59
1 Chuyên đề luyn thi đại hc PHƯƠNG PHÁP GII CÁC BÀI TP HÌNH KHÔNG GIAN TRONG KTHI TSĐH Biên son: Nguyn Trung Kiên 0988844088 Trong kthi TSĐH bài toán hình không gian luôn là dng bài tp gây khó khăn cho hc sinh. Nguyên nhân cơ bn là do hc sinh chưa biết phân bit rõ ràng dng bài tp để la chn công c, phương pháp gii cho phù hp. Bài viết này sgiúp hc sinh gii quyết nhng vướng mc đó. Phn 1: Nhng vn đề cn nm chc khi tính toán Trong tam giác vuông ABC (vuông ti A) đường cao AH thì ta luôn có: - tan b c B = , tan c b C = , 2 . AH HB HC = - 2 2 2 2 2 1 1 1 . AB AC AH AH AB AC AB AC = + = + H C B A Trong tam giác thường ABC ta có: 2 2 2 2 2 2 2 cos ;cos 2 b c a a b c bc A A bc - = + - = . Tương tta có hthc cho cnh b, c và góc B, C: - 1 1 1 sin sin sin 2 2 2 ABC S ab C bc A ac B = = = - . S pr = (Trong đó p là na chu vi, r là bán kính vòng tròn ni tiếp tam giác) - 4 abc S R = Thtích khi đa din: - 1 . 3 chop V Bh = (B là din tích đáy, h là chiu cao) - . LT V Bh = Phn 2) Phương pháp xác định đường cao các loi khi chóp: - Loi 1: Khi chóp có 1 cnh góc vuông vi đáy đó chính là chiu cao. - Loi 2: Khi chóp có 1 mt bên vuông góc vi đáy thì đường cao chính là đường vuông góc ktđỉnh đến giao tuyến ca mt bên và đáy. - Loi 3: Khi chóp có 2 mt knhau cùng vuông góc vi đáy thì đường cao chính là giao tuyến ca 2 mt knhau đó.

Chuyen de hinh_hoc_khong_gian

Embed Size (px)

Citation preview

Page 1: Chuyen de hinh_hoc_khong_gian

1

Chuyên đề luyện thi đại học PHƯƠNG PHÁP GIẢI CÁC BÀI T ẬP HÌNH

KHÔNG GIAN TRONG K Ỳ THI TSĐH Biên soạn: Nguyễn Trung Kiên 0988844088

Trong kỳ thi TSĐH bài toán hình không gian luôn là dạng bài tập gây khó khăn cho học sinh. Nguyên nhân cơ bản là do học sinh chưa biết phân biệt rõ ràng dạng bài tập để lựa chọn công cụ, phương pháp giải cho phù hợp. Bài viết này sẽ giúp học sinh giải quyết những vướng mắc đó. Phần 1: Những vấn đề cần nắm chắc khi tính toán ⊻ Trong tam giác vuông ABC (vuông tại A) đường cao AH thì ta luôn có: - tanb c B= , tanc b C= , 2 .AH HB HC=

- 2 2 2 2 2

1 1 1 .AB ACAH

AH AB AC AB AC= + ⇒ =

+

HCB

A

⊻ Trong tam giác thường ABC ta có: 2 2 2

2 2 2 2 cos ;cos2

b c aa b c bc A A

bc

+ −= + − = .

Tương tự ta có hệ thức cho cạnh b, c và góc B, C:

- 1 1 1

sin sin sin2 2 2ABCS ab C bc A ac B∆ = = =

- .S p r= (Trong đó p là nữa chu vi, r là bán kính vòng tròn nội tiếp tam giác)

- 4

abcS

R=

⊻ Thể tích khối đa diện:

- 1

.3chopV B h= (B là diện tích đáy, h là chiều cao)

- .LTV B h= Phần 2) Phương pháp xác định đường cao các loại khối chóp:

- Loại 1: Khối chóp có 1 cạnh góc vuông với đáy đó chính là chiều cao. - Loại 2: Khối chóp có 1 mặt bên vuông góc với đáy thì đường cao chính là đường vuông

góc kẻ từ đỉnh đến giao tuyến của mặt bên và đáy. - Loại 3: Khối chóp có 2 mặt kề nhau cùng vuông góc với đáy thì đường cao chính là giao

tuyến của 2 mặt kề nhau đó.

Page 2: Chuyen de hinh_hoc_khong_gian

2

- Loại 4: Khối chóp có các cạnh bên bằng nhau hoặc các cạnh bên cùng tạo với đáy 1 góc bằng nhau thì chân đường cao chính là tâm vòng tròn ngoại tiếp đáy.

- Loại 5: Khối chóp có các mặt bên đều tạo với đáy 1 góc bằng nhau thì chân đường cao chính là tâm vòng tròn nội tiếp đáy.

Sử dụng các giả thiết mở: - Hình chóp SABCD có mặt phẳng ( )SAB và ( )SAC cùng tạo với đáy góc α thì chân

đường cao hạ từ đỉnh S thuộc phân giác trong góc BAC - Hình chóp SABCD có SB SC= hoặc ,SB SC cùng tạo với đáy một góc α thì chân

đường cao hạ từ S rơi vào đường trung trực của BC Việc xác định được chân đường cao là yếu tố đặc biệt quan trọng để giải quyết các câu hỏi trong bài toán hình không gian cổ điển Phần 3: Các bài toán về tính thể tích A. Tính thể tích trực tiếp bằng cách tìm đường cao: Ví dụ 1) (TSĐH A 2009) Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại A vàD , có 2 ,AB AD a CD a= = = . Góc giữa 2 mặt phẳng ( ), ( )SCB ABCD bằng 600. Gọi I là trung điểm AD biết 2 mặt phẳng ( )SBI và ( )SCI cùng vuông góc với đáy ABCD . Tính thể tích khối chóp SABCD . HD giải: Vì 2 mặt phẳng ( )SBI và ( )SCI cùng vuông góc với đáy ABCD mà ( )SBI và ( )SCI có giao tuyến là SI nên ( )SI ABCD⊥ . Kẻ IH BC⊥ ta có góc giữa 2 mặt phẳng ( ), ( )SCB ABCD là

0ˆ 60SHI = . Từ đó ta tính được: 21

2; 5; ( ) ( ) 32

IC a IB BC a S ABCD AD AB CD a= = = = + =

2 22 21 3

. ( ) ( ) ( ) ( ) 32 2 2

a aIH BC S IBC S ABCD S ABI S CDI a a= = − − = − − = nên

2 IBCSIH

BC∆= = 3 3

5a . Từ đó tính được 33 15

5SABCDV a= .

H

I

S

DC

BA

Page 3: Chuyen de hinh_hoc_khong_gian

3

Ví dụ 2) (TSĐH D 2009) Cho lăng trụ đứng ' ' 'ABCA B C có đáy ABC là tam giác vuông tại B , , ' 2 , ' 3AB a AA a A C a= = = . Gọi M là trung điểm của đoạn ' 'B C , I là giao điểm của BM và 'B C . Tính thể tích khối chóp IABC theo a HD giải: - ' ' 'ABCA B C là lăng trụ đứng nên các mặt bên đều vuông góc với đáy.

( ' )I B BC⊂ ⊥ ( )ABC , từ I ta kẻ IH BC⊥ thì ( )IH ABC⊥ và I chính là trọng tâm tam giác

' 'BB C 2 4

' ' 3 3

IH CI aIH

BB CB⇒ = = ⇒ =

Có 22 2 2 2 2AA 9 4 5 2AC A C a a a BC AC AB a′ ′= − = = = ⇒ = − =

31 1 4 1 4. ( ) . . .2 .

3 3 3 2 9IABC

aV IH dt ABC a a a= = = ( đvtt)

A

M

O

B

I

H

C

C'

B'

A'

Ví dụ 3: Cho hình chóp SABCD có đáy ( )ABCD là hình chữ nhật với , 2,AB a AD a SA a= = =

và vuông góc với mặt phẳng( )ABCD . Gọi ,M N lần lượt là trung điểm của AD và SC ; I là

giao điểm của BM và AC . Chứng minh rằng mặt phẳng ( )SAC vuông góc với mặt phẳng

( )SMB . Tính thể tích khối tứ diện ANIB .

Lời giải: +) Chứng minh ( ) ( )SAC SMB⊥ .

Ta có: 2

2 2 2 2 2 2 2 2 62 3;

4 2

a aAC AB BC a a a BM AB AM a= + = + = = + = + =

Gọi O AC BD= ∩ ;do I là giao điểm của hai đường trung tuyến AO và BM nên là trọng tâm của tam giác ABD .

Page 4: Chuyen de hinh_hoc_khong_gian

4

Theo tính chất trọng tâm của tam giác ta có: 2 1 3 2 6

;3 3 3 3 3

a aAI AO AC BI BM= = = = =

Nhận xét: 2 2

2 2 2 22

3 3

a aAI BI a AB+ = + = = , suy ra tam giác AIB vuông tại I .

Do đó BM AI⊥ (1) Mặt khác: ( )SA ABCD⊥ nên SA BM⊥ (2)

Từ (1) và (2) suy ra ( )BM SAC⊥

+) Tính thể tích khối tứ diện ANIB

Do NO là đường trung bình của tam giác SAC nên ta có: / /NO SA và 1

2 2

aNO SA= =

Do đó NO là đường cao của tứ diện ANIB

Diện tích tam giác đều AIB là: 21 1 3 6 2

. .2 2 3 3 6AIB

a a aS AI BI= = =

Thể tích khối tứ diện ANIB là:2 31 1 2 2

. .3 3 6 2 36AIB

a a aV S NO= = =

N

M

I D

CB

A

S

O

Ví dụ 4) Cho hình chóp SABC có đáy ABC là tam giác cân với 3 , 2AB AC a BC a= = = . Các

mặt bên đều hợp với đáy một góc 060 . Tính thể tích khối chóp SABC

Lời giải: Gọi O là hình chiếu của S trên mặt phẳng ( )ABC và , ,I H J lần lượt là hình chiếu của O trên

, ,AB BC CA . Theo định lý ba đường vuông góc ta có: , ,SI AB SJ AC SH BC⊥ ⊥ ⊥

Suy ra: � � �, ,SIO SJO SHO lần lượt là góc hợp bởi các mặt bên ( ) ( ) ( ), ,SAB SAC SBC và mặt đáy

Theo giả thiết ta có: � � � 060SIO SJO SHO= = = Các tam giác vuông , ,SOI SOJ SOH bằng nhau nên OI OJ OH= = Do đó O là tâm đường tròn nội tiếp tam giác ABC

Page 5: Chuyen de hinh_hoc_khong_gian

5

Mặt khác: ABC là tam giác cân tại A nên AH vừa là đường phân giác, vừa là đường cao, vừa là đường trung tuyến Suy ra , ,A O H thẳng hàng và H là trung điểm của BC

Tam giác ABH vuông tại H , ta có: 2 2 2 29 2 2AH AB BH a a a= − = − =

Diện tích tam giác ABC là: 21 1. .2 .2 2 2 2

2 2ABCS BC AH a a a= = =

Ngoài ra: ABCS pr= , với ( )14

2p AB AC BC a= + + = và r : bán kính đường tròn nội tiếp ABC∆ .

22 2 2

4 2ABCS a a

r OHp a

⇒ = = = =

Tam giác SOH vuông tại O , ta có: 0 6tan 60

2

aSO OH= =

Thể tích khối chóp SABC là: 3

21 1 6 2 3. .2 2.

3 3 2 3ABCa a

V S SO a= = =

J H

I

S

O

C

BA

Chú ý: Hình chóp có các mặt bên hợp với đáy các góc bằng nhau thì chân đường cao là tâm đường tròn nội tiếp đáy hình chóp. Ví dụ 5) Cho hình lăng trụ tam giác ' ' 'ABCA B C có đáy ABC là tam giác vuông tại A

3,AB a AC a= = . Biết đỉnh 'C cách đều các đỉnh , ,A B C và khoảng cách từ đỉnh B đến mặt

phẳng ( ' )C AC bằng 6

15

a.Tính thể tích khối chóp ' 'A ABC theo a và tính cosin góc tạo bởi mặt

phẳng ( ' ')ABB A và mặt phẳng đáy ( )ABC . - Hạ ' ( ) ' ' 'C H ABC C HA C HB C HC HA HB HC⊥ ⇒ ∆ = ∆ = ∆ ⇔ = = Suy ra H là tâm vòng trong ngoại tiếp tam giác ABC . Vì tam giác ABC vuông tại A nên H là trung điểm của BC . Ta có: /( ') /( ')2B ACC H ACCd d= .

Hạ /( ') /( ')1 3

, ' ( ')2 15

H ACC B ACCa

HM AC HN C M HN ACC d HN d⊥ ⊥ ⇒ ⊥ ⇒ = = = .

Page 6: Chuyen de hinh_hoc_khong_gian

6

Ta có: 1 3

' 32 2

aHM AB C H a= = ⇒ = từ đó tính được ' 2 .CC a=

Có 3

' '1 1 1 1

' . ( ) . 3. . 3.3 3 3 2 2A ABC LT

aV V C H dt ABC a a a= = = =

- Hạ ' ( )A K ABC⊥ thì ' 'C HKA là hình chữ nhật . Gọi I HK AB= ∩ thì 1

/ /2

OI AC= suy ra I

là trung điểm của AB . Tam giác ABC vuông tại A nên KI AB⊥ ⇒ Góc tạo bởi ( ' ')ABB A và

đáy ( )ABC là �'A IK

Ta có: �cos ''

IKA IK

A I= . Tính được

�2 21 13 13; ' ' cos '

2 2 2 ' 13

a a IKIK HK A I IK A K A IK

A I= = = + = ⇒ = =

N

H

M

C

C'B'

A'

IK

B

A

Ví dụ 6) Cho hình chóp SABCD có đáy ABCD là hình bình hành � 02 , , 60AB a AD a BAD= = = SAB là tam giác đều . Gọi H là trung điểm của AB , K là hình chiếu vuông góc của H lên mặt

phẳng ( )SCD . Tính thể tích khối chóp SABCD biết 15

5

aHK = và điểm K nằm trong tam

giác SCD Giải: Gọi E là trung điểm của ,CD F là trung điểm của ED Với giả thiết SA SB= ta suy ra chân đường cao hạ từ S lên mặt phẳng ABCD thuộc đường trung trực của đoạn thẳng AB Nói cách khác chân đường cao hạ từ S lên ( )ABCD thuộc đường thẳng chứa HF Hạ ( )HK SF HK SCD⊥ ⇒ ⊥

Ta có: 2

2 . ( )3SABCD SHCDV V HK dt SCD= =

Ta cần tính diện tích tam giác SCD

Ta có: 1

( ) . ;2

dt SCD SF CD=

Page 7: Chuyen de hinh_hoc_khong_gian

7

Mà 2 2 2 2; ;SF SK KF SK SH HK KF HF HK= + = − = −

SH là đường cao tam giác đều SAB suy ra: 3,SH a HF= là đường cao tam giác đều HDE

suy ra: 3

2

aHF = Thay số ta có:

3 15

10

aSF =

Vậy: 32 . 3 1 3 15 3

. . .23 2 10 55

SABCDa a a

V a= =

120°

A

H

K

E

F

D

CB

S

Ví dụ 7) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 3a

khoảng cách từ A đến mặt phẳng (SBC) bằng 2a và � � 090SAB SCB= = . Tính thể tích khối chóp S.ABC theo a .

