29
Fast Convergence in IP Network Md. AbdullahAlMamun mamun@fiberathome.net Sumon Ahmed Sabir sumon@fiberathome.net

Fast Convergence in IP Network

Embed Size (px)

Citation preview

Page 1: Fast Convergence in IP Network

Fast  Convergence  in  IP  Network  

Md.  Abdullah-­‐Al-­‐Mamun  [email protected]  Sumon  Ahmed  Sabir  [email protected]      

Page 2: Fast Convergence in IP Network

Why  ?  

Ensure  uninterrupted  Service,  It  can  be      1.  Voice  call    2.  Video  Call  3.  Business  CriLcal  Traffic(Flexi  load,  Banking  

TransacLons)  4.  Mission  CriLcal  Traffic(….)      

Page 3: Fast Convergence in IP Network

Target  Network    

•  Transport  Network  which  is  carrying  Voice  and  Video  Traffic  

•  Transport  Network  which  is  carrying  Business  and  Mission  CriLcal  Traffic    

•  High  volume  Backbone  Network    •  AggregaLon  Point  of  any  network    

Page 4: Fast Convergence in IP Network

Design  ConsideraLon      

•  Network  Topology    •  IGP  SelecLon    •  IP  Plan    •  Type  of  Service  Delivery    •  Service  Takeover  and  handover  Point    

Page 5: Fast Convergence in IP Network

BeXer  IP  Plan  BeXer  Convergence    

•  Domain/Area  Based  IP  Plan  must  be  taking  place  to  minimize  the  prefixes  

•  Prefix  Summery  or  Area  summery  is  very  effecLve  to  aggregate  individual  small  prefixes  within  the  Area      

•  OSPF  Area  based  route  filtering  can  achieve  to  make  the  FIB  table  lesser    

   router  ospf  65000    router-­‐id  10.255.255.15    ispf    area  1  range  10.10.0.0  255.255.252.0    area  1  filter-­‐list  prefix  BB-­‐ROUTE-­‐IN  in  ip  prefix-­‐list  BB-­‐ROUTE-­‐IN  seq  5  permit  10.255.255.0/24  le  32  ip  prefix-­‐list  BB-­‐ROUTE-­‐IN  seq  10  permit  10.0.0.0/22  le  32  ip  prefix-­‐list  BB-­‐ROUTE-­‐IN  seq  150  deny  0.0.0.0/0  le  32  

Page 6: Fast Convergence in IP Network

IGP  Fast  Convergence    •  Failure  Detec,on      •  Event  Propaga,on      •  SPF  Run    •  RIB  FIB  Update        

•  Time  to  detect  the  network  failure,  e.g.  interface  down  condiLon.  

•  Time  to  propagate  the  event,  i.e.  flood  the  LSA  across  the  topology.  

•  Time  to  perform  SPF  calculaLons  on  all  routers  upon  recepLon  of  the  new  informaLon.  

•  Time  to  update  the  forwarding  tables  for  all  routers  in  the  area.  

Page 7: Fast Convergence in IP Network

Fast  Failure  Detec,on  Process    There  are  three  methods  to  detect  the  link  failure    1.   IGP  keepalive  ,mes/  fast  hellos  with  the  dead/hold  interval  of  one  second  

and  sub-­‐second  hello  intervals.  It  is  CPU  hungry      2.   carrier-­‐delay  msec  0,  Physical  Layer    3.   BFD,  Open  Standard  more  reliable  rather  than  IGP  Keepalive  fast  hello          

iinterface gi0/0/0 ip  ospf  bfd bfd interval 50 min_rx 50 multiplier 3

Page 8: Fast Convergence in IP Network

Event  Propaga,on    

APer  Link  Down  Event   Remarks   Command    LSA  generaLon  delay    

Lmers  throXle  lsa  iniLal  hold  max_wait  

Lmers  throXle  lsa  0  20  1000  

LSA  recepLon  delay    

This  delay  is  a  sum  of  the  ingress  queueing  delay  and  LSA  arrival  delay  

Lmers  pacing  retransmission  100  

Processing  Delay    

Lmers  pacing  flood  (ms)  with  the  default  value  of  55ms  

Lmers  pacing  flood  15  

Packet  PropagaLon  Delay    

12usec  for  1500  bytes  packet  over  a  1Gbps  link  

N/A  

Page 9: Fast Convergence in IP Network

SPF  CalculaLon    

•  The  use  of  Incremental  SPF  (iSPF)  allows  to  further  minimize  the  amount  of  calculaLons  needed  when  parLal  changes  occur  in  the  network  

