60
Universidade Federal do Pará Instituto de Estudos Costeiros Faculdade de Engenharia de Pesca EDUARDO DE FREITAS PEREIRA AVALIAÇÃO FÍSICO-QUÍMICO E SENSORIAL DO MEXILHÃO Mytella falcata, CONSERVADO EM GELO BRAGANÇA 2014

Avaliação físico químico e sensorial do mexilhão mytella falcata, conservado em gelo

Embed Size (px)

Citation preview

Universidade Federal do Pará

Instituto de Estudos Costeiros

Faculdade de Engenharia de Pesca

EDUARDO DE FREITAS PEREIRA

AVALIAÇÃO FÍSICO-QUÍMICO E SENSORIAL DO

MEXILHÃO Mytella falcata, CONSERVADO EM GELO

BRAGANÇA

2014

Universidade Federal do Pará

Instituto de Estudos Costeiros

Faculdade de Engenharia de Pesca

EDUARDO DE FREITAS PEREIRA

AVALIAÇÃO FÍSICO-QUÍMICO E SENSORIAL DO

MEXILHÃO Mytella falcata, CONSERVADO EM GELO

BRAGANÇA

2014

Trabalho de Conclusão de Curso apresentado a Faculdade

de Engenharia de Pesca da Universidade Federal do Pará,

Instituto de Estudos Costeiros, como requisito parcial

para obtenção do Grau de Bacharel em Engenharia de

Pesca.

Orientador: Prof. Dr. Carlos Alberto Martins Cordeiro

UFPA – Campus de Bragança

EDUARDO DE FREITAS PEREIRA

AVALIAÇÃO FÍSICO-QUÍMICO E SENSORIAL DO

MEXILHÃO Mytella falcata, CONSERVADO EM GELO

Trabalho julgado para a obtenção do grau de Engenheiro de Pesca do Curso de

Engenharia de Pesca da Universidade Federal do Pará, Campus de Bragança.

DATA DE AVALIAÇÃO: 12/12/2014 às 08h:00min

CONCEITO:

BANCA EXAMINADORA

______________________________________

Prof. Dr. Carlos Alberto Cordeiro Martins

FEPESCA/IECOS/UFPA – Orientador

______________________________________

Prof. Dr. Marcos Ferreira Brabo

FEPESCA/IECOS/UFPA

______________________________________

Jorge Roberto de Queiroz

Biólogo / Especialista em Piscicultura

BRAGANÇA

2014

i

EPÍGRAFE

“Deus seja louvado”

ii

DEDICATÓRIA

Aos meus pais Manoel

Pereira e Izaura Freitas, a minha filha Eduarda

e a toda a minha família que, com muito

carinho e apoio, não mediram esforços para

que eu chegasse até esta etapa de minha vida

AGRADECIMENTOS

Agradeço primeiramente a Deus que permitiu que tudo isso acontecesse ao longo da

minha vida, e não somete nesses anos como universitário, mas que em todos os momentos é o

maior mestre que alguém pode conhecer.

A Universidade Federal do Pará, a todo corpo docente, direção e administração que

oportunizara a janela que hoje vislumbro em um novo horizonte superior, eivado pela acendrada

confiança no mérito e ética aqui presentes.

Ao meu orientador Carlos Alberto Cordeiro Martins, pelo suporte no pouco tempo que

lhe coube, pelas suas correções e incentivos.

Agradeço a todos os professores por me proporcionarem o conhecimento não apenas

racional, mas a manifestação do caráter e efetividade da educação no processo de formação

profissional, por tanto que se dedicaram a mim, não somente por terem me ensinado, mas por

terem me feito aprender. A palavra mestre, nunca fara justiça aos professores dedicados aos

quais sem nominar terão meus eternos agradecimentos.

Aos meus pais, pelo amor, incentivo e apoio incondicional, agradeço a minha mãe,

amiga e heroína Izaura Valentins de Freitas, que sempre me deu apoio e incentivo nas horas

difíceis de desanimo e cansaço.

Ao meu pai Manoel Francisco Pereira, grande guerreiro, que apesar das dificuldades

sempre esteve ao meu lado me fortalecendo, apoiando em todos os momentos, sendo muito

importante.

Obrigado aos meus irmãos Raul, Lidiane e Gisele Freitas, que sempre estiveram ao

meu lado, apoiando e sempre dando forças.

A minha namorada Jô Muniz, que nos momentos de minha ausência dedicados ao

estudo superior, sempre esteve ao meu lado, fazendo entender que o futuro é feito a partir da

constante dedicação no presente.

Meus agradecimentos aos meus amigos John Lennon, Gerson Leandro, Higo Abe, Joel

Arthur, Ananda Ramos, João Paulo, Daniele, Arthur, Luciene, Hayan, Aline, companheiros de

trabalho e irmãos na amizade que fizeram parte na minha formação e que vão continuar presente

em minha vida com certeza.

Agradeço a todos que direto ou indiretamente fizeram parte da minha formação, meu

muito obrigado.

SUMÁRIO

CAPÍTULO I Página

1INTRODUÇÃO GERAL........................................................................................................1

2. OBJETIVOS .........................................................................................................................3

2.1. Objetivo Geral .....................................................................................................................3

2.2. Objetivos Específicos...........................................................................................................3

3. REVISÃO DE LITERATURA ...........................................................................................4

3.1. A espécie Mytella falcata ....................................................................................................4

3.2. O mexilhão como alimento .................................................................................................5

3.3. Deterioração do pescado .....................................................................................................6

3.4. Qualidade físico-química de pescados in natura ................................................................7

3.5. Frescor em moluscos ...........................................................................................................7

3.6. Beneficiamento e cocção do mexilhão.................................................................................9

3.7. Resfriamento .....................................................................................................................10

3.8. Métodos de avaliação da qualidade do pescado ................................................................11

3.8.1. Métodos físico-químicos ................................................................................................11

3.8.2. Métodos sensoriais .........................................................................................................12

3.8.3. Método do Índice de Qualidade .....................................................................................13

Referências Bibliográficas .....................................................................................................15

CAPITULO I I

Avaliação físico-químico e sensorial do mexilhão mytella falcata, conservado em gelo

Resumo .....................................................................................................................................24

Abstract ....................................................................................................................................24

1. Introdução ............................................................................................................................25

2. Material e Métodos ..............................................................................................................26

3. Resultados e Discusão ..........................................................................................................28

3.1 Composição centesimal ..................................................................................................28

3.2 Análise Físico-química ..................................................................................................32

3.3 Análise sensorial ............................................................................................................43

4. Conclusão .............................................................................................................................45

5. Referências Bibliográficas ...................................................................................................46

CAPITULO III

CONCLUSÃO .........................................................................................................................54

ANEXO:

Normas para submissão de artigo a revista Caatinga................................................................55

CAPÍTULO I

1

INTRODUÇÃO GERAL

A produção mundial de pescado vem apresentando constantes crescimentos nos últimos

anos, em 2011 foi registrada uma produção de 154,0 milhões de toneladas de pescado. Desse

total os moluscos contribuíram com 14,2 milhões de toneladas (FAO, 2012). Neste mesmo

período o Brasil contribuiu com 1.431.974,4 toneladas de pescado, sendo 13.989,4 t providos

da produção de moluscos (FAO, 2012; BRASIL, 2013).

O consumo de moluscos bivalves no Brasil baseia-se principalmente nas espécies de

cultivo de mexilhão Perna-perna e das ostras Crassostrea gigas e C. rhizophorae

(BORGHETTI e OSTRENSKY, 2000).

Entretanto, a comercialização e o consumo de espécies nativas oriundas da extração no

ambiente natural tem demostrado um aumento, como é o caso do Mytella falcata que somente

em 2011, apresentou uma produção de 2.133,3 t, representando aumento de 0,8 % em relação

ao ano anterior (MPA, 2012), sendo esta a espécie mais explorada na costa brasileira,

principalmente por populações ribeirinhas (MELLO e TENÓRIO PEREIRA-BARROS, 1987).

A Mytella falcata (Orbigny, 1846) é uma espécie pertencente à família Mytilidae é

conhecido popularmente como sururu, mexilhão do estuário ou bacucu (PEREIRA e GRAÇA

LOPES, 1995).

Sua distribuição ocorre desde o Atlântico até o pacífico (PARANAGUÁ, 1972), no Brasil

distribui-se por toda região costeira (KLAPPENBACH, 1965), desde a zona infralitoral até a

zona entre marés (PEREIRA e GRAÇA LOPES, 1995).

O consumo de moluscos bivalves tem sido utilizado como fonte para alimentação humana

a centenas de anos tem grande importância econômica, e é fonte de alimento em muitos países

em desenvolvimento.

No Brasil, o consumo desses moluscos em especial a M. falcata tem sido utilizado na

alimentação humana desde tempos antigos por populações que habitam a beira de manguezal

(MELLO JUNIOR, 1997). Sendo amplamente consumidos e comercializados por pescadores e

ribeirinhos, que se utilizam da extração da espécie como fonte alternativa de renda familiar ou

para sua própria subsistência (PEREIRA-BARROS, 1987; PEREIRA e GRAÇA

LOPES,1995).

O mexilhão apresenta qualidades nutritivas e valor biológico superior aos demais

moluscos, devido ao seu elevado índice de retenção de nitrogênio, bem como sua contribuição

como fonte de proteínas, ácido graxos polissaturados e vitaminas (LARRALDE et al.,1965;

LIRA et al., 2004).

2

Apesar dos inúmeros benefícios que o sururu proporciona para o consumo, sua

comercialização é realizada na sua maioria em mercados de peixes e feiras livres e, quase na

sua totalidade, realizada na forma in natura, ou seja, ainda vivos ou já limpos e minimamente

processados, o qual passa por um processo de cocção, permitindo a retirada das conchas e

proporcionando uma ligeira pasteurização da carne, sendo posteriormente embalados e

estocados em gelo.

Para Oetterer (1999), o pescado refrigerado pode ser definido como um produto

minimamente processado, onde seu tempo de vida útil possa atingir um período aproximado de

12 dias sob refrigeração, de tal modo que não ofereça riscos de ordem higiênica, desde que

embalado convenientemente. Segundo Vitali, (1997), os produtos minimamente processados

são aqueles que foram expostos às mínimas condições adversas possíveis, e que apresentam

aparência mais próxima aos naturais, ou seja, que foram submetidos a processos tecnológicos

os quais minimizem os efeitos indesejáveis das alterações físico-químicas ou nutricionais dos

alimentos e garantam sua segurança.

O pescado é um alimento altamente perecível que após sua captura e abate passa por uma

série de mudanças fisiológicas, até completar sua deterioração. A perda de qualidade pode ser

causada por uma série de alterações bioquímicas e microbiológicas que ocorrem nos tecidos

dos pescados após sua captura, e que causam sua perda de qualidade e estão sujeito

principalmente aos fatores que afetam a concentração dos substratos e metabólitos nos tecidos

dos animais vivos, atividades das enzimas endógenas, contaminação na captura e contaminação

microbiológica (FATIMA e QADRI, 1985; SIKORSKI et. al., 1994).

As alterações primárias nos pescados podem ser devidas ao metabolismo e ao crescimento

bacteriano resultando em presumíveis alterações no pH e constituição de compostos tóxicos,

gás, muco e odor desagradável, oxidação dos lipídeos e de pigmentos o que resultam em aroma

e sabor desagradáveis, e formação de compostos com efeitos biológicos adversos ou

descoloração (HUIS IN’T VELD, 1996).

Para Botta (1994), as condições de cultivos, o local, a época do ano em que ocorre a

coleta, os métodos utilizados de coleta e a forma de manipulação no processo pós-captura são

fatores que agem diretamente sobre a qualidade do produto.

Todavia um método ideal e objetivo para mensurar a qualidade em pescado fresco ou

congelado, deveria correlacionar a qualidade com o tempo e temperatura de estocagem pós-

captura, fornecendo então uma base para estimar sua vida útil. Entretanto, a avaliação da

qualidade e vida útil do pescado é baseada em testes químicos, físicos, microbiológicos e

sensoriais (SPINELLI et al, 1964; LEITÃO e RIOS, 2000).

3

As condições de qualidade do pescado bem como seus derivados são fundamentadas em

análises de compostos como bases nitrogenadas voláteis totais (BNVT) que são constituídas

pelo amoníaco, trimetilamina, dimetilamina e metilamina, O método para determinação das

BNVT é relativamente simples, consequentemente, é utilizado largamente para avaliar,

quimicamente, o frescor em um alimento marinho (AMANAJÁS, 1985; BOTTA, 1994).

Quando comparados a diferentes tipos de pescado, os moluscos apresentam teor

relativamente elevado de carboidratos em sua carne, de modo que, este elevado teor, certamente

faz com que seu processo deteriorativo seja diferenciado dos demais produtos pesqueiros, o que

evidencia a necessidade de mais estudos para estes organismos. A determinação da qualidade

do pescado precisa ser criteriosa, levando-se em consideração a diversidade de espécies de

pescado e sua fase de deterioração, pois, é diferente quando se compara por espécies, indivíduos

da própria espécie e até mesmo partes de um mesmo individuo (OGAWA e MAIA, 1999).

Obter um produto de alta qualidade é muito importante para o mercado, neste contexto,

o presente trabalho visa avaliar o estado de frescor e a vida útil do sururu M. falcata “in natura”

e minimamente processado armazenados em gelo, tendo em vista à segurança do consumidor e

garantindo um produto de qualidade.

2. OBJETIVOS

2.1 Objetivo geral

Avaliar a qualidade físico-química e sensorial do mexilhão (Mytella falcata),

acondicionado em embalagens de polietileno sob duas condições “in natura” e minimamente

processado, estocado em gelo.

2.2 Objetivos específicos

2.2.1- Estabelecer o tempo máximo para o consumo do sururu M. falcata através de análise

físico-químico e sensorial;

2.2.2- Acompanhar a evolução do pH, acidez titulável, e a produção de bases nitrogenadas

voláteis totais (BNVT), durante os períodos de estocagem de 0, 2, 4, 6, 8 e 10 dias;

2.2.3- Desenvolver um protocolo de caracterização sensorial (Método de Índice de Qualidade)

que permita a avaliação rápida e eficiente do sururu (Mytella falcata), determinando o seu grau

de frescor e o seu prazo de vida comercial.

4

3. REVISÃO DE LITERATURA

3.1 A espécie Mytella falcata

Na literatura a terminologia pescados é utilizada para designar peixes, crustáceos, algas,

anfíbios, répteis, mamíferos e moluscos comestíveis, sendo estes providos de água doce ou

salgada. Contudo, para o respectivo trabalho será utilizado o termo Pescado para designar o

tipo de alimento em que o mexilhão encontra-se classificado.

O mexilhão Mytella falcata, conhecido popularmente como sururu (Figura 1.1), é um

molusco bivalve, comestível, de grande importância econômica, visto que se trata de um

organismo marinho amplamente utilizado na alimentação humana. Sendo frequentemente

encontrado em toda a região da costa brasileira (MELLO e TENÓRIO, PEREIRA-

BARROS,1987).

Sua parte comestível, fica localizada no interior de suas conchas, apresenta coloração de

amarelo a marrom, com tamanho aproximado de um centímetro e textura rígida, Figura 2.2.

FIGURA 1. Exemplar de Mytella falcata (1) e. Sururu M. falcata d’Orbiginy, com as conchas (2).

Fonte: Pereira, 2014

Possuem simetria bilateral, onde são divididos em quatro regiões: cabeça, pé, saco

visceral e manto. Os moluscos da classe Bivalvia vivem unicamente na água; sua concha é

formada por duas valvas unidas dorsalmente por um ligamento; geralmente possuem sexos

separados, e muito raramente apresentam hermafroditismo e sua fecundação ocorre livremente

na água (LUNETTA, 1969). Possuem ainda uma estrutura chamada de bisso a qual possibilita

sua fixação no ambiente. Boffi (1979) relatou que M. falcata pode obter um crescimento de

aproximadamente 50 mm. Atualmente existem classificadas em todo o mundo mais de 20.000

espécies de moluscos bivalves (GOTTING, 1974; LINDNER, 1989).

A M. falcata pode ser encontrada desde o México ao equador na Costa do Pacifico, e na

Costa Atlântica, da Venezuela à Argentina (SOOT- RYEN, 1965), no Brasil a espécie encontra-

2 1

5

se distribuída por toda região costeira (KLAPPENBACH, 1965), desde a zona infralitoral até a

zona entre marés (PEREIRA e GRAÇA LOPES, 1995), Figura 3.

FIGURA 3. Distribuição da população da espécie Mytella Falcata.

3.2 O mexilhão como alimento

O mexilhão Mytella falcata como alimento apresenta variações pronunciadas na

composição comestível de sua carne, isto se dá em decorrência da variação sazonal, sendo

evidenciado maior rendimento na época de desova, dado em função da presença das gônadas.

