70
Department of Physics Clarendon Laboratory Parks Road Oxford OX1 3PU Photovoltaics and Optoelectronic Devices Group Organic-inorganic perovskite thin film formation for high efficiency solar cells: A new paradigm for low cost solar energy Henry J. Snaith [email protected]

Henry J. Snaith at BASF Science Symposium 2015

  • Upload
    basf

  • View
    339

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Henry J. Snaith at BASF Science Symposium 2015

Department of Physics Clarendon Laboratory Parks Road Oxford OX1 3PU e-mail: [email protected]

Photovoltaics and Optoelectronic Devices Group

Organic-inorganic perovskite thin film formation for high efficiency solar cells: A new paradigm for low cost solar energy

Henry J. Snaith

[email protected]

Page 2: Henry J. Snaith at BASF Science Symposium 2015

Solar energy resource

Terrestrial sun light

Global Power Demand

PV instillations

Page 3: Henry J. Snaith at BASF Science Symposium 2015

Perovskite is calcium titanium oxide or calcium titanate, with the chemical formula CaTiO3. The mineral was discovered by Gustav Rose in 1839 and is named after Russian mineralogist Count Lev Alekseevich Perovski (1792–1856).” All materials with the same crystal structure as CaTiO3, namely ABX3, are termed perovskites:

Perovskites

Page 4: Henry J. Snaith at BASF Science Symposium 2015

1892: 1st paper on lead halide perovskites

Structure deduced 1959: Kongelige Danske Videnskabernes Selskab, Matematisk-Fysike

Meddelelser (1959) 32, p1-p17 Author: Moller, C.K.

Title: The structure of cesium plumbo iodide Cs Pb I3

Page 5: Henry J. Snaith at BASF Science Symposium 2015

1978*: Hybrid Pb and Sn halide perovskites

Page 6: Henry J. Snaith at BASF Science Symposium 2015

Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, A. M. Guloy IBM T. J. Watson Research Center, Post Office Box 218, Yorktown Heights, NY 10598, USA. Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, TX 77204-5641, USA. Science 10 March 1995: Vol. 267 no. 5203 pp. 1473-1476 DOI: 10.1126/science.267.5203.1473

Abstract Single crystals of the layered organic-inorganic perovskites, [NH2C(I=NH2]2(CH3NH3)m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C4H9NH3)2(CH3NH3)n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m <110>-oriented CH3NH3SnI3 perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 ± 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.

Page 7: Henry J. Snaith at BASF Science Symposium 2015

Electrolyte (2006) Solid-State (2008)

1st Solar Cell Reports

Page 8: Henry J. Snaith at BASF Science Symposium 2015

Perovskites – Solar Cells

Page 9: Henry J. Snaith at BASF Science Symposium 2015
Page 10: Henry J. Snaith at BASF Science Symposium 2015

Solid-state perovskite “sensitized” solar cells

NN

NN

O O

OO

O

O

CH3CH3

OO

CH3 CH3

CH3 CH3

CH3 CH3

Spiro-OMeTAD

3*CH3NH3I + 1*PbCl2 CH3NH3PbI3-xClx

Page 11: Henry J. Snaith at BASF Science Symposium 2015

First devices

0.0 0.2 0.4 0.6 0.80

5

10

15

C

urre

nt D

ensi

ty (m

Acm

-2)

Applied Bias (V)

Jsc = 13.8 mA/cm2 Eff = 7.1 % Voc = 0.75 V FF = 0.69

Initial operation under full sun illumination

Page 12: Henry J. Snaith at BASF Science Symposium 2015

Charge Transport

Charge extraction must faster in perovskite “sensitized” than Dye (D102) Sensitized. Is the perovskite also conducting charge in the solar cells?

Page 13: Henry J. Snaith at BASF Science Symposium 2015

Replace TiO2 with Al2O3

Lets see what happens when we get rid of the porous TiO2…..

Page 14: Henry J. Snaith at BASF Science Symposium 2015

Replace TiO2 with Al2O3

1st set of devices:

Page 15: Henry J. Snaith at BASF Science Symposium 2015

Filed 3 patents on the 11th May 2012

Nature 485, Pages:486–489 Received 06 February 2012 Accepted 08 March 2012 Published online 23 May 2012

Precisely the opposite of our discover, nevertheless we promptly submitted our manuscript to Science on the 31st May…..

