80
Cognitive LTE Small Cell Networks Mérouane Debbah

Cognitive LTE Small Cell Networks

Embed Size (px)

DESCRIPTION

Alcatel-Lucent presentation by Mérouane Debbah explaining the Light Radio Concept

Citation preview

Page 1: Cognitive LTE Small Cell Networks

Cognitive LTE Small Cell Networks

Mérouane Debbah

Page 2: Cognitive LTE Small Cell Networks

The LTE Small Cells Flexible Framework

LTE: (Long Term Evolution) The new cellular communications standard aiming at very high data rates.

Idea: A dense network of low-power base stations.

Motivation: Higher spectral efficiency is achievable “Green” technology:

Reduced energy consumption at the base stations Reduced electromagnetic pollution (using beamforming to intended users)

Bell Labs lightradio antenna module – the next generation small cell (picture from www.washingtonpost.com)

Page 3: Cognitive LTE Small Cell Networks

Vision•1Gbps/Km2 for 10 MHz•Environment constraints = <1W EIRP•Constraint: ~10 W power consumption

Bell Labs lightradio antenna module – the next generation small cell (picture from www.washingtonpost.com)

Page 4: Cognitive LTE Small Cell Networks

LightRadio Concept• 2-inch cube that aims to replace unsightly cell towers• LightRadio reduces energy consumption of mobile

networks by up to 50% over current radio access network equipment

• Networks will be redesigned as a system of federated broadband hotspots that can be set up anywhere and can be powered by electricity, wind or sun.

• It is the end of the classical base station if we can provide a new radio radio interface for non-interfering networks.

Page 5: Cognitive LTE Small Cell Networks

Supélec

Motivation

Page 6: Cognitive LTE Small Cell Networks

Supélec

Motivation

Page 7: Cognitive LTE Small Cell Networks

Supélec

Motivation

Page 8: Cognitive LTE Small Cell Networks

Supélec

Motivation

Page 9: Cognitive LTE Small Cell Networks

Supélec

Motivation

Page 10: Cognitive LTE Small Cell Networks

Supélec

Motivation

Page 11: Cognitive LTE Small Cell Networks

Supélec

Motivation

Page 12: Cognitive LTE Small Cell Networks

Supélec

Motivation

Page 13: Cognitive LTE Small Cell Networks

Supélec

Motivation

Page 14: Cognitive LTE Small Cell Networks

Supélec

Motivation

Page 15: Cognitive LTE Small Cell Networks

Supélec

Motivation

Page 16: Cognitive LTE Small Cell Networks

Supélec

Motivation

Page 17: Cognitive LTE Small Cell Networks

Toy scenario

Page 18: Cognitive LTE Small Cell Networks

A bit of history on the LTE interface

Page 19: Cognitive LTE Small Cell Networks

Shannon’s point of view on OFDM

C. E. Shannon, ”Communication in the presence of Noise”, Proceeding of the IRE, vol. 37,no.1, pp. 10-21, Jan, 1949.

2

Page 20: Cognitive LTE Small Cell Networks

Fourier

”We can divide the band into a large number of small bands, with N(f) approximatelyconstant in each”

In Shannon’s terms, N(f) is the power spectrum.

3

Page 21: Cognitive LTE Small Cell Networks

• OFDM is the best you can do for a point to point scenario….but not in a multi-user setting….

Page 22: Cognitive LTE Small Cell Networks

First OFDM scheme

M. L. Doeltz, E. T. Heald and D. L. Martin, ”Binary data transmission techniques for linearsystems,” Proc. IRE, vol. 45, pp. 656-661, May 1957.

• First system known as Kineplex (50 years ago!) for military purposes in the band [1.8-30Mhz].

Unfortunately, not much is known about this system...classified!

4

Page 23: Cognitive LTE Small Cell Networks

The Analog age of OFDM

B. R. Saltzberg, ”Performance of an efficient Parallel Data Transmission System,” IEEETrans. Commun, Vol. Com-15, p. 805-811, Dec. 1967S. B. Weinstein and P. M. Ebert, ”Data Transmission by frequency Division Multiplexing”,IEEE Trans. Commun, vol. COM-19, pp. 628-634, Oct, 1971.

Joseph Fourier, 1768-1830

The basic idea used the Fourier transform but the success was limited due to the highcost of orthogonal analog filters.