Tal composição varia entre 70 a 85% de umidade, 20 a 25% de proteínas, 1 a 10% de lipídeos,

0,1 a 1,0% de carboidratos e 1 a 1,5% de cinzas. Entretanto, essas composições variam de

espécie para espécie. Os mariscos assim como as ostras estão inclusos no grupo que apresentam

baixos teores de proteínas e de lipídeos, com valores abaixo de 15% para proteínas e 5% para

lipídeos, e são caracterizados por apresentarem altas quantidades de glicogênio (BEIRÃO,

2000). Para Furtado et al., (1998) o marisco apresenta teor proteico de 56,44%, lipídeos 2,9%

e carboidratos 8,45% em relação ao peso seco.

Quanto ao valor energético sua carne apresenta 76 Kcal/100g, valor superior ao da ostra

com 44 Kcal/100 (FURTADO et al., 1998). Entre outros compostos o sururu é rico em minerais

como zinco (70,5 mg) e cálcio (53,7 mg), quantidade superior aos encontrados na espécie A.

brasiliana que foram de 68,8 mg e 49,5 mg, para zinco e cálcio respectivamente. Isso evidencia

6

sua importante colaboração entre os bivalves como fonte de nutrientes na alimentação de

populações litorâneas (FURTADO, et al., 1998).

Entretanto, o sururu ainda é considerado uma iguaria, estando fora do cardápio diário da

população. Sua aceitação ainda restringe-se a um grupo extremamente pequeno de

consumidores. É um produto alimentício, que exige elevado cuidado no manuseio e

conservação. No entanto, o produtor bem como os demais segmentos do mercado ainda são

ineficientes em termos de organização e infraestrutura apropriada que possam garantir um

produto com total segurança e aceitabilidade, mantendo a procura pelo consumidos (ROSA et

al., 1994).

3.3 Deterioração do pescado

O pescado é considerado dentre todos os produtos de origem animal, o mais susceptível

ao processo de deterioração. Por se tratar de alimentos perecíveis, os pescados devem ser

cuidadosamente armazenados de modo a preservar suas qualidades e promover o aumento de

sua vida útil. A redução do frescor nos pescados está associada a vários fatores intrínsecos e

extrínsecos como espécie, composição, formas de captura, abate e processamento.

Os fatores intrínsecos são os que apresentam maior relevância, pois a elevada atividade

de água e nutrientes nos tecidos podem facilmente ser utilizados pelos microrganismos,

acelerando a ação destrutivas das enzimas naturais presentes nos tecidos, elevada taxa de

atividade metabólica da microbiota, pH próximo da neutralidade, e quantidade elevada de

lipídeos insaturados (SOARES, 1998).

Assim como qualquer outro animal, ao morrer, os pescados passam por profundas

alterações químicas, físicas e microbiológicas, que os conduzem à sua completa deterioração

(KAI e MORAIS, 1988). Uma das principais alterações que ocorre em um animal após sua

morte é a instalação do “rigor mortis”. Contreas-Gusmán (1994) define o estado de rigor mortis

como sendo a perda de plasticidade e extensibilidade dos músculos obtido como resultado da

alteração dos ciclos de contração e relaxamento.

Devido a algumas formas de pescarias, determinadas espécies ao serem capturadas

sofrem grande desgaste o que pode levar ao esgotamento completo da reserva de glicogênio do

seu organismo, levando a um pleno rigor mortis curto sem a característica diminuição de pH.

Deste modo, instala-se rigor mortis alcalino, que para os pescados afetam sua textura bem como

torna sua vida de prateleira curta.

7

3.4 Qualidade físico-química de pescados in natura.

O pescado in natura é aquele em que apenas passou por processo de resfriamento tendo

este como método de conservação de tal modo que possa manter suas características primarias

e sensoriais inalteradas. Nenhum método instrumental, aplicado de forma isoladamente é capaz

de determinar o estado de deterioração do pescado. Dessa forma, para determinar tal estado,

são utilizados métodos físicos, químicos e microbiológicos, visando a esse propósito. A

produção de metabolitos bem como o crescimento de bactérias deteriorantes especifica são

intimamente relacionada e responsável pelo aroma desagradável, levando a rejeição sensorial

do pescado deteriorado. Contudo, a analise microbiológica é bastante requerida pelas normas

que tratam da qualidade do pescado, devido à atividade microbiana ser normalmente

responsável pelo processo deteriorativo do pescado in natura (DALGARRD, 2000). Entretanto,

o emprego de determinações físico-químicas como pH e bases nitrogenadas voláteis, são

capazes de avaliar a qualidade do pescado fresco (IAL, 2008).

A decomposição seja ela por oxidação, fermentação ou hidrólise, altera quase sempre o

pH, sendo este um dado indicativo do grau de conservação do pescado (IAL, 2008). A

determinação do pH como meio de avaliação no avanço da deterioração de moluscos, tem sido

mais significativa quanto a determinação de bases voláteis totais, devido ao teor de carboidratos

normalmente apresentado por essas espécies (JAY, 2005).

A ação de enzimas e bactérias no processo de deterioração do pescado resulta na produção

de diversos compostos nitrogenados, como a trimetilamina, dimetilamina e amônia. Deste

modo a porcentagem de bases voláteis totais torna-se um indicador do estado de conservação

do pescado (IAL, 2008).

Em estudo avaliando a estabilidade físico-química de mexilhões por meio da utilização

de pH e bases voláteis totais, observou-se que os parâmetros foram aceitáveis até o quarto dia

de estocagem estando refrigerado a 10ºC (FURLAN, 2007).

3.5 Frescor em moluscos

O estágio de excelência de um alimento marinho fresco é caracterizado pelo seu grau de

salubridade e aceitabilidade sensorial como aparência, textura, odor e flavor, os quais estão

normalmente associados ao alimento (BOTTA, 1994).

Para Sikorski e Sun Pan (1994), o estado de salubridade e avaliada pela composição

química do alimento bem como pela presença de compostos de origem ambiental ou endógena

passíveis a alterações fisiológicas. Os aldeídos assim como os álcoois insaturados, contribuem

8

significativamente para o frescor e flavor característico de moluscos in natura. Este quando

fresco apresenta odor pouco intenso e flavor idêntico ao de algas marinhas (BOTTA, 1994).

Para Beirão et al.(2000) e BRASIL (1980), a ação dos moluscos em fechar as valvas

quando estão submetidos ao contato com ar, bem como a presença de elasticidade da carne e as

cores intensas são sinais peculiares do estado de frescor. Os fosfatos orgânicos e carboidratos

presentes na carne do pescado recém-capturados, quando submetidos a condições anóxica,

permanecem sendo metabolizados, dado a ação de enzimas tissulares, que subsequentemente

são desdobradas pelas bactérias. As concentrações de açúcares e glucofosfatos quando sofrem

alterações na estrutura muscular, colaboram para perda gradual das propriedades organolépticas

do pescado fresco como sabor e odor característico (SIKORSKI et al, 1994).

O pescado possui o tempo de vida útil muito limitada sendo bastante variável. As

condições como o local de cultivo, o período de coleta durante o ano e a forma como ocorre à

coleta e sua manipulação pós-captura, são fatores que atuam diretamente sobre o estado de

qualidade do pescado (BOTTA, 1994). Correlacionar a qualidade do pescado com o tempo e

temperatura de estocagem pós-captura, torna-se um método objetivo e ideal para aferir a

qualidade do pescado fresco ou congelado, fornecendo uma base para estimar sua vida útil

(SPINELLI et al., 1964).

Os padrões de qualidade do pescado e seus derivados estão baseados em análises de

compostos como bases nitrogenadas voláteis totais (BNVT) e trimetilamina (TMA), para o

Ministério da Agricultura, Pecuária e Abastecimento, órgão que regulamenta o RIISPOA

(Regulamento de Inspeção Industrial e Sanitária de Produtos de Origem Animal), os níveis

aceitáveis para BNVT devem ser inferiores a 0,03 g de nitrogênio para cada 100 g de carne para

atestar frescor ao produto; e níveis de pH aceitáveis inferiores a 6,8 para a parte externa e 6,5

na parte interna da carne. Determinam também o frescor, a reação negativa para gás sulfídrico

e indol, com exceção de alguns crustáceos onde o limite é de no máximo 4 mg N/100g de carne

(BRASIL, 1980).

Nos pescados marinhos, as BNVT incluem primariamente a TMA, dimetilamina (DMA)

e a amônia, cada um desses compostos, estabelecem um indicador útil para avaliar o estado de

deterioração em diferentes alimentos marinhos frescos ou semiconservas (EU Commission,

2004).

Para Amanajás (1985) e Botta (1994) a determinação das BNVT é considerado um

método relativamente simples empregado para aferir quimicamente o frescor de um alimento

de origem marinha, tornando-se um método largamente utilizado com vista para este propósito.

Contudo, a determinação química do nível de TMA está entre os métodos mais investigados

9

para mensurar a qualidade dos alimentos marinhos, sendo este considerado um método

promissor para detecção do grau de deterioração do pescado (EIROA, 1980). Esta mensuração

tem sido apostada como um índice de frescor empregado para muitas espécies marinhas

(HEBARD et al., 1982).

Os lipídeos é outro fator qualitativo do pescado visto que possuem elevada quantidade de

ácido graxos insaturados, com isso tornam-se altamente susceptíveis a oxidação, sendo

acelerada pela presença de luz, calor, irradiação e metais pesados, entretanto podem ser

retardados adicionando-se antioxidantes os quais agem rompendo a cadeia de radicais livres ou

decompondo os peróxidos (BEIRÃO et al., 2000).

Os moluscos quando comparados a outros tipos de pescado, apresentam em sua carne um

teor relativamente elevado de carboidratos, isso faz com que seu processo deteriorativo torne-

se diferenciado dentre os outros produtos pesqueiros, o que nos leva a uma necessidade de

maiores estudos sobre a espécie, contudo, a avaliação do estado de frescor do pescado deve ser

prudente, levando em consideração a variabilidade de pescados, pois o processo de deterioração

torna-se diferenciada entre espécies (OGAWA e MAIA, 1999).

3.6 Beneficiamento e cocção do mexilhão

Os moluscos quando comercializados in natura possuem limitadas formas de

armazenagem e estocagem, pois suas valvas ocupam muito espaço o que dificulta seu

armazenamento, entretanto, quando há o beneficiamento, apenas uma pequena parcela da

matéria-prima é aproveitada. Isso leva a uma tendência a qual visa promover o desenvolvimento

da capacidade de armazenamento e estocagem destes produtos, adequando-os a novos

processos de beneficiamento, de forma a garantir a qualidade dentre as exigências do mercado

(BEIRÃO et al., 2000).

O processo inicial do beneficiamento do mexilhão é dado a partir da cocção que permite

a retirada das conchas proporcionando uma ligeira pasteurização da carne. Depois de submetido

à lavagem o mexilhão é cozido por 6 minutos, em agua em ebulição ou vapor a 100°C, ou

durante 4 minutos, submetido a vapor de 115°C. Após o processo de cocção e descasque, a

carne retirada pode ser resfriada e empacotada para ser comercializada ou destinada a indústria

(ESPINOLA e DIAS, 1980).

Para melhorar a conservação dos alimentos recomenda-se que este passe por um

tratamento térmico, uma vez que este processo inativa o crescimento de bactérias, parasitas e

vírus patogênicos. Durante a cocção os moluscos são submetidos ao calor úmido por

10

determinado tempo o qual pode variar conforme o tamanho do marisco, as condições de

aquecimento e a velocidade de infiltração do calor (WOOD, 1979).

Para Silva Junior (1995) as condições mais críticas de contaminação são consideradas

desde a recepção do molusco até o seu consumo, deste modo a temperatura ideal de cocção no

interior dos alimentos deve ser de 65º por 10 min ou 74ºC por 10 min.

Antoniolli (1999) em seu estudo sobre a vida útil do mexilhão Perna perna processados

e mantidos sob refrigeração, encontrou resultados satisfatórios na eliminação de micro-

organismos, utilizando diferentes tempos de cocção, de 15 a 30 min, com temperatura variando

de 80 a 96ºC, entretanto, o tratamento térmico de 30 min, a uma temperatura final de 96º obteve

melhores resultados sensoriais, e maior facilidade no processo de desconchamento dos

mexilhões.

Salan (2005) em seu estudo avaliando diferentes tempos de tratamento térmico para o

mexilhão Perna perna, aferindo a crescimento de Staphylococcus aureus e Bacillus cereus de

forma a assegurar a qualidade do mexilhão, constatou que tanto o tratamento térmico sob vapor

ou por imersão na agua nos tempos de (5, 10 e 15 min), são eficientes para eliminar micro-

organismos diminuindo na ordem 2 ciclos logarítmicos, contudo, ressalta que o tratamento

térmico, binômio tempo-temperatura, sob imersão na água em ebulição sob o tempo de 10 min,

é suficiente para reduzir os microrganismos, favorecendo um rendimento de 54,36% e a

retenção de seus nutrientes.

Entretanto, a manutenção do binômio tempo/temperatura durante a fase de pré-cocção

apresente possibilidades de problemas, ou após esta fase possa ocorrer recontaminação do

produto. Assim sendo, a etapa de pré-cocção deverá ser rigorosamente realizada, visando

reduzir a carga microbiana dos mexilhões in natura. Kirov et al., (1993) enfatizam que a adoção

de boas práticas de manipulação auxiliam na redução da ocorrência de contaminação cruzada

ou até mesmo na recontaminação dos mexilhões pré-cozidos.

3.7 Resfriamento em gelo

O pescado fresco entre outros produtos marinhos como os mexilhões, ostras e crustáceos

são alimentos de fácil deterioração. Seu tempo de vida útil é curto devido suas vísceras

conterem elevado número de microrganismos, e seus componentes, incluindo proteínas e

lipídeos serem facilmente decompostos, tornando-os facilmente perecíveis. Logo após a captura

os produtos marinhos devem ser rapidamente refrigerado ou processado e prontamente

consumidos. Entretanto, para períodos muito longo de estocagem estes produtos devem então

ser congelados (BEIRÃO et al, 2000).

11

O resfriamento é utilizado como medida de controle mais importante para a manutenção

da qualidade do pescado fresco, possibilitando a qualidade nutritiva da carne, bem como

promove a manutenção dos caracteres sensoriais, incluindo a segurança microbiológica. A

temperatura sendo rapidamente reduzida para 0°C, logo após a captura ou mesmo a despesca,

e posteriormente mantendo a cadeia do frio, os processos de deterioração enzimáticos e

bacterianos podem ser controlados por até 12-14 dias. Do mesmo modo minimizando o

crescimento de micro-organismos patogênicos presentes no pescado (RANKEN, 1997;

HARVIE, 1998; HEDGES, 2000).

Para Carneiro (1999) o frio é utilizado como método de preservação de alimentos, pois

sua ação retarda o desenvolvimento dos agentes deteriorantes como os microrganismos e

enzimas, também atenuando as reações químicas. Todavia, a qualidade da matéria prima é

essencialmente importante para obtenção de um produto de excelente qualidade.

O armazenamento do pescado refrigerado tem como maior benefício o prolongamento da

vida de prateleira conservando em bom estado, pela diminuição da taxa de deterioração.

Entretanto, ressalta-se que o resfriamento não possui a capacidade de cessar o processo de

deterioração do pescado nem tão pouco de melhorar a qualidade de um produto com baixa

qualidade (HEAP, 2000).

3.8 Métodos de avaliação da qualidade do pescado

É impossível a utilização de apenas um método para avaliar a qualidade do pescado, dado

a sua alta complexidade no processo de decomposição (GONÇALVES, 2011). Deste modo, a

combinação de métodos, torna-se a forma mais viável e segura de avaliação. Em geral, utilizam-

se a combinação de dois métodos, sendo um sensorial (subjetivo) e um não sensorial (objetivo).

Os métodos de avaliação sensorial são muito antigos, entretanto, ainda muito utilizados. Entre

os métodos não sensoriais destacam-se os físicos (pH, propriedades elétricas, tensão das fibras

musculares, entre outros), os químicos (nitrogênios das bases voláteis totais, nitrogênio de

trimetilamina, hipoxantina, histamina etc.) e os microbiológicos (SOARES, 2012).

3.8.1 Métodos físico-químicos

Os métodos físico-químicos são as formas de análises mais utilizadas em estudos que

visam quantificar a formação de compostos que levam a deterioração do pescado. Para avaliar

o estado de conservação do pescado, são utilizadas inúmeras formas de determinação, dentre

elas estão a medição do pH, bases voláteis totais (BVT) e a histamina além da reação de éber

para gás sulfídrico (TAVARES e MORENO, 2005).

12

A utilização de métodos analíticos deve estar em consonância com as legislações oficiais.