……The resulting solid-state dye-sensitized solar cells consist of CsSnI2.95F0.05 doped with SnF2, nanoporous TiO2 and the dye N719, and show conversion efficiencies of up to 10.2 per cent (8.51 per cent with a mask)………

Page 16: Henry J. Snaith at BASF Science Symposium 2015

Perovskite solar cells

Meso-Al2O3 η =10.9%

Meso-TiO2 η =7.6%

Planar Junction η =1.8%

Page 17: Henry J. Snaith at BASF Science Symposium 2015

Thickness dependence of meso-Al2O3

500 nm 500 nm 500 nm

Page 18: Henry J. Snaith at BASF Science Symposium 2015

A simple paradigm shift….

Page 19: Henry J. Snaith at BASF Science Symposium 2015

Diffusion length Estimation

Perovskite Species D (cm2s-1) LD (nm)

CH3NH3PbI3-xClx Electrons 0.042 ± 0.016 1094 ± 210

Holes 0.054 ± 0.022 1242 ± 250

CH3NH3PbI3 Electrons 0.017 ± 0.011 117 ± 38

Holes 0.011 ± 0.007 96 ± 29

B

C

S. Stranks et al. Science 2013 Also see Xing et al. Science 2013

LD > 1 μm in CH3NH3PbI3-xClx LD ~ 100 nm in CH3NH3PbI3

Page 20: Henry J. Snaith at BASF Science Symposium 2015

Why didn’t the thin films work? Answer: poor film formation

G. Eperon et al. Advanced Materials 2014 V. Burkolov et al. Applied Physical Review 2014

On mesoporous

alumina

On flat substrate

Page 21: Henry J. Snaith at BASF Science Symposium 2015

Dual source evaporation

Representation of layered perovskite (RNH3)2PbI4 and dual source evaporation process AX salt powder + BX2 salt powder = ABX3 film

Era et al. Chem. Mater. 1997, 9, 8-10

Page 22: Henry J. Snaith at BASF Science Symposium 2015

Vapour deposition of n-i-p heterojunction

Glass FTO

n-type contact Perovskite

p-type contact Ag/Au

Page 23: Henry J. Snaith at BASF Science Symposium 2015

Cross section of films and devices

Evaporated

Solution coated

Page 24: Henry J. Snaith at BASF Science Symposium 2015

Efficient Planar Heterojunction Solar Cells

Page 25: Henry J. Snaith at BASF Science Symposium 2015

Subtleties of solution processing:

Challenge, but not impossible to obtain highly uniform thin film

Page 26: Henry J. Snaith at BASF Science Symposium 2015

Efficient stable sustained output

Current voltage curve Stabilized power output

Page 27: Henry J. Snaith at BASF Science Symposium 2015

Plethora of techniques for thin film formation

(b)

(a)

(c)

(d)

a) N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat Mater 2014, 13, 897-903. b) Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Advanced Materials 2014, 26, 6503-6509.

Page 28: Henry J. Snaith at BASF Science Symposium 2015

Organic p- and n-type contacts

a) b)

“Inverted” architecture essential for some tandem applications Capitalise upon all the processing and device architecture know-how from OPV

Aluminum

TiOX

P3HT:PCBM

PEDOT:PSS ITO

Glass

c.f. A. J. Heeger et al. Adv. Mater. 2006, 18, 572–576

Page 29: Henry J. Snaith at BASF Science Symposium 2015

PEDOT:PSS-Perovskite-PC60BM planar heterojunction devices

Jsc Eff Voc FFRegular 17.8 11.8 1.02 0.66Inverted 15.9 10.0 0.96 0.63

Jsc Eff Voc FFPET 14.4 6.4 0.88 0.51

Glass 14.4 6.3 0.92 0.47

P. Docampo et al. Nature Communications 2013

Page 30: Henry J. Snaith at BASF Science Symposium 2015

Laminated electrode

J. Troughton et al, 2015

Page 31: Henry J. Snaith at BASF Science Symposium 2015

Image courtesy of FutureTimeline.net

Do people want brown Buildings? Quite a hard sell….

