46
Institute of Bio-Sensing Technology biology for sensors and sensors for biology Aquatic Organic Fluorescence from phenomenon to applications Darren Reynolds

New Sensors Effluent monitoring - 19 July 2012

Embed Size (px)

DESCRIPTION

Aquatic Organic Matter Fluorescence – from phenomenon to applicationsDr Darren Reynolds - Associate Professor in Bio-Sensing ResearchUniversity of the West of England

Citation preview

Page 1: New Sensors Effluent monitoring - 19 July 2012

Institute of Bio-Sensing Technology

biology for sensors and sensors for biology

Aquatic Organic Fluorescence

from phenomenon to applications

Darren Reynolds

Page 2: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

17th and 18th Centuries – intellectual

movement - ‘Enlightenment’ the ‘Age

of Reason’.

Newtonian science exerted its greatest

impact on the world

Page 3: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Maxwell de Broglie Born

Thompson Wein Rutherford

Faraday Hertz Schrödinger

Stokes Einstein Pauli

Bohr Planck Lewis

Becquerel Crookes Heisenberg

Page 4: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Defined as the emission of light by a

substance, where the emitted light

cannot be attributed to incandescence,

i.e. thermal radiation.

Page 5: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Sir G. G. Stokes

(1852)

Page 6: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Page 7: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Observed the fluorescence properties of

humic and fulvic substances and organic

matter in natural waters........... ‘Gelbstoff’

Humic, fulvic, DOC, DOM, CDOM

(Vodacek, Mopper, Blough, Coble)

Page 8: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

we have and are experiencing a

technological revolution largely driven

by breathtaking advances in;

Applied electro optics

Improvements in data processing and

data handling....

Page 9: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Optical Space

www.turnerdesigns.com

Page 10: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Optical Space

Wastewater fluorescence

Page 11: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Optical Space

Wastewater fluorescence

Page 12: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Optical Space

300 400 500 600 7000

200

400

600

800

1000

Wavelength (nm)

Inte

nsity (

a.u

.)

Wa

ve

le

ng

th

(

nm

)

W a v e l e n g t h ( n m )

2 0 0 . 0 0

2 5 0 . 0 0

3 0 0 . 0 0

3 5 0 . 0 0

4 0 0 . 0 0

4 5 0 . 0 0

5 0 0 . 0 0

5 5 0 . 0 0

6 0 0 . 0 0

3 0 0 .0 0 3 5 0 .0 0 4 0 0 .0 0 4 5 0 .0 0 5 0 0 .0 0 5 5 0 .0 0 6 0 0 .0 0 6 5 0 .0 0 7 0 0 .0 0

9 6 2 . 0 0

8 8 6 . 0 0

8 1 0 . 0 0

7 3 4 . 0 1

6 5 8 . 0 1

5 8 2 . 0 1

5 0 6 . 0 1

4 3 0 . 0 1

3 5 4 . 0 2

2 7 8 . 0 2

2 0 2 . 0 2

1 2 6 . 0 2

5 0 . 0 2

- 2 5 . 9 7

Page 13: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Optical Space a)

b)

c)

d)

e)

f)

Page 14: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

T1

Energy

S2

S0

Ground state

λ2

S1

λ2 λ 1 λ 3 λ 4

Fluorescence Absorption Internal

and External

Conversion

Phosphorescence

Vibrational Relaxation

Triplet Excited State

Singlet Excited States

Intersystem Crossing

Internal Conversion

Page 15: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Page 16: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Page 17: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Chlorophyll

300 400 500 600 7000

200

400

600

800

1000

Wavelength (nm)

Inte

nsity (

a.u

.)