No Brasil, a Instrução Normativa nº 25, de 2 de junho de 2011, estabelece todos os métodos

analíticos oficiais, e determina que as amostras encaminhadas para provas físico-químicas

deverão estar separadas das amostras enviadas para analises microbiológicas (BRASIL, 2011).

A legislação brasileira estabelece valores máximos de pH para o pescado de 6,5 para

musculatura interna e 6,8 para musculatura externa (BRASIL, 1952; BRASIL, 1997).

Entretanto, o pH não é considerado um índice seguro para avaliar o estado de frescor do

pescado, deste modo seu uso geralmente é restrito por sua variação de amostra para amostra

(OGAWA e MAIA, 1999).

O conjunto das bases nitrogenadas que apresentam as bases voláteis totais são a

trimetilamina, dimetilamina, monometilamina, putrescina, cadaverina, espermidina e a amônia,

os quais se encontram normalmente presente nos pescados em estado de deterioração. O

nitrogênio das bases voláteis totais tem sido usado para estimar de forma objetiva o estado de

qualidade do pescado, sendo que, conforme as contagens microbianas elevam-se, seus valores

aumentam, superando os valores de 30mg/100g do musculo, instituídos pelos MAPA.

3.8.2 Métodos sensoriais

A percepção sensorial é considerado o método mais antigo e confiável sendo empregado

a centenas de anos para determinar o estado de frescor do pescado e seus derivados (BRANCH;

VAIL, 1985; HOWGATE; JOHNSTON; WHITTLE, 1992), seu uso tem sido largamente

empregado na indústria de pescado fazendo parte de sua rotina, dado a necessidade em se julgar

com rapidez lotes de matéria-prima com produto acabado, facilitando sua execução

(GONÇALVES, 2011).

O método de análise sensorial é utilizado para aferir o frescor dos alimentos, como o

pescado, levando em conta os aspectos sensoriais como coloração, aparência e textura (RODAS

et al., 2004). Shewan et al., (1953 apud BARBOSA E VAZ PIES, 2004), em seu protocolo da

Torry Reach Station, conceituava-se que parâmetro era independente dos demais. Entretanto, o

método foi modificado e passou a avaliar um grupo de características por meio de notas,

atribuindo valores numéricos com variações de 0 a 10 expressando a gama de caracteres. Para

o pescado cru, seu consumo é aceitável quando seu escore encontra-se na faixa de pontuação

igual ou superior a 6 (HUSS, 1997). Na Europa, o protocolo EU, é um método bastante

utilizado pelos serviços de inspeção sanitária bem como na indústria do pescado. Esse protocolo

institui três níveis de qualidade: E (qualidade extra), A e B. sendo abaixo do nível B o pescado

é considerado improprio para o consumo. Porém, ressalta-se que o protocolo apresenta

13

discrepância, pois não considera as diferenças entre as espécies, haja vista, que utiliza apenas

parâmetros iguais (NIELSEN, 1995; LUTEM; MARTINSDÓTTIR, 1997).

Atualmente um dos métodos de análise sensorial mais utilizado é o Método de Índice de

Qualidade (MIQ). Tratasse de um método não destrutivo e relativamente rápido, tendo como

base a observação direta das propriedades organolépticas do pescado e é espécie-especifico. Tal

metodologia tem como objetivo obter a correlação linear entre a qualidade sensorial expressa

pela soma de pontos de demérito e o tempo de armazenamento em gelo, tornando possível

prever a vida útil do pescado (NIELSEN; JESSEN, 1997). Para (VAZ-PIRES; SEIXAS, 2006)

o protocolo MIQ deve se tornar o principal método utilizado em laboratórios, pesquisas

científicas e comércio do pescado para uma inspeção mais precisa com decisões claras sobre a

qualidade do pescado.

3.8.3 Método do Índice de Qualidade

O método do índice de qualidade (MIQ) é uma avaliação sensorial que visa ultrapassar

as dificuldades que surgem na aplicação das tabelas da União Europeia. Foi rigorosamente

desenvolvido pela Unidade de Pesquisa Alimentar da Tasmânia (BREMNER, 1985). O MIQ

consiste na avaliação de atributos como aparência geral, odor, textura, olhos, guelras, abdômen

entre outros atributos, a modificação desses atributos com o passar do tempo de estocagem, é

atribuído um escore, o qual varia de 0 a 3 ou de 0 a 2 (de acordo com seu grau de frescor), sendo

o zero considerado o melhor e o três (ou dois) como sendo o pior escore. A soma desses escores

da origem ao Índice de Qualidade (IQ), o qual permitirá a avalição sensorial do pescado e a

previsão do prazo de vida comercial da espécie, apresentando a vantagem de ser barato, simples,

necessita de pouco treinamento e não é um método destrutivo. Como o método considera o

conjunto dos atributos e não apenas atributos individuais, a amostra não é rejeitada levando em

consideração apenas um atributo como critério (LUTEN; MERTINSDÓTTIR, 1997). Contudo,

a metodologia torna-se útil desde o primeiro estágio de armazenamento do pescado (NIELSEN

et al., 1992).

O método em seu princípio baseia-se no pressuposto em que os avaliadores não podem

julgar graus de perfeição, porém podem facilmente detectar alterações em um produto, sendo

atribuído a essas alterações pontos de demérito (escore), que somados fornecem uma avaliação

geral sobre o estado de qualidade do produto. Quanto maior os pontos somados, mais

inadequado o alimento se encontra. Esse entendimento surgiu a partir do fato em que durante o

armazenamento dos peixes, as alterações fisiológicas que ocorrem são facilmente detectáveis e

muitas vezes mensuráveis, pois os compostos provenientes das reações químicas, bioquímicas

14

e microbiológicas em pescado, estão próximos a zero ou a um valor muito baixo após a

despesca, o que tendem a elevar-se em função do aumento da temperatura e o tempo de

armazenagem (TAYLOR; FRANCIS, 2010).

Bremner (1985) em seus trabalhos utilizou os primeiros protocolos MIQ, sendo todos

para peixes conservados em gelo (TAYLOR; FRANCIS, 2010). O MIQ foi desenvolvido

inicialmente com o propósito de sua empregabilidade técnica na indústria, entretanto, já

existiam versão em estudo voltado para o consumidor (WRAM et al, 2000; LARSEN et al.,

2003, apud HYLDIG et al., 2010) objetivando auxilia-los no momento de decidir pelo produto

com melhor qualidade na hora da compra (NIELSEN; HYLDIG; LARSEN, 2002).

Barbosa e Vaz-Pires (2004) em seus estudos desenvolveram o protocolo MIQ para a

espécie Octopus Vulgares e concluíram que a rejeição da espécie dava-se no oitavo dia de

armazenamento. Nesse mesmo trabalho reuniram em uma lista 21 espécies de pescado para os

quais os protocolos MIQ haviam sido desenvolvidos. Desde então o protocolo MIQ tem sido

desenvolvido para uma serie de espécies de pescado como para Paralichthys patagonicus

(MASSA et al., 2005), para Litopenaeus vannamei (OLIVEIRA, 2005); Hippoglossus

hippoglossus (GUILERME REGOST et al., 2006); Sepia officinalis e lllex coindetti (VAZ

PIRES e SEIXAS, 2006); Pons-Sánschez-Cascado et al. (2006), desenvolveram o protocolo

para Engraulis encrasicholus In natura e cozido; Rodrigues (2008) para Oreochromis nilóticos;

Teixeira et al., (2009) elaboraram o protocolo para Micropogonias furnieri.

15

4. REFERÊNCIAS

AMANAJÁS, C.C. 1985. Determinação dos compostos básicos totais de pescado e seu

potencial para avaliação do frescor. Dissertação (Mestrado) – Faculdade de Engenharia de

Alimentos e Agrícola, Universidade Estadual de Campinas, 78p.

ANTONIOLLI, M.A. 1999. Vida útil do mexilhão Perna perna (L) processado e mantido sob

refrigeração. Dissertação (Mestrado) – Universidade Federal de Santa Catarina 99p.

BARBOSA, A.; VAZ-PIRES, P. 2004. Quality index method (QIM): development of a

sensorial scheme for commom octopus (Octopus vulgaris). Food Control v. 15, p. 161-168.

BEIRÃO, H.; TEIXEIRA, E.; MEINERT, E.M.; Processamento e industrialização de

moluscos. In: SEMINARIO E WORKSHOP TECNOLOGIAS PARA APROVEITAMENTO

INTEGRAL DO PESCADO. Campinas, 2000. Campinas: ITAL, Centro de Tecnologias de

Carnes, p. 38-84.

BOFFI, V. A. 1979 Moluscos brasileiros de interesse médico e econômico. São Paulo:

FAPESP. Editora HUCITEC. 182 p.

BORGHETTI, J.R.; OSTRENSKY, 2000. A. A cadeia produtiva da aquicultura brasileira. In:

VALENTI, W. C.; POLLI, C. R.; PEREIRA, J. A.; BORGUETTI, J. R. Aquicultura no Brasil.

Brasilia: CNPq, p. 107-142

BOTTA, J.R. 1994. Freshnes quality of seafoods: a review. In: SHAHIDI, F., BOTTA, J.R.

(Ed). Seafoods. London: chapman & Hall. Cap.9. p.140-167.

BRANCH, A. C.; VAIL, A. M. A. 1985. Bringing fish inspection into the computer age. Food

Technology in Australia, v.37, n.8, p.352-355.

BRASIL, Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n. 25, de

2 de junho de 2011: Anexo I: Métodos Analíticos Oficiais Físico-Químicos para Controle de

Pescado e seus Derivados. Diário Oficial da República Federativa do Brasil. Brasília, DF, 3

mar 2011. Seção I, p 34-9.

BRASIL, Ministério da Agricultura, Pecuária e Abastecimento. Portaria n. 185, de 13 de maio

de 1997: Regulamento Técnico de Identidade e Qualidade de Peixe Fresco (Inteiro e

Eviscerado). Diário Oficial da República Federativa do Brasil. Brasília, DF, 15 de mai 1997.

Seção I, n 158. P. 102-8.

16

BRASIL, Ministério da Agricultura, Pecuária e Abastecimento. Regulamento da Inspeção

Industrial e Sanitária de Produtos de Origem Animal – RIISPOA. Brasília, 1980. 1650.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Decreto-Lei n. 30.691, de 29

de março de 1957. Regulamento da inspeção industrial e sanitária de produtos de origem

animal. Diário Oficial da República Federativa do Brasil. Brasília, DF, 1952.

BRASIL, 2013. Ministério da Pesca e Aquicultura. Boletim Estatístico da Pesca e Aquicultura.

Disponível em: <http://www.mpa.gov.br/images/Docs/Informacoes_e_

Estatisticas/Boletim%20MPA%202011FINAL.pdf [Acesso em: 26 Set 2014].

BREMNER, H. A. 1985. A convenient, easy to use system for estimating the quality of chilled

seafood. Fish Processing Bulletin, v. 7, p.59-70.

CONTRERAS-GUZMÁN, E. S. 1994. Bioquímica de pescados e derivados. Ed. FUNEP,

Jaboticabal, São Paulo. 409p.

DALAN, E. O. 2005. Tratamento de mexilhões Perna perna comom forma de assegurar a

qualidade – avaliação do crescimento de Bacillus cereus e de Staphylococcus aureus.

Dissertação (Mestrado) – Escola Superior de Agricultura “Luiz de Queiros” Universidade de

São Paulo 88p.

DALGAARD, P. 2000. Freshness, quality and safety in seafoods. Flair-Floe Europe Technical

Manual F-FE 380A/00. Disponivel em: http://seafood.ecdavis.edu/pubs/qualitysafety.doc.

[Acesso em 22 out. 2014].

EIROA, M.N.U. 1980. Aspectos microbiológicos relacionados a conservação e ao consumo de

pescado. Boletim da Sociedade Brasileira de Ciência e Tecnologia de Alimentos, n.54, p.9-

37.

ESPÍNDOLA,: DIAS, R.R.C.1980. O mexilhão como matéria-prima alimentar. ABIA/SAPRO,

n.47, p. 10-30.

EU COMMISSION. 2014. Freshesses, quality and sefety in seafoods. http:

//www.seafood.ucdavis.edu/pubs/qualitysafety.doc [Acessado em 03 nov. 2014).

FAO. Food and Agriculture Organization. The State of World Fisheries and Aquaculture. 2012.

Disponível em: < http://www.fao.org/docrep/016/i2727e/i2727e.pdf [Acesso em: 26 Set 2014].

FATIMA, R. & QADRI, R.B. 1985. Quality changes in lobster (Panulirus polyhagusp) muscle

during storange in ice. Journal Agricultural Food Chemistry. 33(1):117-122.

17

FURLAN, E. F., et al. 2007. Estabilidade físico-química e mercado de mexilhão (Perna perna)

cultivado em Uberaba – SP. Ciência e Tecnologia de Alimentos, Campinas, n. 27, p. 516-523

Disponível em: < www.scielo.br/pdf/cta/v27n3/a15v27n3.pdf>. [Acessado em 22 de mai.

2014].

FURTADO, S.M.B.; DOMINGOS, T.H.; SOARES, A.K. 1998. Determinação da composição

centesimal e minerais de moluscos (Mytella falcata e Anomalocardia brasiliana ) mais

consumidos no estado do Rio Grande do Norte (Compact disc) CONGRESSO BRASILEIRO

DE CIEÊNCIA E TECNOLOGIA DE ALIMENTOS, 16. Resumo. Porto Alegre: UFRS.

GONSALVES AA, editor. Tecnologias do Pescado: Ciências. Tecnologia, inovação e

legislação. São Paulo: Atheneu: 2011.

GOTTING, K.J..1974. Malakozoologie. Stuttgart: Gustav Fischer Verlag, 320 p.

GUILLERM-REGOST, C. et al., 2006. Quality characterization of farmed Atlantic halibut

during ice storage. Journal of Food Science, v. 71, n.2, p. S83-S90.

HARVIE R. 1998. Fish for Food. Seafood Industry Training Organization (Seafood ITO),

Wellington, New Zeland, 68p.

HEAP RD. 2000. The Refrigeration os Chilled foods (Chap. 4, p.79-98), part II. Tecnologies

and processes. In: Stringer M, Dennis C. (eds), Chilled foods – a comprehensive guide. Second

Edition. Boca Raton (USA): CEC Press LLC, 428p.

HEBARD, C.E.; FICK, G.J.; MARTIN, R.E. 1982. Occurrence and significance of

trimethylamine oxide and its derivatives in fish and shellfish. In: MARTIN, R.E.; FLICK, G.J.;

HEBERD, C.E; WARD, D.R. (Ed.). Chemistry & biochemistry of marine food products.

Westport: The Avi Publishng Company, p. 149-304.

HEDGES N. 2000. The seletion and pre-treatment of fish. (Chap. 6, p. 95-110), In: Kennedy

CJ. (ed.). Managing frozen foods. 1st Ed. Boca Raton (USA): CRC Press LLC, 286 p.

HOWGATE, P., JOHNSTON, A., & WHITTLE, K. J. 1992. Multilingual guide to EC freshness

grades for fishery products. Aberdeen: Torry Research Station, Food Safety Directorate,

Ministry of Agriculture, Fisheries and Food.

HUIS IN’T VELD, J.H.J. 1996. Microbial and biochemical spoilage of foods: an overview.

International Journal of Food Microbiology, v.33, p. 1-18.

18

HUSS, H. H. 1997. Garantia de qualidade dos produtos da pesca. FAO Documento Tecnico

sobre a Pesca. Nº. 334. Roma, FAO, 176p.

HYLDIG, G. et al. 2010. Quality Index Methods. In: Handbook of Seafood and Seafood

Products Analysis, 887p. Taylor and Francis Group, p. 464.

IAL.2008. Métodos físico-químicos para análise de alimentos. 4 ed. São Paulo: Instituto Adolfo

Lutz, p. 98-1020.

JAY, J. M. 2005. Microbiologia de Alimentos. 6. Ed. Porto Alegre: Artmed. 711p.

KAI, M.; MORAIS, C. 1988. Vias de deterioração do pescado. In: Controle de qualidade de

pescado. Editoras: Leopoldianum Editora e Edições Loyola, Santos. P. 13–20.

KIROV, S.M.; ARDESTANI, E.K.; HAYWARD, L.J. 1993. The growth and expression. Of

virulence factors at refrigeration temperature bu Aeromonas strains isolated from foods.

International of Food Microbiology, v. 20, p. 159-68.

KLAPPENBACH, M.A. 1965. Lista preliminar de los Mytilidae Brazileños com claves para su

determinación y notas sobre su distribuición. Na. Acad. Bras. Ciência.,37(supl.):327-352.

LARRALDE, J.; RODRIGUES, C. & BELLO, L. (1965). Acerca de los coeficientes de

transformación e índice de utilización proteica del Mytilus edulis. An. Bromatol. 17(2): 238-

247.