Giải: Đây là bài toán dễ làm cho học sinh bối rối khi xác định đường cao hình chóp.

K

S

C

BA

H

Page 8: Chuyen de hinh_hoc_khong_gian

8

Hạ ( )SH ABCD⊥ vì ( )AB SH

AB SHA AB HAAB SA

⊥⇒ ⊥ ⇒ ⊥ ⊥

.

Chứng minh tương tự ta có BC HC HABC⊥ ⇒ là hình vuông.

Ta có HC BC⊥ kẻ ( ) 2HK SC HK SBC HK a⊥ ⇒ ⊥ ⇒ =

Mặt khác ta có: 2 2 2 2 2

1 1 1 .6

HK HCSH a

HK HC HS HC HK= + ⇒ = =

Thể tích khối chóp 2 31 1 3 6

. 6.3 3 2 2SABC ABC

a aV SH S a∆= = =

Ví dụ 8) Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng a, SA SB a= = ,

2SD a= và mặt phẳng (SBD) vuông góc với mặt phẳng (ABCD). Tính theo a thể tích khối chóp S.ABCD Giải:

D

O

S

CB

A

H

Hạ ( )SH BD SH ABCD SHA SHC SA SC⊥ ⇒ ⊥ ⇒ ∆ = ∆ ⇒ = Từ giả thiết ta suy ra ASC ADC ABC OB SO OD SBD∆ = ∆ = ∆ ⇒ = = ⇔ ∆ vuông tại S

Tính được 2 2

. 63,

3

SB SD aBD a SH

SB SD= = =

+,suy ra tam giác ABC là tam giác đều

2 31 1 6 3 2. . .

3 3 3 2 6SABCD ABCDa a a

V SH S= = =

Chú ý: Ta có thể tính thể tích theo cách: 2

2 .3SABCD CSBD SBDV V CO S∆= =

Trong ví dụ này chìa khóa để giải quyết bài toán là phát hiện ra tam giác SBD vuông tại S Các em hãy rèn luyện dạng toán này qua bài tập sau:

Page 9: Chuyen de hinh_hoc_khong_gian

9

‘’Cho hình chóp SABCD có cạnh SD x= ( 0)x > , các cạnh còn lại của hình chóp bằng nhau và

bằng a ( 0)x > . Tìm x biết thể tích khối chóp SABCD bằng 32

6

a.’’

B. Tính thể tích bằng phương pháp gián tiếp Khi gặp các bài toán mà việc tính toán gặp khó khăn thì ta phải tìm cách phân chia khối đa diện đó thành các khối chóp đơn giản hơn mà có thể tính trực tiếp thể tích của nó hoặc sử dụng công thức tính tỉ sốthể tích để tìm thể tích khối đa diện cần tính thông qua 1 khối đa diện trung gian đơn giản hơn. Các em học sinh cần nắm vững các công thức sau:

. .

. .SA B C

SABC

V SA SB SC

V SA SB SC′ ′ ′ ′ ′ ′

= (1)

A ABC 'S

SABC

V A A

V SA′ = (2). Công thức (2) có thể mở rộng cho khối chóp bất kỳ.

B'

A' C'

C

B

A

S

Ví dụ 3) Cho hình chóp SABCD có đáy ABCD là hình thoi cạnh a , 0ˆ 60BAD = , SA vuông góc với đáy ABCD , SA a= . Gọi 'C là trung điểm của SC , mặt phẳng ( )P đi qua AC song song với BD cắt các cạnh ,SB SD của hình chóp tại ', 'B D . Tính thể tích khối chóp SABCD HD giải: Gọi O là giao 2 đường chéo ta suy ra 'AC và SO cắt nhau tại trọng tâm I của tam giác SAC Từ I thuộc mặt phẳng kẻ đường thẳng song song với BD cắt các cạnh ,SB SD của hình chóp tại ', 'B D là 2 giao điểm cần tìm.

Ta có: 1 2

;2 3

SC SD SB SI

SC SD SB SO

′ ′ ′= = = =

Page 10: Chuyen de hinh_hoc_khong_gian

10

Dễ thấy ( ) ( ) ( ) ( )2 ; 2SAB C D SAB C SAB C SABCV V V V′ ′ ′ ′ ′ ′ ′= = . . 1

. . 3SAB C D SAB C

ABCD SABC

V V SA SB SC

V V SA SB SC′ ′ ′ ′ ′ ′ ′

⇒ = = =

Ta có 3( )

1 1 1 3 3ˆ. ( ) . . . . . .3 3 3 2 6SABCDV SA dt ABCD SA AD AB sinDAB a a a a= = = =

3( )

3

18SAB C DV a′ ′ ′ = (đvtt)

I

C' D'

A'D

CB

A

S

O

Ví dụ 4) (Dự bị A 2007) Cho hình chóp SABCD có đáy ABCD là hình chữ nhật , 2AB a AD a= = cạnh SA vuông góc

với đáy, cạnh SB hợp với đáy một góc 600. Trên cạnh SA lấy M sao cho 3

3

aAM = . Mặt

phẳng ( )BCM cắt SD tại N . Tính thể tích khối chóp SBCMN HD giải: Từ M kẻ đường thẳng song song với AD cắt SD tại N là giao điểm cần tìm, góc tạo bởi SB

và ABCD là � 060SBA = .

Ta có .tan 60 3SA SB a= = .

Từ đó suy ra 3 2 3 2

33 3 3

SM SNSM SA AM a a a

SA SD= − = − = ⇒ = =

Dễ thấy ( ) ( ) ( ) ( ) ( )2 2SABCD SABC SACD SABC SACDV V V V V= + = = ; ( ) ( ) ( )SBCMN SMBC SMCNV V V= +

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2 2

1. . . 1. . . 1 2 5

2. . . 2. . . 3 9 9

SMBCN SMBC SMCN SMCN SMCN

SABCD SABCD SABC SACD

V V V V V

V V V V

SM SB SC SM SC SN

SA SB SC SA SC SD

+⇒ = = +

= + = + =

Page 11: Chuyen de hinh_hoc_khong_gian

11

Mà 3( )

1 1 2 3. ( ) 3 .2

3 3 3SABCDV SA dt ABCD a a a a= = =

3( )

10 3

27SMBCNV a⇒ =

NM

O

B C

DA

S

Ví dụ 5) Cho hình chóp SABCD có đáy là hình bình hành. Gọi , ,M N P lần lượt là trung điểm

của , ,AB AD SC . Chứng minh mặt phẳng ( )MNP chia khối chóp thành hai phần có thể tích bằng

nhau. Lời giải: Gọi , ,I J K lần lượt là giao điểm của MN và , ,CB CD CA Nối PI cắt SB tại E , nối PJ cắt SD tại F Ngũ giác PEMNF là thiết diện của mặt phẳng ( )PMN và hình chóp

Gọi O AC BD= ∩ ; do / /BD MN nên ta có:

32 2

33

2

CI CBCB CD CO

CI CJ CKCJ CD

== = = ⇒ =

Vì P là trung điểm của SC nên ta có: ( )( ) ( )( )1, ,

2d P ABC d S ABC=

Do đó: ( )( ) � ( )( )1 1 1. , . . .sin . ,

3 3 2PCIJ CIJV S d P ABC CI CJ BCD d P ABC= =

� ( )( )� ( )( )

1 3 3 1. . .sin . ,

6 2 2 29 1 9

. . .sin . ,16 3 16 SABCD

CB CD BCD d S ABC

CB CD BCD d S ABC V

=

= =

Page 12: Chuyen de hinh_hoc_khong_gian

12

1 1 1 1. . . .

3 2 3 18IBEM

ICPJ

V IB IE IM

V IC IP IJ= = =

1 1 1

18 18 32IBEM ICPJ PCIJ SABCDV V V V⇒ = = =

Tương tự 1 1

18 32JDFN PCIJ SABCDV V V= =

Gọi 1V là thể tích phần khối chóp giới hạn bởi mặt phẳng ( )PMN và mặt phẳng đáy của hình

chóp ta có: ( )19 1 1 1

16 32 32 2PCIJ IBEM JDFN SABCD SABCD SABCD SABCDV V V V V V V V = − + = − + =

Gọi 2V là thể tích phần còn lại của khối chóp thì 21

2 SABCDV V=

Vậy 1 2V V= .

J

I

K

OF

E

D

P

M

NC

BA

S

Ví dụ 6) Cho khối lập phương ' ' ' 'ABCDA B C D cạnh a. Các điểm E và F lần lượt là trung điểm của

' 'C B và ' 'C D . 1) Dựng và tính diện tích thiết diện của khối lập phương khi cắt bởi mặt phẳng( )AEF

2) Tính tỉ số thể tích của hai phần khối lập phương bị chia bởi mặt phẳng ( )AEF

Lời giải: 1) Dựng và tính diện tích thiết diện: Kéo dài EF cắt ' 'A B và ' 'A D lần lượt tại I và J Nối AI và AJ cắt 'BB và 'DD lần lượt tại P và Q

Ngũ giác APEFQ là thiết diện của mặt phẳng ( )AEF và hình lập phương

Gọi ' ' ' 'O A C B D= ∩ và ' 'K IJ A C= ∩

Page 13: Chuyen de hinh_hoc_khong_gian

13

Do ' '/ /B D IJ nên ta có: ' ' ' ' ' ' ' 2

' ' ' 3

B D A B A D A O

IJ A I A J A K= = = =

Suy ra: 3 3 2 3 3 3 3 2

' ' ; ' ' ' ' ; ' '2 2 2 2 2 4

a a aIJ B D A I A B A J A K A O= = = = = =

Do '/ / 'PB AA nên ta có: ' ' 1 1

' ' '' ' 3 3 3

PB IP IB aPB AA QD

AA IA IA= = = ⇒ = = =

Ta có: ( ) 2APEFQ AIJ PIE QJF AIJ PIES S S S S S= − + = −

Trong tam giác vuông 'AA K ta có: 2

2 2 2 18 34' '

16 4

a aAK AA A K a= + = + =

Do đó: 21 1 3 2 3 2 3 17

. . .2 2 2 4 8AIJ

a a aS IJ AK= = =

Trong tam giác PIE kẻ đường cao PH thì / /PH AK và 1 34

3 12

aPH AK= =

Mặt khác: 3 2 1 2

' 22 3 2

a aIJ A I IE IJ= = ⇒ = =

Diện tích tam giácPIE là: 21 1 2 34 17

. . .2 2 2 12 24PIE

a a aS IE PH= = =

Vậy 2 2 23 17 17 7 17

28 12 24APEFQ AIJ PIE

a a aS S S= − = − =

Q

P J

O'

I H

K

O

F

E

D'

C'B'

A'

D

CB

A

2) Tính tỉ số thể tích:

3

'

3

'

1 1 3 3 3' . ' . ' . . .

6 6 2 2 8

1 1' . ' . ' . . .

6 6 3 2 2 72

AA IJ

B PIE

a a aV A A A I A J a

a a a aV B P B I B E

= = =

= = =

Do tính đối xứng của hình lập phương nên ta có: ' 'B PIE D QJFV V=

Page 14: Chuyen de hinh_hoc_khong_gian

14

Gọi 1 2,V V lần lượt là thể tích của khối đa diện ở phía dưới và phía trên mặt phẳng ( )AEF

Ta có: 3 3 3

1 ' '3 2 25

28 72 72AA IJ B PIEa a a

V V V= − = − =

3 3

32 ' ' ' 1

25 47

72 72ABCDA B C Da a

V V V a= − = − =

Vậy 1

2

25

47

V

V=

Phần 4: Các bài toán về khoảng cách trong không gian A. Khoảng cách từ 1 điểm đến 1 mặt phẳng Để giải quyết nhanh gọn bài toán khoảng cách từ một điểm đến một mặt phẳng học sinh cần nắm chắc bài toán cơ bản và các tính chất sau ⊻ BÀI TOÁN C Ơ BẢN Cho khối chóp SABC có SA vuông góc với đáy ABC . Tính khoảng cách từ A đến mặt phẳng ( )SBC ⊻ PHƯƠNG PHÁP - Hạ AM vuông góc với BC , AH vuông góc với SM suy ra AH vuông góc với ( )SBC . Vậy khoảng cách từ A đến ( )SBC là AH - Ta có

2 2 2 2 2

1 1 1 .

AS

AM ASAH

AH AM AM AS= + ⇒ =

+

H

M

C

B

A

S

* Tính chất quan trọng cần nắm: - Nếu đường thẳng ( )d song song với mặt phẳng ( )P thì khoảng cách từ mọi điểm trên ( )d đến mặt phẳng ( )P là như nhau

- Nếu AM k BM=����� �����

thì /( ) /( )| |A P B Pd k d= trong đó ( )P là mặt phẳng đi qua M

Page 15: Chuyen de hinh_hoc_khong_gian

15

- Nếu ,a b là hai đường thẳng chéo nhau. Gọi ( )P là mặt phẳng chứa b và ( ) / /P a thì

/ /( ) /( )a b a P M a Pd d d ∈= =

Trên cơ sở các tính chất trên ta luôn quy được khoảng cách từ một điểm bất kỳ về bài toán cơ bản. Tuy nhiên 1 số trường hợp khi việc tìm hình chiếu trở nên vô cùng khó khăn, thì việc sử dụng công thức tính thể tích trở nên rất hiệu quả.

Ta có V(khối chóp)=1 3

.3

VB h h

B⇒ =

Ví dụ 1) Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a . Hình chiếu của S lên mặt phẳng ABCD trùng với trọng tâm tam giác ABD . Mặt bên SAB tạo với đáy một góc 600. Tính theo a thể tích của khối chóp SABCD và khoảng cách từ B đến mặt phẳng SAD Lời giải:

GE

H

N MB C

DA

S

Gọi G là trọng tâm của tam giác ABD , E là hình chiếu của G lên AB . Ta có:

( );SG AB GE AB AB SGE⊥ ⊥ ⇒ ⊥ 0ˆ 60SAG⇒ =

ˆ. tan 3SG GE SEG GE⇒ = = Mặt khác G là trọng tâm của tam giác ABD

1

3 3

aGE BC⇒ = =

31 3.

3 9SABCD ABCD

aV SG S⇒ = =

Hạ GN vuông góc với AD , GH vuông góc với SN

Page 16: Chuyen de hinh_hoc_khong_gian

16

Ta có /( ) /( ) 2 2 22

33 .3 . 33 33 3

23

3 3

B SAD G SAD

a aGN GS a

d d GHGN GS a a

= = = = =+ +

Ví dụ 2) Cho hình lăng trụ đứng .ABCD A B C D′ ′ ′ ′ có đáy ABCD là hình thoi , 3AB a= , 0120BAD∠ = . Biết góc giữa đường thẳngAC ′ và mặt phẳng( )ADD A′ ′ bằng 030 .Tính thể tích

khối lăng trụ trên theo a. và khoảng cách từ trung điểm N của 'BB đến mặt phẳng ( ' )C MA . Biết M là trung điểm của ' 'A D Giải:

O

M

H K

N C

B

D

A

A'

D'C'

B'

Ta có . ' ' ' ' '.ABCD A B C D ABCDV AA S= (1).