•  Need  to  enable  ispf  under  ospf  process  

Router  ospf  xxx  Ispf    show  ip  ospf  staLsLcs  OSPF  Router  with  ID  (10.255.255.15)  (Process  ID  65000)  

   Area  0:  SPF  algorithm  executed  18130  Lmes  

   

Page 10: Fast Convergence in IP Network

RIB/FIB  Update  

Link/Node  Down    

SPF  Calcula,on     RIB  Update     FIB  Update   Communic

a,on    

Lesser  Number  of  Prefixes  lesser  Lme  to  converge  the  RIB  and  FIB    

Page 11: Fast Convergence in IP Network

RIB/FIB  Update  

•  Aher  compleLng  SPF  computaLon,  OSPF  performs  sequenLal  RIB  update  to  reflect  the  changed  topology.  The  RIB  updates  are  further  propagated  to  the  FIB  table  

•  The  RIB/FIB  update  process  may  contribute  the  most  to  the  convergence  Lme  in  the  topologies  with  large  amount  of  prefixes,  e.g.  thousands  or  tens  of  thousands  

•  Plaiorm  what  you  are  using,  higher  capacity  CPU  and  RAM  will  cater  beXer  performance.          

Page 12: Fast Convergence in IP Network

Final  CalculaLon    Event   Time(ms)   Remarks  

Failure  Detec,on  Delay:  Carrier-­‐delay  msec  0     0   about  5-­‐10ms  worst  case  to  detect  

In  BFD  Case     150   Mul,player  3  is  last  count:  50ms  interval      

Maximum  SPF  run,me   64   doubling  for  safety  makes  it  64ms  

Maximum  RIB  update   20   doubling  for  safety  makes  it  20ms  

OSPF  interface  flood  pacing  ,mer   5   does  not  apply  to  the  ini,al  LSA  flooded  

LSA  Genera,on  Ini,al  Delay   10   enough  to  detect  mul,ple  link  failures  resul,ng  from  SRLG  failure  

SPF  Ini,al  Delay   10   enough  to  hold  SPF  to  allow  two  consecu,ve  LSAs  to  be  flooded  

Network  geographical  size/Physical  Media(Fiber)   0   signal  propaga,on  is  negligible  

In  BFD  Case:  270ms  In  Carrier  delay  msec:  120ms      

Final  FIB  UPDATE  Time:  Maximum  500ms.  It  is  sub-­‐second  convergence            

Page 13: Fast Convergence in IP Network

ConfiguraLon  Template      

router  ospf  10  Suppress  transit  link  prefixes    Lmers  lsa  arrival  50    Lmers  throXle  lsa  all  10  100  1000    Lmers  throXle  spf  10  100  1000    Lmers  pacing  flood  5    Lmers  pacing  retransmission  60    ispf  

Page 14: Fast Convergence in IP Network

Packet  drop  observes  

Need  more  fine  Tune  and  so  many  methods  are  available  but  most  of  them  are  MPLS  based  Traffic  Engineering,  below  Two  are  the  best…………      

 i.  RSVP  Based  link/node  protecLon  route    ii.  LDP  Based  LFA-­‐FRR          

Page 15: Fast Convergence in IP Network

Why  LFA-­‐FRR  

•  Provide  local  sub-­‐100ms  convergence  Lmes  and  complement  any  other  fast  convergence  tuning  techniques  that  have  been  employed  

•  LFA-­‐FRR  is  easily  configured  on  a  router  by  a  single  command,  calculates  everything  automaLcally  

•  Easy  and  lesser  complex  than  RSVP  Based  Traffic  Engineering.        

Page 16: Fast Convergence in IP Network

Prerequisite    •  Need  MPLS  LDP  

ConfiguraLon    •  Need  BFD  ConfiguraLon  to  

trigger  Fast  Reroute    •  Need  some  Fast  Reroute  

configuraLon  under  OSPF  Process  

•  Need  some  special  configuraLon  based  on  plaiorm        

mpls  ldp  discovery  targeted-­‐hello  accept  router  ospf  Y  router-­‐id  xxxxx  ispf  prefix-­‐priority  high  route-­‐map  TE_PREFIX    fast-­‐reroute  per-­‐prefix  enable  area  y  prefix-­‐

priority  high    fast-­‐reroute  per-­‐prefix  remote-­‐lfa  tunnel  mpls-­‐

ldp    ip  prefix-­‐list  TE_PREFIX  seq  5  permit  a.b.c.d/32  !  route-­‐map  TE_PREFIX  permit  10    match  ip  address  prefix-­‐list  TE_PREFIX    