LARSEN E, et al. 2003. Consumers and experts responses to fresh cod fi llets JB,

Oehlenschlager J, and Olefsdottir G (eds.). Quality of Fish from Catch to Consumer: Labelling:

Monitoring and Traceability. Wageningen Academic Publ., Wageningen, the Netherlands, p.

345.

LEITÃO, M.F.F. & RIOS, D.P. 2000. Microbiological and chemical changes in fresh water

prawn (Macrobrachium rosenbergii) stored under refrigeration. Brazilian Jornal of

Microbiology. 31:178-183.

LINDNER, G. 1989. Moluscos y caracoles de los mares del mundo. Aspecto/Distribución/

Sistemática. Tercera edición. Barcelona: Ed. Omega, S.A.236 p.

LIRA, G. M.; MANCINI FILHO, J.; SANT’ANA, L. S.; TORRES, R. P.; OLIVEI- RA, A.

C.; OMENA, C. M. B.; SILVA NETA, M.L. 2004. Perfil de ácidos graxos, compo- sição

centesimal e valor calórico de moluscos crus e cozidos com leite de coco da cidade de Maceió-

AL. Rev. Bras. Cienc. Farm. (Braz. J. Pharm. Sci.), v. 40, n. 4, p. 529-537.

19

LUNETTA, J.E.1969. Fisiologia da reprodução dos mexilhões (Mytilus perna – Mollusca

Lamellibranchia) Bol. Fac. Filos. Ciênc. Univ. São Paulo, (26): p. 33-111.

LUTEN, J. B.; MARTINSDÓTTIR, E. QIM. 1997: a European tool for fish freshness evolution

in the fishery chain. Proceedings of the Final Meeting of the Converted Action “Evolution of

Fish Freshness”, pp. 287-296. Nantes Coference, Paris.

MASSA, A. E. et al. 2005. Postmortem changes in quality índices of ice-stored flounder

(Paralichthys patagonicus), Jounal of Food Biochemistry, n. 29. P570-590.

MELLO, R.L.S. e TENORIO, D.O. 2000. A malacofauna. In: M. Barros, E. Eskinazi-Leca, S.J.

Macedo e T. Lima. Gerenciamento participativo de estuários e manguezais. Ed. Universitária,

Recife. p.103-118.

MELO JUNIOR, HÊNIO N. 1997. Molusca Bivalvia: Recurso na Pesca Artesanal e

Aquicultura. Pernambuco (BRASIL): UFPE, 124p. Dissertação (Mestrado) – Programa de Pós

Graduação em Oceanografia Biológica -Universidade Federal de Pernambuco, Recife.

NIELSEN J, HYLDIG G, AND LARSEN E. 2002. Eating quality off i sh-A review. Jounal of

Aquatic Food Product Technology., v11, p. 125.

NIELSEN, J. 1995. Assessment of fish quality. Ii: H. H. Huss (Ed.), Quality and quality chenges

in fresh fish. FAO Fisheries Techical Paper 348, pp. 116-124.

NIELSEN, J.; JESSEN, K. 1997. New developments in sensory analysis for fish and fishery

products. In J. B. Luten, T. Borresen; J. Oehlenschla ger (Eds.), Seafood from producer to

consumer, integrated approach to quality (pp.537-547). Amsterdam.

OETTERER, M. 1999. Agroindústrias beneficiadoras de pescado cultivado: unidades

modulares e polivalentes para implantação, com enfoque nos pontos críticos e higiênicos e

nutricionais. Piracicaba. Tese (Livre-Docente) – Escola Superior de Agricultura “Luiz

Queiroz”, Universidade de São Paulo 198p.

OGAWA M, MAIA 1999. EL. Manual da pesca: ciência e tecnologia do pescado, v. 1. São

Paulo: Varela.

OGAWA, M.; MAIA, 1999. E.L. Manual da Pesca. São Paulo: varela, 430p.

OLIVEIRA, V. M. 2005. Estudo da qualidade do camarão branco do pacifico (Litopenaeus

vannamei). Tese (Doutorado)-Faculdade de Veterinária, Universidade Federal Fluminense,

Niterói, p. 91 f.

20

PARANAGUÁ, Maryse Nogueira 1974. Distribuição, Ecologia e Desenvolvimento de Mytella

falcata (D’ORBIGNY, 1846) nos Estados do Rio de Janeiro e Guanabara. São Paulo: Instituto

de Biociências da Universidade de São Paulo. Dissertação de mestrado, São Paulo.

PEREIRA, O. M. e GRAÇA LOPES, R. 1995. Fixação de sementes de Mytella falcata (sururu)

em coletores artificiais no Canal de Bertioga, Estuário de Santos, Estado de São Paulo, Brasil.

B. Inst. Pesca, São Paulo, 22 (1): 165 - 173.

PEREIRA-BARROS, J.B. 1987. Bibliografia comentada sobre o sururu Mytela falcata e a

bioecologia do complexo estuarino Mundau-Manguaba, AL. Parte I. Bol. Est. Cienc. Mar (6):

p.36-48 .

PONS-SÁNCHEZ-CASCADO, S, et al. 2006. Sensory analysis to assess the freshness of

Mediterranean anchovies (Ergraulis encrasicholus) stored in ice. Food Control, v.17, pp 564-

569.

PREGNOLATTO, W,; PREGNOLATTO, N.P. 1985. Normas analíticas do Instituto Adolfo

Lutz. São Paulo: Instituto Adolfo Lutz V.1.

RANKEN MD, KILL RC, BAKER C. 1997. Food Industries Manual (Chap. 2 – Fish and

Products and Chap. 15 – Food Preservation Processes). London (UK): Blackie Academic and

Professional, 718 p.

RODAS MAB, TAVARES M, MARSIGLIA DAP 2004. Avaliação das características

sensoriais de alimentos sob o ângulo da legislação brasileira. Bol Ins Adolfo Lutz.14(1/2):5-7.

RODRIGUES, T.P. 2008. Estudo de Critérios para a avaliação da qualidade da tilápia do Nilo

(Oreochromis niloticus) cultivada, eviscerada e estocada em gelo. Tese (Doutorado) Faculdade

de Veterinária, Universidade Federal Fluminense, Niterói 116 f.

ROSA, R.C.C.; GUZENSKI, J.; PEREIRA. 1995. A. et al. Manual de cultivo de mexilhão

Perna perna. Florianópolis: EPAGRI, 140p.

SHEWAN, J. M. 1962. The bacteriology of fresh and spoiling fish and some related chamical

changes. Recent Advances in Food Science, London, v.1, p. 167-193.

SIKORSKI, E.Z; KOLAKOWSKA, J. & BURT, J.R. 1994 Cambios bioquímicos y

microbianos subsiguientes a la captura. In: Zdzislaw E. Sikorski (Editor), Tecnologia de los

productos del mar: recursos, composicion nutritiva y conservacion. Editoral Acribia,S.A.

Zaragoza, España. Cap:4 p.75-101.

21

SIKORSKI, Z.E.; SUZ PAN, B. 1994. Preservation of seafood quality. In: SHAHIDI, F.;

BOTTA, JR. (Ed.). Seafood. London: Chapman & Hall. Cap. 10, p. 168-195.

SILVA JUNIOR, E.A. 1995. Manual de controle higiênico-sanitário em alimentos. São

Paulo:Varela,347p.

SOARES FMV, VALE SR, JUNQUEIRA RG, GLORIA BA. 1998. Teores de Histamina e

Qualidade físico-quimica sensorial de filé de peixe congelado. Cienc Tecnol Aliment.

18(4):462-70.

SOARES KMP, GONSALVES AA. 2012. Qualidade e segurança do pescado. Ver Int Adolfo

Lutz. São Paulo, 71(1):1-10.

SOOT-RYEN, T. 1965. A report on the family Mytilidae (Pelecypoda). Alla Handcock Pacific

Expeditions, 20(1): 47-57.

SPINELLI, M.R.; EKLUND, M.; MIYAUCHI, D. 1964. Mensurement of hypoxanthine in fish

as a method of assessing freshness. Journal of Food Science, v.19, p. 710-714.

TAVARES M, MORENO RB. 2005. Pescado e Derivados. In: Instituto Adolfo Lutz. Métodos

Físico-Químicos para análise de alimentos. 4. ed. Brasília: Anvisa. cap. 18. P.633-43.

TAYLOR; FRANCIS. 2010. Quality Index Methods. In: Handbook of Seafood and Seafood

Products Analysis, pp. 463-477. Taylor and Francis Group, LLC.

TEXEIRA, M. S. 2009. Método do Índice de Qualidade (QIM): desenvolvimento de um

produto sensorial para corvina (Micropogonias furnieri). Revista Brasileira de Ciência

Veterinaria, v. 16 n. 2, p. 83-88.

VAZ-PIRES, P.; SEIXAS,P. 2006. Development of new quality index method (QIM) schemes

for cuttlefish (Sepia officinalis) and broadtail shortfin squid (lllex coindetii). Food Control, v.

17, p.942-949.

VITALI, A. de A. 1997. Novas tendências em processamento de alimentos. Boletim da

Sociedade Brasileira de Ciência e Tecnologia de Alimentos, 31, n.1, p.15-16.

WOOD, P.C. 1979. Manual de higiene de los mariscos. Xaragoza. 83p.

WRAM K. 2000. Sensory Quality Criteria for New and Traditional Fish Species of Relevance

to Consumer Needs. Danish Institute for Fesheries Researsh, Lynboy, Th e Royal Veterinary

and Agricultural University, Copenhagen, Denamark, p. 1.

22

XAVIER FG, RIGHI D, BERNARD MM. 2007. Histamina, serotonina e seus antagonistas.

In:Spinosa HS et al. Farmacologia aplicada à medicina veterinária. 4. ed. Rio de Janeiro:

Guanabara-Koogan. p. 215-24.

II CAPÍTULO

Os resultados obtidos neste trabalho experimental são apresentados no artigo intitulado

“Avaliação físico-químico e sensorial do mexilhão mytella falcata, conservado em gelo”

que se encontra anexado e será submetido à revista Caatinga.

24

AVALIAÇÃO FÍSICO-QUÍMICO E SENSORIAL DO MEXILHÃO Mytella falcata,

CONSERVADO EM GELO

RESUMO - O sururu está entre as espécies de moluscos mais exploradas e comercializadas

por toda a região de costa do Brasil. Possui importante valor econômico e nutricional, por este

motivo tem levado a um aumento no consumo. A finalidade do presente estudo foi medir as

alterações físico-químicas e sensoriais que ocorreram em exemplares de sururu sob duas formas

de tratamento in natura e minimamente processado, estocados em gelo (2±1 °C). Amostras

foram analisadas em intervalos de 48 horas, durante 10 dias, por meio de determinações do pH,

nitrogênio das bases voláteis totais (N-BVT), acidez titulável e avaliação sensorial pelo método

de índice de qualidade (MIQ), assim como a composição centesimal. Os resultados mostraram

que o tempo de vida útil para consumo, de acordo com a avaliação sensorial, foi de 8 dias para

o sururu submetidos ao tratamento in natura e de 10 dias submetido ao tratamento minimamente

processado estocado em gelo. Os índices de pH e N-BVT apresentaram valores elevados

durante todo o período de estocagem em gelo.

Palavras-chave: Conservação em gelo; Consumo, Sistema MIQ

ABSTRACT - The mussel is among the most exploited species of molluscs and marketed

throughout the region of the coast of Brazil. Import has economic value and nutritional, and for

this reason has led to an increase in consumption. The purpose of this study was to measure

physical and chemical changes, and sensory which occurred in exemplars of mussel in two

ways of treatment in natura and minimally processed, stored into ice (2±1°C). Samples were

analyzed at 48 hour of intervals, for 10 days, by means of pH determinations, nitrogen of total

volatile bases (N-BVT), titrable acidity, and sensory evaluation by Quality Index Method

(QIM), even as the centesimal composition. The results showed that the lifetime for

consumption, according to the sensory evaluation, were 8 days for mussels subjected to the

treatment in natura and 10 days subjected to the treatment of minimally processed stored into

ice. The indices of pH and TVB-N showed elevated levels during the storage period into ice

Keywords: Ice conservation; Consumption; QIM System

25

1- INTRODUÇÃO

O sururu (Mytella falcata) é uma espécie que possuem elevada importância econômica e

alimentar de grande valor nutricional, rico em proteínas, ácidos graxos polissaturados e

vitaminas, são amplamente explorados por populações ribeirinhas e de pescadores que a

utilizam como fonte de renda e alimentação (LARRALDE et al.,1965; PEREIRA-BARROS,

1987; PEREIRA e GRAÇA LOPES,1995; MELLO JUNIOR, 1997; LIRA et al., 2004).

No entanto trata-se de um alimento altamente perecível que mesmo estocado em gelo

após sua morte passa por uma série de mudanças, físico-química e bioquímica, promovida por

enzimas endógenas que o levam a degradação e perda de frescor. Resultando na produção de

substâncias com odor desagradável, criando um meio favorável ao metabolismo bacteriano,

proliferando bactérias no músculo do pescado, acelerando o processo de deterioração

(PACHECO AGUILAR al., 2000; JESUS et al., 2001).

Fatores intrínsecos como pH próximo da neutralidade, elevados teores de nutrientes e de

atividade de água e fatores extrínsecos como a forma de manuseio, transporte, cadeia de frio e

condições higiênicas e microbiota, bem como o tempo em que o pescado passa em rigor mortis

e a quantidade de ATP e glicogênio que possui antes da morte, influenciam o grau de frescor e

a qualidade do pescado (ROBB e KESTIN, 2002; VIEIRA 2003; VIEGAS et al., 2012).

Os atributos sensoriais do pescado são norteados com base em critérios como aparência,

textura, odor, cor e sabor, que, em conjunto com a composição centesimal, permitem aferir a

intensidade do processo de deterioração, assim como os parâmetros físico-químicos, de pH,

BNVT. A determinação do pH e das bases nitrogenadas voláteis totais (BNVT) são parâmetros

que fornecem dados importantes sobre o estado de conservação do pescado, sendo o obtidos a

partir da decomposição de aminoácidos e ações produzidas por enzimas endógenas de origem

bacteriana, que são responsáveis pela perda de frescor e o surgimento de sinais inicias de

deterioração no pescado. Entretanto, a aferição do pH deve ser feita sempre em conjunto com

outros parâmetros (AKSE et al., 2008; ANDRÉS-BELLO et al., 2013). No Brasil o limite

máximo de aceitação para BNVT é de 30 mg N/100g para pescado fresco, no entanto esse valor

ainda é muito discutido por pesquisadores, por isso a necessidade de estudos em diferentes

espécies (TEODORO et al., 2007).

Desenvolvido na Europa o Método do Índice de Qualidade (MIQ) tornou-se entre os

sistemas para a avaliar a qualidade sensorial do pescado o método mais empregado atualmente.

Sua elaboração deve ser desenvolvida especificamente para cada espécie de pescado. Estudos

demostraram que entre os valores do MIQ e o tempo de estocagem dos pescados em gelo há

26

uma relação linear, o que permite que seja estimado o tempo de vida útil do pescado (BAIXAS

NOGUERAS et al., 2003; GUILLERM-REGOST et al., 2006; CARDENAS-BONILA et al.,

2007; NIELSEN e GREEN, 2007).

Deste modo, considerando a importância econômica e comercial do sururu, o presente

estudo foi proposto para avaliar a qualidade do sururu sob as condições in natura e

minimamente processado, estocado em gelo por 10 dias, utilizando-se de determinações físico-

químicas, e sensorial, com o propósito de contribuir para a elaboração, de uma tabela de

avaliação de MIQ para a avaliação da vida útil do sururu in natura e minimamente processado.

2 - MATERIAL E MÉTODOS

Foram utilizados 6kg de moluscos da espécie Mytella falcata provenientes da feira livre

de pescado do Município de Bragança – Pa. As amostras foram armazenadas em caixa

isotérmica contendo gelo e conduzidos ao Laboratório de Tecnologia do Pescado, da Faculdade

de Engenharia de Pesca, da Universidade Federal do Pará, Campus de Bragança, onde foram

limpos de todos os organismos incrustantes nas valvas, e posteriormente separadas em dois

lotes contendo três quilogramas cada: sendo um lote para o tratamento “in natura” e outro para

o tratamento minimamente processado. Para o tratamento “in natura” realizou-se o

desconchamento dos mexilhões ainda vivos, procedendo de cortes no musculo adultor para

subtração da carne, enquanto para o tratamento minimamente processado, realizou-se uma pré-

cocção por imersão em água em ebulição por 15 minutos a uma temperatura de 100ºC. após a

cocção, os mexilhões foram desconchados, e acondicionados em embalagens plásticas de

polietileno de 0,006 mm de espessura, na proporção de 100g de carne por embalagem, fechadas

manualmente, totalizando 30 unidades experimentais para cada tratamento (in natura e

minimamente processado), sendo posteriormente conduzidas para o resfriamento onde foram

envolvidas por gelo triturado na proporção 1:3, contido em caixa isotérmica, durante 10 dias,

período estipulado para o estudo, com drenagem da água de fusão e reposição do gelo

diariamente.