Wa

ve

le

ng

th

(

nm

)

W a v e l e n g t h ( n m )

2 0 0 . 0 0

2 5 0 . 0 0

3 0 0 . 0 0

3 5 0 . 0 0

4 0 0 . 0 0

4 5 0 . 0 0

5 0 0 . 0 0

5 5 0 . 0 0

6 0 0 . 0 0

3 0 0 .0 0 3 5 0 .0 0 4 0 0 .0 0 4 5 0 .0 0 5 0 0 .0 0 5 5 0 .0 0 6 0 0 .0 0 6 5 0 .0 0 7 0 0 .0 0

9 6 2 . 0 0

8 8 6 . 0 0

8 1 0 . 0 0

7 3 4 . 0 1

6 5 8 . 0 1

5 8 2 . 0 1

5 0 6 . 0 1

4 3 0 . 0 1

3 5 4 . 0 2

2 7 8 . 0 2

2 0 2 . 0 2

1 2 6 . 0 2

5 0 . 0 2

- 2 5 . 9 7

Page 18: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Chlorophyll

300 400 500 600 7000

200

400

600

800

1000

Wavelength (nm)

Inte

nsity (

a.u

.)

Wa

ve

le

ng

th

(

nm

)

W a v e l e n g t h ( n m )

2 0 0 . 0 0

2 5 0 . 0 0

3 0 0 . 0 0

3 5 0 . 0 0

4 0 0 . 0 0

4 5 0 . 0 0

5 0 0 . 0 0

5 5 0 . 0 0

6 0 0 . 0 0

3 0 0 .0 0 3 5 0 .0 0 4 0 0 .0 0 4 5 0 .0 0 5 0 0 .0 0 5 5 0 .0 0 6 0 0 .0 0 6 5 0 .0 0 7 0 0 .0 0

9 6 2 . 0 0

8 8 6 . 0 0

8 1 0 . 0 0

7 3 4 . 0 1

6 5 8 . 0 1

5 8 2 . 0 1

5 0 6 . 0 1

4 3 0 . 0 1

3 5 4 . 0 2

2 7 8 . 0 2

2 0 2 . 0 2

1 2 6 . 0 2

5 0 . 0 2

- 2 5 . 9 7

Whitening Agents

Page 19: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Chlorophyll

300 400 500 600 7000

200

400

600

800

1000

Wavelength (nm)

Inte

nsity (

a.u

.)

Wa

ve

le

ng

th

(

nm

)

W a v e l e n g t h ( n m )

2 0 0 . 0 0

2 5 0 . 0 0

3 0 0 . 0 0

3 5 0 . 0 0

4 0 0 . 0 0

4 5 0 . 0 0

5 0 0 . 0 0

5 5 0 . 0 0

6 0 0 . 0 0

3 0 0 .0 0 3 5 0 .0 0 4 0 0 .0 0 4 5 0 .0 0 5 0 0 .0 0 5 5 0 .0 0 6 0 0 .0 0 6 5 0 .0 0 7 0 0 .0 0

9 6 2 . 0 0

8 8 6 . 0 0

8 1 0 . 0 0

7 3 4 . 0 1

6 5 8 . 0 1

5 8 2 . 0 1

5 0 6 . 0 1

4 3 0 . 0 1

3 5 4 . 0 2

2 7 8 . 0 2

2 0 2 . 0 2

1 2 6 . 0 2

5 0 . 0 2

- 2 5 . 9 7

Fluorescent Dyes

Page 20: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Chlorophyll

300 400 500 600 7000

200

400

600

800

1000

Wavelength (nm)

Inte

nsity (

a.u

.)

Wa

ve

le

ng

th

(

nm

)

W a v e l e n g t h ( n m )

2 0 0 . 0 0

2 5 0 . 0 0

3 0 0 . 0 0

3 5 0 . 0 0

4 0 0 . 0 0

4 5 0 . 0 0

5 0 0 . 0 0

5 5 0 . 0 0

6 0 0 . 0 0

3 0 0 .0 0 3 5 0 .0 0 4 0 0 .0 0 4 5 0 .0 0 5 0 0 .0 0 5 5 0 .0 0 6 0 0 .0 0 6 5 0 .0 0 7 0 0 .0 0

9 6 2 . 0 0

8 8 6 . 0 0

8 1 0 . 0 0

7 3 4 . 0 1

6 5 8 . 0 1

5 8 2 . 0 1

5 0 6 . 0 1

4 3 0 . 0 1

3 5 4 . 0 2

2 7 8 . 0 2

2 0 2 . 0 2

1 2 6 . 0 2

5 0 . 0 2

- 2 5 . 9 7

Chlorophyll fluorescence

Page 21: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Chlorophyll

300 400 500 600 7000

200

400

600

800

1000

Wavelength (nm)

Inte

nsity (

a.u

.)

