98
Paavo Pylkkänen University of Helsinki, Finland and University of Skövde, Sweden Email: paavo.pylkkanen@helsinki.fi Web: http://tuhat.halvi.helsinki.fi/portal/en/person/pylkkane

Active information in quantum physics, biology and beyond. Argumenta lecture

Embed Size (px)

Citation preview

Page 1: Active information in quantum physics, biology and beyond. Argumenta lecture

Paavo  Pylkkänen      University  of  Helsinki,  Finland    and  University  of  Skövde,  Sweden  E-­‐mail:  [email protected]  Web:  http://tuhat.halvi.helsinki.fi/portal/en/person/pylkkane  

Page 2: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  “In  physics,  the  theory  that  energy  does  not  have  a  continuous  range  of  values,  but  is,  instead,  absorbed  or  radiated  discontinuously,  in  multiples  of  definite,  indivisible  units  called  quanta.    

¡  Just  as  earlier  theory  showed  how  light,  generally  seen  as  a  wave  motion,  could  also  in  some  ways  be  seen  as  composed  of  discrete  particles  (photons),  quantum  theory  shows  how  atomic  particles  such  as  electrons  may  also  be  seen  as  having  wavelike  properties.  

¡   Quantum  theory  is  the  basis  of  particle  physics,  modern  theoretical  chemistry,  and  the  solid-­‐state  physics  that  describes  the  behaviour  of  the  silicon  chips  used  in  computers.”  

Hutchinson  Pocket  Dictionary  of  Physics    

Page 3: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Biology  (photosynthesis,  avian  magnetoreception)  §  Ball,  P.  (2011)  The  dawn  of  quantum  biology,  Nature  474,  

272-­‐274.  ¡  Information  technology  (quantum  computation  and  

cryptography)  §  Bouwmeester,  D.,  Ekert,  A.  and  Zeilinger,  A.K.  Eds.,  The  Physics  

of  Quantum  Information:  Quantum  Cryptography,  Quantum  Teleportation,  Quantum  Computation.  Heidelberg  and  Berlin:  Spinger,  2000.  

¡  Cognitive  modelling  (decision  making,  memory,  concepts  and  perception).    §  Pothos,  M  &  Busemeyer  J.  R.  (2013)  Can  quantum  probability  

provide  a  new  direction  for  cognitive  modeling?,  Behavioral  and  Brain  Sciences  36,  255-­‐327.  

Page 4: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Ironically  in  relation  to  this  success,  quantum  theory  comes  with  many  puzzles  and  paradoxes,  e.g.  claims  that    §  electrons  are  in  two  places  at  once  §  cats  are  alive  and  dead  at  the  same  time  §  the  world  at  the  macroscopic  level  is  constantly  branching  into  copies  (“many  worlds”)  

§  to  solve  these  problems  the  consciousness  of  the  observer  has  to  play  an  active  role.    

Page 5: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  A  more  sober  version  of  quantum  theory  which  solves  the  above  problems  was  discovered  by  de  Broglie  in  1927  

¡  rediscovered  and  developed  by  Bohm  in  1952  (see  also  Bohm  and  Hiley  1987,  1993).      

¡  In  this  theory  the  electron  is  seen  as  a  particle  AND  a  quantum  wave  field.  

 

Page 6: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Bohm  and  Hiley:  this  wave  field  is  not  an  ordinary  physical  field,  but  rather  a  field  of  information,  which  literally  informs  the  energy  of  the  particle.        

¡  Further:  such  notion  of  “active  information”  applies  beyond  quantum  physics,  e.g.  in    §  biology  (e.g.  in  the  way  the  DNA  molecule  in-­‐forms  the  construction  of  proteins),    

§  information  technology  §  psychological  and  social  phenomena.      

Page 7: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Traditionally  quantum  theory  was  not  given  an  ontological  interpretation  §  The  wave  function  was  seen  as  part  of  an  algorithm  for  calculating  probabilities  of  finding  e.g.  an  electron  at  a  given  location.  