No decorrer do período experimental foram retiradas três amostras aleatórias de cada

tratamento in natura/minimamente processado, para o tempo inicial de armazenagem (tempo

0) e para os intervalos de 2, 4, 6, 8 e 10 dias, sendo submetidos a cada intervalo de 48 horas as

análises físico-químico, sensorial e bromatológicas.

Determinou-se o pH muscular por leitura em potenciômetro digital Digimed, utilizando

10g da amostra homogeneizada com 100 ml de água destilada, segundo técnica descrita por

27

IAL (1985). Análises de Bases Nitrogenadas Voláteis Totais (BNVT) foram realizadas de

acordo com o método adotado pelo Instituto de Fomento Pesqueiro do Chile – IFOP, descrito

por Morga (1975). Acidez titulável foi determinada por titulometria segundo técnica descrita

IAL (2005). As análises de umidade, cinzas, lipídeos por extrato etéreo e proteínas foram

seguidas baseadas nos Métodos Analíticos Oficiais para Controle de Produtos de Origem

Animal e seus ingredientes (BRASIL, 1981). Todas as análises estabelecidas foram realizadas

em triplicatas no Laboratório de Tecnologia do Pescado da FEPESCA/UFPa.

A avaliação sensorial teve início com o treinamento da equipe de julgadores, composta

por quatro mulheres e cinco homens com idades varando entre 18 a 29 anos, para elaboração

do protocolo MIQ. Esse foi realizado em seis sessões de treinamento, com tempo de uma hora

cada, onde utilizou-se duas amostras do mexilhão com tratamento distintos; in natura e

minimamente processado, para cada tempo de armazenamento (0, 2, 4, 6, 8 e 10 dias). As

amostras eram retiradas do gelo com 30 minutos de antecedência a cada sessão, e apresentada

banca de julgadores para que a mesma, em discussão aberta, define-se os atributos sensoriais

de aparência, odor e textura a palpação dos mexilhões com diferentes tempo de estocagem. Por

consenso, ao final do treinamento a equipe elaborou o protocolo do IQ para o mexilhão in

natura e minimamente processado armazenado em gelo. O protocolo elaborado pelo MIQ foi

posteriormente empregado pela equipe treinada, na avaliação de 15 unidades amostrais do

tratamento in natura e 15 para o tratamento minimamente processado, utilizando três deles para

cada tempo de armazenamento. As etapas de desenvolvimento do MIQ para a avaliação do

frescor dos mexilhões foram as mesmas estabelecidas por Bonilla, Sveinsdottir e Martinsdottir

(2007).

A partir dos resultados do MIQ, estabelecido pelos nove julgadores, para todo os

atributos, em cada tempo de estocagem, obteve-se a média e o desvio padrão dos IQs. A partir

dos valores médios de cada um dos atributos sensoriais, nos diferentes tempos de estocagem,

procedendo-se então a análise de componentes principais em matriz de covariância.

Os dados de caracterização físico-química e bromatológicas dos mexilhões foram

tratados através da análise de ANOVA, a fim de verificar se havia diferença significativa, e se

havia mudanças nos parâmetros físico-químicos com o tempo de armazenamento para os

tratamentos. A comparação de médias para os fatores que apresentaram diferença significativa

(p<0,05) foi realizada através do teste de Tukey. Os dados obtidos no índice de qualidade foram

submetidos a regressão linear simples e o coeficiente de correlação (r2). Os programas utilizados

foram Excel (Copyright @ 2013 Microsoft Corporation) e software Statistica 7.0 para Windows

(Microsoft Corporation – Statsoft)

28

3 . RESULTADOS E DISCUSSÃO

3.1 COMPOSIÇÃO CENTESIMAL

A sazonalidade é o atributo que define a variação da composição centesimal do

mexilhão, pois fatores como estação do ano, origem da área de cultura, período reprodutivo e a

disponibilidade de nutrientes bem como a quantidade de alimento disponível ao longo do ano,

estão diretamente relacionados na composição centesimal (TAVARES et al., 1998; FUENTES

et al., 2009).

A tabela 1, apresenta os resultados médios da composição centesimal obtido para o

mexilhão Mytella falcata in natura (IN) e minimamente processado (MP), estocado em gelo

durante 10 dias, onde observa-se que a cocção influenciou de modo expressivo na composição

centesimal deste alimento.

No tratamento IN e MP os teores de umidade permaneceram constantes sem grandes

variações durante todo o tempo de estocagem não apresentando diferença significativa

(p>0,05%), bem como para as variáveis tempo versus produto (tabela 2). Entretanto, avaliando

a relação entre os produtos, observou-se que o tratamento MP obteve uma diminuição

significativa nos teores médio de umidade em relação ao tratamento IN (tabela 1).

Essa variação no teor de umidade observada entre os tratamentos pode estar relacionada

ao método de preparo ou a metodologia de obtenção. Lira et al., (2004), explicam que durante

o cozimento as proteínas se desnaturam, este processo faz com que as proteínas solúveis

tornam-se insolúveis e perdem parte da umidade. Por isso a carne crua contém mais água que a

cozida.

Na base de dados de nutrientes do Departamento de Agricultura do Estados Unidos

(USDA), consta que o mexilhão azul Mytilus edulis L. (in natura) apresenta 81g/100g de

umidade in natura e 61g/100g após cocção (USDA, 2014). Portanto a diferença no teor de

umidade, pode estar relacionada a distintas metodologias utilizadas para o preparo ou na forma

de obtenção de amostras.

Contudo, os valores médios encontrados para umidade neste estudo variaram de

84,13g/100g a 83,34g/100g para os mexilhões IN e de 81,24g/100 a 82,28g/100g para os

mexilhões MP, entre os intervalos de tempo T0 ao T10 (dias) respectivamente, mantidos sob

refrigeração (tabela 1), sendo o valores obtidos neste estudo próximos aos encontrados por

Furlan (2004), da ordem de 81,41g/100g, Salan (2005), 82,82 g/100g, ambos para o mexilhão

Perna perna in natura, e Schramm (1993), que foram de 75g/100 e 82g/100g para mexilhões

29

pré-cozidos por 5 minutos em água fervente, porém superiores aos encontrados por Salan

(2005), que encontrou valores inferiores a 77,23g/ 100g, para mexilhões submetidos a água em

ebulição por 10 minutos.

O processo de diminuição do conteúdo de sólidos totais inicia-se somente após a

máxima absorção de água, cerca de 96 horas após o armazenamento em gelo, entretanto, no

presente estudo o ganho máximo de água pelos tratamentos IN e MP só foram observados após

o 8º e 10º dias de estocagem em gelo, respectivamente.

Os teores de proteína bruta encontrados neste estudo para os tratamentos IN e MP, em

relação as variáveis tempo, produto, tempo versus produto, diferiram estatisticamente ao nível

de significância de (p<0,01) para todos os intervalos de tempo analisados (tabela 2). Em média,

os teores de proteínas obtidos no tratamento IN foram inferiores aos encontrados no tratamento

MP, essa diferença entre os tratamentos pode ser dado em função da perda de água proveniente

ao processo de cocção a qual foi submetido o tratamento MP. Lira et al., (2004) estudando três

espécies diferentes de molusco detectaram que o processo de cocção provoca redução

significativa nos teores de proteínas. Entretanto, Perisenti et al., (2008), afirmam que o processo

de cocção concentra as proteínas. Pedrosa e Cozzolino (2001), analisando o aproveitamento

final de marisco submetidos a cocção em água e sal, notaram que o processamento causou

aumento significativo nas concentrações de proteínas em ostras (Crassostrea rhizophora) e

camarão (penaeus brasilensis), dados próximos aos encontrados neste estudo.

Contudo, os valores médios de proteína encontrado neste estudo ficaram entre

18,20g/100 a 44,54g/100 para o tratamento IN e 25,73g/100g a 51,10g/100g para o tratamento

MP (tabela 1), dados próximos aos encontrados por Lira et al.(2004) para o teor de proteína no

sururu em base seca de 73,00g/100g, Magalhães (1985), com 58,16g/100g do peso seco do

molusco Perna perna, e Tavares et al., (1988) e Parisenti et al., (2008), com valores superiores

para proteína, próximo a 20g/100g. Embora tenha ocorrido variações durante o período de

estocagem em gelo, o teor de proteína se manteve íntegro o até o ultimo dia de estudo, fato que

caracteriza os benefícios do resfriamento na manutenção da qualidade nutricional deste

pescado.

Em relação ao teor de lipídeos encontrado neste estudo para os tratamentos IN e MP,

relacionado as varáveis, tempo, tempo versus produto, não foram constatadas diferenças

significativas (p>0,05) em ambos os tratamentos. Porém, em relação a variável produto, os

resultados apresentados foram estatisticamente significativos (p<0,01%) (tabela 2).

Essa diferença pode ser dada em relação aos valores médios de lipídeos obtidos para o

tratamento MP, em função do processo de cocção ocorrido neste tratamento, influenciando

30

significativamente a concentração de lipídeos da mesma forma como ocorrido na obtenção de

proteínas, assim sendo os valores médios para o tratamento MP foram superiores ao IN (tabela

1). Para Salan (2005), o aumento do tempo de cocção faz com que se tenha um ligeiro acréscimo

do conteúdo de lipídeos, resultante da perda de água. Pedrosa e Cozzolino (2001) analisando as

ostras Crassotrea rhizophorae submetidas à cocção em água e sal, observaram que a cocção

causou um aumento na concentração de lipídeos nestas espécies. Dados estes similares aos

obtidos neste referido estudo.

Os valores médios encontrado durante o tempo de estocagem para o teor de lipídeos

foram de 3,76g/100g a 4,01g/100g e 4,53g/100g a 6,75g/100 entre os tempos T0 a T10 para os

tratamentos IN e MP, sendo observado maior valor médio de lipídeos neste estudo para o tempo

T0 do tratamento MP com valor médio de 6,75g/100g, e no tempo T6 com 4,61g/100g para o

tratamento IN. Os menores valores lipídicos foram encontrados no tempo T2 e T4 com

3,33g/100g e 3,92g/100g para os tratamento IN e MP respectivamente (tabela 1).

Para Ackman (1999), o teor de lipídeo dos mariscos devem estar no intervalo de 1 a

2g/100g, para esse autor o conteúdo reduzido e dado pelo fato dos bivalves armazenarem suas

reservas de energia na forma de glicogênio e não na forma de gordura. Entretanto, os resultado

obtidos no presente estudo, demostraram maior quantidade de lipídeo em ambos os tratamentos,

sendo maior que o preconizado pelo autor supra citado, bem como os valores encontrados por

Furlan (2004) para a espécie Perna perna entre 0,99 e 1,49g/100g e Furtado et al., (1998) que

encontrou valores de 2,9g/100g para a mesma espécie. Indicando que as amostras utilizadas

neste estudo para os respectivos tratamentos, possuem maior teor de gordura.

LOMOVASKY et al. (2004) e MCLEAN e BULLING (2005) apontaram que os teores

lipídicos dos moluscos são maiores no verão que no inverno. O que pode justificar a elevada

quantidade de lipídeos encontrados neste estudo, uma vez que as amostras foram coletadas no

mês de setembro, e a temperatura poderia estar ideal, promovendo uma maior taxa de filtração

desses organismos e, portanto, um maior acúmulo de nutrientes, dentre eles o lipídeos.

Em relação aos teores de cinzas não foram observadas diferenças significativas (p>0,05)

entre as variáveis, tempo, tempo versus produto. Porém, em relação ao produto observou-se

que a cocção influenciou na diminuição significativa entre os valores médios obtidos em meio

aos tratamentos, sendo apresentado maiores valores para o tratamento IN (3,55g/100g a

3,31g/100g) em relação ao tratamento MP (2,74g/100 a 2,11g/100g), entre todos os intervalos

de tempo, (tabela 1), diferindo significativamente (p<0,01) entre os tratamentos.

31

Tabela 1: valores médios (±DP) de Umidade, Sólidos totais, Proteína bruta, Lipídeos e Cinzas determinados em musculo do mexilhão

M. falcata, In natura e minimamente processado armazenado em gelo.

IN = In natura; MP = Minimamente Processado. Letras maiúsculas iguais nas linhas e minúsculas iguais nas colunas não diferem

estatisticamente (p>0,05).

Tabela 2: Teste de Análise de Variância, aplicado as variáveis físico-químicas e bromatológicas do mexilhão M. falcata.

O decréscimo do teor de cinzas observado neste estudo, entre ambos os

tratamento, corrobora com os trabalhos realizado por Pedrosa e Cozzolino (2001) que

observaram significativo decréscimo do teor de cinzas para a ostra (Crassostrea

rhizophorae) submetida ao processo de cocção. Todavia, os valores médios obtidos para

este estudo, foram superiores aos encontrado por Furlan (2004) que obteve valores

médios de 1,8g/100g para a espécie Perna perna. Porém foram próximos aos valores

encontrados por Orban et al. (2006) da ordem de 3,55g/100g para o marisco da areia

(Chameleia gallina) e Aveiro (2007), com valores de 2,52g/100g para o berbigão

(Anomalocardia brasiliana) submetido ao processo de cocção.

Nutrientes Tratamentos TEMPO DE ESTOCAGEM (DIAS)

0 2 4 6 8 10

Umidade (%) IN 84,13 ± 0,51Aa 84,01 ± 0,46Aa 83.74 ± 0,59Aa 84,30 ± 0,27Aa 83,61 ± 0,24Aa 83, 34 ± 0,31Aa

MP 81,24 ± 0,33Ab 81,20 ± 0,49Ab 81,47 ± 0,61Ab 82,32 ± 0,27Ab 80, 62 ± 0,17Ab 82,28 ± 0,20Ab

Sólidos totais (%) IN 18,76 ± 0,33Aa 18,80 ± 0,49Aa 18,53 ± 0,61Aa 17,68 ± 0,27Aa 19,38 ± 0,17Aa 17,72 ± 0,20Aa MP 15,87 ± 0,51Ab 15,99 ± 0,46Ab 16,26 ± 0,59Ab 15,70 ± 0,27Ab 16,39 ± 0,24Ab 16,66 ± 0,31Ab

Proteína Bruta

(%)

IN 27,18 ± 0,80Ca 53,20 ± 0,53Ab 19,10 ± 0,75Eb 23,68 ± 0,51Db 18,20 ± 0,00Fb 44,54 ± 0,45Bb

MP 25, 73 ± 0,41Fb 60,17 ± 0,42Aa 49,71 ± 0,68Ca 39,03 ± 0,85Ea 38,73 ± 0,55Da 51,10 ± 0,66Ba

Lipídeos (%) IN 3,76 ± 0,14Cb 3,33 ± 0,57Db 3,66 ± 0,60Db 4,61 ± 0,24Ab 4,27 ± 0,77Bb 4,01 ± 0,02Bb MP 6,75 ± 1,75Aa 4,10 ± 0,36Da 3,92 ± 0,15Da 5,18 ± 0,23Ba 4,61 ± 0,18Ca 4, 53 ± 0,74Ca

Cinzas (%) IN 3,55 ± 0,21Aa 3,96 ± 0,19Aa 3,67 ± 0,23Aa 3,48 ± 0,08Aa 3,38 ± 0,50Aa 3,31 ± 0,35Aa

MP 2,74 ± 0,08Ab 2,56 ± 0,13Ab 2,42 ± 0,22Ab 2,30 ± 0,20Ab 2,13 ± 0,80Ab 2,11 ± 0,78Ab

Variável Dependente Fonte de variação F p Significativo Graficamente ou

Estatisticamente

Bases Nitrogenadas Voláteis

Totais (BNVT)

Tempo 10,76 < 1% T10 > T8 > T6 ≥ T4 > T2 >T0

Produto 2,33 > 5% IN > MP

Tempo x Produto 0,65 > 5% IN > MP

Acidez Titulável Total (ATT)

Tempo 8,52 < 1% T10 ≥ T8 > T6 > T4 > T2 > T0

Produto 8,85 < 1% IN > MP

Tempo x Produto 4,49 < 1% IN > MP

pH

Tempo 2,04 > 5% T10 < T8 > T6 > T4 ≥ T2 > T0

Produto 1,15 > 5% IN < MP

Tempo x Produto 2,04 > 5 % MP < IN

Umidade

Tempo 0,35 > 5% T6 > T10 > T0 ≥ T2 ≥ T4 > T8

Produto 54,9 < 1% IN > MP

Tempo x Produto 0,89 > 5% IN > MP

Sólidos Totais

Tempo 0,35 > 5% T8 > T10 > T4 ≥ T2 ≥ T0 > T6

Produto 54,2 < 1% IN > MP

Tempo x Produto 0,88 > 5% IN > MP

Cinzas

Tempo 0,42 > 5% T2 > T0 > T4 >T6 > T8 > T10

Produto 43,82 < 1% IN > MP

Tempo x Produto 0,18 > 5% IN > MP

Lipídeos

Tempo 2,63 > 5% T0 > T6 > T10 ≥ T8 > T4 ≥ T2

Produto 9,27 < 1% MP > IN

Tempo x Produto 3,60 > 5% MP > IN

Proteínas

Tempo 5,24 < 1% T2 > T10 > T4 > T8 > T6 > T0

Produto 10,97 < 1% MP > IN

Tempo x Produto 4,59 < 1% MP > IN

32

3.2 ANÁLISES FÍSICO-QUÍMICAS

O pescado pode sofrer diversas alterações em decorrência da ação enzimática e

bacteriana que em conjunto com a produção de vários compostos nitrogenados como, a

dimetilamina, a trimetilamina, a amônia, os ácidos voláteis, a putrescina, cadaverina,

espermidina, monometilamina, propilamina. Podem ter seu teor determinados pela bases

voláteis, que se eleva em função do estado de deterioração do produto.

