0 0 ,

= 150

There are 150 ways to choose a committee with two boys and two giris.

b) At least two giris means two, three, or four giris:

6!

2 ' l i

6!

[ 6 ^ 4 ) ! 4 !

AW

CJ 1; .Ji;«: ,1 i c f: t. 1 •;•>.!• commi t t ee , there c i c n ine fl. f . p l - ioi t t j i f i d i im ig two pos i t ions :

l i f l

1111

1

\3 \

^roi,,^ 1 / 2 712!

1 l l j l 2 j • • 7 !2 !

1 ¥ 1

1 1 5

i ¥ 9 i

12 = 36

The re are 36 committees that can be made if Jim and

Nanci must be on the committee.

d) More boys than giris means three or four boys:

5! 6 ! 5!

1 ; U

5

1 ; u

5

1 / 14

5

17 V4.

6 l fs' + i i u

6^ rs 1 J"U 6 l (5

+ 1 ; U

1

( 5 3 ) 1 3 ! (6^^-l)!1! (5 ^^•4)14!'

5! 6! 5! : . .+

213! 5111 1!4!

5-4-3! 6 - 5 ! 5 - 4 !

2!3! 5 ! 1 ! 1!4!

5 - 4 6 5 2 1 1

10-6 + 5̂ 1

-1

60 + 5

There are 65 committees that can be made with more boys than giris.

F o u n d a t i o n s of Mathemat ics 12 S o l u t i o n s Manual 4-41

Page 42: Counting methods solutions

B. a) 0 0 1 , C . l

60 . " ' :

' •« ! / } 1 ) : / ) ( / ! - 2 H / ' 3 ) 60 , -

1,1 ? | ( u 3 ) 30

u 5f} - 24 0

(// B i ( f i i 3 ) 0

n 8 or /I 3

-3 is f x i r r i n o f j u s

n = 8 b | /? - 8. .'/ i- 4 „P_, ^ f>0(.,c;,3 5j<j / i r- 4 and n > 2 H U n > 4

7. i f you pluf.o t h r f a n d K as requ i red . Ihrs uan

li.;jp[)on only O O P w a y for oaf:h pos i t ion . Fhu

roma in inp jsovon le t ters can then t)o a r ranged in

b e t w e e n , keep ing in m ind that there are repea led

IH tom- two 72s, two S's. and two O's-

1.1 " - iO ' ' h lV"

. 2 I2 '2 ! I 212-2

l ^ 2 ' 2 ' 2 ' ; ^ 2 2

U!2!2!j i 4

1,1^1 = 630 l 2 ! 2 ! 2 ! j

The re a re 6 3 0 d i f fe rent w a y s to a r range the let ters

w i th the g i ven cond i t i ons

4 -42 C h a p t e r 4 C o u n t i n g M e t h o d s