64
Lecture 5 Disorders of Primary Hemostasis Qualita6ve Platelet Disorders Von Willebrand Disease 2

Lecture 5, fall 2014 pdf

Embed Size (px)

Citation preview

Page 1: Lecture 5, fall 2014 pdf

Lecture  5    

Disorders  of  Primary  Hemostasis  Qualita6ve  Platelet  Disorders  

Von  Willebrand  Disease  

2  

Page 2: Lecture 5, fall 2014 pdf

Func6onal  disorders  of  platelets  

•  Congenital  Disorders    –  Disorders  of  Adhesion  

•  Bernard-­‐Soulier  Syndrome  •  Platelet-­‐type  von  Willebrand  Disease  

–  Disorders  of  Aggrega6on    •  Glanzmann  Thrombasthenia  

–  Disorders  of  Secre6on    •  Storage  Pool  Disorders  (SPD)  

–  Dense  Granule  disorders    –  Alpha  Granule  disorders  

•  Signal  Transduc6on  defects/Platelet  Release  defects  –  Defec6ve  TXA2  Pathway    –  Receptor  Signaling  Defects  

•  Acquired  Disorders  

3  

Page 3: Lecture 5, fall 2014 pdf

Nature  Reviews  

Page 4: Lecture 5, fall 2014 pdf

Inherited  Disorder  of  Platelet  Dysfunc6on  

5  

Page 5: Lecture 5, fall 2014 pdf

Phospholipase A2 Phospholipase C

PL PIP2

TXA2

PGG2 PGH2

Arachidonic Acid IP3 DAG

CA2+

Protein Kinase C

Protein Phosphorylation

CA2+

Procoagulant Activity

Shape Change

GpIIb/IIIa Receptor

a-granules

Dense Bodies

ATP ADP 5HT Ca2+

PF4 B-TG PAI-1 vWF Fibrinogen Factor V PDGF

TXA2

Fibrinogen

Adrenaline

ADP Thrombin

TxA2 *

Arachidonic Acid DAG Lipase

COX-1

Thromboxane Synthetase

Platelet Activation Pathways

TXA2 *

TXB2

Low Collagen High Collagen

Aspirin Inhibition

Created by Krystal McGarvey, Applications Specialist, Chrono-log Corp.

Reference: Platelets in Thrombotic and Non-thrombotic Disorders. 2002. Pages: 119, 127-129, 222-223, 238-239, 339, 361, 371, 471-472

Page 6: Lecture 5, fall 2014 pdf

Laboratory  Inves6ga6on  of  Primary  Hemostasis  

•  Includes  tests  for  platelet  number  and  func6on  –  Platelet  Count  –  Peripheral  Blood  Smear  Evalua6on  –  Platelet  Func6on  Analyzer  (PFA)  

•  Bleeding  Time  –  VerifyNow  (Accumetrics)  –  Platelet  Aggrega6on  

Page 7: Lecture 5, fall 2014 pdf

Bleeding  Time  •  Bleeding  6me—overall  test  of  hemosta6c  func6on  •  Measures  

1.  Vessel  integrity  2.  Platelet  integrity  3.  Protein/Platelet  interac6on  

–  Methods  –  Duke  (1912)—ear  lobe  –  Ivy  (1941)–  volar  surface  of  forearm  with  blood  

pressure  cuff  inflated  to  40  mm  of  mercury  –  Meckel  (1969)—standardized  template  device    –  Reference  range  =  2-­‐9  minutes  

–  Prolonged  in:  •  Thrombocytopenia  •  Platelet  disorders  •  vWD  •  Low  or  abnormal  fibrinogen  •  Vascular  disorders  

–  Disadvantages  1.  Lack  of  consistency  with  the  results  2.  No  correla6on  with  pre-­‐surgical  bleeding  3.  No  evidence  to  suggest  that  it  will  predict  a  

post-­‐surgical  bleed  –  Procedure    

�  Standardized  cut  made  in  forearm    �  1  mm  deep  and  5  mm  long  

�  40  mm  Hg  pressure  (blood  pressure  cuff)  used  to  provide  constant  hemosta6c  stress  

–  Reference  range:  generally  2  -­‐  9  minutes  8  

Page 8: Lecture 5, fall 2014 pdf

PFA-­‐100:    Platelet  Func6on  Screen  

•  Test  cartridges  containing:  1.  Collagen/Epinephrine  2.  Collagen/ADP  

•  Monitors  platelet  adhesion  and  aggrega6on  •  Results  reported  as  a  “Closure  6me”  in  seconds  (CT)  •  Correla6on  to  Bleeding  Time  

