24
Direct measurement of vinoxy radicals from ozonolysis of 2- butenes using Cavity Ring-Down Spectroscopy Mixtli Campos-Pineda Group Meeting Winter 2017

Measurements of vinoxy radical

Embed Size (px)

Citation preview

Page 1: Measurements of vinoxy radical

Direct measurement of vinoxy radicals from ozonolysis of 2-butenes using

Cavity Ring-Down Spectroscopy

Mixtli Campos-PinedaGroup Meeting

Winter 2017

Page 2: Measurements of vinoxy radical

OutlineMotivation

OzonolysisCriegee intermediates (CIs)Vinoxy radicals

Experimental SetupCRDSMeasurement of ∙CH2CHO and HCHO

Resultstrans-2-butenecis-2-butene

Summary

Page 3: Measurements of vinoxy radical

Motivation

One of the most important reaction pathways of Volatile Organic Carbons (VOCs) in the atmosphere is oxidation.

One of the main oxidation reactions of unsaturated VOCs is ozonolysis.

Page 4: Measurements of vinoxy radical

O 2

R, alkyl radical

RH, hydrocarbon

HONO +hn OH

OH NO

RO 2

RO

HO 2NO 2

ROONO 2

RONO 2

RO 2carbonyl+

alcohol

ROOH

NO 2

O3

O2

hn

OH Alkenes

OH productionmechanism inalkene + O3 reactions

Page 5: Measurements of vinoxy radical

Carbonyl oxides, also know as Criegee Intermediates (CIs), are produced by ozonolysis through the breaking of a primary ozonide (POZ).

Page 6: Measurements of vinoxy radical

The ozonolysis reaction is highly exothermic. The primary ozonide is formed with high internal energy.

Olzmann, M., Kraka, E., Cremer, D., Gutbrod, R. & Andersson, S. The Journal of Physical Chemistry A 101, 9421–9429 (1997).

Page 7: Measurements of vinoxy radical

CIs are formed with a broad energy distribution.

Olzmann, M., Kraka, E., Cremer, D., Gutbrod, R. & Andersson, S. The Journal of Physical Chemistry A 101, 9421–9429 (1997).

“hot” CI

“stabilized” CI

Page 8: Measurements of vinoxy radical

“vinoxy” radicalVinyl hydroperoxide (VHP)

Vinoxy radical

Page 9: Measurements of vinoxy radical

Experimental SetupOzonolysis of alkenes is done using a flow reactor:

Reaction products are measured using cavity ring-down spectroscopy (CRDS).Spectra of the main products is subtracted in order to look for CI features.

Dye Laser PMT

To pump

Purge Purge

03 gen

FM

N2 inFMSO2/HFA in

FMTME in

FM

Page 10: Measurements of vinoxy radical

CRDS:

Suitable for atmospheric measurements due to:Long sample path (high sensitivity).Real time measurements.Portability (in situ measurements).

Page 11: Measurements of vinoxy radical

1 2 3 4 5 76 8 109P

To pump

Purge N2

Purge N2

Blue: Ozone inletGreen: Alkene inlet(+ Oxygen during oxygen experiments)

Blue: plugged port (ultratorr+cap)

Multi-inlet flow cell/CRDS cavity

1 P

To pump

Purge N2

Purge N2

Green: Alkene + Ozone inlet(+ Oxygen during oxygen experiments)

Blue: plugged port (ultratorr+cap)

Single-inlet flow cell/CRDS cavity

Page 12: Measurements of vinoxy radical

Measurement of ∙CH2CHO and HCHO:

346.8 347.2 347.6 348.0 348.4

0.050

0.055

0.060

0.065

0.070

0.075

0.080

[

]

Experiment Fit

)(11

0

fNNLdc

formformvinoxyvinoxy

∙CH2CHO feature at ~347 nm

HCHO feature at ~348 nm

Page 13: Measurements of vinoxy radical

Simulation of the reaction in a flow reactor.

The system of ODEs is solved using an approximation method by the kinetic simulator KINTECUS.

Page 14: Measurements of vinoxy radical

OO

+

O3

OCH2CO CH3OH

SOZ

OH

O O

H H

O

O++H2O

P

P

P

P

P

O O +

H H

O

+

P

H H

O

+ 2O2 P

SOZ

P

H H

O

OH

OH + CO

OH

O2

H2OO3

OH

wall

decomp

wall

O

O

CH2OHCH3OH2O

OH

O2

H H

O

+ HO2

OHOH

HO2 + O2P

P

trans-2-butene ozonolysis mechanism used in KINTECUS (12/04/2016)

2 +H2O+H2C2

1.00 0.1 0.4 0.05 0.07

0.950.05

0.850.15

1.1E-12

2.6E-14

3.6E-15

1.7E-16

7.5E-13

1.9E-16

6.4E-11 1.6E-12

4E-18

166 s-1

1E-15

1E-12

1.2E-14

3.8E-14

5E-14

1E-11

9.1E-12

1E-11

10 s-1

10 s-1

1E-11 HCHO + OH HCO + H2O

7.5E-13

Page 15: Measurements of vinoxy radical

trans-2-butene: Single-inlet cavity

Results

Formaldehyde production accurately described by the model, whereas CH2CHO is overestimated by a factor of 2

