48
Plant architecture without multicellularity : An intracellular transcriptomic atlas of a giant, single-celled alga Dan Chitwood Donald Danforth Plant Science Cen 74 th Society for Developmental Bio July 11, 2015

Plant architecture without multicellularity: an intracellular transcriptomic atlas of a giant, single-celled alga

Embed Size (px)

Citation preview

  1. 1. Plant architecture without multicellularity: An intracellular transcriptomic atlas of a giant, single-celled alga Dan Chitwood Donald Danforth Plant Science Center 74th Society for Developmental Biology July 11, 2015
  2. 2. Independent origins of multicellularity
  3. 3. Independent origins of multicellularity Opisthokonts Streptophytes Viridiplantae Plantae Chlorophytes Rhodophytes Algae (polyphyletic) M Abedin & N King (2010) Trends in Cell Biology
  4. 4. Independent origins of multicellularity Opisthokonts Streptophytes Viridiplantae Plantae Chlorophytes Rhodophytes Algae (polyphyletic) M Abedin & N King (2010) Trends in Cell Biology
  5. 5. Independent origins of multicellularity Opisthokonts Streptophytes Viridiplantae Plantae Chlorophytes Rhodophytes Algae (polyphyletic) M Abedin & N King (2010) Trends in Cell Biology
  6. 6. Independent origins of multicellularity Opisthokonts Streptophytes Viridiplantae Plantae Chlorophytes Rhodophytes Algae (polyphyletic)
  7. 7. Independent origins of multicellularity Opisthokonts Streptophytes Viridiplantae Plantae Chlorophytes Rhodophytes Algae (polyphyletic)
  8. 8. Independent origins of multicellularity Opisthokonts Streptophytes Viridiplantae Plantae Chlorophytes Rhodophytes Algae (polyphyletic)
  9. 9. Macroscopic morphological complexity: plant architecture without multicellularity V Coneva & D Chitwood (2015) Front Plant Sci
  10. 10. Macroscopic morphological complexity: plant architecture without multicellularity Ernst Haeckel, Wikipedia, Wikimedia commons
  11. 11. Cell vs. Organismal Theory: Plant development Animal development Kaplan and Hagemann (1991) BioScience
  12. 12. Cell vs. Organismal Theory: Plant development Animal development 1) Plasmodesmata, symplasm Kaplan and Hagemann (1991) BioScience Cilia and Jackson (2004) Curr Opin in Cell Biol
  13. 13. Kaplan and Hagemann (1991) BioScience Cell vs. Organismal Theory: Plant development Animal development 1) Plasmodesmata, symplasm 2) Phragmoplasts
  14. 14. Kaplan and Hagemann (1991) BioScience Cell vs. Organismal Theory: Plant development Animal development 1) Plasmodesmata, symplasm 2) Phragmoplasts 3) Cell lineage patterns
  15. 15. Kaplan and Hagemann (1991) BioScience Cell vs. Organismal Theory: Plant development Animal development 1) Plasmodesmata, symplasm 2) Phragmoplasts 3) Cell lineage patterns
  16. 16. Brukhin, Curtis, Grossniklaus (2005) Current Science Cell vs. Organismal Theory: Plant development Animal development 1) Plasmodesmata, symplasm 2) Phragmoplasts 3) Cell lineage patterns 4) Coenocytic female gametophyte
  17. 17. Kaplan and Hagemann (1991) BioScience Cell vs. Organismal Theory: Plant development Animal development 1) Plasmodesmata, symplasm 2) Phragmoplasts 3) Cell lineage patterns 4) Coenocytic female gametophyte Conclusion: there is as much evidence to view morphologically complex plants as coenocytes as there is to consider them multicellular (at least in the same sense as animals)
  18. 18. An intracellular transcriptomic atlas of the giant coenocyte Caulerpa taxifolia Ranjan et al. (2015) PLOS Genetics
  19. 19. An intracellular transcriptomic atlas of the giant coenocyte Caulerpa taxifolia Why Caulerpa taxifolia? 1) Debatably worlds largest single- celled organism Ranjan et al. (2015) PLOS Genetics
  20. 20. An intracellular transcriptomic atlas of the giant coenocyte Caulerpa taxifolia Why Caulerpa taxifolia? 1) Debatably worlds largest single- celled organism 2) Can regenerate from any fragment Ranjan et al. (2015) PLOS Genetics
