58
Capturing the Immune System: From the wetlab to the robot, building be;er quality immuneinspired engineering solu=ons Dr. Mark Read Department of Electronics, The University of York

Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Embed Size (px)

DESCRIPTION

Mark Read's Lecture from AWASS 2013

Citation preview

Page 1: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Capturing  the  Immune  System:  From  the  wet-­‐lab  to  the  robot,  

building  be;er  quality  immune-­‐inspired  engineering  solu=ons  

Dr.  Mark  Read  Department  of  Electronics,    The  University  of  York  

Page 2: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

 Talk  Overview  •  Ar=ficial  immune  systems  are  engineered  systems  that  

take  inspira=on  from  the  immune  systems’  organiza=on  and/or  func=on  

Bio-­‐inspired  algorithms/systems  

•  Immune  System  Func=on  –  Why  seek  immune  inspira=on?  

•  Understanding  and  Capturing  Immune  System  Principles  –  How  to  replicate  that  which  you  do  not  understand?  

•  Adop=ng  Immune  Inspira=on    –  Robots  with  Immune  Systems?  

Page 3: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

The  Immune  System  

A  rich  source  of  inspira=on  

Page 4: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

The  immune  system  (IS)  

•  Large  collec=on  of  cells,  molecules  and  organs  responsible  for  maintaining  health  of  the  host  

Page 5: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

The  immune  system  (IS)  

•  What  it  is  responsible  for:  –  Iden=fying  &  clearing  pathogens  –  Clearing  tumors  –  Clearing  dead  cells  and  debris  –  Growing  and  shaping  =ssues  – Maintaining  general  health  of  the  host  

•  IS  must:  –  Differen=ate  harmful/dangerous  and  healthy  contexts  –  Correlate  harm/health  with  causes  –  Not  a5ack  the  host  

[Cohen  2004]  

Page 6: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

IS  Complexity  

•  Insanely  complex.    •  Data  needs  to  be  integrated  and  understood  •  IS  is  a  complex  system,  evolved  through  ages,  adop=ng  short  term  gains,  with  no  organizing  principles.    

[Kindt  07]  

Page 7: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

IS  func=on  •  Composed  of  a  great  many  cell  types  –  T,  B,  Macrophage,  DC,  NK,  NK-­‐T  – More,  and  subsets  of  all  of  these    

•  Roughly  composed  of  two  halves  –  Innate,  evolu=onarily  conserved  –  Adap=ve,  bespoke  reac=on  to  infec=on  

•  Complement  system,  not  cellular  •  ‘Communica=on  channels’  also  complex  –  Cytokines/receptors  with  overlapping  func=on  

Page 8: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Innate  immunity  •  Fast  response  to  known  pathogens  •  Similar  from  one  individual  to  the  next  •  Skin  •  Phagocy=c  cells  •  DCs  and  Macrophages  secrete  soluble  factors  –  Complement  system  –  ROS,  NO,  other  harmful  chemicals  

•  S=mulated  by  contact  with  par=cular  pa;erns  –  E.g.  bacteria,  evolu=onarily  conserved  structures  

•  Differen=ates  harmful/not  •  Interacts  with  adap=ve  system  

Page 9: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Adap=ve  immunity  

•  Slower  response  to  pathogens  –  An=bodies,  T  cells,  B  cells  

•  Specific,  bespoke  for  par=cular  pathogen  

•  Each  individual’s  adap=ve  IS  is  unique  

•  Driven  by  the  innate  response  

•  Specificity  improves  during  prolifera=on  (for  B  cells)  

Page 10: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Walk-­‐through  immune  response  

Page 11: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Primary  and  secondary  responses  

•  IS  has  a  “memory”  •  Generally  get  sick  less  as  you  get  older  

Page 12: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Autoimmunity  &  Regula=on  •  Fast-­‐evolving  pathogens?  •  Genera=on  of  new  receptors  –  DNA  recombina=on    

•  Thymus  &  bone  marrow  in  nega=ve  selec=on  

•  Not  complete!    –  Auto-­‐immune  cells  reside  in  all  of  us    –  Ordinarily,  they  are  suppressed  

Page 13: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Autoimmunity  as  a  malfunc=on  of  regula=on  •  Peripheral  tolerance  •  ‘By-­‐stander’  Treg-­‐regula=on  

•  Specific  regula=on  

Page 14: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Immune  system  proper=es  

•  Interest  in  the  immune  system?  –  Adapta=on  –  Pa;ern  matching  –  Decentraliza=on  –  Self-­‐organizing  –  Self-­‐regula=ng  –  Op=miza=on  – Memory  –  Homeostasis  

Page 15: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Understanding  and  Capturing  Immune  System  Principles  

How  to  replicate  that  which  you  do  not  understand?  