§  QT  was  thought  to  concern  our  knowledge  of  the  system,  rather  than  the  system  itself  ▪  For  a  penetrating  discussion  of  the  traditional  view,  see  Plotnitsky,  A.  (2010)  

Epistemology  and  Probability.  Bohr,  Heisenberg,  Schrödinger  and  the  Nature  of  Quantum-­‐Theoretical  Thinking.  (Springer)  

Page 8: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  However:  in  recent  years  much  attention  have  been  given  to  various  ontological  interpretations  of  QM,  due  to  de  Broglie  (1927),  Bohm  (1952),  Everett  (1957),  Ghirardi-­‐Rimini-­‐Weber  (GRW,  1986)  etc.  §  Saunders,  S.    et  al.  ed.  (2010)  Many  Worlds?  Everett,  Quantum  Theory,  &  

Reality.  Oxford  University  Press.  §  Albert,  D.  and  Ney,  A.  ed.  (2013)  The  Wave  Function:  Essays  on  the  

Metaphysics  of  Quantum  Mechanics.  Oxford  University  Press.  

Page 9: Active information in quantum physics, biology and beyond. Argumenta lecture

¡ My  own  long-­‐term  research  interest:  philosophical  relevance  of  the  ontological  interpretation  of  Bohm  &  Hiley  (1987,  1993)  §  Bohm,  David  and  Hiley,  Basil  J.  1987.  An  Ontological  Basis  for  

Quantum  Theory:  I.  Non-­‐relativistic  Particle  Systems.  Physics  Reports  144  (6):  323-­‐348.  

§  Bohm,  D.  and  Hiley,  B.  J.  (1993)  The  Undivided  Universe:  An  Ontological  Interpretation  of  Quantum  Theory.  London:  Routledge  

Page 10: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Pylkkänen,  P.,  Hiley,  B.J.  &    Pättiniemi,  I.  (forthcoming)  “Bohm  approach  and  individuality”,  in  Guay,  A.  &  Pradeu,  T.  eds.  Individuals  Across  Sciences  –  a  Revisionary  Metaphysics?,  Oxford  University  Press.  

¡  Pylkkänen,  P.  (forthcoming)  “Weak  vs.  strong  quantum  cognition”,  to  be  published  in  Liljenström,  H.  ed.  Proceedings  of  ICCN  the  4th  International  Conference  on  Cognitive  Neurodynamics.  Springer    

¡  Pylkkänen,  P.  (forthcoming)  “Fundamental  physics  and  the  mind  –  is  there  a  connection”,  in  T.  Filk  ed.  Quantum  Interaction.  8th  International  Conference,    Springer.  

Page 11: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 12: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 13: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 14: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 15: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 16: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 17: Active information in quantum physics, biology and beyond. Argumenta lecture

¡ What  happens  if  you  pass  e.g.  electrons  through  the  2-­‐slits?  

¡  The  electron  was  initially  assumed  to  be  a  particle  (it  has  mass  and  charge)  §  so  we  expect  that  it  should  behave  like  a  little  bullet!  

Page 18: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 19: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 20: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 21: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Notice  that  we  get  an  interference  pattern  even  if  the  electrons  enter  the  slit  system  one  by  one  

Page 22: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 23: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 24: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  An  individual  system  exhibits  both    §  particle  properties  ▪  it  arrives  at  the  detector  at  a  single  spot  

¡  and  §  wave  properties    ▪  the  place  where  the  spot  appears  is  constrained  by  the  mathematics  of  wave  behaviour    ▪  how  else  would  such  individual  particles  build  up  a  wave  interference  pattern?    

Page 25: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Note  in  particular:  opening  of    2nd  slit  may  prevent  an  electron  reaching  a  point  where  it  could  arrive  if  only  one  slit  were  open.  

Page 26: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Natural  to  ask:  how  does  the  electron  move  through  the  slit  system?    How  could  a  particle  obey  the  mathematics  of  waves?  

¡  The  easiest  way  to  answer  these  questions  would  be  to  make  further  experiments  §  “Let’s  look  what  happens”  

Page 27: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Unfortunately  we  cannot  observe  the  motion  of  an  individual  electron  in  detail!  §  This  relates  to  the  Heisenberg  indeterminacy  principle  

§  “If  we  observe  precisely  where  it  is,  we  have  no  idea  of  where  it  is  going”  (and  vice  versa)  

Page 28: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Note  especially:  to  predict  the  movement  of  an  electron  we  should  measure  both  position  x  (“where  it  is”)  and  momentum  p  (“where  it  is  going”)  at  a  single  moment.  §  we  cannot  do  this  as  long  as  we  stay  within  current  quantum  theory!  