5

Page 24: Cognitive LTE Small Cell Networks

The digital age of OFDM

A. Peled and A. Ruiz, ”Frequency domain data transmission using reduced computationalcomplexity algorithms”, in Proc. IEEE Int. Conf. Acoustics, Speech and SignalProcessing, Apr. 1980, pp. 964-967B. Hirosaki, ”An Orthogonally multiplexed QAM system using the discrete FourierTransform,” IEEE Trans. Commun,. vol. Com-29, pp. 982-989, Jul. 1981

The modulator was based on the FFT and had well celebrated features thanks to Cooley(IBM) and Tukey (Princeton) in 1965.

But how does one cope with frequency selective channels?

6

Page 25: Cognitive LTE Small Cell Networks

OFDM Afterwards

WO9004893, oct, 1989, First worldwide patent introducing the guard interval in OFDM

Tristan de Couasnon, 1946- ,Supelec then TH-CSF

The idea is based on the use of a guard interval.

The unexploited guard interval trades complexity for performance but this is exactly thedegree of freedom we need

We have to exploit it!

7

Page 26: Cognitive LTE Small Cell Networks

Supélec

Our proposal: VFDM

Vandermonde-subspace Frequency Division Multiplexing

A linear Vandermonde-based orthogonal precoder thatgenerates zero interference on the primary network by ex-ploiting the frequency selective nature of the channel.

[1] L. S. Cardoso, M. Kobayashi, Ø. Ryan, and M. Debbah, “Vandermonde frequency

division multiplexing for cognitive radio,” SPAWC 2008

[2] L. S. Cardoso, R. Calvacanti, M. Kobayashi and M. Debbah,

“Vandermonde-Subspace Frequency Division Multiplexing Receiver Analysis,” PIMRC

2010

Page 27: Cognitive LTE Small Cell Networks

Supélec

System Model

Page 28: Cognitive LTE Small Cell Networks

Supélec

System Model

Page 29: Cognitive LTE Small Cell Networks

Supélec

System Model

y1 = F(T (h(11))x1 + n1

)

x1 = AFH s1s1

Page 30: Cognitive LTE Small Cell Networks

Supélec

System Model

y1 = F(T (h(11))x1 + n1

)

x1 = AFH s1

s2

s1

Page 31: Cognitive LTE Small Cell Networks

Supélec

System Model

y1 = F(T (h(11))x1 + T (h(21))x2 + n1

)y2 = F(T (h(22))x2 + T (h(12))x1 + n1

)

x1 = AFH s1

x2 = Es2

s2

s1

Page 32: Cognitive LTE Small Cell Networks

Supélec

System Model

y1 = F(T (h(11))x1 + T (h(21))x2 + n1

)y2 = F(T (h(22))x2 + T (h(12))x1 + n1

)

x1 = AFH s1

x2 = Es2

s2

s1

Page 33: Cognitive LTE Small Cell Networks

Supélec

System Model

y1 = F(T (h(11))x1 + T (h(21))x2 + n1

)y2 = F(T (h(22))x2 + T (h(12))x1 + n1

)

x1 = AFH s1

x2 = Es2

s2

s1

Page 34: Cognitive LTE Small Cell Networks

Supélec

Precoder

Our objective is to find an E ∈ C(N+L)×L such that for any s2:

T (h(21))E = 0. (1)

One solution to (1) is given by the Vandermonde-subspace matrix:

V =

1 · · · 1a1 · · · aLa2

1 · · · a2L

.... . .

...

aN+L−11 · · · aN+L−1

L

, (2)

where {al , . . . , aL} are the roots of S(z) =∑L

i=0 h(21)i zL−i .

Page 35: Cognitive LTE Small Cell Networks

Supélec

Precoder

Our objective is to find an E ∈ C(N+L)×L such that for any s2:

T (h(21))E = 0. (1)

One solution to (1) is given by the Vandermonde-subspace matrix:

V =

1 · · · 1a1 · · · aLa2

1 · · · a2L

.... . .

...

aN+L−11 · · · aN+L−1

L

, (2)

where {al , . . . , aL} are the roots of S(z) =∑L

i=0 h(21)i zL−i .