Na tabela 3, pode-se observar o comportamento das BNVT, a partir do tempo 0

até o tempo 10, para os tratamentos IN e MP armazenado em gelo.

Os valores médios encontrados de BNVT não diferiram estatisticamente (p>0,05)

em relação as variáveis produto, tempo versus produto, para os tratamentos IN e MP,

entretanto, apresentaram variação estatisticamente significativas (p<0,01) em relação a

variável tempo de estocagem (tabela 2). O tratamento IN apresentou um continuo

aumento nos teores médios de BNVT, enquanto no tratamento MP os teores

apresentaram-se estáveis nos dois primeiros dias de estocagem, com respectivos

aumentos nos dias subsequentes (tabela 3).

A diferença de comportamento entre os dois tratamentos quanto aos teores de

BNVT, pode ser dado em consequência da cocção empregada ao produto minimamente

processado, a qual permite uma ligeira pasteurização da carne, melhorando seu estado de

conservação, uma vez que inativa o crescimento das bactérias, vírus e parasitas (WOOD,

1973).

Furlan (2004), reporta em seu estudo sobre a vida útil do mexilhão Perna perna,

coletados entre os meses de janeiro a março, teores de BNVT de 33,8mg N/100g; 38,2mg

N/100g e 29,3mg N/100g para o mexilhão in natura mantidos sob refrigeração após os

períodos de tempo de 5 e 8 dias.

Em estudos realizados por Lakshmanan et al. (1992) com partes de pescado

congelados, obtiveram um aumento nos valores de BNVT durante o período de

estocagem, aumentando-se a medida em que a temperatura de estocagem se eleva.

Com base no limite legal adotado pela legislação em muitos países como

Alemanha, Austrália, Argentina, Japão e Brasil, a qual define que o pescado fresco deve

apresentar níveis de BNVT inferiores a 30mg N/100g de (BRASIL, 1980; JAY, 1994).

Os valores encontrados na determinação de BNVT para o tratamento IN encontra-se

dentro dos limites de aceitabilidade, com exceção para os tempos 8 e 10 (dias) os quais

atingiram níveis médio para BNVT de 30,47mg N/100g e 42,75mg N/100g,

33

respectivamente, sendo superior ao limite aceitável pela legislação vigente. Entretanto,

os valores encontrados para BNVT no MP processado, estão todos em conformidade com

a legislação, uma vez que o valor médio encontrado para o decimo dia de estocagem foi

de 29,03mg N/100g, estando dentro do limite aceitável (tabela 3).

Considerando-se os limites critico determinados para BNVT pela legislação

brasileira bem como de outros países e os resultados apresentados na tabela 3, pode-se

estabelecer uma vida útil para o mexilhão Mytella falcata sob refrigeração de 6 a 7 dias

na forma IN, e 10 dias para a forma MP, podendo alcançar até 11 dias, considerando que

o tempo 10 não atingiu o limite mínimo aceitável para BNVT, mantidos a uma

temperatura de aproximadamente (2±1ºC). Segundo o manual de on line Freshness,

Quality and Seafoods (2004), os molusco frescos, oriundos de águas quentes, podem ter

uma vida útil de 8 a 12 dias, mantidos sob refrigeração a (0ºC). Antoniolli (1999), em seu

estudo determinou o tempo de vida útil de 7 dias para mexilhões cozidos e armazenados

a uma temperatura de 4ºC ± 1ºC.

Em estudo comparando os teores de BNVT e a TMA, como índice de qualidade,

verificou-se que o comportamento linear das BNVT torna-se superior ao encontrado pelo

TMA, indicando que esses índices são equivalentes, bastando apenas a determinação das

BNVT para os objetivos visados (MENDEZ, 1974).

Para o controle do crescimento de micro-organismos, bem como os patogênicos,

é necessário manter uma refrigeração adequada dos produtos pesqueiros, de modo que a

cadeia do frio não sofra nenhuma interrupção até o momento em que o produto seja

consumido (HUSS, 1993).

A determinação de acidez de um produto alimentício e dada através do potencial

hidrogeniônico (pH), o qual pode fornecer dados valiosos sobre o estado de conservação

do alimento. Durante o processo de decomposição de um alimento a concentração de íons

hidrogênio sofre constantes alterações. Deste modo a determinação do pH é um método

muito importante na determinação do frescor em pescado, pois este apresenta baixo teor

de acidez (BRASIL, 1980; TAVARES et al., 1988). Na tabela 3 encontram-se os valores

médios das triplicatas obtidas para o pH da carne do mexilhão ao longo do tempo de

estocagem, para os tratamentos IN e MP.

41

Tabela 3: Valores médios (±DP) de Bases nitrogenadas voláteis totais (BNVT), pH e Acidez titulável, determinados em músculo do mexilhão

M. falcata In natura e minimamente processado armazenado em gelo.

IN = In natura; MP = Minimamente Processado. Letras maiúsculas iguais nas linhas e minúsculas iguais nas colunas não diferem

estatisticamente (p>0,05).

Os valore de pH encontrados para os mexilhões IN e MP estocados sob refrigeração

não diferiram estatisticamente (p>0,05) em relação as variáveis; tempo, produto, tempo versus

produto (tabela 2). Com base nos valores de pH estabelecidos pelo Regulamento de Inspeção

Industrial e Sanitária de Produtos de Origem Animal – RIISPOA do Ministério da Agricultura

(BRASIL, 1980), para pescado e derivados são inferiores a 6,5 para parte interna da carne e 6,8

para a parte externa da carne. Os valores de pH encontrados neste trabalho variaram de 6,25 a

6,52 para os mexilhões in natura e de 6,40 a 6,98 nos mexilhões minimamente processados.

Tomando como referência os valores de pH estabelecidos pelo RIISPOA, o tratamento IN

atingiu o pH de 7,04, no oitavo dia de estocagem. Entretanto, o MP atingiu pH de 6,98, dez dias

após estocado sob refrigeração. Considerando que não há valores máximo de pH estabelecido

exclusivamente para mexilhões e que o método para quantificar o pH necessita da utilização de

parte interna e externa da carne de forma simultânea, os valores de pH adquiridos neste estudo

são aceitáveis dentro da faixa estabelecida pelo RIISPOA.

Seguindo os valores limites de pH determinado pelo RIISPOA para comercialização do

produto que é de 6,8. Os valores encontrados de pH inicial para o mexilhão IN pode ser

considerado bom no que tange ao pH para o consumo até o sexto dia, atingindo o valor médio

de 6,59, podendo ainda estar em conformidade até o sétimo dia, considerando que o valor

máximo de 7,04 foi alcançado após o oitavo dia de estocagem, ficando acima do valor

estabelecido pela regulamentação. Para o mexilhão MP este pode ser considerado bom ao nível

de pH para o consumo até o oitavo dia, obtendo o valor médio de 6,57, entretanto, poderia estar

em consonância para o consumo até o nono dia, levando em consideração que apenas no tempo

dez de estocagem atingiu-se o valor máximo de 6,98, valor acima do estabelecido pelo

RIISPOA.

TEMPO DE ESTOCAGEM (DIAS)

Analise Tratamentos 0 2 4 6 8 10

BNVT mg N/100g

IN 13,00 ± 0,00Ea 17,00 ± 0,20Da 28,09 ± 0,20Ca 29,63 ± 0,67Ca 30,47 ± 0,93Ba 42,75 ± 0,99Aa

MP 6,80 ± 0,35Eb 7,40 ± 0,20Db 26,51 ± 0,49Cb 27,27 ± 0,45Cb 28,19 ± 0,69Bb 29,03 ± 0,84Ab

pH

IN 6,25 ± 0,60Db 6,53 ± 0,01Cb 6,48 ± 0,02Db 6,59 ± 0,02Bb 7,04 ± 0,02Aa 6,52 ± 0,04CDa

MP 6,40 ± 0,46Ea 6,65 ± 0,28Da 6,70 ± 0,35Da 6,76 ± 0,23Ba 6,57 ± 0,08Cb 6,98 ± 0,12Ab

Acidez Titulável

IN 4,00 ± 0,00Ea 5,33 ± 0,58Da 5,83 ± 0,29Ca 6,80 ± 0,72Ba 9,63 ± 0,25Aa 9,93 ± 1,33Aa

MP 2,67 ± 0,58Eb 3,67 ± 0,58Db 5,67 ± 1,15Cb 5,73 ± 1,47Bb 5,97 ± 0,15Ab 6,00 ± 1,44Ab

42

Contudo, os valor obtidos de pH neste trabalho estão de acordo com os obtidos por

Oetterer (2003) e Furlan (2004) para mexilhões in natura, Salan (2005) para mexilhões

processados, e por Cordeiro et al., (2007), para o mexilhão submetido a cocção, com valores

variando de 5,8 a 6,9; 6,14 a 7,2; 5,87 a 7,11; e 6,9 respectivamente.

Realizando um cruzamento a partir dos dados obtidos de pH e BNVT neste estudo, a

partir do tempo 0 para o mexilhões em ambos os tratamentos, é possível estabelecer uma

correlação positiva. Para Nort (1988), o pH não deve ser utilizado separadamente, e sim

acompanhado paralelamente por análises químicas, microbiológicas e sensoriais, pois somente

seu resultado pode induzir a falsas avaliações. Vários autores não consideram a aferição do pH

como sendo um índice seguro do estado de frescor. Pois seu uso torna-se restrito devido ao fato

de haver variações entre amostras a pela ocorrência de flutuações no decorrer do período de

estocagem (BORGSTROM, 1965; OGAWA e MAIA, 1999), fato também observado neste

estudo. Jay (1994) propôs uma escala de pH para frescor de ostras como parâmetro para

mexilhões, onde o pH de 6,2 – 5,9 é considerado bom; pH de 5,7 – 5,5 é inadequado e para pH

≤ 5,2 é caracterizado como deteriorado. Entretanto o RIISPOA estabelece valores de pH

mínimo de 6,5 e máximo de 6,8 para comercialização do produto.

Erkan (2005) em seu estudo avaliando as variações na qualidade do mexilhão cozido da

espécie Mytilus galloprovincialis armazenado sob refrigeração a 4ºC obteve uma redução não

significativa do pH durante 6 dias de armazenamento (5,96 para 5,89), e não conseguiu

correlacionar a variação do pH com a qualidade sensorial do produto.

Ashie et al. (1996) esclarecem que os bivalves possuem uma reserva de energia em seus

tecidos na forma de glicogênio e a partir do ácido lático produzido, resultante da glicogenólise,

resulta na redução do pH. Liuzzo et al. (1975) em seus estudos também constataram decréscimo

significativo do pH da carne de ostra, durante o período de estocagem em gelo, entretanto, os

autores associaram as ostras de boa qualidade e aceitáveis organolépticamente, a um pH de até

6,49 bem como as que apresentavam algum estágio deteriorativo ao pH de 6,32 a 6,21. Ao

decorrer do presente estudo pode-se constatar relativos aumentos e flutuações do pH na carne

dos mexilhões durante o período de estocagem (tabela 3). Resultado diferente do apresentado

pelos autores em estudos com ostras.

Para Galvão et al., (2006) há a necessidade em realizar estudos específicos para os

limites de pH para moluscos bivalves, haja vista que estes possuem comportamento diferente

de outras espécies de pescado, em relação à decomposição e alteração de pH.

Os resultados obtidos para os valores médios de acidez total titulável foram

estatisticamente significativas (p<0,01) para as variáveis de tempo, produto, tempo versus

43

produto (tabela 2). Os resultados médios de acidez total titulável obtidos para os tratamentos

IN e MP avaliados podem ser observados na tabela 3. Observa-se que a acidez total titulável,

situou-se entre os valores médios de 4,00 a 9,93%, para o tratamento IN e de 2,67 a 6,00%, para

o tratamento MP, entre os tempos T0 a T10, respectivamente.

3.3 ANÁLISE SENSORIAL

Por meio da equipe treinada pelo MIQ foi desenvolvido o protocolo específico para

avaliação da qualidade sensorial do sururu (Mytella falcata) descochado, sob dois tratamentos,

IN e MP estocados em gelo. O aspecto geral superficial da carne, a firmeza da carne em relação

ao toque e o estágio das alterações pós-mortis do musculo, observado pela rigidez do molusco,

foram as características levantadas pela equipe para ambos os tratamentos. As variações de

coloração, odor e textura do sururu foram registradas durante o tempo de estocagem de 10 dias.

Conforme metodologia descrita na literatura, no esquema preliminar, os atributos receberam

pontuações, que variavam de 0 a 3, em que os valores mais elevados acumulavam deméritos.

Entretanto, os atributos recebidos para o tratamento minimamente processado variaram de 0 a

2, sendo no seu esquema definitivo incluído a pontuação 3 referente a musculatura

completamente autolisada, desfragmentando-se ao toque entre os dedos. A soma final dessas

pontuações deu origem ao IQ da espécie em estudo, onde o valor zero, atribui-se ao sururu

fresco, ou seja de melhor qualidade sensorial em relação ao estado de frescor (tabelas 4 e 5).

As pontuações medias obtidas pela equipe formada por nove julgadores, previamente

treinados, realizado em três repetições por julgadores, levantados a partir da aplicação o MIQ

para o sururu descochado na forma IN e MP armazenado em gelo estão dispostos na tabela 6,

onde pode-se observar os valores de IQ mínimo e máximo de 0 a 9 e 0 a 7 para os tratamentos

IN e MP, respectivamente.

Os parâmetros sensoriais significativos encontrados neste estudo para a carne do sururu

nos tratamentos IN e MP estão descritos nas tabelas 4 e 5, respectivamente. A cor da

musculatura variou ao longo do tempo de armazenamento de marrom amarelado a marrom

escuro para o tratamento IN, enquanto para o tratamento MP variou de amarelo cinzento a

marrom amarelado, característicos da carne de moluscos em estado de deterioração. Foi

observado que a quantidade de muco e sua viscosidade aumentaram com o passar do tempo de

armazenamento. O odor apresentado na carne do tratamento IN passou por quatro estágios

sendo estes bem definidos, recebendo quatro pontuações ao longo do período de estocagem (0

– característico; 1 – maresia; 2 – levemente característico/acre; 3 – desagradável). Porém, o

44

odor apresentado a carne do tratamento minimamente processado, passou por apenas três

estágios, entretanto, bem definidos, recebendo três pontuações durante o período de estocagem

(0 – agradável pronunciado; 1 – característico agradável; 2 - levemente característico).

Tabela 4: Esquema final do Método do Índice de Qualidade (MIQ) desenvolvido para o sururu (Mytella falcata)

in natura descochado e estocado em gelo.

PARÂMETROS CARACTERISTICAS PONTO

ASPECTO

GERAL

COLORAÇÃO

Marrom amarelado 0 ( )

Marrom amarelado/opaco 1 ( )

Marrom escuro amarelado 2 ( )

Marrom escuro 3 ( )

ODOR

Característico/agradável 0 ( )

Maresia 1 ( )

Levemente característico/acre 2 ( )

Desagradável / nauseante 3 ( )

TEXTURA

Aspecto esponjoso e firme 0 ( )

Viscoso /fibroso 1 ( )

Ligeiramente viscoso/fibroso 2 ( )

Viscoso/ levemente fibroso 3 ( )

INDICE DE QUALIDADE 0 - 9

Tabela 5: Esquema final do Método do Índice de Qualidade (MIQ) desenvolvido para o sururu (Mytella falcata)

minimamente processado descochado e estocado em gelo.