§  without  the  initial  conditions  we  cannot  predict  what  the  individual  system  does!  ▪  -­‐>  indeterminism,  probability…  

Page 29: Active information in quantum physics, biology and beyond. Argumenta lecture

Source:  WikiPremed,  a  trademark  of  Wisebridge  Learning  Systems  LLC.  

Page 30: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 31: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  The  mystery  is  this:    the  electrons  leave  as  particles,  and  they  arrive  as  particles,  one  by  one,  to  the  screen.        §  as  a  large  number  of  them  passes  through  the  system,  a  pattern  builds  up.      

§  what  is  this  pattern?    §  it  is  an  interference  pattern!      §  interference  is  a  signature  of  a  wave.  

 

Page 32: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  But  how  can  the  particles,  sent  into  the  system  one  by  one,  collectively  build  up  an  interference  pattern?  

¡  Surely  each  individual  “particle”  must  also  have  some  wave  property  §  how  otherwise  could  such  a  “particle”  obey  the  interference  pattern  (e.g.  avoid  certain  classically  allowed  areas)?  

Page 33: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Bohr  ¡  Von  Neumann  (collapse  interpretations)  ¡  “many  worlds”  ¡  deBroglie-­‐Bohm  ¡  etc.  

Page 34: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 35: Active information in quantum physics, biology and beyond. Argumenta lecture

From  N.  Bohr  1949/1983:  Discussions  with  Einstein  on  Epistemological  Problems  in  Atomic  Physics,  p.  27.  

Page 36: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 37: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 38: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 39: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 40: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 41: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 42: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 43: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 44: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 45: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 46: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 47: Active information in quantum physics, biology and beyond. Argumenta lecture

Yves  Couder  et  al.  

Page 48: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 49: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 50: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  The  Bohm  theory  postulates  that  an  electron  is  a  particle  always  accompanied  with  a  new  type  of  quantum  field,  which  guides  it  

Page 51: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  In  the  two-­‐slit  experiment  the  particle  goes  through  one  of  the  slits,  and  then  appears  at  a  point  in  a  photographic  place    §  this  explains  why  we  see  the  appearance  of  a  spot    §  note  especially  that  there  is  no  need  to  assume  a  collapse  of  the  wave  function    

¡  The  accompanying  field  goes  through  both  slits,  interferes  afterwards,  and  guides  the  movement  of  the  particle  so  that  the  particles  collectively,  spot  by  spot,  build  up  an  interference  pattern.    

Page 52: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  The  field  gives  rise  to  a  new  type  of  potential  energy  which  Bohm  called  the  “quantum  potential”    

Page 53: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 54: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 55: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  The  usual  interpretation  of  QT:  the  wave  function  Ψ  does  NOT  describe  an  individual  quantum  system  directly    §  rather:    Ψ  describes  our  knowledge  of  the  quantum  system  to  be  observed  (typically  in  terms  of  probabilities)    

¡  BH:  Ψ  describes  an  objectively  real  field,  guiding  a  particle  such  as  an  electron  

How to calculate quantum ‘trajectories’.

Insert the wave function into the Schrödinger equation.�(x, t) = R(x, t)e�iS(x,t)

Real part gives: �S

�t+

(rS)2

2m+ Q + V = 0 Quantum Hamilton-Jacobi.

EB = ��S

�tPB = rS Quantum Potential = Q = � ~2

2m

r2R

R

Schrödinger trajectories

[Philippidis, Dewdney and Hiley, Nuovo Cimento 52B, 15-28 (1979)]

Quantum Potential

[Bohm & Hiley, The Undivided Universe, 1993]

Tuesday, 12 June 2012 [This  slide  is  made  by  B.J.  Hiley]  

Page 56: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Note: R appears both in denominator and

numerator so that it can be multiplied by an arbitrary constant without changing Q. §  size doesn’t matter here, as a small wave can have

exactly the same effect as a large one! §  this means that Q (and thus the effect on the

particle) can be strong even if the amplitude of the quantum field is very weak.

Page 57: Active information in quantum physics, biology and beyond. Argumenta lecture

¡ What  matters  then?  ¡  Note  that  Q  depends  on  the  second  spatial  derivative  of  R  

¡  This  reflects  the  way  in  which  R  changes,  or  the  form  of  the  wave.  

¡  Thus,  Q  depends  only  upon  the  form  of  the  quantum  wave!  

