33
Social dynamics in living systems: from microbe to metropolis David Healey 27 August 2014 Ph.D. Candidate Department of Biology Visiting student

Healey sdal social dynamics in living systems from microbe to metropolis

Embed Size (px)

DESCRIPTION

Living systems are ubiquitous in the natural world. While they exist at many different scales—from the tiniest bacterial colony to vast human societies—they share some commonalities between them, such as the drive for growth, the need for nutrient consumption and waste, and the capability to spontaneously mutate and evolve. These commonalities create the potential to apply principles across living systems that occupy vastly different scales and complexity. In this presentation, I will consider populations composed of two very different living organisms—budding yeast and humans—and consider examples of how principles derived from the study of each system can shed light on the other. In the case of budding yeast, we will discuss the problematic biological phenomenon of stochastic gene expression and show how it can be reconciled to evolutionary principles by considering it within a framework taken from economic game theory. In the case of human populations, we will consider community resilience in light of two recent advances in microbial ecology: 1) cooperation density leading to higher resilience and 2) critical slowing down preceding sudden systemic collapse. These examples will highlight the potential for learning from cross-disciplinary models of living systems.

Citation preview

Page 1: Healey sdal social dynamics in living systems from microbe to metropolis

Social  dynamics  in  living  systems:  from  microbe  to  metropolis  

David  Healey    

27  August  2014  

Ph.D.  Candidate  Department  of  Biology   Visiting  student  

Page 2: Healey sdal social dynamics in living systems from microbe to metropolis

Living  systems  exist  at  many  different  scales  

•  Patterns  emerge  across  all  living  systems!  

Page 3: Healey sdal social dynamics in living systems from microbe to metropolis

We  are  more  similar  to  fungus  than  you  might  think  

Common  attributes  of  populations:  •  Consume  nutrients  •  Produce  waste  •  Transport  nutrients  and  

waste  •  Expand  and  migrate  •  Cooperate  and  compete  •  Mutate  and  evolve  

Potential  for  learning  from    

Photo  credit:  NASA  (upper)  and    

Page 4: Healey sdal social dynamics in living systems from microbe to metropolis

Part  1:  Borrowing  models  from  social  science  to  better  understand  single  cells  

Yeast  Humans  

Page 5: Healey sdal social dynamics in living systems from microbe to metropolis

How  cells  “make  decisions”    

DNA   RNA  Proteins  

Environment  

Phenotype  (cell  characteristics)  

Identical  DNA    +  

 Identical  environment  =  

   Identical  phenotypes  

Page 6: Healey sdal social dynamics in living systems from microbe to metropolis

There  is  a  lot  more  randomness  than  anyone  expected  

The  discovery  of  “stochastic  gene  expression”  or  “phenotypic  heterogeneity”  brought  up  two  questions:  1.   How  do  cells  introduce  randomness  into  their  decision-­‐making  

process?    2.   Why  do  cells  introduce  randomness  into  their  decision-­‐making  

process?      

Page 7: Healey sdal social dynamics in living systems from microbe to metropolis

How  cells  “make  decisions”    

DNA   RNA  Proteins  

Environment  

Phenotype  (cell  characteristics)  

In  a  given  environment,  different  phenotypes  have  different  [itness!  

Page 8: Healey sdal social dynamics in living systems from microbe to metropolis

What  is  the  evolutionary  advantage  of  phenotypic  noise?  

•  Previous  answer  in  the  literature  centered  around  “bet-­‐hedging”:  variation  spreads  risk  in  uncertain  and  [luctuating  environments.    

•  Another  possible  answer:  Randomness  could  be  a  social  adaptation.  Q:  What  is  the  most  optimal  thing  for  me  to  do?  A:  It  depends  on  what  everyone  else  is  doing.  

All  seeds  germinate   Some  seeds  stay  dormant  Draught!  

Hedge  bets  

Page 9: Healey sdal social dynamics in living systems from microbe to metropolis

Game  theory  deals  with  what  is  optimal  given  the  actions  of  other  individuals  

•  Players  receive  payoffs  dependent  on  what  everyone  chooses  •  Solution  concept:  Nash  equilibrium.    A  stable  state  where  no  one  has  an  incentive  

to  switch  strategies.  •  There  is  a  class  of  two-­‐person  games  that  have  mixed  strategy  Nash  equilibria  

–  Mixed  strategy:  a  probabilistic  mix  between  pure  strategies  

Chicken  game  a.k.a  Snowdrift  Games,  Hawk-­‐dove  games,  anticoordination  games  

Swerve   Straight  

Swerve   3  ,  3   1  ,  5  

Straight   5  ,  1   0  ,  0  De[ining  characteristic:  the  optimal  thing  to  do  is  the  opposite  of  whatever  your  opponent  chooses  

Driver  1  

Driver  2  

Page 10: Healey sdal social dynamics in living systems from microbe to metropolis

Evolutionary  game  theory  replaces  rationality  with  evolution  

•  Payoffs  are  evolutionary  [itness  (ie  numbers  of  offspring)  •  Strategy  is  de[ined  by  your  genes,  and  you  consider  whether  a  population  can  be  invaded.  

