45
Systematic Error and the Contours of a Theory of Macroevolution Liliana M. Dávalos Associate Professor, Department of Ecology & Evolution SUNY, Stony Brook Field Museum of Natural History 17 December 2014

Systematic error and the contours of a theory of macroevolution

Embed Size (px)

Citation preview

Page 1: Systematic error and the contours of a theory of macroevolution

Systematic Error and the Contours of a Theory of Macroevolution

!Liliana M. DávalosAssociate Professor, Department of Ecology & EvolutionSUNY, Stony Brook!Field Museum of Natural History17 December 2014

Page 2: Systematic error and the contours of a theory of macroevolution

Our research mission

Biological diversityDiversification Human

impact

Page 3: Systematic error and the contours of a theory of macroevolution

Two kinds of questions

Biological diversity

Diversification, speciation decrease Habitat lossincrease

Page 4: Systematic error and the contours of a theory of macroevolution

Sampling error vs. systematic errorFelsenstein 1978 Syst Zool

Page 5: Systematic error and the contours of a theory of macroevolution

Thinking about errors

• Let’s say we want to answer a question:• In a finite

population, what is the frequency of an allele?

Sampling vs. systematic

Page 6: Systematic error and the contours of a theory of macroevolution

How to answer this question

• We go out, get samples, genotype different individuals

• Then we count the alleles

• What is the main source of error?

Sampling vs. systematic

Page 7: Systematic error and the contours of a theory of macroevolution

This is sampling error

• We want to get a better estimate of the allele frequency• => Sample more

• We could sample the entire population• => Best possible

estimate of allele frequency

Sampling vs. systematic

Page 8: Systematic error and the contours of a theory of macroevolution

0.1 substitutions/site

Mycobacterium bovis BCG str. Pasteur 1173P2M. tuberculosis H37RaM. bovis BCG str. Tokyo 172M. bovis AF212297M. tuberculosis CDC1551M. tuberculosis F11M. tuberculosis KZN 1435M. tuberculosis H37Rv

M. avium subsp. paratuberculosis K10M. avium 104

M. vanbaalenii PYR1M. sp. Spyr1

M. smegmatis str. MC2 155M. sp. KMSM. sp. MCSM. sp JLS

Mycobacterium sp. *Nocardia farcinica IFM 10152

Gordonia bronchialis DSM 43247Rhodococcus opacus B4

R. equi ATCC 33707R. equi 103S

Segniliparus rotundus DSM 44985Bifidobacterium longum NCC2705 B. longum DJO10A B. longum subsp. infantis 157FB. longum subsp. longum JCM 1217B. longum subsp. longum BBMN68 B. longum subsp. infantis ATCC 55813B. longum subsp. longum JDM301 B. longum subsp. infantis ATCC 15697B. breve DSM 20213

B. dentium Bd1B. dentium ATCC 27679

B. adolescentis ATCC 15703 B. bifidum PRL2010B. bifidum S17Bifidobacterium sp. *

Corynebacterium matruchotii ATCC 14266C. efficiens YS314

C. genitalium ATCC 33030 Sca01C. glucuronolyticum ATCC 51866

C. urealyticum DSM 7109Arthrobacter sp. FB24

A. chlorophenolicus A6Kocuria rhizophila DC2201

Micrococcus luteus NCTC 2665Clavibacter michiganensis subsp. michiganensis NCP

C. michiganensis subsp. sepedonicus Cellulomonas flavigena DSM 20109

Kineococcus radiotolerans SRS30216Nakamurella multipartita DSM 44233

Saccharopolyspora erythraea NRRL 2338 Geodermatophilus obscurus DSM 43160

Amycolatopsis mediterranei U32Intrasporangium calvum DSM 43043

Kytococcus sedentarius DSM 20547Nocardioides sp. JS614

Streptomyces avermitilis MA4680S. scabiei 87 22

S. coelicolor A3 2Catenulispora acidiphila DSM 44928

Thermobifida fusca YXThermobispora bispora DSM 43833

Thermomonospora curvata DSM 43183Streptosporangium roseum DSM 43021

Micromonospora aurantiaca ATCC 27029M. sp. L5 Salinispora tropica CNB440

Salinispora arenicola CNS205Acidothermus cellulolyticus 11B

Rhodococcus jostii RHA1Mycobacterium gilvum PYRGCK

Frankia alni ACN14a

100

10084

9642

10063

63

65

55

84

10074

51

70

98

9299

74

100100

10075

99

100

78

4378

100

49

20

100

9992

32

10092

50

26

5618

14

6

37

32

11

66100

51

5

463878

15

100

100

10077

99

84

88

pathogenic Mycobacterium complex(avium-bovis-tuberculosis)

non-pathogenic Mycobacterium smegmatis complex

Phylogenetics

• Testing relatedness• All of comparative

biology• Historical

biogeography• Evolutionary aspects

of community ecology• Diagnostics and

similar applications

Corthals et al. 2012 PLoS One

Sampling vs. systematic

Page 9: Systematic error and the contours of a theory of macroevolution

Now let’s ask a different question

• We want to find out how these 3000 microbial lineages relate to one another

• We get their genomes, map out each of the single-copy genes, estimate a phylogeny

