17
Technical/Technological Advances for Optimizing Heat Rate

2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

Embed Size (px)

Citation preview

Page 1: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

Technical/Technological Advances for Optimizing Heat Rate

Page 2: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

2

Page 3: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

3

Page 4: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

4

Page 5: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

5

Existing Capacity Retirements

2012 2010 2011 2012

309,519 1,418 2,456 10,214

1,308 29 31 85

239 49 79 123

N/A 58 63 51

10,168 11,094 10,638 10,353

34% 31% 32% 33%

56 36 33 35

Page 6: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

6

Page 7: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

7

Page 8: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

8

2002 10,314 9,533 10,442 2003 10,297 9,207 10,422 2004 10,331 8,647 10,428 2005 10,373 8,551 10,436 2006 10,351 8,471 10,435 2007 10,375 8,403 10,489 2008 10,378 8,305 10,452 2009 10,414 8,159 10,459 2010 10,415 8,185 10,452 2011 10,444 8,152 10,464 2012 10,498 8,039 10,479

Average 10,381 8,514 10,451 Efficiency 33% 40% 33%

Page 9: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

9

Case Study Technical/

Technological Areas for HR Improvement

Operations Management/Optimization

Equipment Management

Performance/ Condition

Optimization

Technological Tools/

Advances

Maintenance Management/ Optimization

Process Management

Web-Based Training Performance Monitoring Neural Network Optimization Soot Blowing Optimization Digital Technology

Tune Controls Cycle Isolation

Optimize Combustion Boiler Modeling Optimize Soot

Blowing Optimize Controls

Leakage Reduction Better Air Heater Seals Restore/Replace Seals – Turbines, Air Heaters, Boiler Remove/Prevent Turbine Deposits Condenser Cleaning Instrument Calibration Tune Control Systems Predictive Maintenance

Optimize Combustion Reduce FGET

Improve Soot Blowing Calibrate Instrumentation

Reduce Excess Air Optimize Steam Conditions Real Time Data for Dispatch

Online Monitoring - Efficiency - Generation - Fuel Type, Input - Capacity Losses - Heat Input - Controllable Losses Instrument Calibration

Air Heater Modifications Upgrade Turbine - Seals, Steam Path, Partial-Arc Admission. LP Turbine Last Stage Mill Upgrades Environmental Control Systems Upgrades

Page 10: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

10

Total Turbine

ShaftEfficiency Output Efficiency Output Efficiency Output Output

lb/hr Btu/lb 109 Btu/hr % % kW % kW % kW kWBituminous 498,255 11,150 5.5555 87.68 84.29 166,740 87.53 153,316 86.36 312,326 632,382

Mechanical Losses

Electrical Losses

Generator Output

Auxiliary Power

Turbine Cycle Heat

Input

Generator Output

Turbine Cycle Heat Rate

Turbine Cycle

Efficiency

As-Burned Heat Input

Unit Output

Unit Heat Rate

Unit Efficiency

kW kW kW kW 109 Btu/hr kW Btu/kWhr % 109 Btu/hr kW Btu/kWhr %1,914 8,414 622,054 24,882 4.8711 622,054 7,831 43.6% 5.5555 597,172 9,303 36.7%