Swerve   Straight  

Swerve   3  ,  3   1  ,  5  

Straight   5  ,  1   0  ,  0  Driver  1  

Driver  2  

•  Imagine  a  population  of  clone  drivers.    They  all  have  to  use  the  same  strategy)  •  “Swerve”  yields  a  payoff  of  3  for  every  member  of  the  population  •  “Swerve”  is  not  an  evolutionarily  stable  strategy.    It  can  be  invaded  by  “Straight”  •  “Straight”  is  also  not  stable,  since  it  can  be  invaded  by  “Swerve”  •  The  only  evolutionarily  stable  thing  to  do  is  to  sometimes  swerve  and  sometimes  go  

straight    –  Swerve  1/3  of  the  time.    The  population  can’t  be  invaded.      –  This  stable  mixed  strategy  gives  everyone  an  average  payoff  of  1.7  

Page 11: Healey sdal social dynamics in living systems from microbe to metropolis

What  is  important  about  evolutionary  chicken  games:  

Evolutionary  “chicken”  games:  1.  Both  strategies  win  when  rare  2.  Evolution  will  favor  a  population  

that  randomizes  (mixed  strategy)  3.  This  results  in  a  population  with  

both  phenotypes  present  4.  The  evolutionarily  stable  state  is  

not  necessarily  the  optimum.  

Goal:  show  that  phenotypic  noise  can  be  a  social  adaptation.    A  mixed  strategy  in  response  to  an  evolutionary  game  of  chicken.  

Page 12: Healey sdal social dynamics in living systems from microbe to metropolis

Budding  yeast’s  GAL  gene  network  is  an  example  of  cellular  randomness  

•  Yeast  prefer  to  consume  the  sugar  glucose,  but  galactose  is  also  acceptable.  

•  GAL  enzymes  are  costly,  so  they  should  only  be  produced  when  needed  

•  (Aside:  you  can  measure  the  activation  state  of  the  GAL  network)  

DNA  codes  a  [luorescent  protein  driven  by  GAL  regulator  sequence  

yeast  Integrate  into  Yeast  genome  

yeast  

Laser  Fluorescent  if  GAL  is  “ON”  

Healey and Gore, in submission

Page 13: Healey sdal social dynamics in living systems from microbe to metropolis

Budding  yeast’s  GAL  gene  network  is  an  example  of  cellular  randomness  

•  Yeast  prefer  to  consume  the  sugar  glucose,  but  galactose  is  also  acceptable.  

•  GAL  enzymes  are  costly,  so  they  should  only  be  produced  when  needed  

 

Healey and Gore, in submission

Page 14: Healey sdal social dynamics in living systems from microbe to metropolis

Is  yeast  playing  a  game  of  chicken?  

1.  Question:  are  GAL-­‐ON  and  GAL-­‐OFF  mutually  invasible?  

Glucose   Galactose  

Healey and Gore, in submission

Page 15: Healey sdal social dynamics in living systems from microbe to metropolis

GAL-­‐ON  and  GAL-­‐OFF  strategies  are  mutually  invasible  

Engineered  yeast  whose  GAL  genes  can  be  chemically  controlled.  

GAL-­‐ON  GAL-­‐OFF  Wild  type  (normal  yeast)  

Mixed  them  at  different  fractions  of  the  population,  and  competed  

Healey and Gore, in submission

Page 16: Healey sdal social dynamics in living systems from microbe to metropolis

There  is  an  evolutionarily  stable  mixed  equilibrium  of  GAL-­‐ON  and  GAL-­‐OFFat  a  “non-­‐optimal”  ratio  

Healey and Gore, in submission

Page 17: Healey sdal social dynamics in living systems from microbe to metropolis

Stable  mix  is  a  “non-­‐optimal”  ratio  

Healey and Gore, in submission

Page 18: Healey sdal social dynamics in living systems from microbe to metropolis

Part  2:  Borrowing  models  from  microbial  population  dynamics  to  better  understand  human  populations  

Yeast  Humans  

Page 19: Healey sdal social dynamics in living systems from microbe to metropolis

How  do  cooperative  interactions  within  populations  affect  resilience?  

Page 20: Healey sdal social dynamics in living systems from microbe to metropolis

Yeast:  a  primitive  model  of  cooperation  and  social  capital  

sucrose  

glucose  

•  The  majority  of  glucose  that  yeast  consume  is  produced  by  a  different  yeast!  

 •  Similar  cooperative  dynamics  with  bacterial  antibiotic  resistance!Yurtsev  et  al,  Mol  Sys  Bio  (2013)  

Yeast  cell  

Page 21: Healey sdal social dynamics in living systems from microbe to metropolis

Different  levels  of  cooperation  in  yeast  does  not  affect  the  size  of  population,  but  drastically  affects  its  resilience  

“Non-­‐cooperator”  

“Cooperator”  High  cooperation  

Low  cooperation  

SALT  SHOCK!!  