Lang, Darling, Eisen 2013 PLoS One

Sampling vs. systematic

Page 10: Systematic error and the contours of a theory of macroevolution

But our results don’t make sense

• Is it sampling error?• Can we sample

more than the whole genome?

• We discover the model of gene evolution we are using was wrong• What kind of error is

this?

Lang, Darling, Eisen 2013 PLoS One

Sampling vs. systematic

Page 11: Systematic error and the contours of a theory of macroevolution

This is systematic error

• Even sampling whole genomes won’t fix the problem• Having more data

can make the problem worse!

• As long as we don’t change the model, we will keep obtaining the wrong answer

Lang, Darling, Eisen 2013 PLoS One

Sampling vs. systematic

Page 12: Systematic error and the contours of a theory of macroevolution

Systematic error in molecular evolutionSullivan & Swofford 1997 J Mamm EvolD’Erchia et al. 1996 Nature

Page 13: Systematic error and the contours of a theory of macroevolution

Systematic error = homoplasy that is not modeled

Page 14: Systematic error and the contours of a theory of macroevolution

q

p

Homoplasy I: inconsistency!

q

pp

Felsenstein 1978 Syst Biol

Phenotypic evolution

consistent

Non consistent

Page 15: Systematic error and the contours of a theory of macroevolution

A B

Background selection

Pe

rcen

t cod

ons

of C

YTB

in e

ach

codo

n ty

pe

0

20

40

60

Background selection Selection shift

Significantly support

Significantly rejectRejectSupport

Type of codon

Amino acid position in alignment

Sup

port

for n

ecta

r-fe

edin

g cl

ade-3

-2

-1

0

1

2

3

100 200 300 400 500

Significant supportor rejection

Selection shiftSelection shift inGlossophaginae

Type of codon

CYTB COX1

Figure 12

Homoplasy II: ecological convergence

• Phenotype exposed to selection

• Selection from similar ecology produces similar phenotypes

Dávalos, Cirranello et al. 2012 Biol Rev

Phenotypic evolution

Page 16: Systematic error and the contours of a theory of macroevolution

Homoplasy III: correlated evolution

• Expected in protein-coding genes

• Models in use for codons, aminoacids, ribosomal RNA secondary structure

Dávalos & Perkins 2008 Genomics

Phenotypic evolution

Page 17: Systematic error and the contours of a theory of macroevolution

Example with favorite gene: mt cytb Agnarsson et al. 2011 PLoS

Currents ToL

Page 18: Systematic error and the contours of a theory of macroevolution

Dávalos 2010 Island Bats Evolution, Ecology, and Conservation

Agnarsson et al. 2011 PLoS Currents ToL

Molecular evolution

© M. Tuttle© N. Simmons

Page 19: Systematic error and the contours of a theory of macroevolution

One of these is evolving fast, very fast Dávalos, Gutiérrez & Velazco

unpublishedMolecular evolution

Page 20: Systematic error and the contours of a theory of macroevolution

Speed cannot be the whole story

• High rates of change randomize shared changes

• Expect no resolution instead of actual conflict

• For conflict, must reflect other forces• E.g., base

composition Dávalos, Gutiérrez & Velazco unpublished

Molecular evolution

Page 21: Systematic error and the contours of a theory of macroevolution

Dávalos, Gutiérrez & Velazco unpublished

Agnarsson et al. 2011 PLoS Currents ToL

Molecular evolution

© M. Tuttle© N. Simmons

Page 22: Systematic error and the contours of a theory of macroevolution

MacrotusLampronycterisMicronycteris minutaMicronycteris schmidtorumMicronycteris hirsutaMicroncyteris megalotisDiphyllaDiaemusDesmodusLonchorhinaMacrophyllumTrachopsChrotopterusVampyrumLophostomaTonatiaPhyllodermaPhyllostomusMimon

AnouraHylonycterisChoeroniscusMusonycterisChoeronycteris

ErophyllaBrachyphyllaMonophyllusGlossophagaLeptonycteris

LonchophyllaLionycterisCarolliaTrinycterisGlyphonycteris daviesiGlyphonycteris sylvestrisRhinophyllaSturnira