Page 16: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

So  you  want  to  create  an  AIS?  

•  Typical  instan=a=ons  –  Anomaly  detec=on    

•  Nega=ve  selec=on  •  Danger  theory  

–  Op=miza=on  •  Clonal  selec=on  

–  Clustering  &  classifica=on  •  Modified  clonal  selec=on  

•  Not  a  very  diverse  range  of  inspira=on  •  Not  really  immune  “systems”  –  Integra=on  of  IS  principles  could  lead  to  more  sophis=cated  applica=ons?  

[Hart  2008]  

Page 17: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Capturing  the  IS  

•  IS  a  much  richer  source  of  inspira=on  than  has  been  typically  adopted  

•  But  its  hard  •  The  typical  approach  –  Iden=fy  some  interes=ng  aspect  of  immunology  –  Read  a  textbook  –  `pretend’  that  you  understand  it  (trained  biologists  don’t  understand  a  lot  of  this)  

–  Get  hacking!    

[Stepney  2005]  

Page 18: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Capturing  the  IS  

•  Are  there  be;er  ways  to  capture  IS  proper=es?  •  What  is  the  principle  challenge  here?  

[Tieri  2012]  

Page 19: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Biological  complexity  

•  We  don’t  really  understand  the  biological  systems  we  are  trying  to  capture.    

•  Major  debates  in  immunology  about  fundamental  immune  func=on  –  CD4Th  ‘help’,  tolerance  

•  Not  necessarily  a  problem  –  As  long  as  there  is  a  coherent  model,  we  can  run  with  it.  –  …  if  we  understand  it  

[Andrews  2005]  

Page 20: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Conceptual  Framework  

[Stepney  2005,  Andrews  08]  

•  What  is  the  problem  domain?  •  How  do  you  select  appropriate  biological  inspira=on?    

Page 21: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Modelling  to  understand  

•  Models  and  simula=ons  demonstrate  whether  our  theories  explain  what  we  observe  –  (they  usually  don’t)  

•  What  is  important,  what  is  not?  •  What  can  be  len  out?  

•  Giving  back:  In  silico  experimenta=on  

•  Turns  out  we  don’t  even  know  how  to  build  models  par=cularly  well…  

Page 22: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Modelling  to  understand  

•  So  how  do  you  go  about  modelling  biological  phenomenon?  

•  Typical  approach  –  Iden=fy  some  interes=ng  aspect  of  immunology  –  Read  a  textbook  –  `pretend’  that  you  understand  it  (trained  biologists  don’t  understand  a  lot  of  this)  

–  Get  hacking!    

•  Sound  familiar?  

Page 23: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

CoSMoS  Process  

[Andrews  2010,  Bown  2012]  

•  A  principled  approach  to  inves=ga=ng  complex  system  phenomena  

•  Emphasizes  domain  expert  engagement  and  documen=ng  assump=ons  

 

Page 24: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Domain:  Experimental  Autoimmune  Encephalomyeli=s  (EAE)  

[Kumar  1996  (redrawn)]  

•  Murine  autoimmune  disease,  model  for  MS  •  Spontaneous  recovery,  iden=fying  cells  responsible  

Page 25: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Domain:  Experimental  Autoimmune  Encephalomyeli=s  

[Read  2011]  

Page 26: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

What  do  we  want  to  know?  

•  Inves=gate  role  of  CD8Treg  in  media=ng  recovery.    •  How  efficient  is  this  killing?  

Page 27: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Domain  Modelling  I  

•  Itera=ve,  DM  engagement  •  UML  

[Read  2011,  2009,  manuscript  in  prep]  

Page 28: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Domain  Modelling  II  

•  Ac=vity  diagrams  •  Capture  how  cellular  events  hypothesized  to  a  par=cular  outcome  

•  Decompose  disease  into  manageable  subsets.  

[Read  2011,  2009,  manuscript  in  prep]  

Page 29: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Domain  Modelling  III  

•  State  machine  diagrams  capture  lowest  level  en=ty  behaviours  

•  Ques=ons  concerning  orthogonality  

[Read  2011,  2009,  manuscript  in  prep]  

Page 30: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Plasorm  Modelling  

•  State  machine  diagrams  translated  into  code  

•  Emergent  phenomena  removed  

•  Implementa=on  details  added  

Page 31: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Simula=on  Plasorm  

Page 32: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Results  model  

•  Compare  simula=on  results  with  real-­‐world  observa=ons  

•  Perform  in  silico  experiments  

Page 33: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Baseline  results  Control   Disable  regula=on  

Real  m

ice  

Simula=

on  

 

Page 34: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Characterizing  regulatory  efficacy  I  

•  How  efficient  is  this  killing?  

