Transcript

1

Matrisome alterations in lung inflammatory disease

A thesis submitted to the University of Manchester for the

degree of Doctor of Philosophy in the Faculty of Biology,

Medicine and Health

2017

Lauren Cholewa

School of Biological Sciences

Division of Infection, Immunity and Respiratory Medicine

2

Contents Table of Figures and Tables ............................................................................................................... 7

Table of Abbreviations ...................................................................................................................... 10

Abstract ............................................................................................................................................. 13

Declaration ........................................................................................................................................ 14

Copyright ........................................................................................................................................... 14

Acknowledgements ........................................................................................................................... 15

1. Introduction ................................................................................................................................ 16

1.1 The structure of the lung ................................................................................................... 17

1.1.1 Lung Structure ............................................................................................................... 17

1.1.2 Macrophages in the lung ............................................................................................... 17

1.1.3 Surfactant proteins ........................................................................................................ 18

1.1.4 Microbiota ...................................................................................................................... 18

1.2 The extracellular matrix of the lung ................................................................................... 19

1.2.1 Degradation of the ECM ................................................................................................ 20

1.2.2 Basement membrane .................................................................................................... 21

1.2.3 ECM components .......................................................................................................... 23

1.2.4 Airway macrophages and ECM ..................................................................................... 27

1.2.5 Effects of influenza virus on the ECM ........................................................................... 29

1.3 Long term changes to the lung microenvironment ............................................................ 31

1.3.1 The lung microenvironment in health ............................................................................ 31

1.3.2 Long term changes to airway macrophages ................................................................. 31

1.3.3 Other long-term cellular changes .................................................................................. 32

1.3.4 Long-term alterations to the ECM ................................................................................. 32

1.4 Immune regulation by non-coding RNA ............................................................................ 33

1.4.1 miRNA ........................................................................................................................... 33

1.4.2 miRNA and Influenza virus infection ............................................................................. 35

3

1.4.3 miRNA and pulmonary fibrosis ...................................................................................... 37

1.5 Thesis hypothesis and aims .............................................................................................. 38

2. Materials and Methods............................................................................................................... 40

2.1 Laboratory Animals and in vivo models ............................................................................ 41

2.1.1 Animals .......................................................................................................................... 41

2.1.2 Sample Collection ......................................................................................................... 41

2.1.3 Influenza model ............................................................................................................. 41

2.1.4 Carbon nanotube model of pulmonary inflammation with and without infection ........... 41

2.1.5 Quantification of bacteria .............................................................................................. 42

2.1.6 In vivo treatment with hyaluronan ................................................................................. 42

2.2 In vitro cell treatments ....................................................................................................... 42

2.2.1 In vitro treatment of murine airway macrophages with ECM components.................... 42

2.3 Histology ............................................................................................................................ 43

2.3.1 Haematoxylin and Eosin ............................................................................................... 43

2.3.2 Masson’s trichrome ....................................................................................................... 43

2.3.3 Fluorescent immunohistochemistry staining for hyaluronan ......................................... 43

2.3.4 Image acquisition .......................................................................................................... 44

2.3.5 Quantification of hyaluronan staining ............................................................................ 44

2.4 RNA extraction and qPCR ................................................................................................ 44

2.4.1 RNA extraction .............................................................................................................. 44

2.4.2 Reverse Transcription and RT-qPCR ........................................................................... 44

2.5 Mass Spectrometry ........................................................................................................... 45

2.5.1 Mass spectrometry reagents ......................................................................................... 45

2.5.2 Protein extraction from whole lung ................................................................................ 46

2.5.3 In-gel proteolytic digestion ............................................................................................ 46

2.5.4 Offline peptide desalting ................................................................................................ 47

2.5.5 MS data acquisition ....................................................................................................... 47

4

2.5.6 MS data analysis ........................................................................................................... 47

2.5.7 MS data quantification ................................................................................................... 48

2.5.8 Hierarchical clustering analysis ..................................................................................... 48

2.5.9 Protein interaction network analysis.............................................................................. 49

2.6 Electron microscopy .......................................................................................................... 49

2.6.1 Serial block-face scanning electron microscopy ........................................................... 49

3. Changes to the lung matrisome after influenza infection resolution .......................................... 50

3.1 Introduction ........................................................................................................................ 51

3.1.1 The extracellular matrix and influenza infection ............................................................ 51

3.1.2 Whole tissue proteomics by mass spectrometry ........................................................... 52

3.1.3 Objectives ...................................................................................................................... 53

3.2 Results .............................................................................................................................. 54

3.2.1 Extraction and detection of proteins in murine lung at day 14 post-influenza infection 54

3.2.2 Identification of matrisome proteins within the mass spectrometry data ...................... 57

3.2.3 Overlap of proteins identified by mass spectrometry in the different fractions ............. 61

3.2.4 Alteration of matrisome protein solubility after influenza infection ................................ 62

3.2.5 Network analysis of matrisome proteins in the matrisome-enriched fraction ............... 63

3.2.6 mRNA and miRNA expression after influenza infection................................................ 65

3.2.7 Electron microscopy images after flu ............................................................................ 67

3.2.8 HA expression during an influenza time course ............................................................ 68

3.3 Discussion ......................................................................................................................... 69

3.3.1 Extraction and detection of proteins in murine lung at day 14 post-influenza infection 69

3.3.2 Alteration of basement membrane matrix ..................................................................... 70

3.3.3 Interstitial matrix protein alteration after flu ................................................................... 71

3.3.4 Other matrix changes .................................................................................................... 73

3.3.5 mRNA and miRNA expression after influenza infection................................................ 73

4. Influences of commensal bacteria, age and matrix proteins on the lung .................................. 75

5

4.1 Introduction ........................................................................................................................ 76

4.1.1 The lung microbiome ..................................................................................................... 76

4.1.2 The effect of the gut microbiome on lung immunity ...................................................... 77

4.1.3 Differences in neonate and adult lung structure ........................................................... 77

4.1.4 Immune differences between neonate and adult .......................................................... 78

4.1.5 ECM effects on macrophages ....................................................................................... 78