MesophyllaVampyressaPlatyrrhinusVampyrodes

Uroderma

Vampyressa bidensVampyressa brocki

Chiroderma

EnchisthenesEctophyllaArtibeusDermanuraAriteusArdopsStenodermaCenturioPygodermaAmetridaSphaeronycteris

< 0.97������

BYS posterior probability

Dumont, Dávalos et al. 2012 P R Soc B

Molecular evolution

Baker et al. 2003 Occas Pap Mus TTU Dávalos, Cirranello et al. 2012 Biol Rev

Page 23: Systematic error and the contours of a theory of macroevolution

A B

Background selection

Pe

rcen

t cod

ons

of C

YTB

in e

ach

codo

n ty

pe

0

20

40

60

Background selection Selection shift

Significantly support

Significantly rejectRejectSupport

Type of codon

Amino acid position in alignment

Sup

port

for n

ecta

r-fe

edin

g cl

ade

-3

-2

-1

0

1

2

3

100 200 300 400 500

Significant supportor rejection

Selection shiftSelection shift inGlossophaginae

Type of codon

CYTB COX1

Figure 12

Turns out: ecological convergence!

• Brings together ecologically similar lineages• Mt cytochrome b

gene of nectar-feeding bats

• Link between molecular adaptation and support for node

Dávalos, Cirranello et al. 2012 Biol Rev

Molecular evolution

Page 24: Systematic error and the contours of a theory of macroevolution

The genome is littered with such genes Parker et al. 2013 Nature

© N. Simmons

Page 25: Systematic error and the contours of a theory of macroevolution

Diphylla Diaemus Desmodus Brachyphylla Erophylla Phyllonycteris Platalina Lonchophylla Lionycteris Monophyllus Glossophaga Leptonycteris Anoura Hylonycteris Lichonycteris Scleronycteris Choeroniscus Musonycteris Choeronycteris Phylloderma Phyllostomus Macrophyllum Lonchorhina Mimon crenulatum Mimon bennettii Trachops Tonatia Chrotopterus Vampyrum Trinycteris Glyphonycteris Lampronycteris Macrotus Micronycteris minutaMicronycteris hirsutaMicronycteris megalotisRhinophylla Carollia Sturnira Enchisthenes hartiiArtibeus concolorArtibeus jamaicensisArtibeus cinereusUroderma Platyrrhinus Vampyrodes Chiroderma Vampyressa bidensVampyressa nymphaeaVampyressa pusillaEctophylla Mesophylla Ametrida Centurio Sphaeronycteris Pygoderma Phyllops Stenoderma Ariteus Ardops

�����

�����

�����������

MP bootstrap

MacrotusLampronycterisMicronycteris minutaMicronycteris schmidtorumMicronycteris hirsutaMicroncyteris megalotisDiphyllaDiaemusDesmodusLonchorhinaMacrophyllumTrachopsChrotopterusVampyrumLophostomaTonatiaPhyllodermaPhyllostomusMimon

AnouraHylonycterisChoeroniscusMusonycterisChoeronycteris

ErophyllaBrachyphyllaMonophyllusGlossophagaLeptonycteris

LonchophyllaLionycterisCarolliaTrinycterisGlyphonycteris daviesiGlyphonycteris sylvestrisRhinophyllaSturnira

MesophyllaVampyressaPlatyrrhinusVampyrodes

Uroderma

Vampyressa bidensVampyressa brocki

Chiroderma

EnchisthenesEctophyllaArtibeusDermanuraAriteusArdopsStenodermaCenturioPygodermaAmetridaSphaeronycteris

< 0.97������

BYS posterior probability

Baker et al. 2003 Occas Pap Mus TTU Dávalos, Cirranello et al. 2012 Biol Rev

Wetterer et al. 2000 B Am Mus Nat HistSystematic error in phenotype

Page 26: Systematic error and the contours of a theory of macroevolution

Dated trees more important than ever

• Dated trees need fossils

• Why use dated trees?• Trait evolution• History of

assemblages in time and space

• Key innovations

Dumont, Dávalos et al. 2012 P R Soc B

Phenotypic evolution

Page 27: Systematic error and the contours of a theory of macroevolution

• We use morphological characters

• How do phenotypes evolve?• Characteristics of

the data• Compare to models

molecular evolution

Fossils without genomes

Dávalos & Russell 2012 Ecol Evol

Phenotypic evolution

Page 28: Systematic error and the contours of a theory of macroevolution

Species CharactersThese are morphological characters

• They look like this —>• Discontinuous

between species• Factors, not

numbers• Difficult to model

Phenotypic evolution

© N. Simmons

© M. Tuttle

Page 29: Systematic error and the contours of a theory of macroevolution

The trouble with morphological characters

• At first, only model was parsimony

• Neutral Jukes-Cantor 1969 model implemented 2001• Current model varies

rates across characters

• Applying this model does not solve conflict

Dávalos, Cirranello et al. 2012 Biol Rev

Phenotypic evolution

Page 30: Systematic error and the contours of a theory of macroevolution

Could conflict arise from systematic error?

