29
Noise and Vibrations Noise and Vibrations (BDC4013) (BDC4013) DR MUHD HAFEEZ ZAINULABIDIN Universiti Tun Hussein Onn Malaysia Chapter 5 – Computational/Numerical Methods Chapter 5 – Computational/Numerical Methods Determination of Natural Frequencies and Mode Shapes Determination of Natural Frequencies and Mode Shapes

L5 determination of natural frequency & mode shape

Embed Size (px)

Citation preview

Page 1: L5 determination of natural frequency & mode shape

Noise and VibrationsNoise and Vibrations (BDC4013)(BDC4013)

DR MUHD HAFEEZ ZAINULABIDINUniversiti Tun Hussein Onn Malaysia

Chapter 5 – Computational/Numerical MethodsChapter 5 – Computational/Numerical Methods Determination of Natural Frequencies and Mode ShapesDetermination of Natural Frequencies and Mode Shapes

Page 2: L5 determination of natural frequency & mode shape

2

Necessity to Use Computational MethodNecessity to Use Computational Method

In two degrees of freedom system, solving the natural frequencies can be conducted by simply calculating the root of the second order polynomial.

4 2 0A B Cω ω+ + =

By assuming

Then the natural frequencies can be found

( ) 0222 =++ CBA nn ωω

Page 3: L5 determination of natural frequency & mode shape

3

Classical MethodsClassical Methods

Standard Matrix Iteration Method Dunkerly’s Method Rayleigh’s Method Holzer’s Method

Page 4: L5 determination of natural frequency & mode shape

4

Standard Matrix IterationStandard Matrix Iteration

[ ] { } [ ] { } 0M x K x+ =&&Considering a general equation of motion

Assuming harmonic motion

( ) sin( )i ix t X tω=

Equation to solve [ ] { } [ ] { }2 0M X K Xω− + =

Page 5: L5 determination of natural frequency & mode shape

5

Standard Matrix IterationStandard Matrix Iteration(two possible solution)(two possible solution)

[ ] { } [ ] { }2 0M X K Xω− + =

multiply [ ] 1K

−multiply [ ] 1

M−

[ ] [ ] { } [ ] [ ] { }1 12 0K M X K K Xω − −− + =

[ ] [ ] { } [ ] { }12 0K M X I Xω −− + =

[ ] [ ] { } { }1

2

1K M X X

ω− =

[ ] [ ] { } [ ] [ ] { }1 12 0M M X M K Xω − −− + =

[ ] { } [ ] [ ] { }12 0I X M K Xω −− + =

[ ] [ ] { } { }1 2M K X Xω− =

Converge to lowest nat freq Converge to highest nat freq

Page 6: L5 determination of natural frequency & mode shape

6

Standard Matrix IterationStandard Matrix Iteration(Solution procedures to obtain the lowest nat freq)(Solution procedures to obtain the lowest nat freq)

(1) Identify matrix [K] and [M]

(2) Calculate [K]-1

(3) Define the initial trial vector {X} and convergence criteria

(4) Multiply [K]-1 [M] {X} = 1/ω2{Xnew}

(5) Normalized the result {Xnew}/{X1new)

(6) Check the convergence , use for a new trial {X}

(7) When it is converged

normalized 1

2 Xn

Page 7: L5 determination of natural frequency & mode shape

7

Standard Matrix IterationStandard Matrix Iteration(Solution procedures to obtain the highest nat freq)(Solution procedures to obtain the highest nat freq)

(1) Identify matrix [K] and [M]

(2) Calculate [M]-1

(3) Define the initial trial vector {X} and convergence criteria

(4) Multiply [M]-1 [K] {X} = ω2{Xnew}

(5) Normalized the result {Xnew}/{X1new)

(6) Check the convergence , use for a new trial {X}

(7) When it is converged

normalized 2 Xn =ω

Page 8: L5 determination of natural frequency & mode shape

8

Example Problem 9-1(a)Example Problem 9-1(a)

k2

x1

x2

m1

m2

k1

k3

Calculate the fundamental (lowest) natural frequency and the corresponding mode shapes.

k1=10N/m k2=20N/m k3=15N/m

m1 = 1.2 kg m2 = 2.7 kg

Page 9: L5 determination of natural frequency & mode shape

9

Example Problem 9-1(b)Example Problem 9-1(b)

k2

x1

x2

m1

m2

k1

k3

Calculate the highest natural frequency and the corresponding mode shapes.

k1=10N/m k2=20N/m k3=15N/m

m1 = 1.2 kg m2 = 2.7 kg

Page 10: L5 determination of natural frequency & mode shape

10

Dunkerly’ FormulaDunkerly’ Formula

Dunkerly’ formula is searching for the fundamental (lowest) natural frequency.