Page 36: Cognitive LTE Small Cell Networks

Supélec

PrecoderA bit of linear algebra

1 1 1 1a1 a2 a3 a4

a21 a2

2 a23 a2

4a3

1 a32 a3

3 a34

a41 a4

2 a43 a4

4a5

1 a52 a5

3 a54

h2 h1 h0 0 0 00 h2 h1 h0 0 00 0 h2 h1 h0 00 0 0 h2 h1 h0

Page 37: Cognitive LTE Small Cell Networks

Supélec

PrecoderA bit of linear algebra

1 1 1 1a1 a2 a3 a4

a21 a2

2 a23 a2

4a3

1 a32 a3

3 a34

a41 a4

2 a43 a4

4a5

1 a52 a5

3 a54

h2 h1 h0 0 0 00 h2 h1 h0 0 00 0 h2 h1 h0 00 0 0 h2 h1 h0

= h2 + h1a1 + h0a21

Page 38: Cognitive LTE Small Cell Networks

Supélec

PrecoderA bit of linear algebra

1 1 1 1a1 a2 a3 a4

a21 a2

2 a23 a2

4a3

1 a32 a3

3 a34

a41 a4

2 a43 a4

4a5

1 a52 a5

3 a54

h2 h1 h0 0 0 00 h2 h1 h0 0 00 0 h2 h1 h0 00 0 0 h2 h1 h0

= h2 + h1a1 + h0a21 = 0

Page 39: Cognitive LTE Small Cell Networks

Supélec

PrecoderA bit of linear algebra

1 1 1 1a1 a2 a3 a4

a21 a2

2 a23 a2

4a3

1 a32 a3

3 a34

a41 a4

2 a43 a4

4a5

1 a52 a5

3 a54

h2 h1 h0 0 0 00 h2 h1 h0 0 00 0 h2 h1 h0 00 0 0 h2 h1 h0

= h2a1 + h1a21 + h0a

31 = 0

Page 40: Cognitive LTE Small Cell Networks

Supélec

PrecoderA bit of linear algebra

1 1 1 1a1 a2 a3 a4

a21 a2

2 a23 a2

4a3

1 a32 a3

3 a34

a41 a4

2 a43 a4

4a5

1 a52 a5

3 a54

h2 h1 h0 0 0 00 h2 h1 h0 0 00 0 h2 h1 h0 00 0 0 h2 h1 h0

= h2a21 + h1a

31 + h0a

41 = 0

Page 41: Cognitive LTE Small Cell Networks

Supélec

PrecoderA bit of linear algebra

1 1 1 1a1 a2 a3 a4

a21 a2

2 a23 a2

4a3

1 a32 a3

3 a34

a41 a4

2 a43 a4

4a5

1 a52 a5

3 a54

h2 h1 h0 0 0 00 h2 h1 h0 0 00 0 h2 h1 h0 00 0 0 h2 h1 h0

= h2a31 + h1a

41 + h0a

51 = 0

Page 42: Cognitive LTE Small Cell Networks
Page 43: Cognitive LTE Small Cell Networks
Page 44: Cognitive LTE Small Cell Networks

TDD Mode required

Page 45: Cognitive LTE Small Cell Networks
Page 46: Cognitive LTE Small Cell Networks

Supélec

Simulation Scenario

I 802.11a standard;I N = 64, L = 16;I OFDM symbol time tblk of 4 µs;

(3.2 µs of useful data and 0.8 µs of guard interval)

I Output metrics:I Pe (for QPSK constellation);I Spectral efficiency

I Cross interference factor α ∈ [0, 1] to scale the interferencecoming from the primary system:

y2 = F[T (h(22))x2 + αT (h(12))x1 + n2

].

Page 47: Cognitive LTE Small Cell Networks

Supélec

Equalizers for VFDM

0 4 8 12 16 20 24 280

0.5

1

1.5

2

2.5

3

1/σn

2 [dB]

Ro

pt [

bp

s/H

z]

L=8

L=16

L=32

0 4 8 12 16 20 24 280

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1/σn

2 [dB]

Ro

pt [

bp

s/H

z]

α=0

α=0.1

α=0.5

α=1

Optimal Receiver — N = 64 and L = 16.

0 4 8 12 16 20

0.2

0.4

0.6

0.8

1

1.2

1/σn

2 [dB]

Ro

pt,R

lin [

bps/

Hz]

MF

ZF

MMSE

Optimal Receiver

0 4 8 12 16 2010

−3

10−2

10−1

100

1/σ2 [dB]

Pe

ZF α = 0

MMSE α = 0

ZF α = 0.5

MMSE α = 0.5

ZF α = 1

MMSE α = 1

Optimal and linear receivers — N = 64 and L = 16.

Page 48: Cognitive LTE Small Cell Networks

Supélec

MU-VFDM

Multi-user Vandermonde-subspace Frequency DivisionMultiplexing

A linear cascaded precoder that generates zero interfer-ence on the primary network and manages multi-user in-terference in the secondary network

[4] L. S. Cardoso, M. Maso, M. Kobayashi, and M. Debbah. ”Orthogonal LTE

two-tier cellular networks”. To appear in proceedings of International Conference on

Communications 2011

[5] M. Maso, L. S. Cardoso, M. Debbah, and L. Vangelista. ”Orthogonal precoder for

LTE Small-Cells networks”. IEEE Journal on Selected Areas in Communications

(submitted), 2011.