9  

Page 9: Lecture 5, fall 2014 pdf

The  PFA-­‐100®  System  Simulates  In  Vivo  Condi6ons  

10  

PFA-­‐100®  Test  Cartridge  Injured  Blood  Vessel    

Collagen

Agonist

Flow  

Platelet  Plug  

Page 10: Lecture 5, fall 2014 pdf

VerifyNow    •  Cartridge-­‐based  system  that  uses  fibrinogen-­‐coated  beads  

•  Method  1.  Citrated  blood  is  drawn  into  each  of  two  sample  channels  in  a  

disposable  cartridge  2. Mixed  with  platelet  agonist  FLLRN  and  Fibrinogen  coated  polystyrene  

beads  by  a  steel  ball  3.  Light  is  transmiied  through  the  sample    4.  Agglu6na6on  occurs  between  ac6vated  platelets  and  the  fibrinogen-­‐

coated  beads  such  that  they  fall  out  of  suspension  -­‐à  increased  light  transmission  

5.  Reported  as  PAU  (platelet  aggrega6on  units)  

Page 11: Lecture 5, fall 2014 pdf

OPTICAL PLATELET AGGREGOMETRY: BORN PRINCIPLE

PPP BLANK, NO MAGNET PRP with

MAGNET PRP with MAGNET PRP with

MAGNET PRP with MAGNET

AGONIST ADDED TIME MINUTES

0%

100%

LIGHT IN LIGHT OUT

L I G H T

T R A N S M I S S I O N

Monophasic  Curve  

Page 12: Lecture 5, fall 2014 pdf

Platelet Aggregation

Page 13: Lecture 5, fall 2014 pdf

Platelet  Aggrega6on  §  Primary  wave  

§  Reversible  §  Measures  ability  of  platelets  

to  respond  to  an  external  agonist  and  to  start  to  aggregate  

§  Without  enough  s6mulus  or  without  an  intact  prostaglandin  pathway  à  TXA2  –  platelets  disaggregate  

§  Secondary  wave  §  Irreversible  §  Results  in  complete  release  of  

dense    granules  contents,    most  importantly  ADP  

Graphic  accessed  URL  hip://evolvels.elsevier.com/sec6on/default.asp?id=1138_ccalvo7_0001,  2008.  

Biphasic  Curve  

Page 14: Lecture 5, fall 2014 pdf

ANATOMY  of  a  BIPHASIC  AGGREGATION  CURVE  

ATP

ATP

Resting disk-shaped

cells

Activation: shape change Irreversible Aggregation

2

3

4

ADP

time

aggr

egat

ion

(%)

PRIMARY WAVE

REVERSIBLE

AGGREGATION

1

SECONDARY WAVE

MAXIMUM AAGREGATION

DIS-AGGREGATION

Page 15: Lecture 5, fall 2014 pdf

PLT  Aggrega6on:  WB  

•  Parallel  electrodes  (DC)  immersed  in  saline-­‐diluted  whole  blood  

•  Add  agonist  

•  PLTs  aggregate  on  electrodes,  reducing  current  

•  Change  is  current  directly  propor6onal  to  level  of  PLT  aggrega6on  

Graphic  accessed  URLhip://evolvels.elsevier.com/sec6on/default.asp?id=1138_ccalvo7_0001,  2008.    

The  aggrega6ng  platelets  form  a  layer  on  the  electrodes,  and  current   is   impeded   by   the   platelet   layer.   Resistance   (Ω)   is  propor6onal   to   aggrega6on,   providing   a   tracing   that  resembles  op6cal  aggregometry.    

Page 16: Lecture 5, fall 2014 pdf

Agonists  •  Collagen  

–  Membrane  defects  –  General  ability  of  platelets  to  aggregate  –  SPD,  RD,  NSAID  

•  Epinephrine  –  Membrane  defects  –  COX  –  NSAID  

•  Arachidonic  Acid  –  Most  useful  in  detec6ng  aspirin-­‐like  deficiencies  –  Aspirin,  NSAID  

•  ADP  –  Membrane  defects  –  COX,  SPD  –  NSAID  

•  Ristoce6n  –  Membrane  defects  –  Measures  agglu7na7on    –  Differen6ate  between  BS  vs.  vWD,  vWD  2B  vs.  Platelet-­‐type  vWD  

Aggrega6on  

Agglu6na6on  

Page 17: Lecture 5, fall 2014 pdf

ADP  

18  

Page 18: Lecture 5, fall 2014 pdf

Collagen  and  Arachidonic  Acid  

19  

Page 19: Lecture 5, fall 2014 pdf

Epinephrine  

20  

Page 20: Lecture 5, fall 2014 pdf

Ristoce6n  

21  

Page 21: Lecture 5, fall 2014 pdf

ADP  and  Arachidonic  Acid  

22  

Page 22: Lecture 5, fall 2014 pdf

Collagen  (low  dose  and  high  dose)  