4.1.6 Objectives ...................................................................................................................... 79

4.2 Results .............................................................................................................................. 80

4.2.1 Airway macrophages do not have an altered miRNA profile following fibronectin

treatment .................................................................................................................................... 80

4.2.2 Airway macrophages have an altered miRNA profile following hyaluronan treatment . 83

4.2.3 The effects of age and the microbiome on lung architecture and matrix ...................... 85

4.2.4 The effect of the microbiome and age on lung RNA expression in mice ...................... 89

4.3 Discussion ......................................................................................................................... 92

4.3.1 ECM stimulation of airway macrophages ...................................................................... 92

4.3.2 Differences between GF and SPF mouse lung mRNA and miRNA expression ........... 93

4.3.3 Microbiome effects on the ECM .................................................................................... 94

4.3.4 Differences between neonate and adult ....................................................................... 95

5. Carbon Nanotube model of pulmonary inflammation in the lung .............................................. 97

5.1 Introduction ........................................................................................................................ 98

5.1.1 Carbon nanotube exposure and health concerns ......................................................... 98

5.1.2 Respiratory models using CNTs ................................................................................... 99

5.1.3 CNT and macrophages ............................................................................................... 100

5.1.4 Objectives .................................................................................................................... 100

5.2 Results ............................................................................................................................ 102

5.2.1 Development of a carbon nanotube model of pulmonary granulomatous inflammation

102

6

5.2.2 RNA expression after CNT administration in whole lung ............................................ 109

5.2.3 miRNA expression after CNT administration in airway macrophages ........................ 111

5.2.4 Effect of pre-administration of CNT on infection with influenza or S. pneumoniae ..... 112

5.3 Discussion ....................................................................................................................... 117

5.3.1 Effect of CNT on macrophages ................................................................................... 117

5.3.2 Induction of miRNA by CNT ........................................................................................ 118

5.3.3 Effects of CNT on the lung ECM ................................................................................. 118

5.3.4 CNT and pulmonary infection ...................................................................................... 119

6. Discussion ................................................................................................................................ 122

6.1 Effects of alteration of the interstitial ECM ...................................................................... 123

6.2 Alteration of the basement membrane ............................................................................ 124

6.3 Therapeutic implications ................................................................................................. 126

6.4 Future Directions ............................................................................................................. 127

6.5 Conclusions ..................................................................................................................... 128

7. Bibliography ............................................................................................................................. 130

Word Count: 53,232

7

Table of Figures and Tables

Figure 1.1 The structure of the lung.. ................................................................................................ 19

Figure 1.2 Basement membrane assembly. ..................................................................................... 22

Figure 1.3 Hyaluronan distribution in naïve mouse lung.. ................................................................. 24

Figure 1.4 Influenza virus replication in epithelial cells. .................................................................... 30

Figure 1.5 The miRNA processing pathway. .................................................................................... 34

Table 1.1 Examples of miRNA involvement in immunity .................................................................. 36

Figure 1.6 Thesis objectives. ............................................................................................................ 39

Figure 3.1 Weight loss chart of influenza virus infection in mice.. .................................................... 54

Figure 3.2 Coomassie stained protein gels of fractions 1-3.. ............................................................ 55

Figure 3.3 Flow diagram of murine lung protein extraction for mass spectrometry. ......................... 55

Figure 3.4 Heat map of proteins detected in mouse lungs post-influenza virus infection.. .............. 56

Figure 3.5 Heat map of significantly altered matrisome proteins in the matrisome-enriched fraction 3

from mouse lung post-influenza virus infection. ................................................................................ 57

Figure 3.6 Heat map of significantly altered matrisome proteins in protein fractions 1 and 2 from

mouse lung post-influenza virus infection.. ....................................................................................... 58

Table 3.1 Most highly decreased proteins in the matrisome enriched fraction 3 in mouse lung at day

14 after influenza virus infection. ...................................................................................................... 59

Table 3.2 Most highly increased proteins in the matrisome enriched fraction 3 in mouse lung at day

14 after influenza virus infection. ...................................................................................................... 60

Figure 3.7 Venn diagrams showing the overlap between proteins identified in the different fractions

in both control mice and 14 days post-influenza virus infection in mice. .......................................... 61

Figure 3.8 Solubility plots of proteins identified post influenza virus infection in mouse lung. ......... 62

Figure 3.9 Network map of known interactions between matrisome proteins identified in the

matrisome-enriched fraction 3 post-influenza virus infection in mice. .............................................. 63

Figure 3.10 Network maps of increased and decreased proteins after influenza virus infection in mice

in the matrisome-enriched protein fraction 3..................................................................................... 64

Figure 3.11 mRNA expression of significantly altered matrisome proteins at day 14 post-influenza

virus infection in mouse lung. ............................................................................................................ 65

Figure 3.12 miRNA expression at day 14 post-influenza virus infection in mouse lung.. ................. 66

Figure 3.13 mRNA and miRNA expression at 6 weeks and 10 weeks post-influenza virus infection in

mouse lung. ....................................................................................................................................... 66

8

Figure 3.14 EM images of mouse lung at day 14-post influenza virus infection. .............................. 67

Figure 3.15 Hyaluronan fluorescent staining in mouse lung during an influenza virus time course..

