17

Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Embed Size (px)

DESCRIPTION

catastrophy theory seminar at the department of chemistry, cambridge

Citation preview

Page 1: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Gradient Dynamical Systems, Bifurcation Theory,

Numerical Methods and Applications

Boris Fa£kovec

David Wales group

Department of Chemistry

University of Cambridge

30st May 2013

1 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 2: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

What is this about?

solution x1(y1, ...c1, ...cm, t), ...xn(y1, ...c1, ...cm, t) to

Fi

(xα..., cβ...

∂kxj

∂ykl, ...

∂rxp∂tr

, ...

∫fγ(xδ, ...cε, ...yζ)dyζ , ...

)= 0

theory of dynamical systemsno spatial derivativesno higher order derivativesno integrals�rst order time derivative separable

dxidt

= f (x1, ...xn, c1, ...cm, t)

bifurcation theory - how the solutions change with cigradient systems - xi = ∂V (x1,...xn,c1,...cn)

∂xiautonomous - right side does not explicitly depend on timegradient - not Hamiltonian systems pi = − ∂H

∂qi, qi = ∂H

∂pi

catastrophy theory - one more approximationstationary → how solutions to systems of non-linear algebraicequations change with ci

2 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 3: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Where are Fractals?

not in this presentation

self-repeating structures - non-integer Haussdorf dimension

important in dynamical systems but . . .

discrete dynamical systems

in chemistry - basins of attraction

3 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 4: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

What is a Dynamical System?

dynamical system {S, ϕ}dynamics ϕ : S× R→ S

ϕ(σ, 0) = σϕ(ϕ(σ, t), s) = ϕ(σ, t + s)

∀σ ∈ S

phase �ow - in RN , dynamics given by vector �eld

one more condition ∂ϕ(x,t)∂t = v(ϕ(x, t))

system of �rst order ordinary di�erential equations (SODE)

if we can evaluate ϕ fast, we know the dynamics

no memory

autonomousdxidt

= f (x1, ...xn, c1, ...cm)

4 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 5: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Phase Portrait

solution to SODE - touple of functions (x1(t), ...xn(t))

trajectories

unique (in contrast with con�guration space)singular - stationary point, periodic, homoclinic, heteroclinic

Steady state, periodic, homoclinic, heteroclinic trajectory

Lyapunov stability

asymptotic

5 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 6: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Linear SODE

linear SODE (homogeneous): x = A x

has an analytical solution: ϕ(x0, τ) = eAτx0

6 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 7: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Non-linear SODE

general system xi = fi (x1, ...xn, c1, ...cm)

Grobman-Hartman theorem

non-zero Re(eigval)topologically equivalent

stability by eigenvalues of matrix of linearisation

qualitative studies of phase portrait

identify singular trajectoriesdetermine their stability

7 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 8: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Structural Stability of Vector Fields

SODE x = v(x) is structurally stable if there is ε, for which all

vector �elds u (|u− v| < ε) have qualitatively the same phase

portraits

bifurcation - cannot happen in structurally stable systemssteady stateperiodic trajectory

local bifurcations of 1-parametric system of vector �eldssaddle-node bifurcation (parameter µ )

8 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 9: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Common types of bifurcations

pitchfork bifurcation

Hopf bifurcation

.

9 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 10: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Bifurcation Diagram

diagram of stationary solutions

a quantity as a function of a parameterbranching, critical points, bifurcation points, double, triple BP,HB points

bifurcation diagram

more than 1 parametercurves of bifurcation points

10 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 11: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Bifurcation Diagrams

LEFT diagram of stationary states - periodic trajectories for

lorenz model

RIGHT - bifurcation diagram for CSTR1EXO model

11 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 12: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Constructing the Diagram of Stationary Solutions

�nding stationary solutions

parameter mapping

not e�cient

DERPAR

introducing an arti�cial parameter (parametrisation of thecurve in the diagram of stationary solutions)∑n

i=1

(dxi

dz

)2+(dαdz

)2= 1

in stationary point dfidz

= 0∂fi∂α

dαdz

+∑n

j=1

∂fi∂xj

dxj

dz= 0

underdetermined systemGauss-Jordan elimination using maximum pivotalgorithm must remember signs of derivatives

predictor-corrector

can continuate the whole curvecannot �nd isolated curve of solutions

periodic trajectories - DERPER

12 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 13: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Case 1 - CSTR1EXO

stirred tank reactor with an exothermic reaction

toy system for bifurcation analyses with connection to chem

eng reality

reduction of parameters by using dimensionless quantities

x - conversion, Θ - temperature

Da - Damköhler number - �ow

Θc - temp of cooling medium, γ - activation energy, β - heat

exchange param, Λ - recycle, B - heat production param

dxdt

= −Λx + Da(1− x)eΘ

1+Θ/γ

dΘdt

= −ΛΘ + DaB(1− x)eΘ

1+Θ/γ − β(Θ−Θc)

13 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 14: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Case 1 - Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

x

Da

stabunstab

HBLB

14 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 15: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Case 2 - Cluster of 3 Charged Atoms

gradual increase of LJ energy

x1 = y1 = x2 = 0r13 =

√x23

+ y23

r23 =√

x23

+ (y3 − y2)22-

++

2-

+

+

SODE (6-dimensional phase space):

y2 = vy2x3 = vx3y3 = vy3

vy2 = −[

2y22− y2−y3

r323+ 6ε

(− 2

y132− 2(y2−y3)

r1423+ 1

y72+ (y2−y3)

r823

)]vx3 = −

[2x3r313− x3

r323+ 6εx3

(− 2

r1413− 2

r1423+ 1

r813+ 1

r823

)]vy3 = −

[2y3r313− y3−y2

r323+ 6ε

(−2y3

r1413− 2(y3−y2)

r1423+ y3

r813+ (y3−y2)

r823

)]15 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 16: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

Case 2 - Results

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10

xco

ordi

nate

ofth

eth

irdat

om

energy ratio LJ/elstat

16 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013

Page 17: Gradient Dynamical Systems, Bifurcation Theory, Numerical Methods and Applications

References

M. Holodniok, A. Klic, M. Kubicek, M. Marek, Metody

analyzy nelinearnich dynamickych modelu, 1986

M. Kubicek, Algorithm 502: Dependence of Solution of

Nonlinear Systems on a Parameter. ACM Trans. Math.

Software, (2):98, 1976

A. Klic, M. Dubcova, L. Buric, Soustavy obycejnych

diferencialnich rovnic, 2009

R. Gilmore, Catastrophe theory for scientists and engineers,

1981

V.I. Arnold, Catastrophe theory, 1986

17 / 17 Boris Fa£kovec ([email protected]) Bifurcation theory May 30 2013