23  

Page 23: Lecture 5, fall 2014 pdf

Ristoce6n  (low  dose  and  high  dose)  

24  

Page 24: Lecture 5, fall 2014 pdf

Bernard-­‐Soulier  Syndrome  (BSS)  •  Laboratory  findings  

–  Thrombocytopenia  –  Giant  platelets    

•  5-­‐8  um  vs  20-­‐30  um  diameter  

–  Prolonged  PFA/BT  –  Abnormal  aggrega6on  with  ristoce6n  –  Decreased  to  absent  expression  of  

GPIb  and  or  GPIX  (CD42b,  CD42a)  –  CD61  =  GPIIIa  

25  

Green = control, Red = patient FS = size

Absence  of:  •  CD42a,  42b,  and  42c    •  (components  of  the  Ib/IX  

complex)  

Page 25: Lecture 5, fall 2014 pdf

Bernard-­‐Soulier  Syndrome  •  Laboratory    Findings  

–  Mild  to  moderate  thrombocytopenia  common  •  30  –  200  x109/L  

–  Giant  platelets  on  peripheral  blood  smear    –  Platelet  aggrega6on  studies  

•  Absent  aggrega6on  with  ristoce6n  •  Normal  aggrega6on  with  all  other  agonists  

Why  is  platelet  agglu6na6on  with  ristoce6n  s6ll  abnormal  when  vWF  is  added?  

In  vitro  aggrega6on  does  not  first  require  adhesion    

Why  is  platelet  aggrega6on  normal  with  other  agonists?  

Missing  GPIb/IX  receptor  

Page 26: Lecture 5, fall 2014 pdf

Glanzmann  Thrombasthenia  (GT)  

•  First  described  in  1918  –  Switzerland  –Dr.  Glanzmann  

–  Described  in    children  from  a  6ny  village  –  Le  Valais  in  Swiss  Alps  –  where  intermarriage  was  common    

•  Autosomal  recessive  disorder  involving  one  of  two  genes  coding  for  either  GPIIb  or  GPIIIa  –  both  found  in  chromosome  17q  

•  GPIIb/IIIa  func6on  in  platelet  aggrega6on  –  binding  to  fibrinogen  

•  Bleeding  appears  during  the  1st  year  of  life  –  Epistaxis,  gingival  bleeding,  purpura,  heavy  

menorrhagia  

•  Three  clinical  presenta6ons  –  Type  I  –  severe  deficiency  with  less  than  5%  

IIb/IIIa  receptors  present  –  Type  II  –  mild-­‐moderated  deficiency  with  

5-­‐20%  IIb/IIIa  receptors  present    –  Type  III  –  normal  to  almost  normal  amount  

of  IIb/IIIa  receptors  present  but  defec6ve  func6on  

27  

Page 27: Lecture 5, fall 2014 pdf

Glanzmann  Thrombasthenia  (GT)  

•  Laboratory  findings  –  Prolonged  PFA/BT  –  Normal  platelet  count  –  Normal  platelet  retrac6on    –  Abnormal  platelet  aggrega6on  response  to  ADP,  Arachidonic  Acid,  Collagen,  Epinephrine    –  Normal  platelet  aggrega6on  response  to  ristoce6n  –  Decrease  expression  by  flow  cytometry  –  confirmatory  diagnosis  

•  GPIIb  (CD41)  or    •  GPIIIa  (CD61)    

•  Why  is  aggrega6on  with  ristoce6n  normal?  

28  

Page 28: Lecture 5, fall 2014 pdf

29  

Page 29: Lecture 5, fall 2014 pdf

Storage  Pool  Disease  

•  Affect  the  secre6on  phase  of  platelet  func6on  •  Autosomal  dominant  or  autosomal  recessive  mode  of  inheritance  

–  Dense  Granules  Deficiency  •  Decrease  or  absence  of  dense  granules  on  EM  •  Morphologically  normal  appearing  platelets  on  peripheral  blood  smear    

•  Prolonged  PFA/BT  •  Abnormal  aggregaAon  due  to  lack  of  ADP  in  Dense  Granules  •  Abnormal  aggrega6on  with  ADP,  Epinephrine  à  normal  primary  wave  BUT  blunted  secondary  wave  

•  Low  levels  of  collagen  –  collagen  requires  endogenous  ADP  and  this  is  lacking    