Page 49: Cognitive LTE Small Cell Networks

Supélec

System Model

Page 50: Cognitive LTE Small Cell Networks

Supélec

System Model

Page 51: Cognitive LTE Small Cell Networks

Supélec

System Model

ss

sm

Page 52: Cognitive LTE Small Cell Networks

Supélec

System Model

ym = Hmmsm + νp

ss

sm

Page 53: Cognitive LTE Small Cell Networks

Supélec

System Model

ym = Hmmsm + HsmWss + νp

ys = HssWss + Hmssm + νs

ss

sm

Page 54: Cognitive LTE Small Cell Networks

Supélec

System Model

ym = Hmmsm + HsmWss + νp

ys = HssWss + Hmssm + νs

ss

sm

Page 55: Cognitive LTE Small Cell Networks

Supélec

System Model

ym = Hmmsm + HsmWss + νp

ys = HssWss + Hmssm + νs

ss

sm

Page 56: Cognitive LTE Small Cell Networks

Supélec

Precoder

W = ZE

I Inner precoder E (Vandermonde)

HsmE = 0, (4)

where E is defined as E =⊕K

i=1 Ei . (4) is satisfied when

H(i ,·)sm Ei = 0 ∀i ∈ [1,K ].

I Outer precoder Z (ZFBF)

Z =H̃†ss√

tr(H̃†ssH̃†Hss )

where H̃ss = HssE. Z is feasible only whenTX dimensions ≥ RX dimensions.

Page 57: Cognitive LTE Small Cell Networks

Supélec

Precoder

W = ZE

I Inner precoder E (Vandermonde)

HsmE = 0, (4)

where E is defined as E =⊕K

i=1 Ei . (4) is satisfied when

H(i ,·)sm Ei = 0 ∀i ∈ [1,K ].

I Outer precoder Z (ZFBF)

Z =H̃†ss√

tr(H̃†ssH̃†Hss )

where H̃ss = HssE. Z is feasible only whenTX dimensions ≥ RX dimensions.

Page 58: Cognitive LTE Small Cell Networks

Supélec

Precoder

W = ZE

I Inner precoder E (Vandermonde)

HsmE = 0, (4)

where E is defined as E =⊕K

i=1 Ei . (4) is satisfied when

H(i ,·)sm Ei = 0 ∀i ∈ [1,K ].

I Outer precoder Z (ZFBF)

Z =H̃†ss√

tr(H̃†ssH̃†Hss )

where H̃ss = HssE. Z is feasible only whenTX dimensions ≥ RX dimensions.

Page 59: Cognitive LTE Small Cell Networks

Supélec

Channel estimation

Channel estimation protocol

Design of a channel estimation protocol, that takes intoconsideration the primary system’s own channel estima-tion, and tries to minimize errors.

[7] M. Maso, L. Cardoso, M. Debbah, and L. Vangelista. ”Channel Estimation Impact

for MU-VFDM LTE Small Cells”. IEEE Global Communications Conference

(submitted), 2011

Page 60: Cognitive LTE Small Cell Networks

Supélec

Imperfect CSITModel

I Block fading channel of coherence time T

I Channel estimation in the MC is performed during τ ≤ T

I τ is divided into two parts, τ1 (UL channel estimation phase)and τ2 (DL channel estimation phase)

tT

τ1 transmission timeτ2

τ

Figure: Channel estimation and transmission times.

Page 61: Cognitive LTE Small Cell Networks

Supélec

Protocol

tT

Page 62: Cognitive LTE Small Cell Networks

Supélec

Protocol

tT

τ1

Training

Page 63: Cognitive LTE Small Cell Networks

Supélec

Protocol

tT

τ1

Training

Page 64: Cognitive LTE Small Cell Networks

Supélec

Protocol

tT

τ1

Training

Page 65: Cognitive LTE Small Cell Networks

Supélec

Protocol

tT

τ1

E

S1

Page 66: Cognitive LTE Small Cell Networks

Supélec

Protocol

tT

τ1 τ2

Training

Xs

Xm

Training

Page 67: Cognitive LTE Small Cell Networks

Supélec

Protocol

tT

τ1 τ2

Training

Xs

Xm

Training

Xm ⊥ Xs

Page 68: Cognitive LTE Small Cell Networks

Supélec

Protocol

tT

τ1 τ2

Training

Xs

Xm

Training

Xm ⊥ Xs

Page 69: Cognitive LTE Small Cell Networks

Supélec

Protocol

tT

τ1 τ2

τ

W = ZE

Hmm

Page 70: Cognitive LTE Small Cell Networks

Supélec

Protocol

tT

τ1

transmission time

τ2

τ

Page 71: Cognitive LTE Small Cell Networks

Supélec

Performance

The precoder W is based on an imperfect channel estimationaffecting the performance of both systems.