Đáy ABCD là hình thoi gồm 2 tam giác đều ,ABC ACD nên:

( )223 3 3 3

2 2.4 2ABCD ABC

a aS S∆= = = (2)

Gọi 'C M là đường cao của tam giác đều ' ' 'C A D thì ( )' ' 'C M ADA D⊥ nên 0ˆ' 30C AM =

Ta có 0 2 23 3 3' ' .cot 30 ' ' 6

2 2

a aC M AM C M A A AM A M a= ⇒ = = ⇒ = − = (3)

Thay (2),(3) vào (1) ta có:2 3

. ' ' ' '

3 3 9 2. 6

2 2ABCD A B C D

a aV a= = .

Ta có /( ' ) /( ' )N C MA K C MAd d= với K là trung điểm của 'DD (Vì K và N đối xứng nhau qua trung

điểm O của AC’)

Page 17: Chuyen de hinh_hoc_khong_gian

17

Từ K hạ KH vuông góc với AM thì

/( ' )

1( ' ) ; . ( ' ' ) ( ' ) ( ' ) ( )

2K C MAKH AC M d KH KH AM dt AA D D dt AA M dt MD K dt AKD⊥ ⇒ = = − − −

3 3 1 3 1 6 3 1 6 6. 6. 3 6. . . . . 3

4 2 2 2 2 2 2 2 2

a a a a aKH a a a a KH a⇒ = − − − ⇒ =

Vậy /( ' )

6

2N C MAd a=

Ví dụ 3) Cho hình chóp SABC có góc tạo bởi 2 mặt phẳng SBC và ABC là 600. Các tam giác SBC và ABC là các tam giác đều cạnh a . Tính khoảng cách từ đỉnh B đến mặt phẳng SAC . (Đề dự bị khối A 2007) HD giải:

M

O

NP

C

B

A

S

Cách 1: Coi B là đỉnh khối chóp BSAC từ giả thiết ta suy ra BS BA BC= = . Gọi O là chân đường cao hạ từ B xuống mp( )SAC . O chính là tâm vòng tròn ngoại tiếp tam giác SAC . Gọi M là trung điểm BC ta có ;SM BC AM BC⊥ ⊥ . góc tạo bởi 2 mặt phẳng ( )SBC và ( )ABC là

� 0 a 360

2SMA SM AM AS= ⇒ = = = .

Bây giờ ta tìm vị trí tâm vòng ngoại tiếp tam giác SAC Tam giác SAC cân tại C nên tâm vòng tròn ngoại tiếp nằm trên trung trực của SA là CN ( N là trung diểm của SA ). Kẻ trung trực của SC cắt trung trực của SA tại O là điểm cần tìm

22

2 2 32 1316cos

4

SA aSC aNC

SNCSC SC a

− − = = = =

22 2 22 4 32 ;

1313 13cos

SCa a a

OC BO BC OC aSNC

⇒ = = = − = − = .

Page 18: Chuyen de hinh_hoc_khong_gian

18

Cách 2: 0( ) ( )

1 22 2 . ( ) . .sin 60

3 3.2SABCD SABM

aV V BM dt SAM AM MS= = = 3 3

( )16

a dt SAC=

=21 1 13 3 39 3 ( ) 3

.AS= . . ( , ( )2 2 4 2 16 ( ) 13

a V SABC aCN a a d B SAC

dt SAC= ⇒ = =

Ví dụ 4) Cho hình chóp SABCD có đáy ABCD là hình thang� � 090ABC BAD= = ,

, 2BA BC a AD a= = = . Cạnh bên SA vuông góc với đáy và SA= 2a , gọi H là hình chiếu của A lên SB . Chứng minh tam giác SCD vuông và tính theo a khoảng cách từ H đến mặt phẳng ( )SCD (TSĐH D 2007) HD giải:

HD

CB

A

S

Ta có 2 2 2 22; 6; 2AC a SD SA AD a SC SA AC a= = + = = + = . Ta cũng dễ dàng tính được

2CD a= . Ta có 2 2 2SD SC CD= + nên tam giác SCD vuông tại C.

2 2 2 2 2 2 2

2 2

1 1 1 .AS . 2 2

AS 3AB AS 22

2 2333 3

AB a aAH a

AH AB a a

aSH

SH SA AH aSB a

= + ⇒ = = =+ +

⇒ = − = ⇒ = =

21. .( ) 1

( ) ( ) ( ) . ;2 2 2

AB BC AD adt BCD dt ABCD dt ABD AB AD

+= − = − =

2

2( ) 3

( )( )

1( ) . 2

2

. . 2 1 1. 2. 2; . ( )

. . 3 3 3.2 6SHCD

SBCDSBCD

dt SCD SC CD a

V SH SC SD a aV SA dt BCD a

V SB SC SD

= =

= = = = =

Page 19: Chuyen de hinh_hoc_khong_gian

19

3( )

2

9SHCDV a= .Ta có ( ) 3( /( )) 2

3 2 1.3

( ) 9 32SHCD

H SCD

V ad a

dt SCD a= = =

Ví dụ 5) Cho hình chóp SABCD có đáy ABCD là hình thang� � 090ABC BAD= = ,

, 2BA BC a AD a= = = . Cạnh bên SA vuông góc với đáy và SA= 2a , góc tạo bởi SC và ( )SAD bằng 300.Gọi G là trọng tâm tam giác ( )SAD . Tính khoảng cách từ G đến mặt phẳng ( )SCD

Giải:

H

D

CB

A

S

O

NG

M

Kẻ CE vuông góc với AD thì E là trung điểm của AD và ( )CE SAD⊥

0ˆ 30 . tan 60 3 2CSE SE CE a SA a⇒ = ⇒ = = ⇒ = Gọi M là trung điểm của AB , N là trung điểm của AE . Ta có BE song song với ( )SCD ,

MN cũng song song với ( )SCD . Ta có 3

4ND AD=

/( ) /( ) /( ) /( ) /( )

2 2 2 2 3 1. .

3 3 3 3 4 2G SCD M SCD N SCD A SCD A SCDGS MS d d d d d= ⇒ = = = =

Vì tam giác ACD vuông cân tại C nên CD vuông góc với ( )SAC . Hạ AH vuông góc với SC

thì /( ) 2 2

.( ) A SCD

SA SCAH SCD d AH a

SA SC⊥ ⇒ = = =

+

(Ta cũng có thể lập luận tam giác SAC vuông cân suy ra AH=a) Ví dụ 6) Cho hình lăng trụ ' ' 'ABCA B C có đáy ABC là tam giác vuông cân tại A cạnh huyền

2BC a= cạnh bên ' 2 ,AA a= biết 'A cách đều các đỉnh , ,A B C . Gọi ,M N lần lượt là trung điểm của ',AA AC . Tính thể tích khối chóp 'C MNB và khoảng cách từ 'C đến mặt phẳng ( )MNB Giải: - Tính thể tích:

Page 20: Chuyen de hinh_hoc_khong_gian

20

Vì 'A cách đều , ,A B C nên chân đường cao hạ từ 'A lên mặt phẳng ( )ABC là tâm vòng tròn ngoại tiếp tam giác ABC . Gọi H là trung điểm của BC suy ra ' ( )A H ABC⊥

Gọi 'K MN AC= ∩ ⇒ '1

' 33 C MNB AMNBAK C K V V= ⇒ =

Gọi E là trung điểm của 1

( ) . ( )3MANBAH ME ABC V ME dt ANB⇒ ⊥ ⇒ =

Tính được: 1 1 14 14

'2 2 2 4

a aME A H= = =

Suy ra: 2 31 14 14

. .3 4 4 48MANB

a a aV = = . Vậy

3

'14

16C MNBa

V =

- Tính khoảng cách: '/( ) /( )3C BMN A BMNd d= . Gọi F là trọng tâm tam giác ABC.

Ta có: /( ) /( )1 1 3 3 1

. ; 32 2 2 4 4 A BMN E BMNAE AH AF AF EF AF d d= = = = ⇒ =

Hạ /( ) 2 2

.( ) E MNB

EP BN EP EMEQ MNB d EQ

EQ MP EP EM

⊥⇒ ⊥ ⇒ = = ⊥ +

Ta có EPF∆ đồng dạng với BHF∆ .EP EF BH EFEP

BH BF BF⇒ = ⇒ =

Tính được 2

2

aBH = ;

1 1 2 1 2.

4 4 3 6 12

aEF AF AH AH= = = = ;

5

3

aBF =

Suy ra: 2 2

5 . 14

20 4 71

a EP EM aEP EQ

EP EM= ⇒ = =

+

Vậy /( )'/( ) /( )

3 143 12

4 71E BMNC BMN A BMNa

d d d= = =

B

H

CP

E

Q

N

M

A

K

H

I

E

N

M

B'

A' C'

C

B

A

Page 21: Chuyen de hinh_hoc_khong_gian

21

B. Khoảng cách giữa 2 đường thẳng chéo nhau trong không gian Khi tính khoảng cách giữa 2 đường thẳng chéo nhau a và b trong không gian ta tiến hành theo trình tự sau: - Dựng (tìm) mặt phẳng trung gian (P) chứa a song song với b sau đó tính khoảng cách từ 1 điểm bất kỳ trên b đến mp(P) - Khi tính khoảng cách từ 1 điểm đến mặt phẳng ta có thể vận dụng 1 trong 2 phương pháp đã trình bày ở mục A. Ví dụ 1) Cho lăng trụ đứng ' ' 'ABCA B C có đáy ABC là tam giác vuông AB BC a= = , cạnh

bên 2AA a′ = . Gọi M là trung điểm của BC . Tính theo a thể tích khối lăng trụ ABCA B C′ ′ ′ và khoảng cách giữa 2 đường thẳng AM và 'B C .(TSĐH D2008) HD giải:

K

N

AM

B

HC

C'

B'

A'

3 2( ) .

2V ABCA B C S h a′ ′ ′ = = .

Tính khoảng cách Gọi N là trung điểm của 'BB ta có 'B C song song với ( )AMN . Từ đó ta có:

( , ) ( , ( )) ( , ( ))d B C AM d B AMN d B AMN′ ′= =

Kẻ ( )BK AM

BH AMNBH NK

⊥⇒ ⊥ ⊥

. Ta có: 2 2 2

1 1 1

BH BN BK= + mà

2 2 2

1 1 1

BK BA BM= +

2 2 2 2

1 1 1 1

BH BN BA BM⇒ = + +

7

aBH⇒ =

chính là khoảng cách giữa AM và B’C. Chú ý 1) Trong bài toán này ta đã dựng mặt phẳng trung gian là mp(AMN) để tận dụng điều kiện B’C song song với (AMN). Tại sao không tìm mặt phẳng chứa B’C các em học sinh tự suy nghĩ điều này Chú ý 2) Nếu mặt phẳng (P) đi qua trung điểm M của đoạn AB thì khoảng cách từ A đến (P) cũng bằng khoảng cách từ B đến (P))

Page 22: Chuyen de hinh_hoc_khong_gian

22

Ví dụ 2) Cho hình chóp tứ giác đều SABCD có đáy là hình vuông cạnh a. Gọi E là điểm đối xứng của D qua trung điểm của SA , M là trung điểm của AE , N là trung điểm của BC . Chứng minh MN vuông góc với BD và tính khoảng cách giữa 2 đường thẳng MN và AC . (TS B2007) HD giải: Gọi P là trung điểm của SA , ta có tứ giác MPNC là hình bình hành. Nên / /MN PC . Từ đó suy ra / /( )MN SAC . Mặt khác ( )BD SAC⊥ nên BD PC⊥ BD MN⇒ ⊥ .

Ta có: / /( ) /( )

1 1 1( , ( )) 2

2 4 2MN AC MN SAC N SACd d d d B SAC BD a= = = = =

OK

N

P

M

E

D

CB

A

S

( Chú ý việc chuyển tính khoảng cách từ N đến (SAC) sang tính khoảng cách từ B đến (SAC) giúp ta đơn giản hoá bài toán đi rất nhiều. Các em học sinh cần nghiên cứu kỹ dạng toán này để vận dụng) Ví dụ 3) Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B , 2 ,AB BC a= = hai mặt phẳng ( )SAC và ( )SBC cùng vuông góc với đáy ABC . Gọi M là trung điểm của AB , mặt phẳng qua SM song song với BC cắt AC tại N . Biết góc tạo bởi ( )SBC và ( )ABC bằng 600. Tính thể tích khối chóp SBCNM và khoảng cách giữa hai đường thẳng AB và SN theo a (TSĐH A 2011) Giải:

- Ta có 0 0ˆ ˆ( ); 90 60 2 3SA ABC ABC SBA SA a⊥ = ⇒ = ⇒ = Mặt phẳng qua SM song song với BC cắt AC tại N suy ra N là trung điểm của AC

Từ đó tính được 33V a= - Kẻ đường thẳng ( )d qua N song song với AB thì AB song song với mặt phẳng ( )P chứa SN và ( )d nên khoảng cách từ AB đến SN cũng bằng khoảng cách từ A đến ( )P .

Page 23: Chuyen de hinh_hoc_khong_gian

23

Dựng AD vuông góc với ( )d thì / /( )AB SND , dựng AH vuông góc với SD thì

/ /( ) 2 2

. 2 39( )

13AB SN A SNDSA AD a

AH SND d d AHSA AD

⊥ ⇒ = == = =+

H

D

N

M

C

B

A

S

Page 24: Chuyen de hinh_hoc_khong_gian

24

Ví dụ 4) Cho lăng trụ đứng ' ' 'ABCA B C có đáy ABC là tam giác vuông tại A , , 2 , 'AB a AC a AA a= = = . Tính khoảng cách giữa hai đường thẳng 'AB và BC .

Giải:

K

H

A

B C

C'B'

A'

Ta có BC song song với mặt phẳng ( ' ')AB C chứa 'AB nên

/ ' /( ' ') /( ' ') '/( ' ')BC AB BC AB C B AB C A AB Cd d d d= = = (vì ' , 'A B AB cắt nhau tại trung điểm của mỗi

đường) Từ 'A hạ 'A K vuông góc ' 'B C , Hạ 'A H vuông góc với AK thì

'/( ' ') 2 2

' . ' 2' ( ' ') '

3' 'A AB C

A K A A aA H AB C d A H

A K A A⊥ ⇒ = = =

+

(Rõ ràng việc quy về bài toán cơ bản có vai trò đặc biệt quan trọng trong các bài toán tính khoảng cách, các em học sinh cần chú ý điều này) Ví dụ 5) Cho hình chóp SABC có đáy ABC là tam giác đều cạnh bằng a . Chân đường cao hạ

từ S lên mặt phẳng ( )ABC là điểm H thuộc AB sao cho 2HA HB= −���� ����

. Góc tạo bởi SC và mặt

phẳng ( )ABC bằng 060 . Tính thể tích khối chóp SABC và khoảng cách giữa hai đường thẳng ,SA BC theo a .