.......................................................................................................................................................... 68

Figure 4.1 Treatment of mouse alveolar macrophages with fibronectin in vitro. .............................. 81

Figure 4.2 Fibronectin treatment of mouse airway macrophages via different delivery methods. ... 82

Figure 4.3 Treatment of mouse alveolar macrophages with hyaluronan ex vivo and in vivo.. ......... 84

Figure 4.4 H&E staining of SPF and GF mouse lungs.. ................................................................... 86

Figure 4.5 Masson’s Trichrome staining of SPF and GF mouse lung. ............................................. 87

Figure 4.6 HA in germ free mouse lungs. ......................................................................................... 88

Figure 4.7 Matrix mRNA expression in germ free mice. ................................................................... 89

Figure 4.8 miRNA expression in whole lung of adult GF mice. ........................................................ 90

Figure 4.9 miRNA expression in whole lung of SPF and GF mice over time.. ................................. 91

Figure 5.1 Imaging of carbon nanotubes within the mouse lung.. .................................................. 103

Figure 5.2 Imaging of carbon nanotubes within the mouse lung after 2 different doses.. .............. 104

Figure 5.3 H&E imaging of CNT in mouse lung after a single dose or two doses. ......................... 105

Figure 5.4 Distribution of carbon nanotubes within the mouse lung. .............................................. 106

Figure 5.5 Collagen in mouse lungs treated with CNT. .................................................................. 107

Figure 5.6 Hyaluronan in mouse lungs treated with CNT. .............................................................. 108

Figure 5.7 RNA expression in whole lung after CNT treatment. ..................................................... 109

Figure 5.8 Difference in whole lung miRNA expression in mice treated with two doses of CNT

compared to a single dose. ............................................................................................................. 110

Figure 5.9 miRNA expression in airway macrophages of mice treated with carbon nanotubes. ... 111

Figure 5.10 Difference in airway macrophage miRNA expression in mice treated with two doses of

CNT compared to a single dose. .................................................................................................... 111

Figure 5.11 Weight chart of mice treated with CNT and then infected. .......................................... 112

Figure 5.12 C.F.U. after S. pneumoniae infection with and without pre-treatment with CNT.

administration, followed by intranasal infection with 1x105 C.F.U. S. pneumoniae in 50μL PBS on day

7. ..................................................................................................................................................... 113

Figure 5.13 H&E staining of mouse lung after treatment with carbon nanotubes and infection.. ... 114

Figure 5.14 Hyaluronan staining in mouse lung in the lungs of mice treated with CNT and infected

with influenza or S. pneumoniae.. ................................................................................................... 115

9

Figure 5.15 miRNA expression in whole lung after influenza or pneumonia infection in mice pre-

treated with CNT. ............................................................................................................................ 116

10

Table of Abbreviations

ADAMTS A disintegrin and metalloproteinase with thrombospondin motif

AF488 Alexa Fluor 488

BAL Bronchoalveolar lavage

C.F.U. Colony forming units

CD Cluster of Differentiation

CNT Carbon nanotubes

DAMP Damage-associated molecular pattern

DAPI 4',6-diamidino-2-phenylindole

DDR Discoidin domain receptor

DTT Dithiothreitol

ECM Extracellular matrix

EDTA Ethylenediaminetetraacetic acid

FBS Foetal bovine serum

FN Fibronectin

GF Germ free

H&E Haematoxylin and Eosin

HA Hyaluronan

HBSS Hank’s balanced salt solution

i.p. Intraperitoneal

IA Iodoacetamide

IHC Immunohistochemistry

11

IL Interleukin

IPF Idiopathic pulmonary fibrosis

LAIR-1 Leukocyte-associated immunoglobulin-like receptor 1

LDH Lactate dehydrogenase

lncRNA Long non-coding RNA

LPS Lipopolysaccharide

miRNA microRNA

MMP Matrix metalloprotease

MWCNT Multi-walled carbon nanotubes

ncRNA Non-coding RNA

NMES1 Normal Mucosa of Oesophagus-Specific Gene 1 Protein

P.F.U. Plaque forming units

PAMP Pathogen-associated molecular pattern

PAS Periodic Acid-Schiff

PBS Phosphate buffered saline

PCR Polymerase chain reaction

piRNA Piwi-interacting RNA

pre-miRNA Precursor microRNA

pri-miRNA Primary microRNA

RHAMM Receptor for HA-mediated motility

ROS Reactive oxygen species

SP Surfactant protein

12

SPF Specific pathogen free

SWCNT Single-walled carbon nanotubes

TGF-β Transforming growth factor β

TLR Toll-like receptor

TNC Tenascin C

VEGF Vascular endothelial growth factor

vtRNA Vault RNA

α-SMA α-smooth muscle actin

13

Abstract

Innate immune cells, such as macrophages, are trained by the unique microenvironment of the tissue

they occupy. This tissue influence can include the extracellular matrix, the presence of inflammatory

stimuli or signals and, in some tissues, the microbiota. Most studies, however, have examined such

tissue specific training in health whereas little is known about the possibility of immune re-training in

the lung following acute inflammation. The lung extracellular matrix is important for mechanical

stability and structural support, as well as influencing inflammation via altering cell adhesion,

migration, survival, proliferation and differentiation. Matrix alterations are a feature of a number of

significant chronic respiratory diseases that carry high clinical unmet need. These include idiopathic

pulmonary fibrosis, cystic fibrosis and chronic obstructive pulmonary disease (COPD). On the other

hand, the impact on matrix after acute inflammation and whether it is returned to its pre-infection

state is relatively unexplored. In murine models, macroscopic examination of the lung following acute

inflammation implies a return to a reasonable homeostatic state. However, using more sensitive

techniques, we now show that this is not the case.

In this thesis we test the premise that a more thorough interrogation of lung extracellular matrix by

mass spectrometry will reveal long term alterations that are not visible by histology. After influenza

virus infection, we demonstrate that heightened extracellular matrix persists in the lung tissue, often

forming structures that were not present in health. Furthermore, basement membrane components,

for example collagen IV and laminin, are reduced. In vitro investigations show that individual

extracellular matrix components affect lung macrophage activity. For example, hyaluronan and

fibronectin alter macrophage expression of microRNA species known to influence toll-like receptor

responsiveness and fibrosis. We also describe an alteration in microRNA species in response to

influenza virus infection as well as a non-infectious model of pulmonary inflammation using carbon

nanotubes.

Collectively, this implies that altered matrix composition impacts on the inflammatory tone of the lung

innate immune system. It is therefore feasible that such changes following severe lung inflammation

could be overcome by targeting abnormal matrix production or degradation.