CSUM, Im =

T − τT (N + L)

N∑i=1

log2(1 + SINRi (τ)) and

CSUM, Is =

T − τT (N + L)

γrxKN∑i=1

log2(1 + SINRi (τ))

Page 72: Cognitive LTE Small Cell Networks

Supélec

Performance

0.05 0.1 0.15 0.2 0.25 0.3 0.350.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

τ

T

Ra

te lo

ss

SNR = 20 dB

SNR = 10 dB

SNR = 0 dB

Figure: Rate loss of the MC due toimperfect CSIT as τ changes.

0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.2

0.3

0.4

0.5

0.6

0.7

τ

T

Ra

te lo

ss

SNR = 20 dB

SNR = 10 dB

SNR = 0dB

Figure: Rate loss of the SCs due toimperfect CSIT as τ changes.

Page 73: Cognitive LTE Small Cell Networks

Supélec

DemoIntroduction

I MU-VFDM case;

I User configurable: physical layer and network parameters;

I Macro Cell and Small Cells randomly deployed on a 3D maprepresenting a realistic scenario;

I Mobility of all user equipments (Random Walk @ 3km/h);

I Instantaneous and time evolving capacity user equipments;

I Developed in MATLAB and exported to C#

Page 74: Cognitive LTE Small Cell Networks

Supélec

DemoInit

MU-VFDM demo, opening screen.

Page 75: Cognitive LTE Small Cell Networks

Supélec

DemoConfiguration

MUVFDM demo, configuration panel.

Page 76: Cognitive LTE Small Cell Networks

Supélec

DemoRunning

MU-VFDM demo, simulation running.

Page 77: Cognitive LTE Small Cell Networks

Supélec

DemoResults

MU-VFDM, single MUE and SUE performance.

Page 78: Cognitive LTE Small Cell Networks

Supélec

Conclusions and Further Work

I VFDM is viable for interference cancellation for cognitive radionetworks

I Non-negligible rates in the single cell scenario if perfect CSI isavailable

I Zero interference achieved at the expense of a lower rate for thesecondary system, though competitive with the primary system inhigh-user scenario

I Thanks to the dense network layout and cognitive capabilities thecapacity per area is increased. The achievable sum-rate increases somore users can be served

Further work:

I Implementation of a VFDM testbed;

I VFDM with limited backhaul capacity;

I Analysis of the clustered MIMO case.

Page 79: Cognitive LTE Small Cell Networks

Supélec

Bibliography

L.S. Cardoso, M. Kobayashi, Ø. Ryan, and M. Debbah.

Vandermonde frequency division multiplexing for cognitive radio.In Proceedings of the 9th IEEE Workshop on Signal Processing Advances in Wireless Communications,pages 421–425, 2008.

L.S. Cardoso, F.R.P. Cavalcanti, M. Kobayashi, and M. Debbah.

Vandermonde-subspace frequency division multiplexing receiver analysis.In PIMRC 2010, September 2010.

H. Holma and A. Toskala.

LTE for UMTS OFDMA and SC-FDMA Based Radio Access.2009.

L.S. Cardoso, M. Maso, M. Kobayashi, and M. Debbah.

Orthogonal LTE two-tier cellular networks.In To appear in proceedings of International Conference on Communications 2011, 2011.

M. Maso, L. S. Cardoso, M. Debbah, and L. Vangelista.

Orthogonal precoder for LTE Small-Cells networks.IEEE Journal on Selected Areas in Communications (submitted), 2011.

J. Hoydis, M. Kobayashi, and M. Debbah.

Optimal channel training in uplink network MIMO systems.IEEE Transactions on Signal Processing (accepted for publication), 2010.

M. Maso, L. S. Cardoso, M. Debbah, and L. Vangelista.

Channel estimation impact for MU-VFDM LTE Small Cells.In IEEE Global Communications Conference (submitted), 2011.

Page 80: Cognitive LTE Small Cell Networks

The road ahead