Phenotypic evolution

Page 31: Systematic error and the contours of a theory of macroevolution

Might systematic error affect morphological characters?

Reviewer 1:

I don't see the point. If the characters are good characters (meaning that they have some phylogenetic signal at some level), then there is nothing especially wrong with the fact that they are weighted a little more than other characters.

Phenotypic evolution

Page 32: Systematic error and the contours of a theory of macroevolution

Dávalos, Cirranello et al. 2012 Biol Rev

Inconsistency!

Phenotypic evolution

Page 33: Systematic error and the contours of a theory of macroevolution

Dental characters ●

MandibularMaxillary

● CanineIncisors

MolarsPremolars

● Significant

Aï�

0

Supp

ort fRU�QHFWDUï

feed

ing

clad

e

●●

●●

●●

A B

Background selection

Pe

rcen

t cod

ons

of C

YTB

in e

ach

codo

n ty

pe

0

20

40

60

Background selection Selection shift

Significantly support

Significantly rejectRejectSupport

Type of codon

Amino acid position in alignment

Sup

port

for n

ecta

r-fe

edin

g cl

ade

-3

-2

-1

0

1

2

3

100 200 300 400 500

Significant supportor rejection

Selection shiftSelection shift inGlossophaginae

Type of codon

CYTB COX1

Figure 12

Dávalos, Cirranello et al. 2012 Biol Rev

Convergent evolution!

Phenotypic evolution

Dávalos, Velazco et al. 2014 Syst Biol

Page 34: Systematic error and the contours of a theory of macroevolution

Correlated evolution!

Phenotypic evolution

Dissimilarity between characters ->

Dávalos, Velazco et al. 2014 Syst Biol unpublished

Page 35: Systematic error and the contours of a theory of macroevolution

Systematic error in phenotypes

• Morphology = phenotype• Neutrality and

independence wrong assumptions• Not neutral• Not independent

Skelly et al. 2013 Genome Res

Phenotypic evolution

Page 36: Systematic error and the contours of a theory of macroevolution

The trouble with systematic error

• In sampling error mode• More is more• More characters• = thousands of

correlated phenotypes• This will fail, we have

systematic error• Improve model• Improve data• Understand data

Phenotypic evolution

Page 37: Systematic error and the contours of a theory of macroevolution

The contours of a theory of macroevolution

Page 38: Systematic error and the contours of a theory of macroevolution

Modern synthesis is about populations

• Features of populations become important• Population size• Migration

• Generations• Time

• Mutation rate

Dávalos & Russell 2014 J Mammal

Contours of macroevolution

Page 39: Systematic error and the contours of a theory of macroevolution

From micro to macro: successful example

• Coalescent stochasticity• Genes may represent

different histories by chance

• No selective force, only population characteristics

• Solution• Account for pop size

(Ne), # generations (t), mutation rate (mu) Neigel & Avise 1986 Evolutionary

Processes and TheoryContours of macroevolution

Page 40: Systematic error and the contours of a theory of macroevolution

Another example

• Phenotypic traits• Often expected to

be under selection• Solution• Extend quantitative

genetics• Compare Brownian

motion to Ornstein-Uhlenbeck process

• Model t, s, and optima Martins & Hansen 1997 Am Nat

Butler & King 2004 Am NatContours of macroevolution

Page 41: Systematic error and the contours of a theory of macroevolution

Dávalos, Velazco et al. 2014 Syst Biol unpublishedContours of macroevolution

There is a limit to modeling these, though

Page 42: Systematic error and the contours of a theory of macroevolution

The chasm genetics-phenotype

• Biochemistry defines units and processes of genetics

• Genetics defines units and processes of genotype evolution in population

• What is there for (morphological) phenotypes?

Contours of macroevolutionLöytynoja & Goldman 2008 Science

Page 43: Systematic error and the contours of a theory of macroevolution

Units and process

• How to define units of morphological evolution?

• Can using functional and developmental processes help?• Aren’t these also

unknown?• Are such processes

generalizable?• I.e., the way Ne, T and

mu areContours of macroevolution

Rieppel & Kearney 2007 Biol Philos

Page 44: Systematic error and the contours of a theory of macroevolution

Morphology...

AminoacidsCodons

The challenge ahead

Neutral genotype

Model complexity

Contours of macroevolution

Page 45: Systematic error and the contours of a theory of macroevolution

Thank you for inviting me!