30  

Page 30: Lecture 5, fall 2014 pdf

Storage  Pool  Disease  

•  Alpha  Granules  Deficiency  

–  Absence  of  the  alpha  granules  causes  the  platelets  to  appear  agranular  on  peripheral  blood  smear  (EM)  

–  Mgk  synthesis  of  the  alpha  granules  is  normal  BUT  there  are  defects  involving  targe6ng  endogenously  synthesized  proteins  to  developing  alpha-­‐granules  

–  Platelet  aggrega6ons  studies  are  normal  /decreaased  in  alpha  granule  deficiency  

–  AKA  gray  platelet  syndrome    

31  

Page 31: Lecture 5, fall 2014 pdf

Storage  Pool  Disease  

•  Gray  Platelet  Syndrome  –  Congenital  platelet  disorder  –  Marked  decreased    or  absence  of  

platelet  alpha-­‐granules  –  Large  platelets  with  few  granules  

àgiving  the  “gray”  appearance  –  Bleeding  is  usually  mild  to  moderate  

but  can  be  exacerbated  by  aspirin  –  Clinical:  easy  bruising,  menorrhagia,  

and  excessive  postpartum  or  postopera6ve    bleeding  

–  Typical    Lab  Findings  •  Usually  normal  platelet  count  with  

variable  morphology  •  Platelet  aggrega6on  shows  normal  

primary  wave  but  absence  of  secondary  wave  when  s6mulated  with  ADP,  epinephrine,  arachidonic  acid  –  

•  Ristoce6n  agglu6na6on  is  normal  

32  

Page 32: Lecture 5, fall 2014 pdf

Gray  Platelet  Syndrome  

•  Quebec  Platelet  Defect  –  Deficiency  of  α-­‐granule  

mul6merin  –  a  protein  that  binds  FV  within  the  α-­‐granule  à  decreased  content  of  platelet  FV  

–  Abnormal  proteolysis    of  alpha-­‐granule  proteins  due  to  increased  levels    of  platelet  urinary-­‐type  plasminogen  ac6vator  

–  Platelets  are  morphologically    normal  by  light  microscopy    

–  Slight  thrombocytopenia  

33  

Page 33: Lecture 5, fall 2014 pdf

Platelet and neutrophil images of GPS patients in comparison with controls.

Gunay-Aygun M et al. Blood 2010;116:4990-5001

©2010 by American Society of Hematology

Page 34: Lecture 5, fall 2014 pdf

Gray  Platelet  Syndrome  

•  ScoD  Syndrome  –  Due  to  a  defect  in  a  platelet  

mechanism  required  for  blood  coagula6on  

–  Defec6ve  procoagulant  ac6vity  of  platelets  

–  During  normal  platelet  ac6va6on  –  PS  on  the  inner  leaflet  is  transported  to  the  outer  membrane  surface  –  provides  a  binding  site  form  the  tenase  and  prothrombinase  complexes  

–  In  Scoi  Syndrome  the  mechanism  for  transloca6ng    PS  is  defec6ve  à  impaired  thrombin  genera6on  

Nature.com  35  

Page 35: Lecture 5, fall 2014 pdf

Gray  Platelet  Syndrome  

•  SPD  versus  RD  –  need  EM  to  differen6ate  between  the  two  –  SPD  may  have  decreased  number  of  dense  bodies  –  RD  will  have  normal  number  of  dense  bodies  

36  

Page 36: Lecture 5, fall 2014 pdf

Hermansky  -­‐  Pudlak  Syndrome  •  Due  to  a  decreased  number  of  dense  granules  •  Described  in  1959  by  Hermansky  and  Pudlak  

–  Described  a  55-­‐year  old  man  with  oculocutaneous  albinism  and  history  of  frequent    bruising  following  minimal  trauma  

•  Autosomal  recessive  disorder  à  muta6on  in  the  HPS1  gene  on  chromosome  10q23  –  HSP1  responsible  for  produc6on  and  control  of  melanosomes,  dense  granules,  and  lysosomes  

•  Most  commonly  found  in  Swiss  Alps  and  Puerto  Rico  

•  Triad  phenotype  1.  Albinism—blond  hair  pale  skin  2.  Prolonged  bleeding  due  to  storage  pool  granular  deficiency  

•  Platelet  func6on  requires  dense  granules  filled  with  proaggrega6on  chemical  reagent  3.  Accumula6on  of  ceroid  pigment  in  lysosomal  organelles  

•  Ceroid  à  wax-­‐like  substance  made  by  certain  cells  •  Ceroid  accumula6on  may  cause  organ  dysfunc6on  [intes6nes,  lungs,  kindeys]  