Giải:

Page 25: Chuyen de hinh_hoc_khong_gian

25

K

F

M

E

H

D C

BA

S

- Tính thể tích: Vì ( )SH ABCD⊥ nên HC là hình chiếu vuông góc của SC lên mặt phẳng ( )ABCD . Góc tạo

bởi SC và mặt phẳng ( )ABCD là � 060SCH = . Xét tam giác BHC theo định lý hàm số cosin ta có

�2 2

2 2 2 2 2 0 2 1 72 . .cos 2 . .cos60 2. . .

9 3 2 9

a a aHC HB BC HB BC HBC HB BC HB BC a a= + − = + − = + − =

Suy ra �7 7 21.tan . 3

3 3 3

a a aHC SH HC SCH= ⇒ = = =

Ta suy ra 3

01 1 21 1 7. . . .sin 60

3 3 3 2 12SABC ABC

a aV SH S a a∆= = = ( ĐVTT)

- Tính khoảng cách: Gọi E là trung điểm của BC , D là đỉnh thứ tư của hình bình hành ABCD

Ta có / /AD BC nên / /( ) /( ) /( )

3

2SA BC BC SAD B SAD H SADd d d d= = =

Kẻ /( )( ) H SAD

HF ADHK SAD d HK

HK SF

⊥⇒ ⊥ ⇒ = ⊥

Trong tam giác vuông SHF ta có 2 2 2 2 2

1 1 1 .HF HSHK

HK HF HS HS HF= + ⇒ =

+

Mặt khác ta có 2 2 3 3

3 3 2 3

a aHF AE= = =

Page 26: Chuyen de hinh_hoc_khong_gian

26

Suy ra 2 2

2 2

3 21.. 423 3

123 219 9

a aHF HS

HK aHS HF a a

= = =+ +

Vậy /

3 42 42.

2 12 8SA BCd a a= =

Ví dụ 6) Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh bằnga . SA vuông góc với đáy góc tạo bởi SC và mặt phẳng ( )SAB là 300. Gọi ,E F lần lượt là trung điểm của BC và SD . Tính khoảng cách giữa hai đường thẳng chéo nhau DE và CF Giải:

R

KE

IH

D

CB

A

S

P

Vì 0ˆ( ) 30 .cot 30 3 2CB AB

CB SAB CSB SB BC a SA aCB SA

⊥⇒ ⊥ ⇒ = ⇒ = = ⇒ = ⊥

Từ C dựng CI song song với DE ta có 2

aCI DE= = . Ta có mặt phẳng ( )CFI chứa CF và

song song với DE

Ta có / /( ) /( ) /( )

1

2DE CF DE CFI D CFI H CFId d d d= = = với H là chân đường cao hạ từ F lên AD

Dựng /( ) 2 2

.( ) H CFI

HK CI HK HFHR FCI d HR

HR FK HK HF

⊥⇒ ⊥ ⇒ = = ⊥ +

Ta có 2

2

3.1 1 . 32. .

2 2 1332

a aCD HI aHK CI CD HI HK

CIa a

= ⇒ = = = +

Page 27: Chuyen de hinh_hoc_khong_gian

27

Ta có 2 2

2 3.

2 3 312 132 31

2 32 13

a aa

FH HRa a

= ⇒ = = +

Trong bài toán này ta đã tạo ra khối chóp FHCI để quy về bài toán cơ bản là : Tính khoảng cách từ chân đường cao H đến mặt bên (FCI). Việc làm này giúp bài toán trở nên đơn giản hơn rất nhiều Ví dụ 7) Cho hình chóp SABCD có đáy ABCD là hình chữ nhật với 2AB a= . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy . Biết AC vuông góc với SD tính thể tích khối chóp SABCD và khoảng cách giữa hai đường thẳng BD và SC Giải: - Tính thể tích khối chóp SABCD Gọi H là trung điểm ,AB O là giao điểm của hai đường chéo hình chữ nhật ABCD ; SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy ( )SH ABCD⇒ ⊥

và 3

3.2

ABSH a= =

Gọi M là trung điểm của SB thì góc tạo bởi OM và AC cũng là góc tạo bởi SD và AC . Suy

ra � 090MOC = .

Ta có 2 2 2 2 2( )BC SAB BC SB MC BC MB BC a⊥ ⇒ ⊥ ⇒ = + = + .

2 2 2 2 2 2 2 2 21 1 1 1 1( 4 ), ( 4 )

4 4 4 4 4OM SD SC BC a OC AC BC a= = = + = = +

Như vậy tam giác MOC vuông cân tại 2 2 2 2 2 212 ( 4 )

2O MC OC BC a BC a⇒ = ⇔ + = +

2 22 2.BC a BC a⇔ = ⇒ = Thể tích hình chóp S.ABCD là

3

.

1 1 1 2 6. . . 2 . 2. 3

3 3 3 3S ABCD ABCD

aV S SH AB AD SH a a a= = = =

- Khoảng cách giữa hai đường thẳng BD,SC: Gọi N là trung điểm của SA thì / /( ) /( ) /( )/ /( ) SC BD SC BDN C BDN A BDNSC BDN d d d d⇒ = = =

Kẻ /( ) /( )/ / ( ) 2A BDN K BDNNK SH NK ABCD d d⇒ ⊥ ⇒ =

Kẻ /( ) 2 2

.( ) K BDN

KE BD KE KNKF BDN d KF

KF NE KE KN

⊥⇒ ⊥ ⇒ = = ⊥ +

Có 2 2

3 3 3 . 6, .

2 4 4 4

a AB AD aKN KE AQ

AB AD= = = =

+

Page 28: Chuyen de hinh_hoc_khong_gian

28

Thay số ta tính được 6

6

aKF =

Vậy ( ) 6, 2

3

ad BD SC KF= =

Q O

F

N

E

K

H

MD

CB

A

S

Chú ý: Trong bài toán này ta đã dựng đường cao NK để quy về bài toán cơ bản.

Phần 6 Các bài toán tính góc giữa 2 đường thẳng chéo nhau trong không gian.

Khi cần tính góc giữa 2 đường thẳng chéo nhau a và b trong không gian ta phải tìm 1 đường thẳng trung gian là c song song với a và c cắt b. Khi đó góc tạo bởi a và b cũng chính là góc tạo bởi b và c. Hoặc ta dựng liên tiếp 2 đường thẳng c và d cắt nhau lần lượt song song với a và b. Sau đó ta

tính góc giữa c và d theo định lý hàm số côsin 2 2 2

cos2

b c aA

bc

+ −= hoặc theo hệ thức lượng

trong tam giác vuông. Ví dụ 1) Cho lăng trụ ' ' 'ABCA B C có độ dài cạnh bên bằng 2a , đáy ABC là tam giác vuông

tại A , AB a= , 3AC a= và hình chiếu vuông góc của 'A lên mặt phẳng ( )ABC là trung điểm của cạnh BC , Tính theo a thể tích khối chóp 'A ABC và tính côsin góc tạo bởi 'AA và

' 'B C . (TSĐH A 2008) HD giải : Gọi H là trung điểm của BC . Suy ra ' ( )A H ABC⊥ và

Page 29: Chuyen de hinh_hoc_khong_gian

29

2 21 13

2 2AH BC a a a= = + = Do đó 2 2' ' 3.A H A A AH a= − =

3

'

1' .

3 2A ABC ABC

aV A H S= =

Trong tam giác vuông ' 'A B H ta có 2 2' ' ' 2HB A B A H a= + = nên tam giác 'B BH cân tại

'B . Đặt α là góc tạo bởi 'AA và ' 'B C thì � 1' cos

2.2 4

aB BH

aα α= ⇒ = =

Tel 0988844088

H

A

B

C

C'

B'

A'

Ví dụ 2) Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh 2a , , 3SA a SB a= = mặt phẳng ( )SAB vuông góc với mặt phẳng đáy . Gọi ,M N lần lượt là trung điểm của các cạnh ,AB BC . Tính theo a thể tích khối chóp SBMDN và tính cosin góc tạo bởi SM và DN . Hd giải: Hạ ( )SH AB SH ABCD⊥ ⇒ ⊥

SH cũng chính là đường cao khối chóp SBMDN . Ta có 2 2 2SA SB AB+ = SAB⇒ ∆ vuông tại

S2

ABSM a SAM⇒ = = ⇒ ∆ là tam giác đều

3

2

aSH⇒ =

Dễ thấy 212

2BMDN ABCDS S a= = . Do đó V(SBMDN)=31 3

.3 3SBMND BMDN

aV SH S= =

Kẻ ME song song với DN ( E thuộc AD) suy ra 2

aAE =

Giả sử góc tạo bởi SM và DN là ( , ).SM MEα α⇒ =

Page 30: Chuyen de hinh_hoc_khong_gian

30

Ta có SA vuông góc với AD (Định lý 3 đường vuông góc ) suy ra

SA AE⊥ ⇒2 2 5

,2

aSE SA AE= + = 2 2 5

2

aME AM ME= + = Tam giác SME cân tại E

nên cos52

5

SM

MEα = =

N

E

H

M

B C

DA

S

Ví dụ 3) Cho hình chóp SABC có đáy ABC là tam giác vuông tại A và 3 , 4AB a AC a= = .

Cạnh bên � � 02 , 60SA a SAB SAC= = = . Tính thể tích khối chóp SABC và cosin của góc giữa hai đường thẳng SB và AC Giải: Lời giải: Gọi H là hình chiếu của S trên mặt phẳng ( )ABC

Kẻ ;HI AB HJ AC⊥ ⊥ ; do tam giác ABC vuông tại A nên / /HI AJ và / /HJ AI Theo định lý ba đường vuông góc ta có: SI AB⊥ và SJ AC⊥

Hai tam giác vuông SIA và SJA bằng nhau, vì có SA là cạnh chung và � � 060SAB SAC= =

Do đó 0sin 60 3SI SJ SA a= = = và 0cos60AI AJ SA a= = = , từ đó HI HJ= Suy ra AH là đường phân giác trong của góc A Vậy tứ giác AIHJ là hình vuông cạnh bằng a .

Khi đó 2AH a=

Tam giác SHA vuông tại H, ta có: 2 2 2 24 2 2SH SA AH a a a= − = − =

Diện tích tam giác ABC là: 21 1. 3 .4 6

2 2ABCS AB AC a a a= = =

Thể tích khối chóp 2 31 1. 2.6 2 2

3 3SABC ABCV SH S a a a= = = (đvtt)

- Tính góc tạo bởi 2 đường thẳng:

Kí hiệu ϕ là góc tạo bởi 2 đường thẳng ,AC SB . Kẻ �( ) �( )/ / , ,IM SB AC SB IH IM ϕ⇒ = =

Page 31: Chuyen de hinh_hoc_khong_gian

31

Tính được 2 2 2 23 4 7SB SI IB a a a= + = + =

Mặt khác 1 7 2

,3 3 3

IM AM AI aIM AM a

SB AS AB= = = ⇒ = =

Do 2SH AH a SHA= = ⇒ ∆ vuông cân tại H . Trong tam giác AMH ta có :

2 22 2 2 2 4 2 1 10

2 . .cos 45 2 2 2 . .9 3 92

a a aHM AH AM AH AM a a= + − = + − =

Ta có �

22 2

2 2 27 10

7 79 9cos cos2 . 7 77

2. .3

aa aIH IM HM

HIMIH IM a

a

ϕ+ −+ −= = = ⇒ =

M

J

I H

C

B

A

S

PHẦN 7) CÁC DẠNG BÀI T ẬP VỀ MẶT CẦU NGOẠI TI ẾP KHỐI ĐA DIỆN Để giải quyết tốt dạng bài tập này học sinh cần nắm vững kiến thức cơ bản sau: ** N ếu I là tâm mặt cầu ngoại tiếp khối chóp 1 2.. nSA A A thì tâm I cách đều các đỉnh

1 2; ; ..... nS A A A

- Vì vậy tâm I thuộc trục đường tròn đáy là đường thẳng qua tâm vòng tròn ngoại tiếp đáy và vuông góc với đáy 1 2... nA A A (đường thẳng này song song với đường cao khối chóp) (Phải chú ý

việc chọn mặt đáy cần linh hoạt sao cho khi xác định trục đường tròn đáy là đơn giản nhất) - Tâm I phải cách đều đỉnh S và các đỉnh 1 2; ..... nA A A nên I thuộc mặt phẳng trung trực của iSA

đây là vấn đề khó đòi hỏi học sinh cần khéo léo để chọn cạnh bên sao cho trục đường tròn đã xác định và cạnh bên đồng phẳng với nhau để việc tìm I được dễ dàng ** Trong một số trường hợp đặc biệt khi khối chóp có các mặt bên là tam giác cân, vuông, đều ta có thể xác định 2 trục đường tròn của mặt bên và đáy . Khi đó tâm I là giao điểm của 2 trục

Page 32: Chuyen de hinh_hoc_khong_gian

32

đường tròn. Nếu hình chóp có các đỉnh đều nhìn cạnh a dưới một góc vuông thì tâm mặt cầu là trung điểm của cạnh a. ** Khi tính toán cần lưu ý các công thức:

4 4

abc abcS R

R S= ⇒ = ; 2 sin ,...a R A=

Ta xét các ví dụ sau: Ví dụ 1) Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại A và B ,

aADaBCAB 2; === .Cạnh bên SA vuông góc với đáy ABCD và SA a= . Gọi E là trung điểm của AD .Tính thể tích khối chóp SCDE và tìm tâm bán kính mặt cầu ngoại tiếp khối chóp đó. HD giải:

KN

M

E

I

O

D

C

B

A

S

6

3aV =

Gọi ,M N lần lượt là trung điểm của SE và SC ta có mặt phẳng ( )ABMN là mặt phẳng trung trực của SE . Vậy tâm O của mặt cầu ngoại tiếp hình chóp SCDE là giao điểm của mặt phẳng ( )ABMN và trục đường tròn ngoại tiếp đáy CDE . Gọi ∆ là đường thẳng qua trung điểm I của CD và song song với SA .Gọi K là trung điểm của AB thì KN //AM vì KN và ∆ đồng phẳng suy ra OKN =∆∩ là điểm cần tìm

Tam giác OIK vuông cân nên OI IK= =2

3

2

aADBC =+;

Ta có 2

11

4

11

4

2

4

9 222222 a

OCRaaa

ICOIOC ==⇒=+=+=

Trong ví dụ này ta dựng mặt phẳng trung trực của SE để tận dụng điều kiện tam giác SAE vuông cân ở A

Page 33: Chuyen de hinh_hoc_khong_gian

33

Nếu biết chọn đỉnh và đáy hình chóp hợp lý ta có một cách giải khác đơn giản hơn như sau:

y

x

O

I

J

KE D

CB

A

S

Ta coi SED là mặt đáy của khối chóp CSED . Gọi J là tâm vòng tròn ngoại tiếp tam giác SED . Thì J nằm trên đường trung trực Kx của ED . Vị trí J được xác định theo hệ thức

1. . . 2. 5 10

4 2. . 2SED

SE ED SD a a a aJE R

S a a∆= = = =

Qua J kẻ đường thẳng ( )Jy SED⊥ thì / /Jy CE . Trong mặt phẳng ( )CEJ kẻ đường trung trực của CE cắt Jy tại O là tâm mặt cầu ngoại tiếp khối chóp.