Page 58: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Bohm  &  Hiley:  the  quantum  field  is  not  pushing  and  pulling  the  particle  mechanically  

¡  Rather,  it  is  putting  form  into  the  activity  of  the  particle,  literally  IN-­‐FORMING  the  energy  of  the  particle  

-­‐>  A  new  notion  of  active  information!  

Page 59: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  A  form  having  very  little  energy  enters  into  a  directs  a  much  greater  energy.  §  the  activity  of  the  greater  energy  is  given  a  form  similar  to  that  of  the  smaller  energy  

¡  The  original  energy-­‐form  will  “inform”  (i.e.  put  form  into)  the  activity  of  the  larger  energy  

Page 60: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  An  analogy:  a  ship  on  automatic  pilot  being  guided  by  radio  waves  §  Here,  too,  the  effect  of  the  radio  waves  is  independent  of  their  intensity  and  depends  only  on  their  form  

Page 61: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  The  essential  point:  the  ship  is  moving  with  its  own  energy,  and  the  information  in  the  radio  waves  is  taken  up  to  direct  the  much  greater  energy  of  the  ship  §  Bohm  &  Hiley  propose  that  an  electron  too  moves  under  its  own  energy,  and  that  

§   the  information  in  the  form  of  the  quantum  wave  directs  the  energy  of  the  electron  

Page 62: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  DNA  molecule  guiding  biological  processes  ¡   reading  a  map  

Page 63: Active information in quantum physics, biology and beyond. Argumenta lecture

SHANNON  INFORMATION    

¡  A  quantitative  measure  of  information  that  represents  the  way  in  which  the  state  of  a  system  is  uncertain  to  us  §  e.g.  we  can  only  specify  

probabilities  of  various  states  

ACTIVE  INFORMATION  

¡  Not  essentially  related  to  our  knowledge  or  lack  of  it  §  e.g.  information  that  is  

relevant  to  determining  the  movement  of  the  electron  itself  

§  information  for  the  electron  §  information  as  an  “objective  

commodity”    

Page 64: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  The  two-­‐body  system:  Q  depends  on  the  position  of  both  particles  in  a  way  that  does  not  necessarily  fall  off  with  the  distance  §  -­‐>  the  possibility  of  a  non-­‐local  interaction  between  the  two  particles    

¡  The  N-­‐body  system:    the  behaviour  of  each  particle  may  depend  non-­‐locally  on  all  the  others  §  no  matter  how  far  away  they  may  be  

Page 65: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Non-­‐locality  is  an  important  new  feature  of  the  quantum  theory  §  however:  there  is  an  even  more  radical  feature!  

Page 66: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  The  quantum  potential  depends  on  the  “quantum  state”  of  the  whole  system  in  a  way  that  cannot  be  defined  simply  as  a  pre-­‐assigned  interaction  between  all  the  particles  

Page 67: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Its  wave  function  is  a  product  of    §   f(x)  (where  x  is  the  centre-­‐of-­‐mass  coordinate)  

 and  

§     g(r)  (where  r  is  the  relative  coordinate)                                                                    Ψ  =  f(x  )  g(r).  

Page 68: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  The  quantum  potential  will  contain  a  term  representing  the  interaction  of  electron  and  proton  

[μ  is  the  reduced  mass  of  the  electron]  

¡  In  the  s-­‐state,  Q  is  a  function  only  of  r  itself  §  however:  with  a  linear  combination  of  s-­‐  and  p-­‐wave  functions  it  is  easily  shown  to  depend  on  the  relative  angles,  θ  and  Φ,  as  well.  

Page 69: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Evidently,  it  is  impossible  to  find  a  single  pre-­‐assigned  function  of  r,  which  would  simultaneously  represent  the  interaction  of  electron  and  proton  in  both  s-­‐  and  p-­‐states.    §  the  problem  is  still  more  sharply  expressed  if  we  bring  in  all  the  other  states  (d,  f,  etc.).  

Page 70: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 71: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 72: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 73: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  The  relationship  between  parts  of  a  system  described  above  implies  a  new  quality  of  wholeness  of  the  entire  system    

¡  This  goes  beyond  anything  that  can  be  specified  solely  in  terms  of  the  actual  spatial  relationships  of  all  the  particles.  §   this  is  the  feature  which  makes  the  quantum  theory  go  beyond  mechanism  of  any  kind!    