•  Lab  findings  –  Normal  PT/PTT,  BT  variably  normal  to  prolonged  –  Platelet  aggrega6on  shows  blunted  response  in  biphasic  curves  –  Diagnosis  made  by  EM  à  absence  of  dense  granules    

37  

Page 37: Lecture 5, fall 2014 pdf

Chediak  -­‐  Highashi  Syndrome  •  Autosomal  recessive  disorder  resul6ng  in  recurrent  infec6ons  with  ocular,  neurological,  and  skin  

manifesta6ons  •  Described  in  1943  by  a  Cuban  pediatrician  à  Chediak  and  Higashi  gavedetailed,  published  descrip6on  in  

1954  •  Caused  by  a  muta7on  in  the  LYST  gene  

–  Lysosomal  trafficking  regulator  gene  on  chromosome  1  –  Abnormal  membrane  fluidity  with  uncontrolled  granule  membrane  fusion  –  Giant  cytoplasmic  granules  in  all  granule-­‐containing  cells  (leukocytes,  melanocytes  and  platelets)  –  Platelets  have  deficient  or  reduced  storage  pools  of  ADP,  ATP,  and  serotonin  à  loose  platelet  

aggrega6on  forma6on  

•  Clinical  manifesta7on  –  Decreased  pigmenta6on  of  the  hair  and  eyes  –  Photophobia,  Nystagmus  –  Large  eosinophilic,  peroxidase-­‐posi6ve  inclusion    –  Pa6ents  are  suscep6ble  to  bacterial  infec6ons  

•  Laboratory  findings  –  Normal  platelet  counts,  prolonged  bleeding  6me  –  Normal  PT/aPTT  –  Leukocytes  with  darkly  stained  giant  granula6on  –  Platelet  aggrega6on  decreased  with  collagen  and  ADP  

38  

ASH  Image  Bank  

Page 38: Lecture 5, fall 2014 pdf

Acquired  Platelet  Defects  

•  Cardiopulmonary  Bypass    •  Chronic  Renal  Failure  

–  Seen  in  uremic  pa6ents  related  to  the  accumula6on  of  waste  products  in  the  blood  –  Prolonged  PFA/BT  –  Decreased  aggrega6on  with  collagen    –  Secondary  aggrega6on  with  ADP  and  epinephrine  is  decreased  à  abnormal  secretory  response  –  Platelet  procoagulant  ac6vity  is  defec6ve    

•  Myeloprolifera6ve  Disease  and  Acute  Leukemia  

•  Drugs  –  Aspirin  –  Alcohol  –  An6bio6cs  –  Cardiopulmonary  Bypass  Surgery    

39  

Page 39: Lecture 5, fall 2014 pdf

Cardiopulmonary  Bypass  •  Causes  a  deple6on  of  α-­‐granules  •  Func6onal  defect  results  from  increased  platelet  ac6va6on  and  fragmenta6on  in  the  

bypass  mechanical  process  

•  Causes  of  defects  and  granule  deple6on  a.  Aggrega6on  of  platelets  by  fibrinogen  absorbed  onto  the  surfaces  of  the  bypass  

circuit  material  b.  Hypothermia  c.  Complement  ac6va6on  d.  Mechanical  trauma  and  shear  stresses  e.  Bypass  pump-­‐priming  solu6ons  

•  Lab  findings  –  Increases  the  BT  by  >30  minutes  –  Platelet  fragments  –    

Ø Typically  platelet  func6on  returns  to  normal  ~  1-­‐3  hours  awer  surgery  Ø Platelet  count  returns  to  normal  several  days  later  

–  Thrombocytopenia  can  be  amplified  by  hemodilu6on  as  blood  passes  through  the  bypass  mechanism  

–  Significant  post-­‐surgical  bleeding  is  seen  in  3%  of  pa6ents  40  

Page 40: Lecture 5, fall 2014 pdf

Uremia  •  Related  to  accumula6on  of  waste  products  in  the  blood  including  

inhibitory  and  dialyzable  molecules  1.  BT  correlates  with  severity  of  disease  2.  Procoagulant  ac6vity  may  be  impaired  3.  Nitric  Oxide  may  inhibit  platelet  func6on  4.  Thought  to  be  due  to  impaired  platelet-­‐vessel  interac6on  5.  Hemosta6c  abnormality  partly  corrected  by  RBC  transfusion  or  EPO  

•  Failue  of  HGB  to  quench  excess  NO  synthesis  may  be  partly  responsible  for  platelet  dysfunc6on  

Page 41: Lecture 5, fall 2014 pdf

Lab  Tests  in  Disorders  of  Primary  Hemostasis  

Page 42: Lecture 5, fall 2014 pdf

vWD—Disorder  of  Primary  Hemostasis  

}  Most  common  of  the  congenital  bleeding  disorders  }  1-­‐2  %  of  the  general  popula6on    }  Symptoma6c  in  only  about  1/10,000  