Wa

ve

le

ng

th

(

nm

)

W a v e l e n g t h ( n m )

2 0 0 . 0 0

2 5 0 . 0 0

3 0 0 . 0 0

3 5 0 . 0 0

4 0 0 . 0 0

4 5 0 . 0 0

5 0 0 . 0 0

5 5 0 . 0 0

6 0 0 . 0 0

3 0 0 .0 0 3 5 0 .0 0 4 0 0 .0 0 4 5 0 .0 0 5 0 0 .0 0 5 5 0 .0 0 6 0 0 .0 0 6 5 0 .0 0 7 0 0 .0 0

9 6 2 . 0 0

8 8 6 . 0 0

8 1 0 . 0 0

7 3 4 . 0 1

6 5 8 . 0 1

5 8 2 . 0 1

5 0 6 . 0 1

4 3 0 . 0 1

3 5 4 . 0 2

2 7 8 . 0 2

2 0 2 . 0 2

1 2 6 . 0 2

5 0 . 0 2

- 2 5 . 9 7

Humic/Fulvic Material

Page 22: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Chlorophyll

300 400 500 600 7000

200

400

600

800

1000

Wavelength (nm)

Inte

nsity (

a.u

.)

Wa

ve

le

ng

th

(

nm

)

W a v e l e n g t h ( n m )

2 0 0 . 0 0

2 5 0 . 0 0

3 0 0 . 0 0

3 5 0 . 0 0

4 0 0 . 0 0

4 5 0 . 0 0

5 0 0 . 0 0

5 5 0 . 0 0

6 0 0 . 0 0

3 0 0 .0 0 3 5 0 .0 0 4 0 0 .0 0 4 5 0 .0 0 5 0 0 .0 0 5 5 0 .0 0 6 0 0 .0 0 6 5 0 .0 0 7 0 0 .0 0

9 6 2 . 0 0

8 8 6 . 0 0

8 1 0 . 0 0

7 3 4 . 0 1

6 5 8 . 0 1

5 8 2 . 0 1

5 0 6 . 0 1

4 3 0 . 0 1

3 5 4 . 0 2

2 7 8 . 0 2

2 0 2 . 0 2

1 2 6 . 0 2

5 0 . 0 2

- 2 5 . 9 7

Microbial Processes

Page 23: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Page 24: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Autochthonous material is created in-situ

through microbial activity – a reflection of the

phys/chem/biol processes

This provides a recycling mechanism for

allochthonous DOM (dissolved organic carbon

fed into the hydrological system from outside).

Page 25: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Bacterial origin.

Shelley et al., (1980),

Dalterio et al. (1986)

Determann et al., (1998) Cammack

et al., (2004) and Elliott et al., (2006)

Page 26: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Laboratory Field

Num

ber

P

ublis

hed

P

apers

Marine ‘optical map’

(Coble, 1993, Mar.Sci.)

Fresh/waste ‘optical map’

(Baker, 2001, ES&T)

Rapid Technological

improvements

Aquatic Fluorescence Research

Wastewater

Fluorescence

Page 27: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

– Water recycling/nano filtration

– Drinking water treatment processes -

chlorination

– Urban watersheds quality monitoring

– Catchment water quality monitoring

– Wastewater quality monitoring

Page 28: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Real-time monitoring of water and

wastewater quality using a fluorescence

technique

Optical Spectroscopy in the Aquatic

Environment

Elsholt Works, Yorkshire Water (May,1998)

Page 29: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Page 30: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

The characterisation of sewage using

fluorescence

Effluent and Sewage Network Management

Inst. Mech. Engineers (February 2000)

Page 31: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Page 32: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Field based fluorescence devices for

urban/fresh/drinking/waste water

systems have been limited;

– Low knowledge base

– Technological challenges

– Lack of appropriate field trails

Page 33: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Real-time monitoring of river water quality

using in-line continuous acquisition of

fluorescence excitation and emission

matrices.