 

Page 17: Fast Convergence in IP Network

How  to  work    1.   Ini,ally  prefix  172.16.1.0/24  was  communicated  through  B-­‐A-­‐B1-­‐B3  2.   Once  the  link  fails  between  B-­‐A  then  prior  computed  LFA  Tunnel  Triggered  by  

BFD    3.   Immediate  Target  Prefix(es)  are  passed  through  B-­‐D  LFA  Tunnel  within  150ms    4.    Pack  drop  does  not  observe  because  B  router  does  not  wait  for  IGP  convergence                  

Page 18: Fast Convergence in IP Network

LFA-­‐FRR  Design  ConsideraLon    •  In  a  Ring  Topology    •  Lesser  Prefix  make  quicker  convergence  •   Specific  Prefix  with  higher  priority  will  show  best  performance  

without  any  service  interrupLon  and  packet  drop.      

ROBI39-­‐DHKTL25#sh  ip  int  brief  Loopback1                                10.253.51.91          YES  NVRAM      up                                        up  MPLS-­‐Remote-­‐Lfa124            10.10.202.69          YES  unset      up                                        up  

show  ip  cef  10.255.255.29  10.255.255.29/32      nexthop  10.10.202.65  Vlan10  label  [166|1209]          repair:  aeached-­‐nexthop  10.253.51.94  MPLS-­‐Remote-­‐Lfa124  

Page 19: Fast Convergence in IP Network

Before/Aher  LFA  FRR  Xshell:\> ping 10.252.51.111 –t Reply from 10.252.51.111: bytes=32 time=2ms TTL=253 Reply from 10.252.51.111: bytes=32 time=4ms TTL=253 Reply from 10.252.51.111: bytes=32 time=2ms TTL=253 Reply from 10.252.51.111: bytes=32 time=2ms TTL=253 Request timed out. Reply from 10.252.51.111: bytes=32 time=61ms TTL=253 Reply from 10.252.51.111: bytes=32 time=86ms TTL=253 Reply from 10.252.51.111: bytes=32 time=70ms TTL=253 Reply from 10.252.51.111: bytes=32 time=147ms TTL=253

Reply from 10.252.51.111: bytes=32 time=2ms TTL=253 Reply from 10.252.51.111: bytes=32 time=2ms TTL=253 Reply from 10.252.51.111: bytes=32 time=1ms TTL=253 Reply from 10.252.51.111: bytes=32 time=1ms TTL=253 Reply from 10.252.51.111: bytes=32 time=27ms TTL=253 Reply from 10.252.51.111: bytes=32 time=32ms TTL=253 Reply from 10.252.51.111: bytes=32 time=1ms TTL=253 Reply from 10.252.51.111: bytes=32 time=2ms TTL=253 Reply from 10.252.51.111: bytes=32 time=2ms TTL=253 Reply from 10.252.51.111: bytes=32 time=1ms TTL=253

Page 20: Fast Convergence in IP Network

BGP  Convergence    

BGP  Prefix  Independent  Convergence(PIC)  is  the  best  choice  for  Fast  convergence    

 

Page 21: Fast Convergence in IP Network

Why?  

The  BGP  PIC  Edge  for  IP  and  MPLS-­‐VPN  feature  improves  BGP  convergence  once  a  network  failure.  

Page 22: Fast Convergence in IP Network

Prerequisites    •  BGP  and  the  IP  or  MulLprotocol  Label  Switching  (MPLS)  network  is  up  and  running  with  the  customer  site  connected  to  the  provider  site  by  more  than  one  path  (mulLhomed).    

•  Ensure  that  the  backup/alternate  path  has  a  unique  next  hop  that  is  not  the  same  as  the  next  hop  of  the  best  path.    

•  Enable  the  BidirecLonal  Forwarding  DetecLon  (BFD)  protocol  to  quickly  detect  link  failures  of  directly  connected  neighbors.    