Perovskite film (with thumb print)

Page 32: Henry J. Snaith at BASF Science Symposium 2015

Semi-transparent Solar Cells……

G. Eperon et al. ACS Nano (2014)

Page 33: Henry J. Snaith at BASF Science Symposium 2015

Semi-transparent solar cell operation

5 10 15 20 25 300

2

4

6

8

Pow

er c

over

sion

effi

cien

cy (%

)

Average visible transmittancethrough full device (%)

a

0.0 0.2 0.4 0.6 0.80

4

8

12

16

Cur

rent

den

sity

(mA

cm-2)

Voltage (V)

7.5-12.5% AVT 12.5-17.5% AVT 17.5-22.5% AVT 22.5%+ AVT

bUsing Semi-transparent thin gold electrodes

G. Eperon et al. ACS Nano (2013) 0 10 20 30 40 50 60

0

2

4

6

8

10

12 PCE Mean Maximum

Pow

er c

onve

rsio

n ef

ficie

ncy

for 1

ligh

t pas

s (%

)

Average visible transmittance of active layer (%)

c

Page 34: Henry J. Snaith at BASF Science Symposium 2015

“colour-tinted” semi-transparent perovskite solar cells

400 500 600 700 8000

20

40

60

80

100

120

Tran

smitt

ance

(%)

Wavelength (nm)

5mg/ml D102 in spiro-OMeTAD Semi-transparent perovskite cell +D102 Semi-transparent perovskite cell

b

0.0 0.2 0.4 0.6 0.80

2

4

6

8

10

12

14

Jsc(mAcm-2) Voc(V) FF η(%)Controls 12.0 0.85 0.63 6.4 D102-spiro 12.2 0.87 0.61 6.5

Cur

rent

den

sity

(mA

cm-2)

Voltage (V)

Semi-transparent perovskite cells + D102 Semi-transparent perovskite cells

c

No gain, but no loss G. Eperon et al. ACS Nano (in-press)

Page 35: Henry J. Snaith at BASF Science Symposium 2015

Ordered microstructure with templates

Page 36: Henry J. Snaith at BASF Science Symposium 2015

1D Photonic Crystal Solar Cell

W. Zhang et al. Nanoletters 2015 (in collaboration with Hernán Míguez CSIC)

Page 37: Henry J. Snaith at BASF Science Symposium 2015

Lead-free: CH3NH3SnI3 Perovskite

a=b= 8.7912 Å and c = 4.4770 Å

N. Noel et al. EES 2014 Also see: Hayase and co workers 2014; Kanitzidis and co workers Nat Photo 2014, K-Y Jen and coworkers 2014

Page 38: Henry J. Snaith at BASF Science Symposium 2015

Solar Cell results

N. Noel et al. EES 2014

Band gap ~ 1.23 eV; Voc ~ 0.88 V Eg-Voc ~ 0.35eV ?????

Page 39: Henry J. Snaith at BASF Science Symposium 2015

Perovskite solar cells: The rest of the world Pa

pers

pub

lishe

d

Year

Perovskites Certified 20% efficiency on lab based cells (small area)

>30% by end 2016?

Page 40: Henry J. Snaith at BASF Science Symposium 2015

Is this the future?

Page 41: Henry J. Snaith at BASF Science Symposium 2015

Production of silicon and silicon wafers Expensive, high-energy process generating high levels of waste material

Coke reduction in arc furnace at

1800 °C

Disolve in HCI at 300 °C + distillation

Chemical refinement

Siemens process at 900 °C

Modified Siemens process

Sand SiO2 + C

Metallurgical Grade

Silicon (MG Silicon)

Hydrogen Chloride

HCI HCI Hydroge

n High purity Trichlorosila

ne HSiCl3 High purity

polysilicon ∼ 9N

Polysilicon ∼ 6-7N Upgraded MG silicon >5N

Various Gasses

Electronic-grade

Solar-grade

Solar grade

Polysilicon

Melting Czochralski

pulling

Cutting/

squaring

Squared

ingot

Wire sawing

Cleaning

Wafer

Wings, top and tail recycling/etching

Slurry recycli

ng

from sand silicon to

from silicon wafer to

Page 42: Henry J. Snaith at BASF Science Symposium 2015

Production of perovskite cell Simpler, lower cost, lower embodied energy, massively reduced environmental impact, lowest LCOE