14

Declaration

No portion of the work referred to in the thesis has been submitted in support of an application for

another degree or qualification of this or any other university or other institute of learning

Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns

certain copyright or related rights in it (the “Copyright”) and s/he has given The University of

Manchester certain rights to use such Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may

be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended)

and regulations issued under it or, where appropriate, in accordance with licensing

agreements which the University has from time to time. This page must form part of any such

copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other intellectual

property (the “Intellectual Property”) and any reproductions of copyright works in the thesis,

for example graphs and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intellectual Property

and Reproductions cannot and must not be made available for use without the prior written

permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy (see

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=2442 0), in any relevant Thesis

restriction declarations deposited in the University Library, The University Library’s

regulations (see http://www.library.manchester.ac.uk/about/regulations/) and in The

University’s policy on Presentation of Theses

15

Acknowledgements

Firstly, I would like to thank my supervisor Tracy Hussell. I’ve had many great opportunities during

my PhD, and Tracy has been instrumental in supporting me throughout. Also, thank you to my GSK

supervisor David Budd for his contributions on the project direction.

I would also like to thank all the members of the Hussell lab (past and present) including Emma,

Mark, Sylvia, Cheryl, Olly, Anu, Tom, Ben, Amy, Jakob, Briony, Christine, Chris, Dave, Tosh, Alek,

Sami and Eleni, for their help teaching me various techniques and their inputs into my project through

lab meetings and discussions. I would also like to thank Michael Randles for all the help with the

mass spectrometry and electron microscopy, along with Rachel Lennon for her input.

Finally, I would like to thank my family and friends for their support and encouragement throughout

my PhD.

16

1. Introduction

17

In this thesis we ask whether the lung matrix returns to its original state following acute inflammatory

disease. This includes analysis of the extracellular matrix (ECM) and basement membrane proteins.

Understanding how matrix is altered following resolution of inflammation is important as its

composition and physical properties have ramifications for overall lung function and the position and

level of cellularity, which in turn will influence subsequent inflammatory reactions.

1.1 The structure of the lung

1.1.1 Lung Structure

The lung structure is optimised for the process of gaseous exchange (Figure 1.1). Air is inhaled

through the nose and mouth and enters into the trachea, then passes through the bronchial tree

before reaching the alveoli. Alveoli are small air sacks with very thin walls, where gaseous exchange

with the blood takes place. The alveoli give the lung a very large surface area of 90m2 in an adult,

making this a very efficient process (Beckett, 1976). The extracellular matrix of the lung is optimised

for gaseous exchange as well as cellular support and is discussed in section 1.2.

The upper airways are lined with bronchial epithelial cells, and the alveoli contain type I and type II

alveolar epithelial cells. Goblet cells are interspersed in the epithelium and secrete mucous into the

airways, which helps to trap and remove toxins and particles and maintain the optimal lung

environment (Fahy and Dickey, 2010). The interstitial contains smooth muscle cells, which allow the

airways to move; fibroblasts, important for the production of extracellular matrix; and a number of

different immune cells such as macrophages and dendritic cells.

1.1.2 Macrophages in the lung

There are multiple different types of macrophage in the lungs. Airway macrophages (also known as

alveolar macrophages) are present in the alveoli and are bound to the epithelium by receptors such

as the CD200 receptor (Hussell and Bell, 2014). Airway macrophages make up over 90% of the

cellular content in the airways and have a very low turnover at steady state (Cai et al., 2014). They

function to remove pathogens and debris and are a first line of response. Due to the fact that they

are at the boundary between the body and the environment they are tightly regulated to ensure a

proportionate response. Interstitial macrophages are slightly smaller than alveolar macrophages and

have a much higher turnover at steady state (Cai et al., 2014). They are located in the interstitium

18

between the alveoli and interact with dendritic cells and lymphocytes. It has been suggested that

there are three types of interstitial macrophage in the murine lung (Gibbings et al., 2017)

1.1.3 Surfactant proteins

In the lower airways, pulmonary surfactant is required to reduce surface tension and avoid alveolar

collapse during the breathing cycle. Pulmonary surfactant consists primarily of phospholipids and

between 2-5% surfactant proteins (SP)-A, -B, -C and -D, with most surfactant production taking place

in type II alveolar epithelial cells (Bernhard, 2016). Surfactant degradation primarily takes place in

type II alveolar epithelial cells, but airway macrophages also play a role (Lopez-Rodriguez et al.,

2017). SP-A and SP-D are hydrophilic members of the calcium-dependent lectin family (collectins),

whereas SP-B and SP-C are hydrophobic (Lopez-Rodriguez et al., 2017).

Deficiencies in individual surfactant proteins lead to impaired surfactant accumulation and directly

impact the function of airway macrophages (Ikegami et al., 1997; Botas et al., 1998; Glasser et al.,

2001, 2008). For example airway macrophages are constitutively active in mice lacking SP-D

(Haczku, 2008) and SP-A and SP-D can ligate and signal through signal-regulatory protein (SIRP)-

α on airway macrophages and thus impair phagocytosis (Gardai et al., 2003; Janssen et al., 2008).

SP-A and SP-D are both able to regulate the binding of LPS to one its receptors, CD14, and SP-C

has also been reported to interact with CD14 (Sano et al., 2000; Augusto et al., 2003). Other

receptors for bacterial ligands, TLR2 and TLR4, can be sequestered by SP-A (Yamada et al., 2006).

Alterations in surfactant homeostasis have been suggested to contribute to the development of

fibrosis (Birkelbach et al., 2015; Lutz et al., 2015; Lopez-Rodriguez et al., 2016). IPF patients have

down-regulated SP-B and SP-C (Günther et al., 1999; Nogee, 2004), and surfactant dysfunction is

replicated in early stage fibrosis in mice (Lopez-Rodriguez et al., 2016). In bleomycin models, mice

lacking SP-C or SP-D are more susceptible to fibrosis (Hardie et al., 2010; Aono et al., 2012).

1.1.4 Microbiota

The lungs are constantly exposed to a variety of airborne pathogens, particulates and allergens.

There is also evidence that the lung has its own microbiota (Proctor, 2011), and is not sterile as

originally thought (Baughman et al., 1987). The microbiota is thought to affect both alveolar size and

mucous production (Yun et al., 2014) as well as affecting immunity via tonic TLR activation

(Fagundes et al., 2012), for example by promoting tolerance to allergens (Gollwitzer et al., 2014).