}  1926  –  Erik  von  Willebrand  à  5  y-­‐o-­‐f  and  her  family  who  lived  on  the  Åland  Islands  –  Hereditär  pseudohemofili,  1926  

}  Ini6ally  described  as  “pseudohemophilia”        

43

Page 43: Lecture 5, fall 2014 pdf

vWD—Disorder  of  Primary  Hemostasis  

} Clinical  manifesta6ons  } Mucocutaneous  bleeding  of  varying  severity  in  males  and  females  1. Ecchymoses  2. Epistaxis  3. Gastrointes6nal  bleeding  4. Menorrhagia  

} Defec6ve  platelet  adhesion  } Reduced  FVIII  levels    

44

Page 44: Lecture 5, fall 2014 pdf

vWF  •  Large  mul6meric  protein  –  ranges  from  600  kD  to  >20  million  kD  

–  Synthesized  by  endothelial  cells  and  megakaryocytes  •  Endothelial  cells  source  of  plasma  vWF  

•  Gene  for  vWF  is  located  on  chromosome  12p  •  178  kB,  52  exons  

 

45 Hoffman:  Adapted  from  Ginsburg  D,  Bowie  EJW:  Molecular  geneAcs  of  von  Willebrand  disease.  Blood  79:2507,  1992.)  

Page 45: Lecture 5, fall 2014 pdf

Synthesis  of  vWF  

}  vWF  synthesized  in  endothelial  cells  and  megakaryocytes  1.  Stored  in  Weibel-­‐Palade  bodies  of  

endothelial  cells  2.  Stored  in  α-­‐granules  of  platelets  

 Steps  in  synthesis  of  vWF    1.  First  synthesized  as  a  pre-­‐

pro-­‐vWF  monomer  2.  DimerizaAon  occurs  in  ER  3.  Pre-­‐pro-­‐vWF  monomers  

linked  together  at  the  carboxyl  terminal  end    

4.  Dimeric  molecules  pass  to  the  Golgi  apparatus  

5.  Dimers  mulAmerize  6.  Propep6de  is  cleaved  off  

à  mature  subunit  46

N-Terminal Multimerization

C-Terminal Dimerization

High Molecular

Weight Multimer

ER Golgi

Page 46: Lecture 5, fall 2014 pdf

vWF  Release  

Valentijn K M et al. Blood 2011;117:5033-5043

47

Page 47: Lecture 5, fall 2014 pdf

Func6on  of  vWF  }  vWF  serves  two  important  biologic  func6ons  

1.  Serves  as  a  carrier  protein  for  plasma  FVIII  a.  VWF  protects  Factor  VIII  in  circula6on  b.  VWF  co-­‐localizes  FVIII  at  sites  of  vascular  injury  

2.  Serves  as  a  ligand  that  binds  to  the  gpIb  receptor  on  platelets  to  ini6ate  platelet  adhesion  to  the  damaged  endothelium    a.  VWF  binds  to  extravascular  collagen  b.  Platelets  adhere  to  the  bound  vWF  c.  Adherent  platelets  become  ac6vated    

48

Platelets

Clotting factors Vessel wall

VWF

Page 48: Lecture 5, fall 2014 pdf

Func6on  of  vWF  

49

Elsevier  

Page 49: Lecture 5, fall 2014 pdf

50 Elsevier  

Page 50: Lecture 5, fall 2014 pdf

Classifica6on  of  vWD  •  vWD  –  extremely  heterogenous,  complex  disorder  with  >  20  dis6nct  

subtypes  

•  Types  of  vWD  

1.  Quan6ta6ve  Defects  

•  Type  1  –  Par6al  quan6ta6ve  deficiency  –  Autosomal  dominant    

•  Type  3  –  Complete  absence/severely  decreased    –  Autosomal  recessive    

2.  Qualita6ve  Defects    

•  Type  2  –  2A  –  2B  –  2M  –  2N        –  Autosomal  recessive    

51

Subgroups  

Page 51: Lecture 5, fall 2014 pdf

Type  I  vWD  

}  Most  common  type  of  vWD  }  80%  of  pa6ents  with  vWD  fall  into  this  category  

}  Caused  by  heterozygous  muta6on  leading  to  a  par6al  quan6ta6ve  deficiency  of  vWF  }  Gene6c  abnormality  in  ONE  of  the  vWF  alleles  }  Accounts  for  a  50%  reduc6on  in  vWF  }  Mild  secondary  deficiency  in  FVIII  