Ta có bán kính mặt cầu là 2 2 2 2

2 2 2 2 21

10 11 11

4 4 4 4 2

CE a a a aR OE OJ JE R R= = + = + = + = ⇒ =

Ví dụ 2) Cho hình chóp SABCD có đáy ABCD là hình chữ nhật cạnh ; 2AB a AD a= = góc giữa hai mặt phẳng ( )SAC và ( )ABCD bằng 600. Gọi H là trung điểm của AB . Biết mặt bên ( )SAB là tam giác cân tại đỉnh S và thuộc mặt phẳng vuông góc với đáy. Tính thể tích khối chóp SABCD và xác định tâm bán kính mặt cầu ngoại tiếp khối chóp SAHC - Ta có ( )SH AB SH ABCD⊥ ⇒ ⊥ .Kẻ HM vuông góc với AC thì góc tạo bởi (SAC) và

(ABCD) là 0ˆ 60SMH =

Có 02 6 2ˆsin ; tan 602 6 23

BC a a a aHM AH HAM AH SH HM

AC a= = = = = =

31( )

3 3SABCD

aV SHdt ABCD= =

Page 34: Chuyen de hinh_hoc_khong_gian

34

E

M

J

x

y

K

H

I

D

C

B

A

S

Gọi J, r lần lượt là tâm và bán kính đường tròn ngoại tiếp tam giác AHC. Ta có

.24

33

2

..

4

.. a

S

ACHCAH

S

ACHCAHr

ABCAHC

===

Kẻ đường thẳng ∆ qua J và .// SH∆ Khi đó tâm I của mặt cầu ngoại tiếp hình chóp AHCS. là giao điểm của đường trung trực đoạn SH và ∆ trong mặt phẳng (SHJ). Ta có

.4

22

22 rSH

JHIJIH +=+=

Suy ra bán kính mặt cầu là .32

31aR =

Ví dụ 3) Cho tứ diện ABCD có ABC là tam giác đều cạnh a, 3

aDA DB= = , CD vuông góc

với AD .Trên cạnh CD kéo dài lấy điểm E sao cho 0ˆ 90AEB = .Tính góc tạo bởi mặt phẳng ( )ABC và mặt phẳng ( )ABD . Xác định tâm và tính thể tích khối cầu ngoại tiếp khối tứ diện ABCE Giải: - Gọi I là trung điểm của AB thì CI vuông góc với AB và DI vuông góc với AB . Nên góc

tạo bởi ( )ACD và ( )ABD là �CID .Do hai tam giác ACD và BCD bằng nhau nên

� �2 2 2

0 2 2 2390 ( ) ; ;

2 3 4 12

a a a aBDC ADC CD ABD CD DI CI DI DA AI= = ⇒ ⊥ ⇒ ⊥ = = − = − =

� 3 1cos :

2 32

DI a aCID

CI= = =

Page 35: Chuyen de hinh_hoc_khong_gian

35

- Tam giác vuông ACD có 2 2 2 2

3CD CA DA a= − = . Tam giác ABE vuông cân, do đó

2 22;

2 6

a aAE DE AE DA ACE= ⇒ = − = ∆ có AD là đường cao và

22.

3

aCD DE DA ACE= = ⇒ ∆ vuông tại A .

Tương tự ta có tam giác BCE vuông tại B . Vậy mặt cầu ngoại tiếp tứ diện ABCE có CE là đường kính tâm I của mặt cầu là trung điểm của CE . Bán kính

33

31 1 2 6 4 4 6 6( )

2 2 3 4 3 3 4 86

a a a aR CD DE a V R

ππ π

= + = + = ⇒ = = =

E

I

D

C

B

A

Ví dụ 4) Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh bằng a và đường cao là

SH với H thỏa mãn 3HN HM= −���� �����

trong đó ,M N là trung điểm của ,AB CD . Mặt phẳng ( )SAB tạo với đáy ABCD góc 600. Tính khoảng cách từ N đến mặt phẳng ( )SAC và xác định thể tích khối cầu ngoại tiếp hình chóp SABCD Giải: Gọi O là giao điểm của AC và BD suy ra H là trung điểm của MO và

0 3; 60

4 4 2

a a aMH AB HM AB SM SMH SH SM SAB= ⊥ ⇒ ⊥ ⇒ = ⇒ = ⇒ = ⇒ ∆ vuông cân

tại S và 2

2

aSA SB= = . Ta có

3( / ( ))

( )SNACV

d N SACdt SAC

= . Kẻ HK AC⊥ thì / /HK BD và

20 14 1 7ˆˆ 45 ( ) .

8 2 8

a aKHO KOH SK dt SAC AC SK= = ⇒ = ⇒ = =

Page 36: Chuyen de hinh_hoc_khong_gian

36

31 3 21. ( ) ( / ( ))

3 48 14SNAC

aV SH dt NAC a d N SAC= = ⇒ =

Trục đường tròn đáy là đường thẳng ( )d qua O và / / SH ( )d SMN⇒ ⊂ . Vì tam giác SAB vuông cân tại S nên trục d’ của tam giác SAB qua M và vuông góc với SAB . Theo trên ta có ( )SAB vuông góc với ( )SMH nên kẻ HE vuông góc với SM thì ( )HE SAB⊥ nên '/ /d HE . Như vậy 'd d I∩ = là tâm mặt cầu ngoại tiếp hình chóp SABCD . Ta có

2 2 20 2 2 2 23 7 21ˆ 30 ; tan 30

6 2 12 12 6

a a a a aOMI OI OM R IA OA OI R= = = ⇒ = = + = + = ⇒ =

Thể tích khối cầu là:

3

34 21 7 21

3 6 54

aV a

π π

= =

.

I

O

KN

E

HM

B C

DA

S

PHẦN 8. MỘT SỐ DẠNG BÀI T ẬP CỰC TRỊ TRONG KHÔNG GIAN Ví dụ 1) Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại C và SA vuông góc với đáySC c= . Hãy tìm góc giữa mặt phẳng ( )SBC và ( )ABC để thể tích khối chóp lớn nhất.

Lời giải:

Giả sử ( )0 00 90α α< < là góc hợp bởi hai mặt phẳng ( )SBC và ( )ABC

Ta có: ( )BC ACBC SAC BC SC

BC SA

⊥⇒ ⊥ ⇒ ⊥ ⊥

Do đó: �SCA α= Trong tam giác vuông SAC , ta có: cos cos ; sin sinBC AC SC a SA SC aα α α α= = = = =

Thể tích khối chóp SABC là: ( )3 2 3 21 1 1. cos .sin 1 sin .sin

3 3 3ABCV S SA a aα α α α= = = −

Đặt sin ,t α= do 0 00 90α< < nên ( )0 sin 1 0;1tα< < ⇒ ∈

Ta có: ( ) ( ) ( )3 2 3 21 1 11 , 0;1 ; ' 1 3 ' 0

3 3 3V a t t t V a t V t= − ∈ = − ⇒ = ⇔ =

Page 37: Chuyen de hinh_hoc_khong_gian

37

Lập BBT ta thấy: 32 3

max27

aV = , khi

1 1 1sin arcsin

3 3 3t α α = ⇔ = ⇒ =

Cách khác: Theo BĐT Cauchy ta có:

( )22 6 4 2 6 2 21 1cos .sin 1 sin .sin

9 9V a aα α α α= = −

32 22

6 2 2 6 62

1 sin 1 sinsin4 1 sin 1 sin 4 42 2. . .sin

9 2 2 9 3 243

a a aα α αα α α

− −+ + − − = ≤ =

32 3

27

aV⇒ ≤

32 3max

27

aV⇒ = , đạt được khi:

221 sin 1 1

sin sin arcsin2 3 3

α α α α− = ⇔ = ⇒ =

α

C

S

BA

Ví dụ 2) Cho hình chóp tứ giác đều SABCD mà khoảng cách từ đỉnh A đến mặt phẳng ( )SBC

bằng 2a . Với giá trị nào của góc giữa mặt bên và mặt đáy của khối chóp thì thể tích của khối chóp nhỏ nhất? Lời giải: Gọi O AC BD= ∩ và ,M N lần lượt là trung điểm của AD và BC

Do ( )/ /AD SBC nên ( )( ) ( )( ), ,d A SBC d M SBC=

Ta có: ( )BC MNBC SMN

BC SN

⊥⇒ ⊥ ⊥

Mà ( )BC SBC⊂ nên ( ) ( )SBC SMN⊥ theo giao tuyến SN

Trong tam giác SMN kẻ đường cao MH thì ( )MH SBC⊥

Do đó: ( )( ) ( )( ), , 2d A SBC d M SBC MH a= = =

Page 38: Chuyen de hinh_hoc_khong_gian

38

Giả sử ( )0 00 90α α< < là góc hợp với mặt bên ( )SBC và đáy hình chóp thì �SMN α= .

Trong tam giác vuông ,MHN ta có: 2

sin sin

MH aAB MN

α α= = =

Trong tam giác vuông SON , ta có: tan . tansin cos

a aSO ON α α

α α= = =

Thể tích khối chóp SABCD là:

( )2 3 3

2 2 2

1 1 4 4 4. . .

3 3 cossin 3sin .cos 3 1 cos cosABCD

a a a aV S SO

αα α α α α= = = =

Đặt cost α= , do 0 00 90α< < nên ( )0 cos 1 0;1tα< < ⇒ ∈

Ta có: ( ) ( )3

2

4, 0;1

3 1

aV t

t t= ∈

( )

( )3 2

23

4 3 1 1' ; ' 0

33

a tV V t

t t

−= = ⇔ =

Lập BBT ta thấy: 3min 2 3V a= , khi 1 1 1

cos arccos3 3 3

t α α= ⇔ = ⇒ =

N M

D

S

C

BA

O

Ví dụ 3) Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a . Cạnh bên SA vuông góc với đáy. M là một điểm di động trên cạnh ,CD H là hình chiếu của đỉnh S lên BM . Tìm vị trí của điểm M trên CD để thể tích khối chóp SABH là lớn nhất. Lời giải:

Đặt ( )0CM x x a= < ≤ , ta có: 2 2BM a x= +

( )2

2 1 1

2 2 2ABM ABCD BCMa

S S S a a a x ax= − = − − − =

Mặt khác: 2

2 2

21.

2ABM

ABMS a

S BM AH AHBM a x

= ⇒ = =+

Page 39: Chuyen de hinh_hoc_khong_gian

39

Trong tam giác vuông ABH , ta có: 4

2 2 22 2 2 2

a axBH AB AH a

a x a x= − = − =

+ +

Diện tích tam giác ABH là: 2 3

2 2 2 2 2 2

1 1. . .

2 2ABHa ax a x

S AH BHa x a x a x

= = =+ + +

Thể tích khối chóp SABH là: ( )3

2 2

1.

3 6ABH

a hxV S SA

a x= =

+

Theo bất đẳng thức Cauchy ta có:2 2 2 2

2 2

12 . 2

2

a x a a xx x a

x x x aa x

+ = + ≥ = ⇒ ≤+

2 2

max12 12

a h a hV V⇒ ≤ ⇒ = , đạt được khi

2ax x a

x= ⇔ = .

MD

S

C

BA

H

Cách khác:

Thể tích khối chópSABH là: 1

.3 ABHV S SA= . Mà SA không đổi nên thể tích V lớn nhất khi

ABHS lớn nhất.

Theo bất đẳng thức Cauchy, ta có:

2

2 2 2 2 12 . .

2 4ABHa

a AB AH BH AH BH S AH BH= = + ≥ ⇒ = ≤

2

max4ABH

aS⇒ = , đạt được khi AH BH= , suy ra tam giác ABH vuông cân tại H . Khi đó

M D≡ Vậy M D≡ thì thể tích khối chóp ABHS lớn nhất và thể tích lớn nhất đó là:

21.

3 12ABHa h

V S SA= = .

Page 40: Chuyen de hinh_hoc_khong_gian

40

Ví dụ 4) Cho đường tròn tâm O đường kính AB nằm trong mặt phẳng ( )P và một điểm C di

động trên đường tròn. Trên đường thẳng vuông góc với mặt phẳng ( )P tại A lấy một điểm S .

Mặt phẳng ( )Q qua A vuông góc với SB tại H cắt SC tại K . Tìm vị trí của điểm C để thể

tích khối chóp SAHK lớn nhất. Lời giải:

KH

OB

C

A

S

Ta có: ( )BC ACBC SAC BC AK

BC SA

⊥⇒ ⊥ ⇒ ⊥ ⊥

(1)

Mặt khác: AK SC⊥ (2) Từ (1) và (2) suy ra: ( )AK SBC⊥

Do đó: AK SB⊥ và AK HK⊥

Từ đó ta có: ( )SB AHSB AHK

SB AK

⊥⇒ ⊥ ⊥

Tam giác SAB vuông cân tại A nên H là trung điểm của SB

Ta có: 1

2 2 2 22

SB SA R AH SB R= = ⇒ = =

Thể tích khối chóp SAHK là: 1

.3 SAHKV S SH= .

Do SH không đổi nên SAHKV lớn nhất khi AHKS lớn nhất

Theo bất đẳng thức Cauchy, ta có: 2

2 2 2 2 12 2 . .

2 2AHKR

R AH AK HK AK HK S AK HK= = + ≥ ⇒ = ≤

2

max2AHK

RS⇒ = , đạt được khi AH HK R= =

Trong tam giác vuông SAC , ta có: 2 2 2 2 2 2

1 1 1 1 1 1 2 3

34

RAC

AK SA AC R R AC= + ⇔ = + ⇒ =

Đặt �BACϕ = , ta có: 3

cos3

AC

ABϕ = =

Page 41: Chuyen de hinh_hoc_khong_gian

41

Vậy có hai vị trí của điểm M trên đường tròn sao cho 3

cos3

ϕ = thì thể tích khối chóp SAHK

đạt giá trị lớn nhất.

Khi đó: 3 2

max6SAHK

RV = .

Ví dụ 5) Cho hình chóp SABCD có cạnh SB x= , tất cả các cạnh còn lại bằng 3

3

xa a

>

1. Tính thể tích khối chóp theo a và x 2. Xác định x để khối chóp có thể tích lớn nhất.

Lời giải:

H

O

B C

DA

S

1) Tính thể tích khối chóp: Tứ giác ABCD có các cạnh đều bằng nhau và bằng a nên là hình thoi. Gọi O AC BD= ∩ Hai tam giác SAC và ABC bằng nhau vì có AC là cạnh chung và SA SC BA BC a= = = = Do đó: OB OD OS= = Suy ra tam giác SBD vuông tại S

Từ đó 2 2 2 2BD SB SD x a= + = + Trong tam giác OAB vuông tại O , ta có:

( )2 2 2 2 2 2 212 2 2 3

4AC OA AB OB a x a a x= = − = − + = −

Diện tích hình thoi ABCD là: 2 2 2 21 1. 3 .