19

1.2 The extracellular matrix of the lung

The extracellular matrix (ECM) provides cells with structural support and dictates the mechanical

properties of the tissue such as matrix elasticity. ECM effects on cell function include proliferation

and migration (Blakney, Swartzlander and Bryant, 2012; Patel et al., 2012). The ECM can also act

as a reservoir for soluble factors such as growth factors and inflammatory mediators (Yue, 2014) and

influence autophagy (Neill, Schaefer and Iozzo, 2014).

Core ECM components include glycoproteins, collagens, proteoglycans and glycosaminoglycans.

ECM affiliated proteins, ECM regulatory proteins and secreted factors are collectively known as

matrix-associated proteins. The ECM together with matrix-associated proteins makes up the

matrisome (Hynes and Naba, 2012). In the lung, there is both interstitial matrix and basement

membrane, which are made up of different components required for different functions (Dunsmore,

Eugene and Eugene Rannels, 1996). Interstitial matrix is a loose network in the parenchyma around

fibroblasts and mesenchymal cells, whilst basement membrane is a thin layer of denser ECM

beneath a cell monolayer. Basement membrane is discussed in more detail in Section 1.2.2. Fibrillar

Figure 1.1 The structure of the lung. Air travels down the trachea, through the bronchi and bronchioles and into the alveoli, where gaseous exchange with the blood takes place. The airways are lined with epithelial cells on top of basement membrane and interstitial matrix is present between the alveoli. Airway macrophages and the microbiota are present within the airways, and other cell types such as fibroblasts and interstitial macrophages in the interstitial space.

20

ECM components, including collagen and fibronectin (FN), give the tissue tensile strength, with

elastin providing the elastic recoil (Senior, Bielefeld and Abensohn, 1975; Shifren and Mecham,

2006).

One of the ways in which the ECM can directly affect cells is through its biomechanical properties,

stiffness and elasticity (Burgess et al., 2016). Matrix elasticity changes cell phenotype by altering

migration, integrin activation and stem cell differentiation (Du et al., 2011; Lai and Chiam, 2011). The

median elasticity of healthy lung tissue is 0.5kPa, with rare areas reaching above 3kPa (F. Liu et al.,

2010). However, in fibrotic areas of the lung median elasticity is 3kPa, with some areas reaching

higher than 15kPa (F. Liu et al., 2010). Fibrotic tissue can attract cellular influx as cells often migrate

towards a stiffer substrate (Plotnikov and Waterman, 2013).

Matrix proteins bind to a variety of cell receptors through which they can directly signal, such as

integrins, the discoidin domain receptors (DDRs) and CD44 (Kim, Turnbull and Guimond, 2011). The

integrins are the most widespread, and act as receptors for a large variety of proteins. The integrin

family comprises 18α and 8β subunits making up a total of 24 αβ heterodimeric isoforms. Ligand

binding induces integrin clustering and signalling. Through their adhesive function between cells and

between cells and the ECM, integrins modulate cell motility, survival, proliferation and differentiation

(Danen, 2013). Receptors for individual proteins will be discussed later (see section 1.2.3).

One of the main cell types which produce ECM are fibroblasts (White, 2015). Fibroblasts can also

become more active pro-fibrotic myofibroblasts during inflammation or fibrosis leading to a high

excess of matrix production (White, 2015). Damage to the epithelium can also result in a process

called epithelial-mesenchymal transition, upon which epithelial cells can become more like fibroblasts

and produce excess ECM (Hardie et al., 2010).

1.2.1 Degradation of the ECM

The ECM is undergoing constant turnover during homeostasis with cell types such as fibroblasts

macrophages both generating and clearing matrix (Wynn and Barron, 2010). During disease, the

rate of turnover and the composition of the ECM is often altered, in some cases resulting in

exacerbation of disease, scarring and fibrosis (Kim, Turnbull and Guimond, 2011). For example in

chronic pulmonary sarcoidosis, a granulomatous disease, fibrosis can result in deteriorated lung

function to the point of requiring a transplant (Shah, 2007).

21

Degradation of the ECM is required for the remodelling necessary in development and wound

healing, both for structural changes themselves and for cell migration (Kim, Turnbull and Guimond,

2011). Degradation is through proteases such as the matrix metalloproteinases (MMPs), the A

disintegrin and metalloproteinase with thrombospondin motif (ADAMTS) family and the cathepsins,

as well as through other degrading enzymes including heperanase and hyaluronidases (Lu et al.,

2011). However, cells can also use non-proteolytic mechanisms of migration through the ECM (Wolf

and Friedl, 2011).

There are a total of 24 defined MMPs, which can degrade a variety of matrix proteins including

collagens, elastin, proteoglycans and laminins through the recognition of specific cleavage sites

(Glasser et al., 2016). They are zinc- and calcium-dependent enzymes produced by inflammatory

cells such as macrophages and neutrophils, as well as cells from the connective tissue. The

cathepsins are also able to degrade a range of ECM proteins. In particular, cathepsin K is

upregulated in human and mouse lungs during fibrosis, and more collagen deposition is apparent in

cathepsin K deficient mice (Bühling et al., 2004), whilst overexpression of cathepsin K is protective

(Srivastava et al., 2008). Unlike many other proteinases involved in lung pathology, cathepsin K

doesn’t reduce the release of newly synthesized ECM (Bühling et al., 2004).

Specific cell types capable of ECM degradation include human airway macrophages and neutrophils

(McGowan and Thompson, 1989). Collagen degradation products are found within airway

macrophages (Lucattelli et al., 2003), and they are known to degrade proteoglycans (McGowan and

Thompson, 1989). Airway macrophages also degrade elastin in the lung through MMPs and cysteine

and serine proteases, with macrophages from COPD patients having increased degradation capacity

(Russell et al., 2002). MMPs produced by airway macrophages include MMP-1, 2, 7 and 12 (Wallace

et al., 2008; Shaykhiev et al., 2009; Haq et al., 2011).