Sanchez and Gore, PLoS Biology (2013)

Recovery  

EXTINCTION  

Page 22: Healey sdal social dynamics in living systems from microbe to metropolis

Is  there  a  similar  effect  in  localized  human  populations?  

Village  L’Est  

Surrounding  neighborhood  

HURRICANE    <½  of  schools  &  businesses  reopened  

 

1  year  later:      >90%  of  schools  &  businesses  reopened  

 

Chamlee-Wright, The Cultural and Political Economy of Recovery (2010)

New  Orleans  

Page 23: Healey sdal social dynamics in living systems from microbe to metropolis

Social  connectivity  and  resilience  to  disaster  

The  most  common  group  people  received  help  from  was  local  friends  and  family  (<  1mi)  

~750  heat-­‐related  deaths  •  Most  were  socially  isolated  

Is community level social capital eroding?

Has technology caused “the death of distance”?

Page 24: Healey sdal social dynamics in living systems from microbe to metropolis

How  do  we  measure  connectivity  in  human  populations?  

Surveys and interviews

•  “The  presence  of  an  external  observer,  typically  the  researcher,  may  heighten  people’s  self  consciousness  and  concerns  with  appearing  in  socially  desirable  ways  (Onnela  et  al.  2014)”    

From  social  capital  community  benchmark  survey:    •  “How  many  of  your  neighbors’  [irst  

names  do  you  know?”  

From      

Page 25: Healey sdal social dynamics in living systems from microbe to metropolis

What  if  we  could  measure  neighborhood-­‐level  connectivity  directly?  

Streaming  Twitter  API  hits  from  Arlington  Co.  over  24  hr  

1)  Not enough geotagged tweets to reconstruct a social network from @mentions 2)  Twitter is definitely not a subset of the population

Page 26: Healey sdal social dynamics in living systems from microbe to metropolis

The  holy  grail  of  human  connectivity:  call  detail  records  (CDRs)  

1.  Establish  “neighborhoods”  based  on  radii  around  cell  towers  (down  to  <500  meters  in  high  density  areas)  

2.  Reconstruct  social  networks  based  on  reciprocated  calls  3.  Ask  a  bunch  of  questions:  

1.  Which  neighborhoods  have  the  highest  inter-­‐neighborhood  connectivity?  (ie  network  density  or  average  number  of  connections  per  node)  

2.  Which  neighborhoods  are  isolated?  3.  What  are  the  “natural”  communities  within  a  city?  4.  So  many  more!  

(The  vision)  

Page 27: Healey sdal social dynamics in living systems from microbe to metropolis

Another  microbially-­‐informed  question  about  resilience:  

Can  you  observe  loss  of  resilience  preceding  a  sudden  social  collapse?  

Page 28: Healey sdal social dynamics in living systems from microbe to metropolis

Living  systems  are  prone  to  contain  tipping  points  that  lead  to  sudden  collapse  

Scheffer et al. Nature (2009)

Environmental deterioration

Pop

ulat

ion

size

Environmental deterioration

Page 29: Healey sdal social dynamics in living systems from microbe to metropolis

Yeast  populations  experience  a  fold  bifurcation  

Dai et al. Science (2012)

Page 30: Healey sdal social dynamics in living systems from microbe to metropolis

A  system  experiences  a  loss  of  resilience  before  the  tipping  point  

Scheffer et al. Nature (2009)

This phenomenon is known as “critical slowing down”

Page 31: Healey sdal social dynamics in living systems from microbe to metropolis

Could  you  see  this  effect  in  the  anger  level  of  a  social  network  before  a  sudden  social  upheaval?  

1  June  2013  Rate  Hike  

Photo credit: EFE

Mass Protests

Time

How  does  the  system  respond  to  shocks  in  this  region?  

Page 32: Healey sdal social dynamics in living systems from microbe to metropolis

Summary:  very  similar  population  dynamics  can  exist  even  between  microbes  and  people  

•  Economic  game  theory  can  help  explain  why  yeast  have  evolved  a  high  degree  of  randomness  in  their  environmental  responses  

   •  The  density  of  cooperative  interactions  

within  populations  might  underlie  local  variation  in  resilience  

 

•  Living  systems  might  exhibit  observable  loss  of  resilience  preceding  a  tipping  point  

Page 33: Healey sdal social dynamics in living systems from microbe to metropolis

Acknowledgements  

•  Jeff  Gore,  Alvaro  Sanchez,  Lei  Dai,  and  other  members  of  the  Gore  group  

•  Sallie  Keller,  Stephanie  Shipp,  Gizem  Korkmaz,  and  members  of  SDAL  

•  Funding:  National  Science  Foundation,  National  Institutes  of  Health,  Virginia  Bioinformatics  Institute