2 2ABCDS AC BD a x x a= = − +

Gọi H là hình chiếu của S lên mặt phẳng ABCD Ta có: 1SA SC= = nên HA HC= , suy ra H thuộc đường trung trực của đoạn AC Mà ABCD là hình thoi nên BD là đường trung trực của AC , tức H thuộc BD

Tam giác SBD vuông tại S , ta có: 2 2

.. .

SB SD axSH BD SB SD SH

BD x a= ⇒ = =

+

Thể tích khối chóp SABCD là:

Page 42: Chuyen de hinh_hoc_khong_gian

42

2 2 2 2 2 2

2 2

1 1 1. 3 . . 3

3 6 6ABCD ABCDax

V S SH a x a x ax a xa x

= = − + = −+

2) Xác định x để khối chóp có thể tích lớn nhất.

Theo bất đẳng thức Cauchy, ta có: 2 2 2 3

2 21 33

6 6 2 4SABCDa x a x a

V ax a x + −= − ≤ =

3

max4SABCDa

V⇒ = , đạt được khi 2 2 2 63

2

ax a x x= − ⇔ = .

Vậy khi 6

2

ax = thì thể tích của khối tứ diện đã cho đạt giá trị lớn nhất.

Ví dụ 6) Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a , cạnh bên SA vuông góc với mặt phẳng ( )ABCD và ;SA a M= và N là hai điểm lần lượt di động trên cạnh BC và CD

sao cho góc � 045MAN = . Đặt BM x= và ( )0 ;0DN y x a y a= ≤ ≤ ≤ ≤ . Chứng minh rằng

( ) 2a x y a xy+ = − . Tìm ,x y sao cho thể tích của khối chóp SAMN có giá trị bé nhất.

Lời giải:

45°

N

M

D

CB

A

S

+) Chứng minh ( ) 2a x y a xy+ = −

Goi � �;BAM DANα β= = thì 045α β+ = , với 00 , 45α β≤ ≤

Ta có: tan ; tanx y

a aα β= =

Mặt khác: ( ) 0tan tantan tan 45

1 tan .tan 1 .

x y

a ax y

a a

α βα βα β

+++ = ⇔ =− −

Page 43: Chuyen de hinh_hoc_khong_gian

43

( ) ( )22

1a x y

a xy a x ya xy

+⇔ = ⇔ − = +

− (đpcm)

+) Tìm ,x y để cho thể tích của khối chóp SAMN có giá trị bé nhất:

Ta có: 2 2 2 2 2tancos

aAM a x a a α

α= + = + = ; 2 2 2 2 2tan

cos

aAN a y a a β

β= + = + =

Thể tích khối chóp SAMN là: 3

01 1 2. . .sin 45 .

3 6 12cos cosAMNa

V S SA AM AN SAα β

= = =

Ta có: 4 4

π πα β β α+ = ⇒ = − nên

( )2cos .cos cos .cos cos cos sin

4 2

πα β α α α α α = − = +

( ) ( )22 2cos sin .cos 1 cos 2 sin 2

2 4

2 1 2 1sin 2

4 2 4 4 2

α α α α α

πα

= + = + +

= + + ≤ +

Do đó: 3

32 2 1

32 112

4 2

aV a

−≥ = +

32 1min

3V a

−⇒ =

, đạt được khi sin 2 1

4 8

π πα α β + = ⇔ = =

( )tan 2 18

x y a aπ⇔ = = = −

Vậy khi ( )2 1x y a⇔ = = − thì thể tích khối chóp SAMN nhỏ nhất.

Ví dụ 7) Cho tam giác đều OAB có cạnh AB a= . Trên đường d đi qua O và vuông góc với mặt phẳng ( )OAB lấy một điểm M với OM x= . Gọi ,E F lần lượt là hình chiếu vuông góc

của A lên MB và OB . Đường thẳng EF cắt d tại N . 1. Chứng minh rằng AN BM⊥ 2. Xác định x để thể tích tứ diện ABMN nhỏ nhất và tính giá trị nhỏ nhất đó.

Giải: 1. Chứng minh: Chứng minh rằng AN BM⊥

Ta có ( )AF OB

AF OBM AF BMAF OM

⊥⇒ ⊥ ⇒ ⊥ ⊥

Mặt khác ( )BM AE BM AEF BM AN⊥ ⇒ ⊥ ⇒ ⊥ 2. Xác định x để thể tích tứ diện ABMN nhỏ nhất và tính giá trị nhỏ nhất đó. Thể tích tứ diện ABMN là

Page 44: Chuyen de hinh_hoc_khong_gian

44

1( ).

3ABMN MOAB NOAB OABV V V OM ON S∆= + = +

Ta thấy rằng 2.

2

ON OF OF OB aOMB OFN ON

OB ON OM x∆ ∆ ⇒ = ⇒ = =∼

Do đó 2 21 3

.3 2 4ABMN

a aV x

x

= +

.

Theo bất đẳng thức Cauchy ta có: 2 2 36

2 . 22 2 12ABMNa a a

x x a Vx x

+ ≥ = ⇒ ≥

Dấu bằng xảy ra khi 2 2

2 2

a ax x

x= ⇔ =

F

E

N

M

B

A

O

BÀI T ẬP RÈN LUYỆN BIÊN SOẠN GV NGUYỄN TRUNG KIÊN 0988844088

Bài 1: Cho hình chóp tam giác đều SABC có cạnh bên bằng 7a , góc tạo bởi 2 mặt phẳng ( )SBC và ( )ABC bằng 600. Tính thể tích khối chóp SABC theo a .

ĐS: 33V a=

Bài 2: Cho tứ diện SABC có SA SB SC a= = = và 0ˆ ˆ ˆ 60ASB BSC CSA= = = . Gọi H là hình chiếu vuông góc của A lên mặt phẳng ( )SBC

1) Chứng minh rằng SH là phân giác của góc �BSC 2) Tính thể tích khối tứ diện SABC

ĐS: 3 2

12

aV =

Bài 3: Cho hình chóp tứ giác đều SABCD có cạnh bên bằng a , góc hợp bởi mặt bên và đáy là 600. Tính thể tích của khối chóp đã cho.

Page 45: Chuyen de hinh_hoc_khong_gian

45

ĐS: 34 15

75

aV =

Bài 4: Cho hình chóp SABCD có đáy ABCD là hình chữ nhật với , 2AB a BC a= = . Hai mặt bên ( ), ( )SAB SAD cùng vuông góc với đáy, cạnh SC hợp với đáy một góc 600.

1) Tình thể tích của khối chóp 2) Tính góc tạo bởi 2 mặt phẳng ( )SBC và ( )ABCD

ĐS: 32 15

; arctan 153

aV ϕ= =

Bài 5: Cho đường tròn đường kính 2AB R= nằm trong mặt phẳng ( )P và một điểm M nằm

trên đường tròn đó sao cho � 030ABM = . Trên đường thẳng vuông góc với ( )P tại điểm A lấy điểm S sao cho 2SA R= . Gọi H và K lần lượt là hình chiếu vuông góc của A trên SB và SM

1) Chứng minh rằng SB vuông góc với mặt phẳng ( )AHK 2) Gọi I là giao điểm của HK với ( )P . Hãy chứng minh IA là tiếp tuyến của đường trong

đã cho. 3) Tính thể tích của khối chóp SAHK

ĐS: 32 3

15

RV =

Bài 6: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a , cạnh bên SA vuông góc

với đáy và 2SA a= . Trên AD lấy điểm M thay đổi. Đặt góc � .ACM α= Hạ SN vuông góc với CM

1) Chứng minh N luôn luôn thuộc một đường tròn cố định và tình thể tích tứ diện SACN theo a và α

2) Hạ AH vuông góc với SC và AK vuông góc với SN . Chứng minh rằng SC vuông góc với mặt phẳng ( )AHK và tính độ dài đoạn HK

ĐS: 3

2

2 cossin 2 ;

6 1 sin

aV a HK

ααα

= =+

Bài 7: Cho hình chóp SABC có đáy ABC là tam giác vuông tại C , , 2AC a AB a= = , cạnh SA vuông góc với đáy. Góc giữa mặt phẳng ( )SAB và mặt phẳng ( )SBC bằng 600. Gọi ,H K lần lượt là hình chiếu của A lên SB và SC . Chứng minh rằng AK vuông góc với HK và tính thể tích khối chóp SABC

ĐS: 3 6

12

aV =

Bài 8: Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại đỉnh A , AB a= . Mặt bên qua cạnh huyền BC vuông góc với mặt đáy , hai cạnh bên còn lại đều hợp với mặt đáy các góc bằng nhau và bằng 600. Hẫy tính thể tích của khối chóp SABC

ĐS: 3 3

12

aV =

Page 46: Chuyen de hinh_hoc_khong_gian

46

Bài 9: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a , mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi , ,M N P lần lượt là trung điểm của các cạnh , ,SB BC CD . Chứng minh AM vuông góc với BP và tính thể tích của khối tứ diện CMNP

ĐS: 3 3

96

aV =

Bài 10: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a , mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Gọi O là tâm của đáy, I là trung điểm của AB . Góc hợp bởi SC và đáy là α .

1) Tính thể tích của khối chóp SABCD theo a và α 2) Tính thể tích khối tứ diện SOCD theo a và α 3) Tính khoảng cách từ I đến mặt bên ( )SCD . Suy ra thể tích khối tứ diện SICD

ĐS: 3 3 3

2

5 5 5 tan 5tan ; tan ; ; tan

6 24 125 tan 4SABCD SOCD SICD

a a a aV V d V

αα α αα

= = = =+

Bài 11: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a , mặt phẳng ( )SAC

vuông góc với đáy, góc� 090ASC = và SA tạo với đáy một góc ϕ . Tính thể tích của khối chóp SABCD

ĐS: 3 2

sin 26SABCD

aV ϕ=

Bài 12: Cho hình chóp SABCD có đáy ABCD là hình bình hành, góc nhọn tạo bởi hai đường chéo AC và BD là 600, các tam giác SAC và SBD là các tam giác đều cạnh a . Tính thể tích của khối chóp theo a .

ĐS: 3

8SABCD

aV =

Bài 13: Trong mặt phẳng ( )P cho hình thoi ABCD có AB a= và 2

3

aBD = . Trên đường thẳng

vuông góc với mặt phẳng ( )P và đi qua giao điểm H của hai đường chéo của hình thoi trên người ta lấy điểm S sao cho SB a=

1) Chứng minh rằng tam giác SAC là tam giác vuông 2) Tính thể tích của khối chóp SABCD 3) Chứng minh rằng hai mặt phẳng ( )SAB và ( )SAD vuông góc với nhau

ĐS: 34 3

27SABCD

aV =

Bài 14: Cho hình chóp SABC có cạnh SA a= và 3SB SC a+ = . Góc 0ˆ 90BAC = và � � � 060BSC CSA ASB= = = . Tính thể tích khối chóp SABC theo a .

ĐS: 3 2

12SABC

aV =

Bài 15: Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng a , mặt bên tạo với đáy một góc 600. Mặt phẳng ( )P chứa cạnh AB và tạo với đáy một góc 300 cắt ,SC SD lần lượt tại ,M N

Page 47: Chuyen de hinh_hoc_khong_gian

47

1) Tính theo a tứ diện tứ giác ABMN 2) Tính thể tích khối chóp SABMN theo a

ĐS: 2 23 3 3

;8 16ABMN SABMN

a aS V= =

Bài 16: Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng 2a , và cạnh bên 5SA a= . Mặt phẳng ( )P chứa cạnh AB và vuông góc với mặt phẳng ( )SCD cắt SC và SD lần lượt tại 'C và

'D 1) Tính diện tích tứ giác ' 'ADC D 2) Tính thể tích hình đa diện ' 'ABCDD C

ĐS: 2 3

' ' ABCDD'C'

3 3 5 3;

2 6ABC D

a aS V= =

Bài 17: Khối chóp SABCD có đáy là hình vuông cạnh a . ( )SA ABCD⊥ ; 2SA a= . Gọi ,E F là

hình chiếu củaA trên SB và SD . I là giao điểm củaSC và ( )AEF . Tính thể tích khối chóp

SAEIF .

ĐS: 316

45

a

Bài 18: Cho lăng trụ đứng 1 1 1ABCA B C đáy là tam giác đều. Mặt phẳng ( )1A BC tạo với đáy 1

góc 300 và tam giác 1A BC có diện tích bằng 28a . Tính thể tích khối lăng trụ.

ĐS: 38 3a

Bài 19: Khối lăng trụ 1 1 1ABCA B C có đáy là tam giác vuông cân, cạnh huyền 2AB a= . Mặt

phẳng ( )1AA B vuông góc với mặt phẳng ( ) 1, 3ABC AA a= ; góc 1A AB nhọn, góc tạo bởi

( )1A AC và mặt phẳng ( )ABC bằng 600. Tính thể tích khối lăng trụ.

ĐS: 33 5

10V a=

Bài 20: Cho hình chóp tam giác đều SABC đỉnh S , độ dài cạnh đáy bằng a . Gọi ,M N lần lượt là trung điểm của các cạnhSB và SC . Tính theo a diện tích tam giácAMN , biết rằng mặt phẳng ( )AMN vuông góc với mặt phẳng ( )SBC .

ĐS: 2 10

16

aS =

Bài 21: Cho hình chóp SABC có 3SA a= vàSA vuông góc với mặt phẳng ( )ABC . Tam giác

ABC có 2AB BC a= = , góc � 0120ABC = . Tính khoảng cách từ đỉnh A đến mặt phẳng ( )SBC .

ĐS: Bài 22: Cho hình chóp tam giác SABC có đáyABC là tam giác đều cạnh , 2a SA a= và SA

vuông góc với mặt phẳng ( )ABC . Gọi M và N lần lượt là hình chiếu vuông góc của A trên

các đường thẳng SB và SC a) Tính khoảng cách t ừ A đến mặt phẳng ( )SBC

Page 48: Chuyen de hinh_hoc_khong_gian

48

b) Tính thể tích của khối chópABCMN .

ĐS: 32 57 3 3

) ; )19 50

a aa b

Bài 23: Cho hình chóp tứ giác đềuSABCD . Khoảng cách từ A đến mặt phẳng ( )SBC bằng

2a . Góc giữa các mặt bên và mặt đáy làα . a) Tính thể tích khối chóp theo a và α b) Xác định α để thể tích khối chóp nhỏ nhất.

ĐS: 3

2

4 3;cos

3cos .sin 3

a αα α

=

Bài 24: Cho hình chóp SABCD có đáy ABCD là hình chữ nhật với AB a= , AD = 2a , SA a= và SA vuông góc với mặt phẳng ( )ABCD . Gọi M và N lần lượt là trung điểm củaAD

vàSC , I là giao điểm củaBM vàAC . a) Chứng minh rằng mặt phẳng ( )SAC vuông góc với mặt phẳng ( )SMB .

b) Tính thể tích của khối tứ diện ANIB .