}  Endothelial  cells  and  platelets  contain  normal,  but  reduced  levels  of  vWF  }  DDAVP  can  induce  the  release  the  stored  vWF  

}  Bleeding  symptoms  range  from  asymptoma6c  to  mild      

52

Page 52: Lecture 5, fall 2014 pdf

Type  I  vWD  }  Lab  findings  }  Normal  to  decreased  

1.  FVIII  (aPTT)  2.  vWF:Ac6vity  (Ristoce6n  Cofactor)  3.  vWF:An6gen    

4.  Prolonged  BT    •  (PFA-­‐100—Col/EPI,  Col/ADP)  

5.  Propor6onal  decrease  of  ALL  vWF  mul6mers    

53

Page 53: Lecture 5, fall 2014 pdf

Type  3  vWD  

}  Most  severe  form  of  the  disease  

}  Results  from  the  homozygous  muta6on  leading  to  a  deficiency  of  vWF  with  absent  or  profound  deficiency  in  levels  of  plasma  vWF  

}  Autosomal  recessive    

}  vWF  levels  are  <5%  }  FVIII  is  markedly  cleared  from  the  plasma  with  levels  below  5-­‐10%  }  FVIII  is  not  as  severely  depressed  as  in  severe  Hemophilia  A  }  Spontaneous  bleeding    }  Severe  mucocutaneous  bleeding  }  Sow  6ssue/musculoskeletal  bleeding  

}  1-­‐5%  of  case  }  Prevalence  increases  in  regions  of  consanguineous  marriages    

  54

Page 54: Lecture 5, fall 2014 pdf

Type  2A  vWD  

•  Muta6ons  commonly  occur  in  the  A2  region  

•  Presence  of  only  the  smaller  vWF  mul6mers  in  plasma  à  reduced  binding  to  platelets    •  LOSS  platelet-­‐dependent  funcAon  

•  Two  proposed  mechanisms:  ▫  Abnormal  assembly  and  secre6on  of  

large  vWF  mul6mers  ▫  Increased  suscep6bility  of  vWF  to  

proteolysis  in  circula6on    

•  Pa6ents  exhibit  moderate  to  severe  mucocutaneous  bleeding    

55

Page 55: Lecture 5, fall 2014 pdf

Type  2B  •  Muta6on  in  the  A1  domain  of  the  vWF  

gene  •  Absence  of  the  high-­‐molecular-­‐weight  

mul6mers  –  Caused  by  “gain  of  func7on”  muta6on  in  

vWF  à  increased  affinity  to  bind  to  the  gpIb  platelet  receptor  

–  Spontaneous  binding  of  vWF  to  platelets  –  Large  mul6mers  are  synthesized  but  

rapidly  cleared  due  to  increased  binding  to  platelets    

–  Thrombocytopenia    

•  DDAVP  contraindicated  à  would  cause  increased  thrombocytopenia  as  platelets  would  be  hyper-­‐reacAve  to  the  released  vWF  

56

Page 56: Lecture 5, fall 2014 pdf

Type  2M  vWD  

•  Muta6ons  in  Exon  28  in  A1  domain  

•  Defect  leads  to  decreased  or  absent  binding  of  vWF  to  platelet  gpIb  receptor  

•  Decreased  platelet  dependent  func6on  

•  Normal  mul6mer  profile    

•  Plasma  binding  to  FVIII  is  normal    

 

 

57

FVIII GPIb collagen RGDSGPIIb/IIIacollagen

D1 D2 D‘D3 A1 A2 A3 D4 B1B2 B3 C1 C2N C

Page 57: Lecture 5, fall 2014 pdf

Type  2N  vWD  

•  Also  referred  to  as  “autosomal  hemophilia”  or  the  Normandy  variant  •  Caused  by  muta6ons  in  the  FVIII  binding  region  of  vWF  

•  Markedly  decreased  affinity  for  binding  to  FVIII    –  Rapid  turnover  of  the  unbound  FVIII  à  reduced  levels    •  Lab  findings  

1.  Decreased  FVIII    2.  Normal  vWF  an6gen  and  ac6vity  3.  Normal  bleeding  Ames  (PFA-­‐100)  4.  Platelet  binding  to  vWF  is  normal  5.  Similar  to  “mild”  hemophilia  

•  GeneAc  counseling    and  treatment  is  different  from  hemophilia  

58

FVIII GPIb collagen RGDSGPIIb/IIIacollagen

D1 D2 D‘D3 A1 A2 A3 D4 B1B2 B3 C1 C2N C

Page 58: Lecture 5, fall 2014 pdf

Pseudo-­‐von  Willebrand  Disease  –  (Platelet  type  vWD)  