Page 74: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  The  essence  of  mechanism:  the  basic  reality  consists  of  the  parts  of  a  system  which  are  in  a  pre-­‐assigned  interaction.  §  the  concept  of  the  whole  has  only  a  secondary  significance  

§  it  is  only  a  way  of  looking  at  certain  overall  aspects  of  what  is  in  reality  the  behaviour  of  the  parts.    

Page 75: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Even  if  the  interaction  is  non-­‐local,  the  system  is  still  mechanical  as  long  as  the  interaction  potential  is  a  fixed  and  pre-­‐assigned  function  of  the  particle  variables.  

Page 76: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  In  the  Bohm  theory  this  interaction  depends  upon  the  wave  function  of  the  entire  system  §  this  is  contingent  on  the  state  of  the  whole  §  it  also  evolves  with  time  according  to  Schrödinger’s  equation  

Page 77: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  So:  in  the  Bohm  theory  a  key  role  is  played  by  something  §   dynamical  that    §  refers  directly  to  the  whole  system  and  that  is    §  not  reducible  to    a  property  of  the  parts  and  their  relationships  

¡  Bohm:  this  is  the  most  fundamentally  new  ontological  feature  implied  by  the  quantum  theory!  

Page 78: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  The  above  holistic  feature  should,  in  principle,  apply  to  the  entire  universe  §  however,  when  the  wave  function  of  a  system  factorises  into  two  parts,  the  corresponding  subsystems  will  behave  independently  

Page 79: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Note  that  there  are  by  now  also  different  versions  of  the  Bohm  theory.    

¡  Much  attention  has  in  recent  years  been  given  to  a  minimalist  version  known  as  “Bohmian  mechanics”  (see  Goldstein  2013;  Dürr  et  al.  2013).      

¡  Bohm  himself  developed  since  the  mid-­‐1970s,  with  Basil  Hiley,  a  philosophically  more  radical  version  they  called  the  “ontological  interpretation”,  culminating  in  their  1993  book  The  Undivided  Universe  (this  has  been  presented  above)  

Page 80: Active information in quantum physics, biology and beyond. Argumenta lecture

¡ While  there  has  been  a  tendency  in  the  Bohmian  mechanics  camp  (see  also  Bacciacaluppi  and  Valentini  2009)  to  downplay  the  significance  of  Bohm  and  Hiley’s  approach,  a  more  balanced  examination  suggests  that  both  approaches  have  their  value    §  see  Holland,  P.  (2011)  A  quantum  of  history.  Contemp.  Phys.  52,  355.  

Page 81: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Durr,  Goldstein,  Zanghi:  ”Bohm’s  rewriting  of  Schrödinger’s  equation  via  variables  that  seem  interpretable  in  classical  terms  does  not  come  without  a  cost.”  

¡  Paavo  P:    but  how  do  you  interpret  in  classical  terms    Q  =  -­‐h2/2m  (Grad)2R/R    Isn’t  Q  highly  non-­‐classical?  

Page 82: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  DGZ:  ”The  most  obvious  cost  is  increased  complexity:  Schrödinger’s  equation  is  rather  simple,  not  to  mention  linear,  whereas  the  modified  Hamilton-­‐Jacobi  equation  is  somewhat  complicated,  and  highly  nonlinear  –  and  still  requires  the  continuity  equation  for  its  closure”  

¡  PP:  who  knows  which  gives  a  better  description  what  is  actually  ”out  there”?  

Page 83: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  DGZ:  ”The  quantum  potential  itself  is  neither  simple  nor  natural”  

¡  PP:  nature  at  the  quantum  level  may  not  be  simple  and  (what  our  intuitions  call)  ”natural”  

Page 84: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  DGZ:  ”It  might  also  be  objected  that  notions  such  as  …  the  quantum  potential  are  necessary  if  BM  is  to  provide  us  with  any  sort  of  intuitive  explanation  of  quantum  phenomena,  i.e.  explanation  in  familiar  terms,  presumably  such  as  those  involving  only  the  concepts  of  classical  mechanics.”  

¡  PP:  Bohm’s  later  interpretation  of  the  quantum  potential  as  active  information  can  hardly  be  seen  as  relying  on  ”classical  mechanics”.  

Page 85: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  DGZ:  ”…in  the  present  century  fundamental  physics  has  moved  sharply  away  from  the  search  for  …  intuitive  explanations  in  favor  of  explanations  having  an  air  of  mathematical  simplicity  and  naturalness,  if  not  inevitability,  and  this  has  led  to  an  astonishing  amount  of  progress”  

¡  PP:  again,  who  knows  what  sort  of  explanations  best  describe  what  is  actually  ”out  there”.    Nature  might  not  (always)  care  about  mathematical  simplicity  and  naturalness.  