ĐS: 3 2

36

aV =

Bài 25: Cho lăng trụ đứng ' ' 'ABCA B C có đáyABC là tam giác vuông tại B , AB a= , ' 2AA a= , ' 3A C a= . Gọi M là trung điểm của đoạn thẳng ' 'A C , I là giao điểm củaAM và

'A C a) Tính theo a thể tích khối tứ diện IABC b) Tính khoảng cách từ điểm A đến mặt phẳng ( )IBC

ĐS: 34 2 5;

9 5

a aV d= =

Bài 26: Cho hình chópSABCD có đáy ABCD là hình thang vuông tại A và D , 2AB AD a= = , CD a= , góc giữa 2 mặt phẳng ( )SBC và ( )ABCD bằng 600. Gọi I là trung điểm của cạnh

AD . Biết 2 mặt phẳng ( )SBI và ( )SCI cùng vuông góc với mặt phẳng ( )ABCD , tính thể tích

khối chóp SABCD theo a .

ĐS: 33 15

5V a=

Bài 27: Cho hình lăng trụ tam giác ' ' 'ABCA B C có 'BB a= , góc tạo bởi 'BB và mặt phẳng

( )ABC là 600, tam giácABC vuông tại C và góc �BAC =600. Hình chiếu vuông góc của điểm

'B lên mặt phẳng( )ABC trùng với trọng tâm của tam giácABC . Tính thể tích khối tứ diện

'A ABC theo a .

ĐS: 39

208

aV =

Bài 28: Trong không gian cho hình chóp tam giác đều SABC có 7SC a= . Góc tạo bởi

( )ABC và ( )SAB =600. Tính thể tích khối chópSABC theo a .

Page 49: Chuyen de hinh_hoc_khong_gian

49

ĐS: 33V a= Bài 29: Trong không gian cho hình chópSABCD với ABCD là hình thoi cạnh a , góc

�ABC = 600, SO vuông góc với đáy (O là tâm mặt đáy), 3

2

aSO = . M là trung điểm củaAD .

( )P là mặt phẳng qua BM và song song với SA , cắt SC tại K . Tính thể tích khối chóp

KABCD .

ĐS: 3

6

aV =

Bài 30: Cho hình chópSABCD có đáy là hình chữ nhật, 2, 2 .AD a CD a= = Cạnh SA vuông

góc với đáy và 3 2 .SA a= Gọi K là trung điểm AB . a) Chứng minh rằng ( )SAC vuông góc với ( )SDK

b) Tính thể tích khối chópCSDK theo a ; tính khoảng cách từ K đến ( )SDC .

ĐS: 3 3 52 ;

10

aV a h= =

Bài 31: Cho lăng trụ ' ' 'ABCA B C có đáyABC là tam giác đều cạnh a , hình chiếu vuông góc của 'A lên mặt phẳng ( )ABC trùng với tâm O của tam giácABC . Một mặt phẳng ( )P chứa

BC và vuông góc với 'AA cắt lăng trụ theo 1 thiết diện có diện tích 2 3

8

a. Tính thể tích khối

lăng trụ

ĐS: 3 3

12

aV =

Bài 32: Cho hình chóp SABC cóAB AC a= = ; ; 32

aBC SA a= = ; góc �SAB bằng góc �SAC

và bằng 300. Tính thể tích của khối chóp theo a .

ĐS: 3

16

aV =

Bài 33: Cho hình chóp tứ giác đều SABCD cạnh đáy bằng a . Gọi G là trọng tâm tam giác

SAC và khoảng cách từ G đến mặt bên ( )SCD bằng 3

.6

a

a) Tính khoảng cách từ tâm của mặt đáy đến mặt bên( )SCD

b) Tính thể tích của khối chópSABCD .

ĐS: 33 3

) ; )4 6

a aa b

Bài 34: Cho hình chópSABC có đường caoAB BC a= = ; 2AD a= . Đáy là tam giác vuông cân tại B . Gọi 'B là trung điểm của , 'SB C là chân đường cao hạ từ A xuốngSC .Tính thể tích khối chóp ' 'SAB C .

ĐS: 3

36

a

Page 50: Chuyen de hinh_hoc_khong_gian

50

Bài 35: Cho lăng trụ đứng ' ' 'ABCA B C có đáy ABC là tam giác vuông,AB BC a= = , cạnh

bên 'AA = 2a . Gọi M là trung điểm của cạnhBC a) Tính theo a thể tích của khối lăng trụ ' ' 'ABCA B C b) Tính khoảng cách giữa 2 đường thẳng AM và 'B C .

ĐS: 3 2 7

) ; )2 7

a aa b

Bài 36: Cho hình chópSABCD có đáy ABCD là hình vuông cạnh2a ; SA a= ; 3SB a= và

mặt phẳng( )SAB vuông góc với mặt phẳng đáy. M và N lần lượt là trung điểm của cạnhAB

vàBC . Tính thể tích khối chópSBMDN và góc giữa ( );SM ND .

ĐS: 33 5;cos

3 5

a aV ϕ= =

Bài 37: Cho hình chópSABCD có đáy ABCD là hình thang, góc�BAD bằng góc �ABC và bằng 900; AB BC a= = ; 2AD a= . SA vuông góc với đáy và 2SA a= . Gọi ,M N lần lượt là trung điểm của ;SA SD . Tính thể tích khối chóp SABCD và khối chópSBCMN .

ĐS: 3

3) ; )3

aa a b

Bài 38: Cho lăng trụ ' ' 'ABCA B C có độ dài cạnh bên bằng 2a , đáyABC là tam giác vuông tại

,A AB a= ; 3.AC a= và hình chiếu vuông góc của 'A trên ( )ABC là trung điểm của cạnh

BC . Tính theo a thể tích khối chóp 'A ABC và cosin của góc giữa 2 đường thẳng 'AA và ' 'B C .

ĐS: 3 1;cos

2 4

aV α= =

Bài 39: Cho hình chópSABCD có đáy ABCD là hình vuông cạnh a , mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi , ,M N P lần lượt là trung điểm của các cạnh , ,SB BC CD . Chứng minh AM vuông góc với BP và tính thể tích khối tứ diện CMNP .

ĐS: 3 3

96

aV =

Bài 40: Cho lăng trụ đứng 1 1 1ABCA B C có 1, 2 , 2 5AB a AC a AA a= = = và góc � 0120BAC = .

Gọi M là trung điểm của cạnh 1CC . Chứng minh rằng 1MB MA⊥ và tính khoảng cách từ điểm

A đến mặt phẳng 1( )A MB

ĐS: 5

3

ad =

Bài 41: Cho hình chóp SABC có góc giữa 2 mặt phẳng ( )SBC và ( )ABC bằng 600 . Các tam giác ABC và SBC là các tam giác đều cạnh a . Tính theo a khoảng cách từ đỉnh B đến mặt phẳng ( )SAC

ĐS: 3 13

13

ad =

Page 51: Chuyen de hinh_hoc_khong_gian

51

Bài 42: Cho hình chóp SABCD có đáyABCD là hình vuông cạnh a tâm O , SA vuông góc

với đáy 2SA a= . Gọi H và K lần lượt là hình chiếu của A lên ,SB SC . Chứng minh ( )SC AHK⊥ và tính thể tích khối chóp OAHK

ĐS: 32

27

aV =

Bài 43: Lăng trụ đứng 1 1 1ABCA B C có đáy là tam giác vuông 1a; 2.AB AC AA a= = = Gọi

,M N lần lượt là trung điểm của 1AA và 1BC . Chứng minh rằng MN là đoạn vuông góc chung

của 1AA và 1BC . Tính thể tích khối chóp 1 1MA BC

ĐS: 3 3

12

aV =

Bài 44: Cho lăng trụ đứng 1 1 1ABCA B C có tất cả các cạnh đều bằng a . M là trung điểm của

cạnh 1AA .. Chứng minh 1BM B C⊥ và tính khoảng cách giữa 1,BM B C

ĐS: 10

30

ad =

Bài 45: Cho hình chóp SABCD có đáy là hình thang vuông tại ,A B , 2

ADAB BC a= = = .

Cạnh bên SA vuông góc với đáy và 2SA a= . Gọi H là hình chiếu vuông góc của A trên SB a) Chứng minh rằng tam giác SCD vuông b) Tính khoảng cách từ H đến mặt phẳng ( )SCD

ĐS: 3

ah =

Bài 46: Cho hình chóp SABC mà mỗi mặt bên là 1 tam giác vuông. SA SB SC a= = = . Gọi

, ,M N E lần lượt là trung điểm của các cạnh , ,AB AC BC , D là điểm đối xứng của S qua E , I là giao điểm của AD và SMN

a) Chứng minh rằng AD vuông góc với SI b) Tính theo a thể tích khối tứ diện MBSI

ĐS: 3

36

aV =

Bài 47: Cho hình hộp đứng ' ' ' 'ABCDA B C D có các cạnh 3

; '2

aAB AD a AA= = = và

góc� 060BAD = . Gọi M và N lần lượt là trung điểm của ' 'A D và ' 'A B . Chứng minh 'AC vuông góc với mặt phẳng ( )BDMN và tính thể tích khối chóp ABDMN

ĐS: 33

16

aV =

Page 52: Chuyen de hinh_hoc_khong_gian

52

Bài 48: Cho hình lập phương ' ' ' 'ABCDA B C D có cạnh a và điểm K thuộc cạnh 'CC sao

cho:2

3

aCK = . Mặt phẳng α đi qua ,A K và song song với BD chia khối lập phương thành 2

khối đa diện. Tính thể tích của 2 khối đa diện đó.

ĐS: 3 3

1 2

2;

3 3

a aV V= =

Bài 49: Cho hình chóp SABCD có đáy ABCD là hình thang, AB BC a= = , � � 090BAD ABC= = , 2AD a= , 2SA a= và vuông góc với đáy. Gọi ,M N lần lượt là trung điểm của ,SA AD . Chứng minh rằng BCNM là hình chữ nhật và tính thể tích của khối chóp SBCNM theo a

ĐS: 3

3SBCNM

aV =

Bài 50: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a . Cạnh bên SC vuông góc

với đáy và 2SC a= . Hai điểm ,M N thuộc SB và SD sao cho 2SM SN

MB ND= = . Mặt phẳng

( )AMN cắt SC tại P . Tính theo a thể tích của khối chóp SAMPN

ĐS: 32

9SAMPN

aV =

Bài 51: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a , đường cao SA a= . M là

một điểm thay đổi trên SB , đặt ( )0 2SM x x a= < < . Mặt phẳng ( )ADM cắt SC tại N .

1) Tứ giác ADMN là hình gì? Tính diện tích của tứ giác này theo a và x 2) Mặt phẳng ( )ADM chia hình chóp ra làm hai phần, một phần là hình chóp SADMN có

thể tích 1V và phần còn lại có thể tích 2V . Xác định giá trị của x để 1

2

5

4

V

V=

ĐS: ( ) 2 21 2 22 2 2 ;

4 3ADNM

aS a x x a x a x= + − + =

Bài 52: Cho lăng trụ tứ giác đều ' ' ' 'ABCDA B C D có chiều cao bằng a . Mặt phẳng ( ' )A BD hợp với mặt bên ( ' ')ABB A một góc 600. Tính thể tích khối lăng trụ đã cho.

ĐS: 32V a=

Bài 53: Cho lăng trụ đứng ' ' 'ABCA B C có đáy ABC là tam giác vuông tại A . Khoảng cách từ 'AA đến mặt bên ' 'BCC B bằng khoảng cách từ C đến mặt phẳng ( ')ABC và bằng a . Mặt

phẳng ( ')ABC hợp với đáy một góc 300. Tính thể tích khối lăng trụ đó.

ĐS: 34

3

aV =

Page 53: Chuyen de hinh_hoc_khong_gian

53

Bài 54: Cho hình lăng trụ ' ' 'ABCA B C có đáy ABC là tam giác vuông cân tại đỉnh A . Mặt bên ( ' ')ABB A là hình thoi cạnh a nằm trong mặt phẳng vuông góc với đáy. Mặt bên ( ' ')ACC A tạo với đáy một góc .α Tính thể tích của khối lăng trụ theo a và α

ĐS: 3

sin2

aV α=

Bài 55: Cho lăng trụ ' ' 'ABCA B C có đáy ABC là tam giác đều nội tiếp đường tròn tâm O . Hình chiếu của 'A trên mặt phẳng ( )ABC là O . Khoảng cách giữa 'AA và BC là a và góc giữa hai mặt phẳng ( ' ')ABB A và ( ' ')ACC A bằng α . Tính thể tích khối lăng trụ ' ' 'ABCA B C

ĐS:

3 3

2

2 tan2

3tan 12

aV

α

α=

Bài 56: Cho hình lăng trụ ' ' 'ABCA B C có đáy ABC là tam giác vuông tại A với , 2AB a BC a= = . Mặt bên ( ' ')ABB A là hình thoi, mặt bên ( ' ')BCC B nằm trong mặt phẳng

vuông góc với đáy, hai mặt phẳng này hợp với nhau một gócα . Tính thể tích khối lăng trụ đã cho.

ĐS: 33

cot2

aV α=

Bài 57: Cho hình hộp đứng ' ' ' 'ABCDA B C D có đáy ABCD là hình thoi tâm O , cạnh bằng

2a , đường chéo AC bằng 7a biết tam giác 'AO C là tam giác vuông tại 'O ( 'O là tâm hình thoi ' ' ' 'A B C D ).Tính thể tích của khối hộp

ĐS: 37

4V a=

Bài 58: Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng a tâm O . Gọi ,M N lần lượt là

trung điểm của ,SA SC . Biết góc tạo bởi đường thẳng BM và ND là 060 . Tính thể tích khối chóp SABCD

ĐS: 330

6

aV = hoặc

330

18

aV =

Bài 59: Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại ,A B có ; 2AB BC a AD a= = = , SAC là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy,

SB tạo với ( )SAC góc 600. Gọi O là giao điểm AC và BD . Giả sử mặt phẳng ( )P qua O song song với SC cắt SA ở M . Tính thể tích khối chóp MBCD và khoảng cách từ điểm M đến mặt phẳng ( )SCD .

ĐS: 36

54MBCD

aV = , /( )

2

6M SCDa

d =

Page 54: Chuyen de hinh_hoc_khong_gian

54

Bài 60: Cho hình hộp chữ nhật ' ' ' 'ABCDA B C D có cạnh 'AA a= . Đường thẳng 'B C tạo với đường thẳng AD một góc 060 , đường chéo 'B D tạo với mặt bên ( ' ')BCC B một góc 030 . Tính thể tích khối chóp ' 'ACB D và cosin góc tạo bởi AC và 'B D

ĐS: 3

' '

3

27ACB D

aV = , ( ) 1

cos , '4 7

AC B D =

Bài 61: Cho hình chóp SABCD có đáy ABCD là hình thoi cạnh bằng a góc � 060BAD = . Đỉnh

S cách đều các điểm , ,A B D . Biết khoảng cách từ A đến mặt phẳng ( )SCD bằng 2

a. Tính thể

tích khối chóp SABCD và xác định tâm bán kính mặt cầu ngoại tiếp khối chóp SOAB

ĐS: 32

12SABCD

aV = ,

7

8

aR =

Bài 62: Cho hình hộp đứng ' ' ' 'ABCDA B C D có đáy ABCD là hình thoi cạnh bằng a , góc � 060ABC = .Góc giữa mặt phẳng ( ' )A BD và ( )ABCD bằng 600.Tính thể tích khối chóp

' 'C A AD và khoảng cách giữa hai đường thẳng 'CD và 'A D theo a

ĐS: 3

8

aV = ,

3

4

ad =

Bài 63: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh bằng 2a , SAB là tam giác vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Biết SD tạo với ( )SBC một góc α sao

cho 2

cos5

α = . Gọi M là trung điểm của AB , mặt phẳng ( )P qua M vuông góc với

( )SAD cắt , ,SA SD CD lần lượt ở , ,N E F . Tính thể tích khối chóp SMNEF và xác định tâm , tính bán kính mặt cầu ngoại tiếp khối chóp SAMC theo a .