Page 23: Fast Convergence in IP Network

How  To  Work:  PE-­‐CE  Link/PE  Failure    

•  eBGP  sessions  exist  between  the  PE  and  CE  routers.    •  Traffic  from  CE1  uses  PE1  to  reach  network  x.x.x.x/24  towards  the  router  CE2.  CE1  has  two  

paths:    •  PE1  as  the  primary  path  and  PE2  as  the  backup/alternate  path.    •  CE1  is  configured  with  the  BGP  PIC  feature.  BGP  computes  PE1  as  the  best  path  and  PE2  as  the  

backup/alternate  path  and  installs  both  routes  into  the  RIB  and  CEF  plane.  When  the  CE1-­‐PE1  link/PE  goes  down,  CEF  detects  the  link  failure  and  points  the  forwarding  object  to  the  backup/alternate  path.  Traffic  is  quickly  rerouted  due  to  local  fast  convergence  in  CEF.  

Page 24: Fast Convergence in IP Network

How  to  Work:  Dual  CE-­‐PE  Line/Node  Failure    

•  eBGP  sessions  exist  between  the  PE  and  CE  routers.  Traffic  from  CE1  uses  PE1  to  reach  network  x.x.x.x/24  through  router  CE3.    

•  CE1  has  two  paths:  PE1  as  the  primary  path  and  PE2  as  the  backup/alternate  path.    •  An  iBGP  session  exists  between  the  CE1  and  CE2  routers.  •  If  the  CE1-­‐PE1  link  or  PE1  goes  down  and  BGP  PIC  is  enabled  on  CE1,  BGP  recomputes  the  best  path,  removing  

the  next  hop  PE1  from  RIB  and  reinstalling  CE2  as  the  next  hop  into  the  RIB  and  Cisco  Express  Forwarding.  CE1  automaLcally  gets  a  backup/alternate  repair  path  into  Cisco  Express  Forwarding  and  the  traffic  loss  during  forwarding  is  now  in  subseconds,  thereby  achieving  fast  convergence.    

Page 25: Fast Convergence in IP Network

How  to  Work:  IP  MPLS  PE  Down    

•  The  PE  routers  are  VPNv4  iBGP  peers  with  reflect  routers  in  the  MPLS  network.    •  Traffic  from  CE1  uses  PE1  to  reach  network  x.x.x.x/24  towards  router  CE3.  CE3  is  dual-­‐homed  with  PE3  and  

PE4.  PE1  has  two  paths  to  reach  CE3  from  the  reflect  routers:  PE4  is  the  primary  path  with  the  next  hop  as  a  PE4  address.    

•  PE3  is  the  backup/alternate  path  with  the  next  hop  as  a  PE3  address.    •  When  PE4  goes  down,  PE1  knows  about  the  removal  of  the  host  prefix  by  IGPs  in  subseconds,  recomputes  the  

best  path,  selects  PE3  as  the  best  path,  and  installs  the  routes  into  the  RIB  and  Cisco  Express  Forwarding  plane.  Normal  BGP  convergence  will  happen  while  BGP  PIC  is  redirecLng  the  traffic  towards  PE3,  and  packets  are  not  lost.  

Page 26: Fast Convergence in IP Network

ConfiguraLon  Template    router  bgp  3    no  synchronizaLon  neighbor  10.6.6.6  remote-­‐as  3    neighbor  10.6.6.6  update-­‐source  Loopback0  no  auto-­‐summary    !    address-­‐family  vpnv4      bgp  addi,onal-­‐paths  install      neighbor  10.6.6.6  acLvate      neighbor  10.6.6.6  send-­‐community  both  exit-­‐address-­‐family    !    address-­‐family  ipv4  vrf  blue      import  path  selec,on  all      neighbor  10.11.11.11  remote-­‐as  1      neighbor  10.11.11.11  acLvate    exit-­‐address-­‐family        

Page 27: Fast Convergence in IP Network

Conclusion    IGP  Fine-­‐tune  

 100%  Dynamic  and  simplified  but  does  not  meet  required  expectaLon  of  convergence  LFA  

LFA  Tunnel  Pre-­‐computed,  pre-­‐installed  Prefix-­‐independent  Simple,  deployment  friendly,  good  scaling  But    

Topology  dependant  IPFRR  IGP  computaLon  is  very  CPU-­‐intensive  task  

BGP  PIC  AddiLonal  second  best  path  installed  into  the  RIB    BGP  installs  the  best  and  backup/alternate  paths  for  the  selected  prefixes  into  the  BGP  RIB  

   

Page 28: Fast Convergence in IP Network
Page 29: Fast Convergence in IP Network

Thank  You