}  NO  gene6c  defect  of  the  vWF  molecule  –  vWF  molecule  is  NORMAL  

}  “Gain  in  func6on”  muta6on  in  the  platelet  gpIb  receptor  }  Increased  affinity  of  platelets  for  vWF  }  Enhanced  clearance  of  vWF  and  platelets  from  circula6on  

}  Defect  is  in  the  platelet  à  standard  approaches  to  trea6ng  vWD  are  not  helpful  

}  Lab  findings    1.  Loss  of  high  molecular  weight  mul6mers  2.  Platelet  count  is  low**  3.  Platelet  aggrega6on  with  low  dose  ristoce6n  (RIPA)  

59

Page 59: Lecture 5, fall 2014 pdf

Acquired  vWD  

•  Qualita6ve,  structural,  or  func6onal  disorder  of  vWF  not  inherited  and  is  associated  with  an  increased  risk  of  bleeding  

•  Associated  with  –  Autoimmune  clearance  –  lymphoprolifera6ve,  MGUS,  SLE,  hypothyroidism    

•  Autoan6bodies  à  increased  clearance  of  vWF  from  plasma  

–  Fluid  shear  stress-­‐induced  proteolysis  –  aor6c  stenosis,  LVAD      

60

Aspect   Acquired  vWD   Congenital  vWD  Personal  History   Late  onset  bleeding   Early  onset  bleeding  

Family  History   Nega6ve   Posi6ve  

AVWS  associated  disorder  

Posi6ve   Nega6ve  

Laboratory  associated  disorder  

Inhibitor  to  vWF   Gene6c  muta6on  

Treatment   •  Remission  awer  IVIg  •  Short  lived  response  

awer  vWF-­‐containing  product  

vWF-­‐containing  product  

Page 60: Lecture 5, fall 2014 pdf

Assays  for  vWD  

•  Platelet  Func6on  Screen  (BT)  •  vWF  an6gen  assay  •  vWF  ac6vity  assay  •  FVIII:C    

•  Mul6mer  Analysis  

61

Page 61: Lecture 5, fall 2014 pdf

Assays  for  vWD  

•  vWF:An6gen  –  Immunoassay  that  measures  the  concentra6on  of  vWF  protein  in  plasma    

•  Actual  protein  responsible  for  binding  to  FVIII  and  gp  Ib/IX/V  complex    –  Detects  all  forms  of  vWF  (func6onal  and  nonfunc6onal  forms)  –  Cannot  discriminate  between  mul6mer  size    

62

Patient vWF å

Testing well

Reagent beads coated with anti-vWF

å

åå

å

å

å

å

åå

å

å

Incubate

LIA  based  tes7ng  

Instrument reading—changes in optical density secondary to aggregates

Page 62: Lecture 5, fall 2014 pdf

Assays  for  vWD  

•  vWF:Ac6vity    –  Ristoce6n  cofactor  assay  (gold  standard)    

•  Measures  the  ability  of  vWF  (pa6ent)  to  induce  agglu6na6on  of  normal  fixed  platelets  in  the  presence  of  Ristoce6n  

•  Mix  paAent’s  plasma  +  normal  donor  platelets  +  ristoceAn  à  platelet  aggluAnaAon  reacAon  occurs  on  platelet  aggregometer  

 

63

Page 63: Lecture 5, fall 2014 pdf

Assays  for  vWD  

•  vWF:Ac6vity    –  Latex  par6cle  enhanced  immunoturbidimetric  assay  

•  Specific  anA-­‐vWF  monoclonal  anAbody  adsorbed  onto  latex  reagent  directed  against  the  platelet  binding  site  of  vWF  (gp  Ib  receptor)  

•  Reacts  with  vWF  in  the  pa6ent’s  plasma  •  Degree  of  agglu6na6on  is  directly  propor6onal  to  ac6vity  of  vWF  in  

pa6ent's  plasma  –   Mix  paAent’s  plasma  +  latex  beads  coated  with  an  anA-­‐vWF  

monoclonal  anAbody  è  aggluAnaAon  of  parAcles  

64

Page 64: Lecture 5, fall 2014 pdf

Assays  for  vWD  

•  FVIII  ▫  Circula6ng  level  of  FVIII  ▫  Clot-­‐based  assay  that  measures  the  ability  of  plasma  FVIII  to  shorten  

the  clo}ng  6me  in  FVIII-­‐deficient  plasma  

•  Mul6mer  Analysis      ▫  QualitaAve  assay  (electrophoresis)  to  depict  the  variable  

concentraAons  of  different-­‐sized  vWF  mulAmer    

65