2. Prime Mover - Steam Turbine

3. Prime Mover - Generator 4. Turbine Cycle 5. Overall Unit

HP Turbine IP Turbine LP Turbine

1. Heat Source - Boiler

Amount of Fuel Burned

Higher Heating

Value

As-Burned

Heat Input

Boiler Efficiency

Type of Fuel

Burned

Page 11: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

11

Equipment/SystemA. Boiler & Auxiliaries 1995 1996 1997 1998 1999 2002 2003 2005

1. Fuel 100% PRB Coal

3. Economizer Replacement

4. Air Preheater Replacement/ Reconfiguration

5. Superheater Division Panel Modifications

B. Combustion System

1. NOx Aggressive Tuning

C. Turbine-Generator1. HP/IP/LP Turbine Replacement

D. Process Control/Optimization

1. SootblowingAdditional

Sootblowers Installation

Intelligent System

2. Instrumentation & Controls

Controls Upgrade

E. Technological Tools

1. Neural Network Process Tool

2. Plant Information (PI)

Data Collection

Tool3. Training Simulator

4. Performance Monitoring

OLM Tool

Low NOx System

Installation

2. Pulverizer Vane Wheel Replacement

Year1994

a. High-Efficiency Exhausters Installation

b. Steam Inerting System Installation

1988 1992

Page 12: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

12

Page 13: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

13

HP IP LP HP IP LP HP IP LP4,202,027 3,882,035 3,288,941 4,210,690 3,904,318 3,326,712 4,210,690 3,906,792 3,315,028

2141.7 605.29 189.35 2141.7 579.32 197.67 2141.7 579.68 196.971000 1000 706.71 1000 1000 714.64 1000 1000 713.68

672.55 189.35 0.9823 643.69 197.67 0.9823 644.09 196.97 0.9823656.0 706.71 101.14 646.51 714.64 101.14 646.66 713.68 101.1484.29 87.53 86.36 88.04 91.96 86.56 88.04 91.94 88.73

166.740 153.316 312.326 176.001 151.61 320.235 175.926 152.169 326.35826.37% 24.24% 49.39% 27.17% 23.40% 49.43% 26.88% 23.25% 49.87%

222.4 222.4 279.481002.41 1000.92 1000.891023.44 1022.33 1013.271034.55 1044.64 828.96

21.03 21.41 12.3816.71 17.21 9.92

UEEP, Btu/lbAnnulus Velocity, fpsExhaust Loss, Btu/lbExhaust Loss, MW

Total Last Stage Annulus Area, sq.ft.ELEP, Btu/lb

(Percentage of Total Shaft Output)

Original DesignDescription

Steam Flow, lb/hrSteam Pressure, PsiaSteam Temperature, °FExhaust Pressure, Psia

Replacement HP/IP/LP DesignReplacement HP/IP Design

Exhaust Temperature, °FEfficiency, %Shaft Output, MW

Page 14: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

14

Total Turbine

ShaftEfficiency Output Efficiency Output Efficiency Output Output

lb/hr Btu/lb 109 Btu/hr % % kW % kW % kW kWPRB Coal 662,664 8,500 5.6326 87.68 88.04 175,926 91.94 152,169 88.73 326,358 654,453

Mechanical Losses

Electrical Losses

Generator Output

Auxiliary Power

Turbine Cycle Heat

Input

Generator Output

Turbine Cycle

Heat Rate

Turbine Cycle

Efficiency

As-Burned Heat Input

Unit Output

Unit Heat Rate

Unit Efficiency

kW kW kW kW 109 Btu/hr kW Btu/kWhr % 109 Btu/hr kW Btu/kWhr %1,914 8,774 643,765 25,751 4.9387 643,765 7,672 44.5% 5.6326 618,014 9,114 37.4%

2. Prime Mover - Steam Turbine

3. Prime Mover - Generator 4. Turbine Cycle 5. Overall Unit

HP Turbine IP Turbine LP Turbine

1. Heat Source - Boiler

Amount of Fuel Burned

Higher Heating

Value

As-Burned Heat Input

Boiler Efficiency

Type of Fuel

Burned

Page 15: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

15

Page 16: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

Heat Rate Improvement/Optimization

Unit Specific

Virtual Models

Technological Advances

Holistic Approach

Monitoring/ Diagnostics

16

Page 17: 2015 ASME Power Conference Technical/Technological Advances for Optimizing Heat Rate Sunder Raj Presentation

Thank You!

Contact Information:

Power & Energy Systems Services

• Komandur Sunder Raj • 201-638-4635 • [email protected]

17