1.2.2 Basement membrane

Basement membranes are thin layers of specialised ECM on the basal aspect of epithelial and

endothelial cells and surrounding muscle, fat and Schwann cells. The average thickness of basement

membranes is approximately 50-100nm by electron microscopy, but measurements by atomic force

microscopy are thicker, probably due to differences in sample preparation and the loss of water

(Glentis, Gurchenkov and Vignjevic, 2014). Primary common components of basement membranes

across tissues include collagen IV, laminin, nidogen, perlecan and/or agrin, which self-assemble in

22

a multi-step process (Yurchenco, 2011) (Figure 1.2). In the first stage of basement membrane

assembly, laminins bind cell surface integrins and polymerise followed by the addition of collagen IV

and then other components (Hohenester and Yurchenco, 2013). A number of β1 integrins, including

α1β1, α2β1, α3β1, α6β1, and α7β1 are involved with basement membrane signalling (Yurchenco,

2011).

In the lung, there are the bronchial basement membranes, alveolar basement membranes and

vascular basement membranes. Formation of the alveolar basement membrane involves the fusion

of the basement membranes of the alveolar epithelium and the capillary endothelium (Vaccaro and

Brody, 1981), minimising the distance for gas diffusion (Dunsmore, Eugene and Eugene Rannels,

1996). The alveolar basement membrane facilitates gas exchange between blood and the air and

regulates fluid clearance from the lumen (Kefalides and Borel, 2005).

In the case of the bronchial basement membranes, epithelial cells synthesise the upper basement

membrane layers and the lower lamina reticularis is predominantly synthesised by fibroblasts (Howat

et al., 2001). The thickness of the bronchial basement membrane is increased in diseases such as

asthma, and correlates with age in lung cancer patients (Watanabe et al., 1997). Basement

Figure 1.2 Basement membrane assembly. Laminin binds to cell surface integrins. Collagen IV then binds to the laminin, followed by other basement membrane components.

23

membrane defects after inflammation are also common to other organs, such as decreased

glomerular basement membrane proteins in autoimmune kidney disease (Gubler, 2008).

The vascular basement membrane is required to allow leucocytes to cross the basement membrane

to travel from the blood into the tissue whilst sustaining minimal damage (Gane and Stockley, 2012).

Regions of the basement membrane have lower levels of collagen IV and laminins (termed low

expression regions) where the majority of neutrophils transmigrate through (Wang et al., 2006;

Voisin, Woodfin and Nourshargh, 2009).

1.2.3 ECM components

During this thesis we noted significant changes in specific matrix components and so we will now

discuss prior literature in this area.

1.2.3.1 Collagen

The collagens are a large family of proteins with 28 members in vertebrates. All collagens are made

up of three α chains that may or may not be identical (Exposito et al., 2010). Fibrillar collagens include

collagen I, II, III, V and XI. Fibre thickness ranges between several hundred nm to over 1μm (Sobin,

Fung and Tremer, 1988). Collagens make up approximately 15% of the dry weight of human lung

tissue (Laurent, 1986), with the lung interstitium containing mostly collagen I and III (Suki et al.,

2005). This is distributed around the airways and blood vessels, as well as within the alveolar wall

(Laurent, 1986). Collagen IV makes up part of the basement membrane, as discussed in section

1.2.2. In the lung, there is a high level of turnover with up to 10% of collagen being degraded per day

(Laurent, 1987). It is synthesised intracellularly in a pro-collagen form, and processed in the

endoplasmic reticulum before secretion into the extracellular space and assembly as part of the ECM

(Gelse, Pöschl and Aigner, 2003).

There are a number of transmembrane receptors for collagens. These include integrins, the DDRs,

glycoprotein VI (on platelets) and leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1)

(Leitinger, 2011). The DDRs are receptor tyrosine kinases specifically for collagen involved in tissue

homeostasis with functions in regulating cell polarity, differentiation and tissue morphogenesis

(Hansen et al., 2015). Integrin receptors for collagen (such as α1β1 and α2β1) also function to

regulate cell proliferation and survival (Heino, 2014). GPVI plays a role in haemostasis and LAIR-1

is involved with the negative regulation of immune cells (Leitinger, 2011).

24

1.2.3.2 Hyaluronan

Hyaluronan (HA) is a glycosaminoglycan present in the ECM of all tissues. Glycosaminoglycans are

linear polysaccharides made up of repeating disaccharide units. These can either be sulphated (e.g.

heperan sulphate and dermatan sulphate) or non-sulphated (HA). Most attach to a protein core to

form proteoglycans, with the exception of HA (Johnson, Proudfoot and Handel, 2005). The

disaccharide for HA is made up of uronic acid and N-acetyl-D-glucosamine, forming long structures

up to 107 Da. In the lungs, HA is located in the airway submucosa, vascular walls and, to a smaller

degree, the alveoli (Lauer et al., 2015) (Figure 1.3). Approximately 15–150 mg·g−1 of lung dry weight

is HA (Petrigni and Allegra, 2006). After injury HA accumulates in the lung and airways (Lauer et al.,

2015). Whilst it is present at levels between 0-53μg/L in healthy lung BAL, this increases to levels up

to 547μg/L after inflammation (Lauer et al., 2015). Airway HA is thought to be produced by epithelial

cells of the airway and submucosal glands (Lauer et al., 2015). HA is synthesised at the cell plasma

membrane and directly extruded into the extracellular space by HA synthases 1-3, primarily in high-

molecular weight form (Weigel, Hascall and Tammi, 1997). Functions of HA include the regulation of

tissue hydration and osmotic pressure (Papakonstantinou and Karakiulakis, 2009). It is also

necessary for connective tissue matrix assembly and stabilization (Gerdin and Hallgren, 1997). HA

signals through the receptors CD44 and receptor for HA-mediated motility (RHAMM) (Misra et al.,

2015).

There are a number of mechanisms by which HA is degraded using hyaluronidase enzymes.