Incoming coated glass

Deposit titanium dioxide Deposit perovskite Finished panel

with back contact Deposit hole

transport layer

+ + = Yellow

precursor salt

White precursor

salt

Organic solvent

Perovskite liquid

formulation

from salts perovskite to

from perovskite liquid perovskite solar panel

to

Even simpler than conventional thin film

Page 43: Henry J. Snaith at BASF Science Symposium 2015

But…

Page 44: Henry J. Snaith at BASF Science Symposium 2015

Tuning the band gap of 3D perovskites

• When will a 3D perovskite form?

• When the A, B and X components fit together neatly in the crystal lattice.

• Assuming ionic radii of RA etc, For a close packed cubic perovskite the structure is possible, provided:

Page 45: Henry J. Snaith at BASF Science Symposium 2015

Tuning the band gap with cation size

Page 46: Henry J. Snaith at BASF Science Symposium 2015

Tuning the band gap with mixed anions

5.9 6.0 6.1 6.2 6.3 6.4

1.4

1.6

1.8

2.0

2.2

2.4

Tetragonal

y=1

g ()

Pseudocubic lattice parameter a* ( )

y=0

Cubic

G. Eperon et al. EES 2014 (Also See Noh et al. nanoletters 2012 for methylamonium trihalogenplumbates)

Formamidinium trihalogenplumbate (iodide-bromide mixed halide)

Page 47: Henry J. Snaith at BASF Science Symposium 2015

Perovskite/Silicon Tandem

Figure courtesy of M. McGehee, Standford Uni

Page 48: Henry J. Snaith at BASF Science Symposium 2015

Utility Scale PV

Combining Perovskites and Si in a tandem architecture could lead to >30% efficient modules

Page 49: Henry J. Snaith at BASF Science Symposium 2015

Why are organic-inorganic perovskites

such good solar cell materials???

Page 50: Henry J. Snaith at BASF Science Symposium 2015

Low energetic disorder

Technology Charge carrier lifetime

(micro seconds)

Urbach Energy (meV)

GaAs 1 7

c-Si 500* 11

MAPbI3 or MAPbI3-xClx >1 15

CIGS 0.25 25

Organics 0 001 50

(g)

Page 51: Henry J. Snaith at BASF Science Symposium 2015

PLQE and lasing!!

0 500 1000 1500 200030

40

50

60

70

PLQ

E (%

)

Excitation power (mW/cm²)

Very High Photo Luminescent quantum yield Negligible non-radiative decay

740 760 780 800 8200.0

0.5

1.0

1.5

2.0

Cou

nts

(x10

6 )

Fluence (µJ/cm2) 100 4 (scaled x25) PL Spectrum

Wavelength (nm)

Even room temperature lasing of as cast films within a cavity

Felix Deschler et al. JPCL 2014

Page 52: Henry J. Snaith at BASF Science Symposium 2015

Grain boundaries in thin film solar cells

L. M . Woods et al. NREL, Photovoltaic Solar Energy Conversion; 6-10 July 1998; Vienna, Austria

CdTe

A lot of electrons get trapped at the grain boundary, which introduces a lot of losse

“CIGS the wonder material” has ~ 100meV barrier at grain boundaries

Page 53: Henry J. Snaith at BASF Science Symposium 2015

Perovskites: “more wonderful”

Solution cast

Vapour Deposited

MAPbI3 potential barrier ~ 60 meV in dark MAPbI3 barrier ~ 15 meV in light MAPbI3-xClx barrier even lower MAPbI3-xClx is “almost like a singe crystal”

D. Cahen, G. Hodes and co-workers

Page 54: Henry J. Snaith at BASF Science Symposium 2015

Commercialisation:

Device and mini-module development Target: Develop stable and efficient materials stack

Develop processing methodology to deliver

Efficient modules at high yield

Deliver 1st product in 2017

Page 55: Henry J. Snaith at BASF Science Symposium 2015

Test and reliability laboratory Climatic testing to IEC61646 at 20*30 cm mini-

module scale

-85̊C/85% RH 1000hrs

+85 to -40̊C cycling 200 cycles

“Full Spectrum” Light soaking to AM1.5G 3000hrs

(not IEC)