It is based on [K]-1 multiplication

[ ] [ ] { } [ ] { }12 0K M X I Xω −− + =

[ ] [ ] { } [ ] { } { }1

2

10K M X I X

ω− − =

[ ] [ ] [ ] { } { }1

2

10K M I X

ω− − =

[ ] [ ] [ ]2

10a M I

ω− =

[ ] [ ]1K a

− =

Page 11: L5 determination of natural frequency & mode shape

11

Dunkerly’ FormulaDunkerly’ Formula(calculation procedures)(calculation procedures)

2 2 2 211 22

1 1 1 1

n nnω ω ω ω≈ + + +L : fundamental (lowest) natural frequencynω

nnnn

n

k

mω ≈

(1) Identify k11, k22, knn, m1, m2, mn

(2) Calculate natural frequency of the individual component

(3) Predict the fundamental natural frequency of the system

n nn

: natural frequency of a SDOF system

consisting m and spring of stiffness knnω

Page 12: L5 determination of natural frequency & mode shape

12

Example Problem 9-2Example Problem 9-2

k2

x1

x2

m1

m2

k1

k3

Predict the fundamental natural frequency using Dunkerly method

k1=10N/m k2=20N/m k3=15N/m

m1 = 1.2 kg m2 = 2.7 kg

Page 13: L5 determination of natural frequency & mode shape

13

Page 14: L5 determination of natural frequency & mode shape

14

Page 15: L5 determination of natural frequency & mode shape

15

Example Problem 9-3Example Problem 9-3

0.5m 0.5m 0.5m 0.5m

5 kg 4 kg7 kgE=207 GPa

I=12 10-6 m4

Predict the fundamental natural frequency of the system using Dunkerly method

Page 16: L5 determination of natural frequency & mode shape

Solution to Problem 9.3Solution to Problem 9.3

16

From the known formula for the deflection of a simply supported beam, the flexibility influence coefficients can be found.

( )2

0 4348

,Deflection 22 LxxL

EI

Pxv ≤≤−−=

EI

La

EI

Laa

3

22

3

3311 48

1 and

256

3 ===

EI

Lmmm 3321

21 256

3

48

1

256

31

++≈

ω

rad/s 56.11111 =ω

( ) ( ) ( )( )( )69

3

21 101210207

2

256

43

48

71

256

531−××

++≈

ω

Page 17: L5 determination of natural frequency & mode shape

17

Rayleigh MethodRayleigh Method

This method predicts the fundamental (lowest) natural frequency

This method based on energy method

21

2T mx= &

21

2V kx=

{ } [ ] { }1

2

TT x M x= & &

{ } [ ] { }1

2

TV x K x=

Page 18: L5 determination of natural frequency & mode shape

18

Rayleigh QuotientRayleigh Quotient

{ } [ ] { }1

2

TT x M x= & & { } [ ] { }1

2

TV x K x=

{ } { }{ } { }

sin( )

cos( )

x X t

x X t

ω

ω ω

=

= −&

{ } [ ] { } 2max

1

2

TT X M X ω= { } [ ] { }max

1

2

TV X K X=

max maxT V=

{ } [ ] { }{ } [ ] { }

2

T

T

X K X

X M Xω =

Page 19: L5 determination of natural frequency & mode shape

19

Rayleigh MethodRayleigh Method(Calculation procedures)(Calculation procedures)