ĐS: 33

8SMNEF

aV = ,

93

6

aR =

Bài 64: Cho hình chóp .S ABCD có đáy ABCD là hình vuông cạnh a . Gọi ,M N lần lượt là trung điểm của ,AD CD . Hình chiếu của S trên ABCD trùng với giao điểm của AN và BM . Tính thể tích chóp SBCNM cùng khoảng cách giữa 2 đường thẳng BM và SC biết đường cao

2SH a= .

ĐS: 35 2

24SBMNCa

V = ,

Bài 65: Cho khối chóp SABC có đáy là tam giác vuông cân tại B , đường cao SE với E là trung điểm cạnh BC và 2SE CE a= = . Gọi ,M N là trung điểm của ,SE CE . Trên tia đối của

tia BA lấy điểm D sao cho �ACD α= và ( )0 045 90α< ≤ . Gọi H là hình chiếu của S lên CD

a) Tính thể tích tứ diện EHMN theo a và α

Page 55: Chuyen de hinh_hoc_khong_gian

55

b) Tính thể tích khối cầu ngoại tiếp tứ diện SACD theo a khi thể tích tứ diện EHMN lớn nhất.

ĐS: 31. .cos 2

6V a α= − , 3 34 160 5

3 3V R aπ π= =

Bài 66: Cho lăng trụ đứng .ABC A B C′ ′ ′ có đáy ABC là một tam giác vuông tại �, 60 ,B BAC °= bán kính đường tròn nội tiếp tam giác ABC bằng a , khoảng cách giữa hai đường thẳng A B′ và

AC bằng ( )3 3

.4

a + Tính theo a thể tích khối lăng trụ ' ' 'ABCA B C

ĐS: Bài 67: Cho khối lăng trụ .ABC A B C′ ′ ′ có đáy ABC là tam giác vuông cân tại C cạnh huyền

bằng 2a . Mặt phẳng ( ' )A AB vuông góc với đáy ABC , ' 3AA a= , góc �'A AB là góc nhọn. Biết mặt bên ( ' )A AC tạo với đáy ABC một góc 600. Tính thể tích khối lăng trụ .ABC A B C′ ′ ′ theo a và tính khoảng cách từ 'B đến mặt phẳng ( ' )A AC

ĐS: 33 5

10LTV a= , ,( ' )

3

2B A AC

ad =

Bài 68: Cho hình chóp SABCD có ABCD là hình vuông cạnh bằng a , SA a= , Gọi ,M N lần lượt là các điểm thuộc đoạn thẳng ,AB AD sao cho ; 3AM MB DN AN= = ,biết MN vuông góc với SM , SMC∆ là tam giác cân tại S . Tính thể tích khối chóp SMNCD và khoảng cách giữa SA và CM

ĐS: 311 3

192SMCND

aV = ,

93

31

ad =

Bài 69: Cho lăng trụ đứng .ABC A B C′ ′ ′ có đáy ABC là một tam giác vuông tại , 3 ,A BC a AA a′= = và góc giữa A B′ với mặt phẳng trung trực đoạn BC bằng 30 .° Tính theo a

thể tích khối lăng trụ .ABC A B C′ ′ ′ và khoảng cách giữa hai đường thẳng , .A B AC′ ĐS: Bài 70: Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại ,A D biết

2

ABAD DC= = . Mặt bên SBC là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông

góc với đáy. Tính thể tích khối chóp SABCD và khoảng cách giữa hai đường thẳng ,BC SA theo a . ĐS:

Bài 71: Cho hình lăng trụ 1 1 1.ABC A B C có M là trung điểm cạnh AB, � 02 , 90BC a ACB= = và � 060 ,ABC = cạnh bên 1CC tạo với mặt phẳng )(ABC một góc ,450 hình chiếu vuông góc của 1C lên mặt phẳng )(ABC là trung điểm của CM. Tính thể tích khối lăng trụ đã cho và góc tạo bởi hai

mặt phẳng )(ABC và ).( 11AACC

ĐS: 32 3 .V a= , 1 1tan(( ); ( )) 2ABC ACC A =

Page 56: Chuyen de hinh_hoc_khong_gian

56

Bài 72: Cho hình chóp SABC có đáy ABC là tam giác vuông tại B và AB a= . Cạnh bên SA vuông góc với mặt phẳng ( )ABC . Góc hợp bởi SC và mặt phẳng ( ) 060SAB = ; M là trung

điểm của AC . Biết khoảng cách giữa SM và AB bằng 6

2

a, tính thể tích khối chóp SABC

theo a .

ĐS: 3V a= Bài 73: Cho hình chóp SABC có mặt bên SBC là tam giác cân với SB SC a= = và nằm trong

mặt phẳng vuông góc với đáy. Biết � � � 060ASB BSC CSA= = = . Tính thể tích khối chóp SABC

ĐS: 3 2

8

aV =

Bài 74: Cho lăng trụ đứng .ABC A B C′ ′ ′ có đáy ABC là tam giác cân đỉnh C ; đường thẳng 'BC tạo với mặt phẳng ( ' ')ABB A góc 060 và 'AB AA a= = . Gọi , ,M N P lần lượt là trung điểm

của ', ',BB CC BC và Q là một điểm trên cạnh AB sao cho 4

aBQ = . Chứng minh

Chứng minh rằng ( ) ( )MAC NPQ⊥ và tính thể tích khối lăng trụ theo a

ĐS: 3. 15

4

aV =

Bài 75: Cho lăng trụ tam giác đều .ABC A B C′ ′ ′ có cạnh đáy bằng a . Gọi , ,M N I lần lượt là

trung điểm của ',AA AB và BC . Biết góc tạo bởi ( ' )C AI và ( )ABC bằng 600. Tính thể tích

khối chóp 'NAC I và khoảng cách giữa hai đường thẳng , 'MN AC

ĐS: 3

' 32NAC I

aV = ,

3

8

ad =

Bài 76: Cho lăng trụ .ABC A B C′ ′ ′ có đáy ABC là tam giác vuông với cạnh huyền 2BC a= ; � 060ABC = . Mặt bên ( ' ')BCB C là hình thoi (� 0' 90B BC < )và vuông góc với đáy mặt bên ( ' ')ABB A tạo với đáy một góc 450 .Tính thể tích khối lăng trụ .ABC A B C′ ′ ′

ĐS: 337

7V a=

Bài 77: Cho lăng trụ đứng .ABC A B C′ ′ ′ có đáy ABC là tam giác vuông tại B có

, 2AB a BC a= = , ' 6BB a= . Mặt phẳng ( )P qua A vuông góc với 'A C cắt ', 'CC BB lần lượt tại ,M N . Tính thể tích khối chóp ABCMN

ĐS: 32 3

9V a=

Bài 78: Cho hình chóp SABCD có đáy ABCD là hình thoi tâm O cạnh 5a , 4AC a=

2 2SO a= và SO vuông góc với đáy. Gọi M là trung điểm của SC . Tính thể tích khối chóp SMBD và khoảng cách giữa hai đường thẳng SA và BM

Page 57: Chuyen de hinh_hoc_khong_gian

57

ĐS: 32 2

3

aV = ,

2 6

3d a=

Bài 79: Cho hình chóp SABCD có đáy ABCD là hình chữ nhật cạnh , 2AB a AD a= = , SA vuông góc với đáy ABCD . Gọi ,M N lần lượt là trung điểm của ,SA BC , E là giao điểm của

mặt phẳng ( )DMN với SB . Biết � 030DMN = . Tính thể tích khối chóp SDMEN theo a.

ĐS: 38

9

a

Bài 80) Cho hình chóp SABCD có đáy ABCD là hình chữ nhật tâm O biết ; 3AB a BC a= = , Tam giác SAO cân tại S , mặt bên SAD vuông góc với đáy ABCD . Biết SD hợp với đáy ABCD một góc 600. Tính thể tích khối chóp SABCD và khoảng cách giữa SB và AC

ĐS: 32 3

3SABCD

aV = ,

3

4

ad =

Bài 81: Cho hình lập phương ' ' ' 'ABCDA B C D có cạnh bằng a . Gọi H là tâm của mặt ' 'ADD A , K là hình chiếu của D lên 'BD . Tính thể tích tứ diện 'D DHK và khoảng cách từ

H đến mặt phẳng ( ' ' )D A B

ĐS: 3

36

aV = ,

2

ad =

Bài 82: Cho hình chóp SABC có ( )SC ABC⊥ và tam giác ABC vuông tại B . Biết rằng

( ), 3, 0AB a AC a a= = > và góc giữa mặt phẳng ( )SAB và ( )SAC bằng α với 13

tan6

α = .

Tính thể tích khối chóp SABC theo a ĐS: 32V a= Bài 83: Cho hình hộp đứng ' ' ' 'ABCDA B C D có đáy ABCD là hình thoi cạnh a , tam giác ABD là tam giác đều.Gọi ,M N là trung điểm của , ' 'BC C D . Biết MN vuông góc với 'B D hãy tính thể tích khối chóp DAMN và khoảng cách từ D đến mặt phẳng ( )AMN

ĐS: 36

24DAMNa

V = , 22

11d a=

Bài 84: Cho hình chóp tứ giác đều .S ABCD có cạnh đáy bằng a . Gọi ,M N lần lượt là trung điểm của ,SB SD . Tính thể tích khối cầu ngoại tiếp khối chóp .S ABCD biết AM vuông góc với CN

ĐS: 3 10

10

aR =

Bài 85: Cho hình chóp SABC mà mỗi mặt bên là một tam giácvuông, SA SB SC a= = = . Gọi , ,M N E lần lượt là trung điểm của các cạnh , , ,AB AC BC D là điểm đối xứng của S qua E ; I

Page 58: Chuyen de hinh_hoc_khong_gian

58

là giao điểm của đường thẳng AD với mặt phẳng ( )SMN . Chứng minh rằng AD vuông góc SI và tính theo a thể tích khối tứ diện MBSI

ĐS: 3

36

aV =

Bài 86: Cho hình chóp .S ABCD có đáy ABCD là hình bình hành, BC a= và � 0120ABC = . Mặt bên SAB là tam giác đều cạnh 2a và tạo với mặt đáy góc α . Biết hình chiếu vuông góc

của S trên mặt đáy nằm trong hình bình hành ABCD và 1

cos3

α = . Tính thể tích khối chóp

.S ABCD cùng khoảng cách giữa 2 đường thẳng SB và AD theo a

ĐS: 32 2

3

aV = ,

2 114

19d =

Bài 87: Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại C , cạnh huyền bằng 3a . Chân đường cao hạ từ đỉnh S lên mặt phẳng ABC là trọng tâm G của tam giác ABC cạnh bên

14

2

aSB = . Tính thể tích khối chóp SABC và khoảng cách từ B đến mặt phẳng ( )SAC

ĐS: 33

, 34

aV d a= =

Bài 88: Cho hình chóp SABC có mặt bên SBC là tam giác cân SB SC a= = và nằm trong mặt

phẳng vuông góc với đáy . Biết � � � 060ASB BSC CSA= = = . Tính thể tích khối chóp SABC

ĐS: 32

2

aV =

Bài 89: Cho lăng trụ đứng ' ' 'ABCA B C có � 0, 2 , 120AC a CB a ACB= = = và đường thẳng 'A C

tạo với mặt phẳng ( ' ')ABB A một góc 030 . Gọi M là trung điểm 'BB . Tính thể tích của khối lăng trụ đã cho và tính khoảng cách giữa AM và 'CC theo a

ĐS: 3105

14

aV =

21

7

ad =

Bài 90: Cho lăng trụ đứng ' ' ' 'ABCDA B C D có đáy ABCD là hình thoi cạnh bằng a và � 060 , ' 2BAD AC a= = . Gọi O là giao điểm của AC và BD , E là giao điểm của 'A O và 'AC . Tính thể tích khối tứ diện EABD và khoảng cách từ điểm A đến mặt phẳng ( )BDE

ĐS: 33 21

,36 7

a aV d= =

Bài 91: Cho lăng trụ đứng ' ' 'ABCA B C có đáy ABC là tam giác vuông tại B , � 060BAC = , bán

kính đường tròn nội tiếp tam giác ABC bằng ( )3 1

2

a− khoảng cách giữa hai đường thẳng

'A B và AC bằng 15

5

a. Tính thể tích khối lăng trụ ' ' 'ABCA B C

ĐS: 33

2V a=

Page 59: Chuyen de hinh_hoc_khong_gian

59

Bài 92: Cho lăng trụ đứng ' ' 'ABCA B C có đáy ABC là tam giác vuông cân tại A , 2BC a= . Gọi M là trung điểm của BC , biết hai mặt phẳng ( ' )AB M và ( ' ')BA C vuông góc với nhau. Tính thể tích khối lăng trụ ' ' 'ABCA B C và khoảng cách từ 'B đến mặt phẳng ( ' )AC M theo a .

ĐS: 32V a= , 2 6

3d a=

Bài 93: Cho lăng trụ đứng ' ' 'ABCA B C có đáy ABC là tam giác cân tại C , đường thẳng 'BC

tạo với mặt phẳng ( ' ')ABB A một góc 060 và 'AB AA a= = .Gọi , ,M N P lần lượt là trung điểm của ', ',BB CC BC . Tính thể tích khối lăng trụ ' ' 'ABCA B C và khoảng cách giữa hai đường thẳng

,AM NP theo a

ĐS: 3 15 15

,4 5

a aV d= =

Bài 94: Cho hình chóp SABC có đáy ABC là tam giác cân tại A với � � 030SAB SAC= =

2 , , 3AB AC a BC a SA a= = = = . Tính thể tích khối chóp SABC theo a

ĐS: 3

4

aV =

Bài 95: Cho hình chóp .S ABCD có đáy ABCD là hình thoi cạnh bằng 2a và � 060BAD = các tam giác ,SAC SBD cân tại S . Gọi ,M N lần lượt là trung điểm của ,AB BC . Biết hai mặt phẳng ( ), ( )SDM SDN vuông góc với nhau. Tính thể tích khối chóp SABCD và khoảng cách từ điểm D đến mặt phẳng ( )SMN theo a .

ĐS: 36

3

aV = ,

6

2

ad =

Bài 96: Cho hình chóp .S ABCD có đáy ABCD là hình thang cân có hai đáy là ,AB CD . Biết

3 , 7,AB a AC a CD a= = = . Các mặt bên ( ), ( ), ( )SAB SBC SAD cùng tạo với đáy một góc 060 . Hình chiếu của S lên mặt phẳng ( )ABCD nằm trong hình thang ABCD . Tính thể tích khối chóp SABCD theo a

ĐS: 33V a=