Drainage through the lymphatic system leads to degradation in the liver (Laurent and Fraser, 1992),

Figure 1.3 Hyaluronan distribution in naïve mouse lung. Adult C57BL/6 mouse lung was formalin fixed, paraffin embedded and 5μm sections stained with hyaluronan binding protein. Hyaluronan is seen primarily around the main airways and blood vessels.

25

and in situ degradation occurs through secreted hyaluronidase enzymes and reactive oxygen

species (ROS) (Saari et al., 1993; Gao et al., 2008). Finally, the receptor CD44, of which airway

macrophages express multiple isoforms (Culty et al., 1994), binds HA and leads to degradation

through internalisation (Goodison, Urquidi and Tarin, 1999).

HA is widely acknowledged to be anti-inflammatory in its high molecular weight form (Delmage et al.,

1986; Jiang et al., 2005). However, in pulmonary diseases such as influenza, lower molecular weight

fragments are present, which can have an opposing inflammatory effect (Termeer et al., 2002; Jiang

et al., 2005; Black et al., 2013; Sokolowska et al., 2014). This includes activation of Toll-like receptors

(TLRs) (Tolg, Telmer and Turley, 2014).

As well as its role in infection, HA is involved in the pathophysiology of lung fibrosis (Bjermer,

Lundgren and Hällgren, 1989; Aytekin et al., 2008; Y. Li et al., 2011). Increased levels of both HA

synthesis and hyaluronidases are present in idiopathic pulmonary fibrosis (IPF), leading to

degradation and the presence of low molecular weight HA (Collum et al., 2017). Inhibition of HA

synthesis using the HA synthase inhibitor 4-methylumbeliferone prevents the development of

pulmonary hypertension in fibrosis models (Collum et al., 2017). Other studies also show benefits

from blocking HA synthesis (Arai et al., 2011; McKallip, Hagele and Uchakina, 2013; McKallip, Ban

and Uchakina, 2015).

Due to its anti-inflammatory effects, high molecular weight HA has been suggested as a therapy for

multiple pulmonary conditions including LPS-induced injury, emphysema and sepsis-induced injury

(Cantor et al., 1998; Cantor and Turino, 2004; Nadkarni et al., 2006; Singleton et al., 2007, 2010).

However, it is thought that the timing of HA administration may be a determinant of its effectiveness

as a treatment (Lennon and Singleton, 2011).

1.2.3.3 Fibronectin

FN is an essential ECM glycoprotein expressed in all tissues (George et al., 1993). In total, there are

12 rodent isoforms and 20 human isoforms (Singh, Carraher and Schwarzbauer, 2010). Subunits

range from 230-270 kDa depending on splicing (Hynes, 1990), with molecular FN fibrils

approximately 3nm wide (Engel et al., 1981; Erickson and Carrell, 1983). In solution, FN does not

form fibrils (Singh, Carraher and Schwarzbauer, 2010), but during matrix assembly FN is converted

to its insoluble form (McKeown-Longo and Mosher, 1983).The plasma form of FN is synthesised by

hepatocytes, and around 300-400μg/ml of the plasma form of FN circulates in the blood plasma (To

26

and Midwood, 2011). Plasma FN is incorporated into fibrin clots upon injury (To and Midwood, 2011).

Cellular FN isoforms are synthesised locally by cells present in the tissue and form a fibrillar ECM

network around cells. This is assembled in a cell-mediated process (McDonald, 1988) via binding of

the RGD amino acid motif to the α5β1 integrin (Ruoslahti and Öbrink, 1996).

As well as α5β1, other integrin receptors for FN include α4β1 (Sechler et al., 2000), αvβ1 (Zhang et

al., 1993), αvβ3 (Wu et al., 1996), and αIIbβ3 (Olorundare et al., 2001), which can all mediate FN-

cell interactions, but which cannot induce fibril formation or bind the soluble form of FN (Huveneers

et al., 2008). The α5β1 integrin may also be involved in FN turnover, as β1 integrin plays a role in

soluble FN endocytosis in a caveolin-1 dependent process (Sottile and Chandler, 2005; Shi and

Sottile, 2008). α5β1 is also unusual in that it is a receptor only for FN, rather than a range of ECM

proteins (Johansson et al., 1997). Integrins α5β1 and αvβ3 are both expressed by airway

macrophages (Singh, Janardhan and Kanthan, 2005; Hartney et al., 2010). FN can also signal

through a modified form of CD44 at an alternative binding site to HA (Jalkanen and Jalkanen, 1992;

Johansson et al., 1997).

FN is capable of regulating cellular processes such as cell adhesion (Manabe et al., 1997; Wang et

al., 2005), migration (Clark et al., 2003; Rozario et al., 2009), proliferation (Sechler and

Schwarzbauer, 1998), and apoptosis (Tafolla et al., 2005). FN also regulates ECM composition

(Sottile and Hocking, 2002) and deposition of other ECM components including collagen I and III

(McDonald, Kelley and Broekelmann, 1982; Velling et al., 2002), fibrinogen (Pereira et al., 2002),

laminin (Sottile and Hocking, 2002) and tenascin-C (Ramos et al., 1998). Finally, the FN matrix can

also sequester growth factors including bone morphogenetic protein-1 (Huang et al., 2009), vascular

endothelial growth factor (VEGF) (Wijelath et al., 2006) and latent transforming growth factor (TGF)-

β binding proteins (Koli et al., 2005). In fibrosis there is excessive FN deposition which precedes

collagen deposition (Muro et al., 2008).

1.2.3.4 Tenascin C

Tenascin-C is an ECM glycoprotein primarily expressed during development, with expression in the

adult lung associated with inflammation and fibrosis (Laitinen et al., 1997; Zhao, Young and

McIntosh, 1998; Amin et al., 2000; Pääkkö et al., 2000; Zuo et al., 2002; Bland et al., 2007). In a

bleomycin model, mice lacking tenascin-C are protected against fibrosis (Carey et al., 2010). These

mice had lower numbers of myofibroblasts, and tenascin C null fibroblasts had impaired TGF-β

signalling with lower α-SMA and collagen I production. As tenascin-C is a known ligand of the αvβ3

27

integrin (Prieto, Edelman and Crossin, 1993; Yokosaki et al., 1996; Yokoyama et al., 2000), this has

been suggested as a possible mechanism of action in this case (Carey et al., 2010). Whilst many of

the ligands for TLR4 are pathogen-associated molecular patterns (PAMPS), it can also be activated

by damage-associated molecular patterns (DAMPS) from endogenous molecules (Land, 2015).