  21. 21. An intracellular transcriptomic atlas of the giant coenocyte Caulerpa taxifolia Why Caulerpa taxifolia? 1) Debatably worlds largest single- celled organism 2) Can regenerate from any fragment 3) Killer algaeinvasive Ranjan et al. (2015) PLOS Genetics
  22. 22. An intracellular transcriptomic atlas of the giant coenocyte Caulerpa taxifolia Why Caulerpa taxifolia? 1) Debatably worlds largest single- celled organism 2) Can regenerate from any fragment 3) Killer algaeinvasive 4) Endosymbiotic bacteria Ranjan et al. (2015) PLOS Genetics
  23. 23. An intracellular transcriptomic atlas of the giant coenocyte Caulerpa taxifolia Why Caulerpa taxifolia? 1) Debatably worlds largest single- celled organism 2) Can regenerate from any fragment 3) Killer algaeinvasive 4) Endosymbiotic bacteria 5) Convergent morphology with land plants Ranjan et al. (2015) PLOS Genetics
  24. 24. An intracellular transcriptomic atlas of the giant coenocyte Caulerpa taxifolia Ranjan et al. (2015) PLOS Genetics
  25. 25. A wave of apical-basal gene expression Ranjan et al. (2015) PLOS Genetics
  26. 26. A wave of apical-basal gene expression Ranjan et al. (2015) PLOS Genetics
  27. 27. A wave of apical-basal gene expression Ranjan et al. (2015) PLOS Genetics
  28. 28. A wave of apical-basal gene expression Ranjan et al. (2015) PLOS Genetics
  29. 29. A wave of apical-basal gene expression Ranjan et al. (2015) PLOS Genetics
  30. 30. A wave of apical-basal gene expression Ranjan et al. (2015) PLOS Genetics
  31. 31. A wave of apical-basal gene expression Ranjan et al. (2015) PLOS Genetics
  32. 32. A wave of apical-basal gene expression Ranjan et al. (2015) PLOS Genetics
  33. 33. A wave of apical-basal gene expression Ranjan et al. (2015) PLOS Genetics
  34. 34. Intracellular patterns of gene expression coincide with pseudo- organs Ranjan et al. (2015) PLOS Genetics
  35. 35. Intracellular patterns of gene expression coincide with pseudo- organs Ranjan et al. (2015) PLOS Genetics
  36. 36. Molecular homology between land plant organs and algal pseudo-organs?
  37. 37. Molecular homology between land plant organs and algal pseudo-organs? Ranjan et al. (2015) PLOS Genetics
  38. 38. Molecular homology between land plant organs and algal pseudo-organs? Ranjan et al. (2015) PLOS Genetics ?? D Reinhardt
  39. 39. Molecular homology between land plant organs and algal pseudo-organs? Ranjan et al. (2015) PLOS Genetics ?
  40. 40. Molecular homology between land plant organs and algal pseudo-organs? Ranjan et al. (2015) PLOS Genetics
  41. 41. Molecular homology between land plant organs and algal pseudo-organs? Ranjan et al. (2015) PLOS Genetics D Reinhardt
  42. 42. More questions
  43. 43. More questions V Coneva & D Chitwood (2015) Front Plant Sci Future directions 1) Small RNA movement 2) mRNA movement
  44. 44. More questions V Coneva & D Chitwood (2015) Front Plant Sci Future directions 1) Small RNA movement 2) mRNA movement
  45. 45. More questions V Coneva & D Chitwood (2015) Front Plant Sci Future directions 1) Small RNA movement 2) mRNA movement 3) Are nuclei functionally equivalent? 4) Soma-germline divide?
  46. 46. More questions V Coneva & D Chitwood (2015) Front Plant Sci Future directions 1) Small RNA movement 2) mRNA movement 3) Are nuclei functionally equivalent? 4) Soma-germline divide? 5) Genome sequencing
  47. 47. More questions V Coneva & D Chitwood (2015) Front Plant Sci Future directions 1) Small RNA movement 2) mRNA movement 3) Are nuclei functionally equivalent? 4) Soma-germline divide? 5) Genome sequencing 6) Intracellular microbiome
  48. 48. Thanks! Chitwood lab Viktoriya Coneva Margaret Frank Sinha Lab Aashish Ranjan Brad Townsley Yasunori Ichihashi Funding Gordon & Betty Moore Foundation Life Sciences Research Fellowship