Page 35: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Characterizing  regulatory  efficacy  II  

Regulatory  Efficacy  

Death  (%)  

Clinical  Episodes  (%)  

1   2   3  

100%   15.0   99.8   0   0  

20%   16.0   99.8   0   0  

5%   22.0   99.4   0.6   0  

2%   26.6   85.0   12.4   2.6  

0%   29.0   56.8   31.1   12.2  

Th1  @  40  days  control  

Page 36: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

We  have  a  model  

•  Now  what?  •  Extract  organizing  principles  from  the  models  •  Sensi=vity  analysis  –  Iden=fies  key  components  and  pathways  

•  Need  to  find  the  analogy  between  the  model,  and  the  applica=on  domain  

•  For  EAE?  

Don’t  have  a  par=cular  domain  in  mind    

Page 37: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Mapping  IS  concepts  to  a  domain  

•  For  swarm-­‐repair  •  Granulomas  

[Ismail  11]    

Page 38: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Granuloma  Forma=on  Algorithm  

Page 39: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Par=al  Failure  

[Ismail  2011]  

Page 40: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Par=al  Failure  +  Granuloma  

[Ismail  2011]  

Page 41: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

AdopDng  Immune  InspiraDon  

Robots  with  immune  systems?  

Page 42: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Characterizing  the  ‘AIS  Prac==oner’  

•  Engineers  don’t  speak  Immunologist.  •  Intermediary  between  immunology  &  engineering    

[Hart  2013]  

Page 43: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Swarm  Robo=cs  •  Swarm  intelligence  +  robo=cs  •  Complex  group  behaviours  emerge  from  simple  decentralized  individuals  

•  Robustness,  flexibility,  scalability  –  Apparently  not  without  limits  though  

•  Applica=ons,  e.g.,  search  and  rescue  [Bayindir  2007,    Bjerknes    2010]  

Page 44: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

CoCoRo  –  the  domain  •  Can  IS-­‐inspira=on  be  used  to  provide  fault  tolerance  in  CoCoRo?  

Page 45: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

CoCoRo  Immunity  •  Fault  tolerance  •  Immunity  operates  at  3  levels  

Page 46: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Receptor  Density  Algorithm  -­‐  Inspira=on  

[Owens  2010]  

Page 47: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Receptor  Density  Algorithm  

Page 48: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Single  sensor  anomaly  detec=on  

Gyroscope  data  

Page 49: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Single  sensor  anomaly  detec=on  result  

Gyroscope  Y  

Page 50: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Single  sensor  anomaly  detec=on  result  

Gyroscope  X  

Page 51: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Mul=-­‐sensor  anomaly  detec=on  

Page 52: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Mul=-­‐sensor  anomaly  detec=on  

•  Correla=ons  in  sensor  stream  data  –  And  what  the  OS  thinks  the  AUV  is  supposed  to  be  doing  

•  Sensors  give  overlapping  perspec=ves  of  same  secenario  

•  Spot  the  odd  one  out  –  Contextualize  anomalies  –  Sensor/actuator  anomaly?  

Page 53: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Failure  Mode  Effect  Analysis  (FMEA)  •  Offline  algorithm  analysis  •  Iden=fy  the  algorithmic/swarm-­‐level  impact  of  hardware/

subsystem  failures  in  an  AUV  •  Informs  algorithmic  design,  recovery  mechanisms  design  •  Performed  on  shoaling  

–  And  relay  chain…  but  I  don’t  want  to  give  anything  away  :o)  

SHOALING  VIDEO  HERE  

Page 54: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

FMEA  results  on  shoaling  

Blue  light  transmission  failure  Leads  to  the  most  effects    Most  common  effects  are  collisions  and  ge}ng  lost    Anchoring  is  disrup=ve,  but  not    the  most  prevalent  fault    

Page 55: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

CoCoRo  Immunity  •  How  does  this  all  fit  together?  •  EAE  again  –  Grading  controller  ‘disease’?  –  Recovery  likely  to  be  disrup=ve  –  Strength  of  response  linked  to  state  of  disease  

Page 56: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

Summary  

•  IS  very  rich  source  of  interes=ng  behaviours  –  Pa;ern  recogni=on,  anomaly  detec=on,  memory,  decentraliza=on,  self-­‐organizing,  self-­‐regula=ng  