High UV exposure

Page 56: Henry J. Snaith at BASF Science Symposium 2015

Perovskite Phase Stability (II) FAPbI3 Trigonal and Hexagonal phases possible at RTP

• Black (desired) 3D trigonal phase stable at 150oC in bulk and film

Koh, T. M. et al. J Phys Chem C (2013)

• 54 cycles -40 to +85oC (6hour cycle)

54 cycles

Page 57: Henry J. Snaith at BASF Science Symposium 2015

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

Normalised perovskite Colour

Intensity (%)

Stressing Time (hours)

Control(140)Control(115)A

B

C

D

Moisture sensitivity and Encapsulation Development

Interlayer assembly only

Encapsulation selection using 1000hr 85oC/85% baseline

Perovskite layer degradation by moisture ingress after early lamination failure

350hrs 0 hrs

Moisture ingress accelerates degradation

Interlayer desiccation Cover Glass

Interlayer

Perovskite Film

Edge Seal Gap Module Glass

Page 58: Henry J. Snaith at BASF Science Symposium 2015

Full sun light soaking 60⁰ C

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 500 1000 1500 2000

Nor

mal

ised

Pm

ax

Hours elapsed

Solar cells aged under load with no UV filter

Page 59: Henry J. Snaith at BASF Science Symposium 2015

Future direction for perovskite solar cells:

Page 60: Henry J. Snaith at BASF Science Symposium 2015

Acknowledgements

Funding EPSRC, ERC & FP7, Oxford John Fell Fund, Oxford Martin School, Royal Society.

Research group Collaborators: Perovskites: Takuru Murakami Tsutomu Miyasaka Oxford: Michael Johnston Laura Herz Robin Nicholas Victor Burlakov Alan Goriely Swansea: David Worsley, Tristan Watson et al. Milan: Annamaria Petrozza Giulia Grancini et al. Cambridge: Richard Friend Felix Deschler Michael Price et al.

+ Mingzhen liu Tomas Leijtens

Mike

Sam Giles

Konrad

James

Pablo

Antonio

Nakita

Page 61: Henry J. Snaith at BASF Science Symposium 2015
Page 62: Henry J. Snaith at BASF Science Symposium 2015

Films heated at 80C in air

Page 63: Henry J. Snaith at BASF Science Symposium 2015

[1] Schuettfort et al. Nano Lett. 2009, 9, 3871–3876 [2] Dabera et al. ACS Nano 2013, 7, 556–565 [3] Dissanayake et al. Nano Lett. 2011, 11, 286–290

63

Polymer wrapping with poly(3-hexylthiophene) (P3HT)

Solubilizing the SWNTs[1]

Making SWNTs more p-type[2,3]

Carbon Nanotube Functionalization

ref. [7]

Page 64: Henry J. Snaith at BASF Science Symposium 2015

Device construction

Page 65: Henry J. Snaith at BASF Science Symposium 2015

SWNT devices

HTL architecture Jsc [mA/cm2]

Voc [V] FF max. PCE

[%] av. PCE [%]

P3HT/SWNT (HiPCO) only 20.8 0.85 0.42 7.4 2.8±2.7

P3HT/SWNT(HiPCO)-PMMA 21.5 1.04 0.63 14.2 10.9±1.9

P3HT/SWNT(CG200)-PMMA 22.7 1.02 0.66 15.3 10.4±2.6

Page 66: Henry J. Snaith at BASF Science Symposium 2015

Thermal Stressing 80⁰C in air 96 hrs

PC PMMA PC PMMA

Page 67: Henry J. Snaith at BASF Science Symposium 2015

Not an IEC test!

Page 68: Henry J. Snaith at BASF Science Symposium 2015

68

Water Stability

Direct exposure to a stream of running water (60 s)

Exposing a perovskite with spiro-OMeTAD directly to water

Severin N. Habisreutinger [email protected]

Page 69: Henry J. Snaith at BASF Science Symposium 2015
Page 70: Henry J. Snaith at BASF Science Symposium 2015