Page 86: Active information in quantum physics, biology and beyond. Argumenta lecture

Floridi,  Luciano,  "Semantic  Conceptions  of  Information”,  The  Stanford  Encyclopedia  of  Philosophy  

Page 87: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  The  series  of  concentric  rings  visible  in  the  wood  of  a  cut  tree  trunk  may  be  used  to  estimate  its  age.  

¡  Also:  consider  a  situation  where  you  turned  the  ignition  key  and  the  red  light  of  the  low  battery  indicator  flashed.    §  this  signal,  too,  can  be  interpreted  as  an  instance  of  environmental  information  

Page 88: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Two  systems  a  and  b  are  coupled  so  that:  §  a's  being  (of  type,  or  in  state)  F  is  correlated  to    §  b  being  (of  type,  or  in  state)  G,  thus    §  carrying  for  the  information  agent  the  information  that  b  is  G.  

¡  a  =  wave  function,  F  =  (let’s  say)  2  slit  interference  

¡  b  =  slit  wall,  G  =  (let’s  say)  2  slits  open  ¡  Information  agent  =  the  particle    

Page 89: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Floridi:  environmental  information  may  involve  no  semantics  at  all.    

¡ May  consist  of  correlated  data  understood  as  mere  differences  or  constraining  affordances.    §  plants  (e.g.,  a  sunflower),  animals  (e.g.,  an  amoeba)  and  mechanisms  (e.g.,  a  photocell)  are  capable  of  making  practical  use  of  environmental  information  even  in  the  absence  of  any  (semantic  processing  of)  meaningful  data.  

§  the  same  applies  to  the  Bohmian  particle!?  

Page 90: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 91: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Two  main  varieties:  factual  and  instructional.    ¡  In  the  car  battery  example,  one  may  translate  the  red  light  flashing  into  semantic  content  in  two  senses:  §  1)  as  a  piece  of  factual  information,  representing  the  fact  that  the  battery  is  flat  

§  2)  as  a  piece  of  instructional  information,  conveying  the  need  for  a  specific  action,  e.g.,  the  re-­‐charging  or  replacing  of  the  flat  battery.  

Page 92: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  In  the  2-­‐slit  experiment,  one  may  take  (say)  two-­‐slit  interference  in  the  wave  function  in  two  senses:  §  1)  as  a  piece  of  factual  information,  representing  the  fact  that  both  slits  are  open  

§  2)  as  a  piece  of  instructional  (active)  information,  bringing  about  a  specific  action,  a  certain  motion.  

Page 93: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Wittgenstein:  the  notion  of  “semantic  information”  is  intended  in  a  declarative  or  factual  mode.  

¡  Factual  information  may  be  true  or  untrue  (false,  in  case  one  adopts  a  binary  logic).    

¡  True  semantic  content  is  the  most  common  sense  in  which  information  seems  to  be  understood  §  E.g.  Quine  equates  “likeness  of  meaning”  “sameness  of  proposition”  and  “sameness  of  objective  information”  by  treating  propositions  as  information  in  the  factual  sense  

¡  Note  also:  information  as  true  semantic  content  is  a  necessary  condition  for  knowledge.  

Page 94: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Example:  an  instruction  booklet  provides  instructional  information  §  either  imperatively  —  in  the  form  of  a  recipe:  first  do  this,  then  do  that    

§  or  conditionally,  in  the  form  of  some  inferential  procedure:  if  such  and  such  is  the  case  do  this,  otherwise  do  that.  

¡  Instructional  information  is  not  about  a  situation,  a  fact,  or  a  state  of  affairs  w  and  does  not  model,  or  describe  or  represent  w.    §  Rather,  it  is  meant  to  (help  to)  bring  about  w.    ▪  For  example,  when  the  mechanic  tells  one  over  the  phone  to  connect  a  charged  battery  to  the  flat  battery  of  one’s  car,  the  information  one  receives  is  not  factual,  but  instructional.  

Page 95: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  So:  quantum  active  information  is  about  something  (the  environment,  slits,  etc.),    

¡  It  is  for  the  particle  and    ¡  it  helps  to  bring  about  something  (a  certain  movement  of  the  particle).  §  environmental  §  semantic  or  not?  §  instructional  or  factual  or  both  or  neither?  