PARÂMETROS CARACTERISTICAS PONTO

ASPECTO

GERAL

COLORAÇÃO

Amarelo cinzento 0 ( )

Amarelo cinzento fosco 1 ( )

Marrom amarelado 2 ( )

ODOR

Agradável pronunciado 0 ( )

Característico agradável 1 ( )

Levemente característico 2 ( )

TEXTURA

Aspecto firme esponjosa 0 ( )

Fibrosos e firme 1 ( )

Levemente fibrosa/degradativo ao toque 3 ( )

INDICE DE QUALIDADE 0 - 7

Tabela 6: Media e desvio padrão das pontuações do Método do Índice de Qualidade (MIQ), em escala de 0 a 9

sururu (Mytella falcata) in natura e minimamente processado descochada e estocado em gelo.

Tempo de Armazenamento (dias) In natura Minimamente processado

Pontuação IQ Pontuação IQ

0 0,00 ± 0,00 0,00 ± 0,00

2 0,00 ± 0,00 0,00 ± 0,00

4 3,00 ± 0,00 0,00 ± 0,00

6 5,00 ± 0,58 3,00 ± 0,00

8 9,00 ± 0,00 3,00 ± 0,00

10 9,00 ± 0,00 7,00 ± 0,58

45

Com relação a textura da carne do sururu, o tratamento IN apresentou-se firme até o

segundo dia em gelo, variando posteriormente para viscoso/fibroso, ligeiramente

viscoso/fibroso e viscoso/levemente fibroso. Enquanto que para o tratamento minimamente

processado a textura apresentou-se firme até o quarto dia estocado em gelo, variando em

seguida para fibroso e firme, e levemente fibroso/degradativo ao toque. Os últimos estágios em

ambos os tratamentos foram observados no decimo dia de estocagem, onde somente no

tratamento MP caracterizou-se a desfragmentação da carne ao toque entre os dedos dos

julgadores.

Contudo, a mudança mais intensa observadas no IQ para carne do sururu ocorreram

entre o sexto e o oitavo dia, no tratamento IN e entre o oitavo e decimo dia para o tratamento

MP. Durante este período, observou-se que o IQ médio aumentou de 5,00 para 9,00 e de 3,00

para 7,00 em ambos os tratamentos, respectivamente. O IQ para rejeição da carne do sururu IN

foi de 9 pontos sendo atingidos no oitavo dia em gelo. Porém, o IQ adquirido para a carne do

sururu MP foi de 7 pontos, atingidos no decimo dia de estocagem. Entretanto, ressalta-se que a

pontuação adquirida neste último dia não foi considerada como sendo o valor máximo de

rejeição pela equipe de julgadores, uma vez que as características levantadas para este

tratamento, se mantiveram aceitáveis sensorialmente, o que preconizou-se pelos julgadores que

as amostras poderiam chegar ao IQ para rejeição no decimo segundo dia estocado em gelo. No

último dia de avaliação, observou-se no tratamento IN uma significativa quantidade de muco

viscoso, odor desagradável e textura levemente fibrosa. No tratamento MP, também foram

observados a presença de uma pequena quantidade de muco viscoso, odor levemente

característico, entretanto uma textura levemente fibrosa degradativo ao toque.

Toda via, no oitavo dia estocado em gelo, o sururu IN estava completamente

deteriorados, atingindo a máxima pontuação do esquema MIQ de 9 pontos, apresentando odor

fortemente pútrido e a musculatura intensamente mole, viscosa e coloração marrom escuro.

Enquanto o sururu MP alcançou o decimo dia estocado em gelo, mantendo suas características

sensoriais aceitáveis para o consumo, com apenas uma exceção para musculatura que

apresentou-se levemente fibrosa e degradativo ao toque, atingindo a pontuação máxima do

esquema MIQ de 7 pontos, apresentando os demais atributos como odor levemente

característico, coloração marrom amarelado.

4. CONCLUSÃO

Com base nos resultados obtidos neste estudo, conclui-se que o mexilhão (M. falcata)

descochado e estocado em gelo a (2 ± 1ºC) pode ser consumido até 8 dias (in natura) e 10 dias

para o minimamente processado.

46

5. REFERÊNCIAS:

ACKMAN, R.G. 1999 Composición y valor nutritivo de los lípidios del pescado y del marisco.

In: RUITER, A. El pescado y los productos derivados de la pesca: composición, propriedades

nutritivas y estabilidad. Zaragoza: Acribia. p.81-121.

AKSE, L.; BIRKELAND, S.; TOBIASSEN, T.; JOENSEN, S.; LARSEN, R. injection-salting

and cold-smoking of farmed atlantic cod (Gadus morhua L.) and atlantic salmon (Salmo salar

L.) at different stages of rigor mortis: effect on physical properties. Journal of Food Science,

Chicago, v. 73, n. 8, p. 378-382, 2008. http://dx.doi.org/10.1111/j.1750-3841.2008.00917.x

ANDRÉS-BELLO, A.; BARRETO-PALACIOS, V.; GARCÍASEGOVIA, P.; MIR-BEL, J. E.;

MARTÍNEZ-MONZÓ, J. Effect of pH on color and texture of food products. Food Engineering

Reviews, New York, v. 5, n. 3, p. 158-170, 2013. http://dx.doi. org/10.1007/s12393-013-9067-

2

ANTONIOLLI, M.A. Vida útil do mexilhão Perna perna (L.) processado e mantido sob

refrigeração. Florianópolis, 1999. 99p. Dissertação (Mestrado) – Centro de Ciências Agrarias,

Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Catarina.

ASHIE, I.N.A.; SMITH, J.P; SIMPSON, B.K. Spoilage and shelf-life extesion of fresh and

shellfish. Critical Reviews in Food Science and Nutrition, v.36, n.1/2, p.81-121, 1996.

AVEIRO, M. V. Análise nutricional, microbiológica e histológica do berbigão Anomalocardia

brasiliana da Reserva Extrativista Marinha do Pirajubaé (REMAPI), Florianópolis/SC.

Florianópolis, 2007. (Dissertação de Mestrado – Nutrição) – Universidade Federal de Santa

Catarina.

BAIXAS-NOGUERAS, S.; BOVER-CID, S.; VECIANA-NOGUES, T.; NUNES, M. L.;

VIDAL-CAROU, M. C. Development of a quality index method to evaluate freshness in

mediterranean hake (Merluccius merluccius). Journal of Food Science, Chicago, v. 68, n. 3, p.

1067-1071, 2003. http://dx.doi. org/10.1111/j.1365-2621.2003.tb08289.x

BASE de dados de nutrientes do USDA RS14: mexilhão, azul, cozido.

http://www.univesp.br/dis/servicos/nutri/nutri.php?id=4110 (26 Nov. 2014)

BONILLA, A. C.; SVEINSDOTTIR, K.; MARTINSDOTTIR, E. Development of quality

index (QIM) scheme for fresh cod (Gadus morhua) fillets and application in shelf life study.

Food Control, Vurrey, v. 18, p. 352-358, 2007.

47

BORGSTROM, G. Physicochemical, methods. In: BORGSTROM, G. (Ed.). Fish as food. New

York: Academic Press, 1965. v.4, cap.2, p.71-126.

BRASIL, Métodos analíticos oficiais para controle de produtos de origem animal e seus

ingredientes. Ministério da Saúde. LANARA, Brasília, DF, 1981. 122p.

BRASIL. Ministério da Agricultura. Regulamento da Inspeção Industrial e Sanitária de

Produtos de Origem Animal – R.I.I.S.P.O.A. Brasília, 1980. 165p.

CARDENAS-BONILLA, A.; SVEINSDOTTIR, K.; MARTINSDOTTIR, E. Development of

quality index method (QIM) scheme for fresh cod (Gadus morhua) fillets and application in

shelf life study. Food Control, Amsterdan, v. 18, n. 4, p. 352-358, 2007.

CORDEIRO, D.; LOPES, T. G. G.; OETTERER, M.; PORTO, E. GALVÃO, J. A. Qualidade

do mexilhão Perna perna Submetido ao Processamento Combinado de Cocção, Congelamento

e Armazenamento. Boletim CEPPA, Curitiba, v. 25, n.1, p. 165-179, jan.-jun. 2007.

ERKAN, N. Changes in quality characteristics during cold storage of shucked mussels (Mytilus

galloprovincialis) and selected chemical decomposition indicators. Journal of the Science of

Food and Agriculture, v. 85, p. 2625–2630, 2005.

EU COMMISSION. Freshness, quality and safety in seafoods. http: www.

Seafood.ucdavis.edu/pubs/qualitysafety.doc (16 Jan 2004).

FUENTES, A.; FERNANDEZ-SEGOVIA, I.; ESCRICHE, I.; SERRA, J.A. 2009 Comparison

of physico- chemical parameters and composition of mussels (Mytilus galloprovincialis Lmk.)

from different Spanish origins. Food Chemistry, England, 112(2): 295-302.

FURLAN, E.F. Vida útil dos mexilhões Perna perna cultivados no litoral norte de São Paulo:

aferição dos parâmetros físico-químicos e microbiológicos. Piracicaba, 2004. 108p. Dissertação

(Mestrado) – Escola Superior de Agricultura “Luiz de Queiroz” Universidade de São Paulo.

FURTADO, S.M.B.; DOMINGOS, T.H.; SOARES, A.K. Determinação da composição

centesimal e minerais de moluscos (Mytella falcata e Anomalocardia brasiliana) mais

consumidos no estado do rio grande do norte (Compact disc) CONGRESSO BRASILEIRO DE

CIÊNCIA E TECNOLOGIA DE ALIMENTOS, 16., Porto alegre, 1998. Resumos. Porto

Alegre: UFRS, 1998.

GALVÃO, J. A.; FURLAN, É. F.; SALÁN, E. O.; PORTO, E.; OETTERER, M. Características

Físico-químicas e Microbiológicas (Staphylococcus aureus e Bacillus cereus) da Água e dos

48

Mexilhões Cultivados na Região de Ubatuba, SP. Ciência e Agrotecnologia, Lavras, v.30, n.6,

p. 1124-1129, nov./dez., 2006.

GUILLERM-REGOST, C.; HAUGEN, T.; NORTVEDT, R.; CARLEHÖUG, M.;

LUNESTAD, B. T.; KIESSLING, A.; RØRÁR, A. M. B. Quality characterization of farmed

atlantic halibut during ice storage. Journal of Food Science, Chicago, v. 71, n. 2, p. 83-90, 2006.

http://dx.doi.org/10.1111/j.1365-2621.2006. tb08926.x

HUSS, H.H. Assurance of seafood quality. Rome: FAO, 1993. 169p. (FAO Fisheries technical

paper, 334).

INSTITUTO ADOLFO LUTZ. Brasil – Ministério da Saúde. Agência Nacional de Vigilância

Sanitária – Métodos Físico-químicos para Analise de Alimentos. IV ed. Brasília: Ministério da

Saúde, 2005.

INSTITUTO ADOLFO LUTZ. Normas Analíticas do Instituto Adolfo Lutz. v. 1: Mé todos

químicos e físicos para análise de alimentos, 3. ed. São Paulo: IMESP, 1985. p. 13.

JAY, J. M. Microbiologia moderna de los alimentos. 3. Ed. Zaragoza: Acribia, 1994.804p.

JESUS, R. S.; LESSI, E.; TENUTA FILHO, A. Estabilidade química e microbiológica de

“minced fish” de peixes amazônicos durante o congelamento. Ciência e Tecnologia de

Alimentos, Campinas, v. 21, n. 2, p. 144-148, 2001. http://dx.doi. org/10.1590/S0101-

20612001000200004

LAKSHMANAN, P. T. VARMA, P.R., IYER, T. S. G. Studies on the quality changes of frozer

fish in retail. cold stores. Food Science Technology, v. 24, n.2, p. 190, 1992.

LARRALDE, J.; RODRIGUES, C. & BELLO, L. (1965). Acerca de los coeficientes de

transformación e índice de utilización proteica del Mytilus edulis. An. Bromatol. 17(2): 238-

247.

LIRA,G.M; FILHO, J.M; SANT’ANA, L.S; TORRES, R.P; OLIVEIRA, A.C; OMENA,

C.M.B; NETA, M.L.S. Perfil de ácidos graxos, composição centesimal e valor calórico

demoluscos crus e cozidos com leite de coco da cidade de Maceió-Al. Rev. Bras. Cienc. Farm.

Braz. J. Pharm. Sci.vol. 40, n. 4, out./dez., 2004

LIRA, G. M.; MANCINI FILHO, J.; SANT’ANA, L. S.; TORRES, R. P.; OLIVEI- RA, A.

C.; OMENA, C. M. B.; SILVA NETA, M.L. Perfil de ácidos graxos, compo- sição centesimal

e valor calórico de moluscos crus e cozidos com leite de coco da cidade de Maceió-AL. Rev.

Bras. Cienc. Farm. (Braz. J. Pharm. Sci.), v. 40, n. 4, p. 529-537, 2004.

49

LIRA, G.M.; MANCINI FILHO, J.; SANT’ANA, L.A.; TORRES, R.P.; OLIVEIRA, A.C.;

OMENA, C.M.B.; SILVA NETA, M.L. 2004 Perfil de ácidos graxos, composição centesimal

e valor calórico de moluscos crus e cozidos com leite de coco da cidade de Maceió, AL. Revista

Brasileira de Ciências Farmacêuticas, São Paulo, 40(4): 1-11.

LIUZZO, J.A.; LAGARDE, S.C.; GRODNER, R.M.; NOVAK, A.F. A total reducing substance

test for ascertaining oystes quality. Journal of Food Science, v.40, p.125-128, 1975.

LOMOVASKY, B.J.; MALANGA, G.; CALVO, J. 2004 Seasonal changes in biochemical

composition of the clam, Eurhomalea exalbida (Bivalvia: Veneridae), from the beagle channel,

Argentina. Journal of Shellfisheries Research, EUA, 23(1): 81-87

MAGALHÃES, R. R. M. Teor de proteína do mexihão Perna perna (Linné, 1758) em função

do ciclo sexual. 1985, 177p. Dissertação (Mestrado em Fisiologia)-Instituto de Biociências,

Universidade de São Paulo.

MCLEAN, C.H. e BULLING, K.R. 2005 Differences in lipid profile of New Zealand marine

species over four seasons. Journal of Food Lipids, Canadá, 12(4): 313-326.

MENDEZ, M.H.M. Evolução das bases voláteis totais e da trimetilamina em pescado e o seu

uso como indicador de qualidade. São Paulo, 1974. 63p. Dissertação (Mestrado) – Faculdade

de Ciências Farmacêuticas, Universidade de São Paulo.

MORGA, A.A. Avaliação do índice de frescor da pescada foguete (Macrodon ancylodon)

conservada em gelo. Campinas, 1975. 80p. Dissertação (Mestrado) – Faculdade de Tecnologia

de Alimentos, Universidade Estadual de Campinas.

NIELSEN, D.; GREEN, D. Developing a quality index grading tool for hybrid striped bass

(Morone saxatilis x Morone chrysops) based on the quality index method. International Journal

Food Science and Technology, Oxford, v. 42, n. 1, p. 86-94, 2007.

http://dx.doi.org/10.1111/j.1365-2621.2006.01216.x

NORT, E. Importância do controle físico na qualidade do pescado. In: SEMINARIO SOBRE

CONTROLE DE QUALIDADE NA INDÚSTRIA DE PESCADO, santas, 1988. Anais. São

Paulo: Instituto de Pesca, 1998. P.135-144.

OETTERER, M. Diagnóstico e intervenções emergentes para viabilizar a comercialização

e o beneficiamento do pescado e derivados-mexilhões, no Litoral Norte de São Paulo. São

Paulo: FAPESP, s.d. (Relatório da 1ª fase do projeto de políticas públicas da FAPESP –

Processo 01/12919 -1.2003).

50

OGAWA, M.; MAIA, E.L. Manual da pesca. São Paulo: Varela, 1999. 430p.

ORBAN, E.; DI LENA, G.; NEVIGATO, T.; CASINI, I.; CAPRONI, R.; SANTARONI, G.;

GIULINI, G. Nutricional and commercial quality of the striped venus clam, Chamelea gallina,

from the Adriatic sea. Food Chemistry, 101: 1063-1070, 2006.

PACHECO-AGUILAR, R.; LUGO-SÁNCHEZ, M. E.; ROBLESBURGUEÑO, M. R.

Postmortem biochemical and functionalcharacteristic of monterey sardine muscle stored at 0°C.

Journal of Food Science, Chicago, v. 65, n. 1, p. 40-47, 2000. http:// dx.doi.org/10.1111/j.1365-

2621.2000.tb15953.x

PARISENTI, J.; TRAMONTE, V.L.C.G.; FACCIN, G.L. 2008 Composição centesimal de

mexilhões Perna perna, crus e cozidos, coletados em diferentes estações do ano na cidade de

Florianópolis/SC. Revista Higiene Alimentar, São Paulo, 22(159): 84-88.