Identify [K] and [M] Select any trial vector mode {X} Predict the fundamental natural

frequency based on the Rayleigh Quotient

{ } [ ] { }{ } [ ] { }

2

T

T

X K X

X M Xω =

Page 20: L5 determination of natural frequency & mode shape

20

Example problem 9-4Example problem 9-4

k2

x1

x2

m1

m2

k1

k3

Predict the fundamental natural frequency using Rayleigh method

k1=10N/m k2=20N/m k3=15N/m

m1 = 1.2 kg m2 = 2.7 kg

Page 21: L5 determination of natural frequency & mode shape

21

Page 22: L5 determination of natural frequency & mode shape

22

Holzer MethodHolzer Method

1 1 1 1 2

2 2 1 2 1 2 2 3

3 3 3 3 2

( )

( ) ( )

( )

t

t t

t

I k

I k k

I k

θ θ θθ θ θ θ θθ θ θ

= − −

= − − − −

= − −

&&

&&

&&

21 1 1 1 2

22 2 1 2 1 2 2 3

23 3 3 3 2

( )

( ) ( )

( )

t

t t

t

I k

I k k

I k

ωωω

Θ = Θ − Θ

Θ = Θ − Θ + Θ − Θ

Θ = Θ − Θ+

2

1

0n

i ii

Iω=

Θ =∑)cos( φωθ +Θ= tii

Assume

Page 23: L5 determination of natural frequency & mode shape

23

Holzer MethodHolzer Method(calculation)(calculation)

( )

21 1

2 11

22 3 2 2 1 2 1 2 2

21 2 2

3 2 2 12 2

2 21 1 2 2

3 22 2

2

3 2 1 1 2 22

( )

( )

t

t t t

t

t t

t t

t

I

k

k k k I

k I

k k

I I

k k

I Ik

ω

ωω

ω ω

ω

ΘΘ = Θ −

Θ = Θ + Θ − Θ − Θ

ΘΘ = Θ + Θ − Θ −

Θ ΘΘ = Θ − −

Θ = Θ − Θ + Θ

21 1 1 1 2

22 2 1 2 1 2 2 3

( )

( ) ( )

t

t t

I k

I k k

ωω

Θ = Θ − Θ

Θ = Θ − Θ + Θ − Θ

Page 24: L5 determination of natural frequency & mode shape

24

Holzer MethodHolzer Method(calculation procedures)(calculation procedures)

Set initial ω=0 and set the sweep increment of ω with a value Δω Station 1:

X1=1 (or Θ1=1), calculate M1=ω2m1X1 (or ω2I1Θ1)

Station 2:

Calculate X2 (or Θ 2), calculate M2=M1+ ω2m2X2 (or ω2I2Θ2)

Station 3:

Calculate X3 (or Θ 3), calculate M3=M2+ ω2m3X3 (or ω2I3Θ3)

Station n:

Calculate Xn (or Θ n), calculate Mn=Mn-1+ ω2mnXn (or ω2InΘn)

Page 25: L5 determination of natural frequency & mode shape

25

Example problem 9-5Example problem 9-5

I1=2 kg m2

I2=4 kg m2

Kt=4 MNm/rad

Calculate the natural frequencies and mode shapes

Page 26: L5 determination of natural frequency & mode shape

26

Page 27: L5 determination of natural frequency & mode shape

27

Page 28: L5 determination of natural frequency & mode shape

28

Holzer MethodHolzer Method(summary calculation)(summary calculation)

Torsion Translation

( )

1

21 1

2 11

2

3 2 1 1 2 22

2 1

111

1

2,3,

t

t

i

i i k kkti

I

k

I Ik

Ik

i n

ω

ω

ω −

−=−

Θ =

ΘΘ = Θ −

Θ = Θ − Θ + Θ

Θ = Θ − Θ ÷

=

∑L

( )

1

21 1

2 11

2

3 2 1 1 2 22

2 1

111

1

2,3,

i

i i k kki

X

m XX X

k

X X m X m Xk

X X m Xk

i n

ω

ω

ω −

−=−

=

= −

= − +

= − ÷

=

∑L

Page 29: L5 determination of natural frequency & mode shape

29

Example problem 9-6Example problem 9-6

I1=2 kg m2

I2=4 kg m2

I3=2 kg m2

kt1=3 MNm/rad

Kt2=2 MNm/rad

Calculate the natural frequencies and mode shapes