Page 96: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Floridi:  Dretske  [1981]  and  Barwise  and  Seligman  [1997]  attempt  to  ground  information,  understood  as  factual  semantic  contents,  on  environmental  information.  §  can  Bohm’s  quantum  active  information    ground  factual  semantic  contents?  

Page 97: Active information in quantum physics, biology and beyond. Argumenta lecture
Page 98: Active information in quantum physics, biology and beyond. Argumenta lecture

¡  Albert,  D.  and  Ney,  A.  ed.  (2013)  The  Wave  Function:  Essays  on  the  Metaphysics  of  Quantum  Mechanics.  Oxford  University  Press.    ¡  Bohm,  D.  (1990)  A  New  Theory  of  the  Relationship  of  Mind  and  Matter.  Philosophical  Psychology  vol.  3  no.  2,  pp.  271-­‐286  ¡  Bohm,  David  and  Hiley,  Basil  J.  (1987)  An  Ontological  Basis  for  Quantum  Theory:  I.  Non-­‐relativistic  Particle  Systems.  Phys.  Rep.  144  

(6):  323-­‐348.  ¡  Bohm,  D.  and  Hiley,  B.  J.  (1993)  The  Undivided  Universe:  An  Ontological  Interpretation  of  Quantum  Theory.  London:  Routledge  ¡  Dürr,  D.,  Goldstein,  S.  and  Zanghi,  N.  (2013)  Quantum  Physics  Without  Quantum  Philosophy.  Berlin:  Springer.  ¡  Floridi,  Luciano,  "Semantic  Conceptions  of  Information",  The  Stanford  Encyclopedia  of  Philosophy  (Spring  2015  Edition),  Edward  N.  

Zalta  (ed.),  forthcoming  URL  =  http://plato.stanford.edu/archives/spr2015/entries/information-­‐semantic/  ¡  Goldstein,  Ss.  (2013),  "Bohmian  Mechanics",  The  Stanford  Encyclopedia  of  Philosophy  (Spring  2013  Edition),  Edward  N.  Zalta  (ed.),  URL  

=  http://plato.stanford.edu/archives/spr2013/entries/qm-­‐bohm/  ¡  Hiley,  B.J.  and  Pylkkänen,  P.  (2005),  “Can  mind  affect  matter  via  active  information?”,  Mind  and  Matter,  vol.  3,  no.  2,  7-­‐26.    Url:  

http://www.mindmatter.de/resources/pdf/hileywww.pdf  ¡  Pylkkänen,  P.  (2007)  Mind,  Matter  and  the  Implicate  Order.  Berlin  and  New  York:  Springer  Frontiers  Collection.  ¡  Pylkkänen,  P.,  Hiley,  B.J.  and  Pättiniemi,  I.,  (forthcoming)  Bohm’s  approach  and  individuality.    To  appear  in  Guay,  A.  and  Pradeu,  T.  

eds.  Individuals  Across  Sciences:  A  Revisionary  Metaphysics?,  Oxford  University  Press.  http://arxiv.org/abs/1405.4772  ¡  Riggs,  P.  (2009)  Quantum  Causality:  Conceptual  Issues  in  the  Causal  Theory  of  Quantum  Mechanics.  Heidelberg  and  New  York:  Springer.  ¡  Saunders,  S.    et  al.  ed.  (2010)  Many  Worlds?  Everett,  Quantum  Theory,  &  Reality.  Oxford  University  Press.  ¡  Towler,  M.  (2009)  Pilot-­‐wave  theory,  Bohmian  metaphysics,  and  the  foundations  of  quantum  mechanics,  a  graduate  course  at  the  

Cavendish  Laboratory,  University  of  Cambridge  ¡  http://www.tcm.phy.cam.ac.uk/~mdt26/pilot_waves.html  ¡  Wallace  ,  D.  (2012)  The  Emergent  Multiverse.  Quantum  Theory  according  to  the  Everett  Interpretation.  Oxford  University  Press.  ¡  For  criticisms  of  Bohm’s  approach,  see    Goldstein    (above),  as  well  as  Riggs,  P.  (2009)  Quantum  Causality:  Conceptual  Issues  in  the  

Causal  Theory  of  Quantum  Mechanics.  Heidelberg  and  New  York:  Springer.