•  Capturing  it  is  difficult  –  It  is  not  yet  well  understood  – Methodologies  for  reasoning  by  model/simula=on  –  Extrac=ng  key  principles/components  –  Try  to  lose  the  immunological  nomenclature  

•  Swarm  immunity  can  be  more  than  one  algorithm  –  Systemic,  with  layers  feeding  into  one  another  

Page 57: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

The  possibili=es  

Page 58: Capturing the Immune System: From the wet-lab to the robot, building better quality immune-inspired engineering solutions - Mark Read

References  •  PS  Andrews.  An  Inves=ga=on  of  a  Methodology  for  the  Development  of  Ar=ficial  Immune  Systems:  A  Case-­‐Study  in  Immune  Receptor  

Degeneracy,  PhD  Thesis,  the  University  of  York,  2008.    •  PS  Andrews,  J  Timmis.  Inspira=on  for  the  Next  Genera=on  of  Ar=ficial  Immune  Systems.  LNCS  3627:126-­‐138,  2005.  •  PS  Andrews  et  al.  The  CoSMoS  Process  Version  0.1:  A  Process  for  the  Modelling  and  Simula=on  of  Complex  Systems.  Technical  Report  

Number  YCS-­‐2010-­‐453.  Department  of  Computer  Science,  University  of  York,  2010.      •  L  Bayindir  and  E  Sahin.  A  review  of  studies  in  swarm  robo=cs.  Turkish  journal  of  electrical  engineering  and  computer  science,  15(2):

115-­‐147,  2007.  •  J  Bjerknes  and  A  Winfield.  On  fault-­‐tolerance  and  scalability  of  swarm  robo=c  systems.  DARS  2010,  Springer  Tracks  in  advanced  robo=cs  

series  1:1-­‐12,  2010.  •  J  Bown  et  al.  Engineering  Simula=ons  for  Cancer  Systems  Biology.  Current  Drug  Targets  13(12):1560-­‐1574,  2012.    •  IR  Cohen.  Tending  Adam’s  Garden  :  Evolving  the  Cogni=ve  Immune  Self.  Elsevier  Academic  Press,  August  2004.  •  E  Hart,  J  Timmis.  Applica=on  areas  of  AIS:  The  past,  the  present  and  the  future.  Applied  Son  Compu=ng  (8):191-­‐201,  2008.  •  E  Hart  et  al.  On  the  role  of  the  AIS  Prac==oner.  Abstract  accepted  to  ICARIS  track  at  ECAL  2013.    •  AR  Ismail.  Immune-­‐inspired  self-­‐healing  swarm  robo=c  systems.  PhD  Thesis,  the  University  of  York,  2011.  •  TJ  Kindt  et  al.  Kuby  Immunology.  W.  H.  Freeman  and  Company,  6th  edi=on,  2007.  •  V  Kumar,  K  Stellrecht  and  E  Sercarz.  Inac=va=on  of  T  Cell  Receptor  Pep=de-­‐specific  CD4  Regulatory  T  Cells  Induces  Chronic  

Experimental  Autoimmune  Encephalomyeli=s  (EAE).  Journal  of  Experimental  Medicine  (184):1609-­‐1617,  1996  •  N  Owens.  From  Biology  to  Algorithms.  PhD  Thesis,  The  University  of  York,  2010.  •  M  Read  et  al.  A  Domain  Model  of  Experimental  Autoimmune  Encephalomyeli=s.  2nd  Workshop  on  Complex  Systems  Modelling  and  

Simula=on.pp:9-­‐44,  2009.  •  M  Read  et  al.  Techniques  for  Grounding  Agent-­‐Based  Simula=ons  in  the  Real  Domain:  A  Case  Study  in  Experimental  Autoimmune  

Encephalomyeli=s.  MCMDS  18(1):67-­‐86,  2012.  •  M  Read.  Sta=s=cal  and  Modelling  Techniques  to  Build  Confidence  in  the  Inves=ga=on  of  Immunology  through  Agent-­‐Based  Simula=on.  

PhD  Thesis,  the  University  of  York,  2011.    •  S  Stepney  et  al.  Conceptual  Frameworks  for  Ar=ficial  Immune  Systems.  Interna=onal  Journal  of  Unconven=onal  Compu=ng  1(3):

315-­‐338,  2005.    •  J  Timmis  et  al.  Immuno-­‐Engineering.  IFIP  World  Computer  Congress,  IEEE  Press  268:3-­‐17,  2008.  •  P  Tieri  et  al.  Char=ng  the  NK-­‐kB  Pathway  Interactome  Map.  Plos  One  7(3):  e32678,  2012.