PEDROSA, L. F. C.; COZZOLINO, S. M. F. Composição centesimal e de minerais de mariscos

crus e cozidos da cidade de Natal/RN. Ciênc. Tecnol. Aliment., v.21, n. 2, p. 154- 157, 2001.

PEREIRA, O. M. e GRAÇA LOPES, R. da 1995 Fixação de sementes de Mytella falcata

(sururu) em coletores artificiais no Canal de Bertioga, Estuário de Santos, Estado de São Paulo,

Brasil. B. Inst. Pesca, São Paulo, 22 (1): 165 - 173.

PEREIRA-BARROS, J.B. 1987. Bibliografia comentada sobre o sururu Mytela falcata e a

bioecologia do complexo estuarino Mundau-Manguaba, AL. Parte I. Bol. Est. Cienc. Mar (6):

p.36-48 .

ROBB, D. H. F.; KESTIN, S. C. Methods used to kill fish: field observations and literature

reviewed. Animal Welfare, Hertfordshire, v. 11, n. 3, p. 269-282, 2002.

SALÁN, E. O. Tratamento Térmico de Mexilhões Perna perna como forma de assegurar

a qualidade: validação do crescimento de Bacillus cereus e de Staphylococus aureus.

Piracicaba, 2005. 88 p. Dissertação de Mestrado, Escola Superior de Agricultura Luiz de

Queiroz, Universidade de São Paulo – USP.

SCHRAMM, M.A. 1993 Caracterização e aproveitamento de mexilhões Perna perna (Linné,

1758). Rio Grande, 54p. (Monografia da Graduação. Faculdade de Oceanologia, Universidade

do Rio Grande).

TAVARES, M.; SABRIA, A.; BACETTI, L.B. et al. Métodos sensoriais, físicos e químicos

para análise de pescado. In: SEMINARIO SOBRE CONTROLE DE QUALIDADE NA

51

INDUSTRIA DE PESCADO, Santos, 1998. Anais. São Paulo: Instituto de Pesca, 1988. P.117-

134.

TAVARES, M.; SABRIA, A.; BACETTI, L.B.; ZAMBONI, C.Q. 1988 Métodos sensoriais,

físicos e químicos para análise de pescado. In: SEMINÁRIO SOBRE CONTROLE DE

QUALIDADE NA INDÚSTRIA DE PESCADO, 1., Santos, 25-27/jul./1988. Anais... Santos:

Universidade Católica de Santos. p.117-134.

TEODORO, A. J.; ANDRADE, E. C. B.; MANO, S. B. Avaliação da utilização de embalagem

em atmosfera modificada sobre a conservação de sardinhas (Sardinella brasiliensis). Ciência e

Tecnologia de Alimentos, Campinas, v. 27, n. 1, p. 158-161, 2007.

http://dx.doi.org/10.1590/S0101-20612007000100028

VIEGAS, E. M. M.; PIMENTA, F. A.; PREVIERO, T. C.; GONÇALVES, L. U.; DURÃES, J.

P.; RIBEIRO, M. A. R.; OLIVEIRA FILHO, P. R. C. Métodos de abate e qualidade da carne

de peixe. Archivos de Zootecnia, Córdoba, v. 61, n. 1, p. 41-50. 2012.

Vieira RHSF (coordenadora). Microbiologia, higiene e qualidade do pescado. Teoria e prática.

1ª Ed. São Paulo: Varela; 2003.

WOOD, P. C. Manual de Higiene de los Mariscos. Zaragoza: Acribia, 1979. 79 p.

III CAPÍTULO

54

CONCLUSÕES GERAIS

A partir dos resultados obtidos neste estudo conclui-se que, o protocolo MIQ para

avaliação do mexilhão (Mytella falcata) in natura e minimante processado, foi desenvolvido e

se mostrou eficiente na avaliação do frescor, correlacionando-se com o tempo de estocagem

dos moluscos. Os resultados obtidos pelas diversas análises, seguindo os padrões do RIISPOA

para pescado, principalmente enquanto a BNVT e pH sugerem que o mexilhão, enquanto

descochado e mantido estocado em gelo, mantem suas características adequadas para o

consumo até o 8º dia in natura e até o 10º dia minimamente processado, sob a temperatura de

(2 ± 1ºC).

55

ANEXO

Normas para submissão de artigo a revista Caatinga

INSTRUÇÕES AOS AUTORES

ORGANIZAÇÃO DO TRABALHO CIENTÍFICO

• Digitação: o texto deve ser composto em programa Word (DOC ou RTF) ou compatível e os gráficos em

programas compatíveis com o Windows, como Excel, e formato de imagens: Figuras (GIF) e Fotos (JPEG). Deve

ter no máximo de 20 páginas, A4, digitado em espaço 1,5, fonte Times New Roman, estilo normal, tamanho doze

e parágrafo recuado por 1 cm. Todas as margens deverão ter 2,5 cm. Páginas e linhas devem ser numeradas; os

números de páginas devem ser colocados na margem inferior, à direita e as linhas numeradas de forma contínua.

Se forem necessárias outras orientações, entre em contato com o Comitê Editorial ou consulte o último número da

Revista Caatinga. As notas devem apresentar até 12 páginas, incluindo tabelas e figuras. As revisões são publicadas

a convite da Revista. O manuscrito não deverá ultrapassar 2,0 MB.

• Estrutura: o artigo científico deverá ser organizado em título, nome do(s) autor(es), resumo, palavras-

chave, título em inglês, abstract, keywords, introdução, material e métodos, resultados e discussão, conclusão,

agradecimentos (opcional), e referências.

• Título: deve ser escrito em maiúsculo, negritado, centralizado na página, no máximo com 15 palavras,

não deve ter subtítulo e abreviações. Com a chamada de rodapé numérica, extraída do título, devem constar

informações sobre a natureza do trabalho (se extraído de tese/dissertação) e referências às instituições

colaboradoras. O nome científico deve ser indicado no título apenas se a espécie for desconhecida. Os títulos das

demais seções da estrutura (resumo, abstract, introdução, material e métodos, resultados e discussão, conclusão,

agradecimentos e referências) deverão ser escritos em letra maiúscula, negrito e justificado à esquerda.

• Autores(es): nomes completos (sem abreviaturas), em letra maiúscula, um após o outro, separados por

virgula e centralizados na linha. Como nota de rodapé na primeira página, indicar, para cada autor, afiliação

completa (departamento, centro, instituição, cidade, país), endereço completo e e-mail do autor correspondente.

Este deve ser indicado por um “*”. Só serão aceitos, no máximo, cinco autores. Caso ultrapasse esse limite, os

autores precisam comprovar que a pesquisa foi desenvolvida em regiões diferentes.

Na primeira versão do artigo submetido, os nomes dos autores e a nota de rodapé com os endereços

deverão ser omitidos. Para a inserção do(s) nome(s) do(s) autor(es) e do(s) endereço(s) na versão final do artigo

deve observar o padrão no último número da Revista Caatinga (http://caatinga.ufersa.edu.br/index.php/sistema).

• Resumo e Abstract: no mínimo 100 e no máximo 250 palavras.

• Palavras-chave e Keywords: em negrito, com a primeira letra maiúscula. Devem ter, no mínimo, três e,

no máximo, cinco palavras, não constantes no Título/Title e separadas por ponto (consultar modelo de artigo).

Obs. Em se tratando de artigo escrito em idioma estrangeiro (Inglês ou Espanhol), o título, resumo e palavras-

chave deverão, também, constar em Português, mas com a seqüência alterada, vindo primeiro no idioma

estrangeiro.

• Introdução: no máximo, 550 palavras, contendo citações atuais que apresentem relação com o assunto

abordado na pesquisa.

• Citações de autores no texto: devem ser observadas as normas da ABNT, NBR 10520 de agosto/2002.

Ex: Torres (2008) ou (TORRES, 2008); com dois autores, usar Torres e Marcos Filho (2002) ou (TORRES;

MARCOS FILHO, 2002); com mais de três autores, usar Torres et al. (2002) ou (TORRES et al., 2002).

• Tabelas: serão numeradas consecutivamente com algarismos arábicos na parte superior. Não usar linhas

verticais. As linhas horizontais devem ser usadas para separar o título do cabeçalho e este do conteúdo, além de

uma no final da tabela. Cada dado deve ocupar uma célula distinta. Não usar negrito ou letra maiúscula no

cabeçalho. Recomenda-se que as tabelas apresentem 8,2 cm de largura, não sendo superior a 17 cm (consulte o

modelo de artigo), acessando a página da Revista Caatinga

(http://periodico.caatinga.ufersa.edu.br/index.php/sistema).

• Figuras: gráficos, fotografias ou desenhos levarão a denominação geral de Figura sucedida de numeração

arábica crescente e legenda na parte inferior. Para a preparação dos gráficos deve-se utilizar “softwares”

compatíveis com “Microsoft Windows”. A resolução deve ter qualidade máxima com pelo menos 300 dpi. As

figuras devem apresentar 8,5 cm de largura, não sendo superior a 17 cm. A fonte empregada deve ser a Times New

Roman, corpo 10 e não usar negrito na identificação dos eixos. As linhas dos eixos devem apresentar uma

espessura de 1,5 mm de cor preta. A Revista Caatinga reserva-se ao direito de não aceitar tabelas e/ou figuras com

o papel na forma “paisagem” ou que apresentem mais de 17 cm de largura. Tabelas e Figuras devem ser inseridas

logo após à sua primeira citação.

• Equações: devem ser digitadas usando o editor de equações do Word, com a fonte Times New Roman.

As equações devem receber uma numeração arábica crescente. As equações devem apresentar o seguinte padrão

de tamanho: Inteiro = 12 pt Subscrito/sobrescrito = 8 pt Sub-subscrito/sobrescrito = 5 pt Símbolo = 18 pt

Subsímbolo = 14 pt Estas definições são encontradas no editor de equação no Word.

• Agradecimentos: logo após as conclusões poderão vir os agradecimentos a pessoas ou instituições,

indicando, de forma clara, as razões pelas quais os faz.

• Referências: devem ser digitadas em espaço 1,5 cm e separadas entre si pelo mesmo espaço (1,5 cm).

Precisam ser apresentadas em ordem alfabética de autores, Justificar (Ctrl + J) - NBR 6023 de agosto/2002 da

ABNT. UM PERCENTUAL DE 60% DO TOTAL DAS REFERÊNCIAS DEVERÁ SER ORIUNDO DE

PERIÓDICOS CIENTÍFICOS INDEXADOS COM DATA DE PUBLICAÇÃO INFERIOR A 10 ANOS.

O título do periódico não deve ser abreviado e recomenda-se um total de 20 a 30 referências. EVITE CITAR

RESUMOS E TRABALHOS APRESENTADOS E PUBLICADOS EM CONGRESSOS E SIMILARES.

REGRAS DE ENTRADA DE AUTOR

Até 3 (três) autores

Mencionam-se todos os nomes, na ordem em que aparecem na publicação, separados por ponto e virgula.

Ex: TORRES, S. B.; PAIVA, E. P. PEDRO, A. R. Teste de deterioração controlada para avaliação da qualidade

fisiológica de sementes de jiló. Revista Caatinga, Mossoró, v. 0, n. 0, p. 00-00, 2010.

Acima de 3 (três) autores

Menciona-se apenas o primeiro nome, acrescentando-se a expressão et al.

Ex: BAKKE, I. A. et al. Water and sodium chloride effects on Mimosa tenuiflora (Willd.) poiret seed germination.

Revista Caatinga, Mossoró, v. 19, n. 3, p. 261-267, 2006.

Grau de parentesco

HOLANDA NETO, J. P. Método de enxertia em cajueiro-anão-precoce sob condições de campo em Mossoró-RN.

1995. 26 f. Monografia (Graduação em Agronomia) – Escola Superior de Agricultura de Mossoró, Mossoró, 1995.

COSTA SOBRINHO, João da Silva. Cultura do melão. Cuiabá: Prefeitura de Cuiabá, 2005.

MODELOS DE REFERÊNCIAS:

a) Artigos de Periódicos: Elementos essenciais:

AUTOR. Título do artigo. Título do periódico, Local de publicação (cidade), n.º do volume, n.º do fascículo,

páginas inicial-final, mês (abreviado), ano.

Ex: BAKKE, I. A. et al. Water and sodium chloride effects on Mimosa tenuiflora (Willd.) poiret seed germination.

Revista Caatinga, Mossoró, v. 19, n. 3, p. 261-267, set. 2006.

b) Livros ou Folhetos, no todo: Devem ser referenciados da seguinte forma:

AUTOR. Título: subtítulo. Edição. Local (cidade) de publicação: Editora, data. Número de páginas ou volumes.

(nome e número da série)

Ex: RESENDE, M. et al. Pedologia: base para distinção de ambientes. 2. ed. Viçosa, MG: NEPUT, 1997. 367 p.

OLIVEIRA, A. I.; LEONARDOS, O. H. Geologia do Brasil. 3. ed. Mossoró: ESAM, 1978. 813 p. (Coleção

mossoroense, 72).

c) Livros ou Folhetos, em parte (Capítulo de Livro):

AUTOR DO CAPÍTULO. Título do capítulo. In: AUTOR DO LIVRO. Título: subtítulo do livro. Número de

edição. Local de publicação (cidade): Editora, data. Indicação de volume, capítulo ou páginas inicial-final da parte.

Ex: BALMER, E.; PEREIRA, O. A. P. Doenças do milho. In: PATERNIANI, E.; VIEGAS, G. P. (Ed.).

Melhoramento e produção do milho. Campinas: Fundação Cargill, 1987. v. 2, cap. 14, p. 595-634.

d) Dissertações e Teses: (somente serão permitidas citações recentes, PUBLICADAS NOS ÚLTIMOS TRÊS

ANOS QUE ANTECEDEM A REDAÇÃO DO ARTIGO). Referenciam-se da seguinte maneira:

AUTOR. Título: subtítulo. Ano de apresentação. Número de folhas ou volumes. Categoria (grau e área de

concentração) - Instituição, local.

Ex: OLIVEIRA, F. N. Avaliação do potencial fisiológico de sementes de girassol (Helianthus annuus L.). 2011.

81 f. Dissertação (Mestrado em Fitotecnia: Área de Concentração em Tecnologia de Sementes) – Universidade

Federal Rural do Semi-Árido, Mossoró, 2011.

e) Artigos de Anais ou Resumos: (DEVEM SER EVITADOS)

NOME DO CONGRESSO, n.º., ano, local de realização (cidade). Título... subtítulo. Local de publicação (cidade):

Editora, data de publicação. Número de páginas ou volumes.

Ex: BALLONI, A. E.; KAGEYAMA, P. Y.; CORRADINI, I. Efeito do tamanho da semente de Eucalyptus grandis

sobre o vigor das mudas no viveiro e no campo. In: CONGRESSO FLORESTAL BRASILEIRO, 3., 1978,

Manaus. Anais... Manaus: UFAM, 1978. p. 41-43.

f) Literatura não publicada, mimeografada, datilografada etc.:

Ex: GURGEL, J. J. S. Relatório anual de pesca e piscicultura do DNOCS. Fortaleza: DNOCS, 1989. 27 p.

Datilografado.

g) Literatura cuja autoria é uma ou mais pessoas jurídicas:

Ex: ASSOCIAÇÃO BRASILEIRA DE NORMAS TECNICAS. NBR 6023: informação e documentação –

referências – elaboração. Rio de Janeiro, 2002. 24 p.

h) Literatura sem autoria expressa:

Ex: NOVAS Técnicas – Revestimento de sementes facilita o plantio. Globo Rural, São Paulo, v. 9, n. 107, p. 7-9,

jun. 1994.

i) Documento cartográfico:

Ex: INSTITUTO GEOGRÁFICO E CARTOGRÁFICO (São Paulo, SP). Regiões de governo do Estado de São

Paulo. São Paulo, 1994. 1 atlas. Escala 1:2.000.

J) Em meio eletrônico (CD e Internet): Os documentos /informações de acesso exclusivo por computador (on line)

compõem-se dos seguintes elementos essenciais para sua referência:

AUTOR. Denominação ou título e subtítulo (se houver) do serviço ou produto, indicação de responsabilidade,

endereço eletrônico entre os sinais < > precedido da expressão – Disponível em: – e a data de acesso precedida da

expressão – Acesso em:.

Ex: BRASIL. Ministério da Agricultura e do abastecimento. SNPC – Lista de Cultivares protegidas. Disponível

em: <http://agricultura.gov.br/scpn/list/200.htm>. Acesso em: 08 set. 2008.

GUNCHO, M. R. A educação à distância e a biblioteca universitária. In: SEMINÁRIO DE BIBLIOTECAS

UNIVERSITÁRIAS, 10., 1998, Fortaleza. Anais… Fortaleza: Tec Treina, 1998. 1 CD-ROM.

UNIDADES E SÍMBOLOS DO SISTEMA INTERNACIONAL ADOTADOS PELA REVISTA CAATINGA