Future Water Sensing Technologies

Warrington, (February, 2010)

Page 34: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Page 35: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Samples Correlation (peak/parameter/Pearson's r

unless stated)

References

Raw settled/treated sewage from 3 different treatment works

(n=129)

T1 BOD5 0.960

0.970

0.960

Reynolds & Ahmad (1997)

Raw settled/treated sewage (n=25) T1–T2 BOD5 0.980 Ahmad & Reynolds (1999)

Synthetic sewage treated via a rotating bio-disc contactor (n =45)

FTotal = Total fluorescence intensity

Settled and treated sewage samples over a 3 month period (n=56)

FTotal = Total fluorescence intensity

FTotal

T1

FTotal–T1

FTotal

T1

FTotal–T1

BOD5

COD

TOC

BOD5

COD

TOC

COD-BOD

BOD5

COD

TOC

BOD5

COD

TOC

COD-BOD

0.890

0.920

0.910

0.980

0.980

0.980

0.840

0.790

0.820

0.800

0.930

0.940

0.930

0.710

Reynolds (2002)

Filtered raw sewage T1 COD

TOC

Nk

NH4-N

COD

TOC

Nk

NH4-N

0.420

0.410

0.690

0.650

0.560a

0.530a

0.760a

0.840a

Vasel & Praet (2002)

Treated effluent samples (over a 3 month period) T1 COD 0.900 Lee and Ahn (2004)

Wastewater samples (96 in total) using CODDissolved values T1 CODDissolved.

COD

0.370

0.510

Wu et al., (2006)

Sewage effluents (n=16) C1 DOC 0.140 Cumberland & Baker (2007)

Wastewater effluents (223 samples - sewage, trade and pollution

incidents)

T1

T2

C2

A

BOD5

TOC

BOD5

TOC

BOD5

TOC

BOD5

TOC

0.906b

0.876b

0.848b

0.802b

0.771b

0.870b

0.720b

0.808b

Hudson et al., (2008)

Page 36: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

a)

b)

c)

d)

e)

f)

I

II

III

IV

V

VI

VII

Page 37: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

A concerted effort to tackle the

approaching data Tsunami is necessary

Application driven technology needs to be

developed, tested and evaluated in the

field

Page 38: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Fluoro-sensor Development

Tryptophan-like fluorescence

Laboratory assessment

Field deployment

Page 39: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Preliminary Field Trials

Page 40: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

• Aquatic fluorescence is not new

• Fluorescence sensing has history

• Technology Readiness Level is high

• Clear Identified Applications

Page 41: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

• Application-led field studies/trials

– Sensor performance

– Generation of data sets for evaluation

– Development of appropriate data

management tools (application driven)

Page 42: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Hudson, N., Baker, A., and Reynolds,

D. (2007). Fluorescence analysis of

dissolved organic matter in natural,

waste and polluted waters – a review.

River Research Applications, 23, 631-

649.

Page 43: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Henderson, R.K. et al. (2009).

Fluorescence as a potential

monitoring tool for recycled water

systems: A review. Water Research,

43, 863-881.

Page 44: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

Paula G. Coble, Andy Baker, Jamie

Lead, Robert M. Spencer, Darren M.

Reynolds.

2013 Cambridge University Press

Page 45: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

John Attridge

Chelsea Technologies Group, UK.

Robin Thorn & Gareth Robinson

Centre for Research in Biosciences, UWE, UK.

Elfrida Carstea

National Institute of R&D for Optoelectronics, Romania.

Andy Baker

Water Research Centre, UNSW, Australia.

Page 46: New Sensors Effluent monitoring - 19 July 2012

biology for sensors and sensors for biology

[email protected]

http://www.biosensingtech.co.uk/