2.5x1015 3.0x1015 3.5x1015 4.0x1015 4.5x1015 5.0x10152x1014

3x1014

4x1014

5x1014

6x1014

Experiment Model

HC

HO

Ozone2.5x1015 3.0x1015 3.5x1015 4.0x1015 4.5x1015 5.0x1015

1.0x1012

1.1x1012

1.2x1012

1.3x1012

1.4x1012

1.5x1012

CH2CHO Experiment CH2CHO Model

Ozone

1.4x1012

1.6x1012

1.8x1012

2.0x1012

2.2x1012

2.4x1012

2.6x1012

2.8x1012

Page 16: Measurements of vinoxy radical

Oxygen decreases already low CH2CHO, but the change in HCHO is not significant

4.0x1015 6.0x1015 8.0x1015 1.0x1016 1.2x1016 1.4x10163.8x1014

4.0x1014

4.2x1014

4.4x1014

4.6x1014

4.8x1014

5.0x1014

5.2x1014

Experiment Model

HC

HO

Oxygen6.0x1015 8.0x1015 1.0x1016 1.2x1016 1.4x1016

9.0x1011

1.0x1012

1.1x1012

1.2x1012

1.3x1012

1.4x1012

1.5x1012

CH2CHO Experiment CH2CHO Model

Oxygen

5.0x1011

1.0x1012

1.5x1012

2.0x1012

2.5x1012

3.0x1012

Page 17: Measurements of vinoxy radical

0.0 2.0x1015 4.0x1015 6.0x1015 8.0x1015 1.0x10166.0x1011

7.0x1011

8.0x1011

9.0x1011

1.0x1012

1.1x1012

1.2x1012

CH2CHO Experiment CH2CHO Model

Oxygen

4.0x1011

6.0x1011

8.0x1011

1.0x1012

1.2x1012

1.4x1012

1.6x1012

1.8x1012

2.0x1012

trans-2-butene: Multi-inlet cavity

CH2CHO decrease in the multi-inlet reactor more pronounced due to segmented nature of multi-inlet flow cellHCHO not significantly changed under high oxygen conditions

0.0 2.0x1015 4.0x1015 6.0x1015 8.0x1015 1.0x10166.0x1013

8.0x1013

1.0x1014

1.2x1014

1.4x1014

1.6x1014

1.8x1014

2.0x1014

Experiment Model

HC

HO

Oxygen

Page 18: Measurements of vinoxy radical

trans-2-butene: Pressure dependence

346.5 347.0 347.5 348.0 348.5 349.00.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

10 15 20 30 40 50

Page 19: Measurements of vinoxy radical

5 10 15 20 25 30 35 40 45 50 55

8.0x1011

9.0x1011

1.0x1012

1.1x1012

1.2x1012

1.3x1012

CH

2CH

O

P (torr)5 10 15 20 25 30 35 40 45 50 55

1.0E+14

1.5E+14

2.0E+14

2.5E+14

3.0E+14

3.5E+14

4.0E+14

HC

HO

P (torr)

Page 20: Measurements of vinoxy radical

cis-2-butene

5.0x1015 1.0x1016 1.5x1016 2.0x1016 2.5x1016 3.0x10161x1011

2x1011

3x1011

4x1011

5x1011

6x1011

7x1011

CH2CHO Experiment CH2CHO Model

Oxygen

0.0

4.0x1011

8.0x1011

1.2x1012

1.6x1012

2.0x1012

5.0x1015 1.0x1016 1.5x1016 2.0x1016 2.5x1016 3.0x1016

8.00x1013

8.50x1013

9.00x1013

9.50x1013

1.00x1014

1.05x1014

1.10x1014

HCHO Experiment HCHO Model

Oxygen

Page 21: Measurements of vinoxy radical

346.5 347.0 347.5 348.0 348.5 349.0

0.01

0.02

0.03

0.04

0.05

0.06

30 20 10 40 30

cis-2-butene: Pressure dependence

Page 22: Measurements of vinoxy radical

10 15 20 25 30 35 40

6.0x1011

7.0x1011

8.0x1011

9.0x1011

1.0x1012

1.1x1012

CH

2CH

O

P (torr)10 15 20 25 30 35 40

1.0x1014

1.5x1014

2.0x1014

2.5x1014

3.0x1014

HC

HO

P

Page 23: Measurements of vinoxy radical

SummaryDirect measurement of vinoxy radicals were possible from ozonolysis of cis- and trans-2-butene using multi- and single-inlet flow reactors.

Vinoxy radical reaction with oxygen the main channel for glyoxal and formaldehyde formation for 2-butene ozonolysis.

Decrease in OH radical and HCHO yields for cis-2-butene ozonolysis most likely caused by the decreased vinoxy radical yield.

Segmented addition of reactants along the multi-inlet flow cell allows

Page 24: Measurements of vinoxy radical

AcknowledgementsProf. Jingsong ZhangPaul JonesMike LucasGe SunJian Chen

UCMEXUS Fellowship