Tenascin C acts as a DAMP when induced after tissue damage and activates TLR4, thus modulating

inflammation (Piccinini and Midwood, 2012).

1.2.3.5 Matrikines

Bioactive fragments of the matrisome from enzymatic degradation, termed matrikines, can also

influence cell behaviour (Burgess and Weckmann, 2012). These fragments can range in size from a

few amino acids to hundreds of amino acids (Ricard-Blum and Salza, 2014) and tend to have context-

driven functions (Burgess and Weckmann, 2012). Often, the active sites of the fragments are

inaccessible in the full-length parent protein (Davis et al., 2000). Endostatin, derived from collagen

XVIII, is the most extensively studied and has been reported as anti-angiogenic and inhibitory to

tumour growth (O’Reilly et al., 1997). Other matrikines include endorepellin (derived from perlecan),

endotrophin (derived from collagen VI), anastellin (derived from FN) and a number of collagen IV

derived matrikines such as the tetrastatins, pentastatins and arrestin (Ricard-Blum and Salza, 2014).

Receptors for matrikines include the integrins, with emphasis on αvβ3 and the β1 integrins (Ricard-

Blum and Salza, 2014), as well as growth factor receptors such as VEGFR2 (Goyal et al., 2011) and

the EGF receptor (Swindle et al., 2001). These lead to diverse downstream functions including the

regulation of angiogenesis, proliferation, migration, wound healing and neurodegeneration.

Endostatin is increased in the serum of IPF patients (Sumi et al., 2005), and exogenous

administration of endostatin or an endostatin-derived peptide reduces pulmonary fibrosis in murine

models (Wan et al., 2013; Nishimoto et al., 2015).

1.2.4 Airway macrophages and ECM

Airway macrophages, in addition to recognising pathogens, also perform homeostatic functions

including the clearance of products of matrix degradation. They can both promote the induction and

resolution of fibrosis (Barron and Wynn, 2011). For example, macrophage depletion in early stage

fibrosis results in less new ECM deposition, whilst depletion during the remodelling stage increases

levels of ECM deposition (Adhyatmika et al., 2015). Airway macrophages alter the ECM though the

production of degradation enzymes such as MMPs and cathepsins (Boorsma, Draijer and Melgert,

2013) (discussed in section 1.2.1), and through the secretion of pro-fibrotic factors such as TGF-β

28

and platelet derived growth factor (PDGF) (Barron and Wynn, 2011). Matrix clearance can also occur

through phagocytosis and receptor-mediated endocytosis. Phagocytosis of collagen fragments is via

binding to the integrin α2β1 (McKleroy, Lee and Atabai, 2013). Endocytosis receptors include

mannose receptors CD206 and Mrc2 (Engelholm et al., 2003; Boskovic et al., 2006; López-Guisa et

al., 2012). The glycoprotein Mfge8 also targets collagen fragments for degradation (Atabai et al.,

2009; Reddy et al., 2014). Other factors increase the rate of degradation. Plasminogen increases

the rate of degradation of ECM produced by rat smooth muscle cells by human airway macrophages

in vitro (Chapman, Reilly and Kobzik, 1988).

As well as degrading ECM, airway macrophages can also synthesise many matrix components. For

example, airway macrophages can produce FN which is antigenically similar to plasma FN and acts

as a chemoattractant to human lung fibroblasts ex vivo (Rennard et al., 1981). Airway macrophages

from IPF patients produced FN at 20x the rate of those from healthy volunteers (Rennard et al.,

1981). Levels of FN are also increased in the BAL fluid of asthmatic patients compared to healthy

volunteers, with levels correlating with the number of airway macrophages (Ohke et al., 2001).

In fibrotic models, airway macrophages play an important role (Barron and Wynn, 2011). One group

has demonstrated that there are increased numbers of monocyte-derived airway macrophages

during a bleomycin model of fibrosis (Misharin et al., 2017). Under steady state, airway macrophages

are long lived cells with a low turnover originally derived from the foetal liver (Tan and Krasnow,

2016). However, under inflammatory conditions turnover is much higher and new airway

macrophages can be derived from monocytes (Misharin et al., 2017). These monocyte-derived

airway macrophages drive much of the lung fibrosis seen in this bleomycin model (Misharin et al.,

2017). Transcriptomics performed on these monocyte-derived airway macrophages and tissue-

resident airway macrophages 14 days after bleomycin administration shows a differential expression

of pro-fibrotic genes between the two populations with higher expression in the monocyte-derived

cells. The number of differentially expressed genes was lower at 19 days. The monocyte-derived

macrophages persisted in the tissue, making up 50% of airway macrophages 10 months after

bleomycin. As such, more pro-fibrotic macrophages are present after the resolution of lung injury and

so may affect future lung immune reactions.

Another matrix interaction of macrophages in bleomycin-induced fibrosis is with HA (Savani et al.,

2000). HA is increased after bleomycin at day 4, with macrophages localised to areas of high HA

expression (Savani et al., 2000). A HA-binding peptide mimicking the HA-binding domain of the

29

receptor RHAMM inhibited the increased macrophage motility and accumulation seen after

bleomycin treatment. Treatment with the HA-binding peptide also reduced collagen deposition. This

directly links macrophage-HA interactions with the fibrosis induced in this model.

1.2.5 Effects of influenza virus on the ECM

Influenza virus causes acute respiratory infection. Annually, there are around 3-5 million cases

resulting in up to 500,000 deaths (WHO, 2017). There are four types of influenza viruses of which

those responsible for the highest numbers of human infections are influenza type A viruses. Influenza

A viruses are divided into subtypes by hemagglutinin and neuraminidase protein combinations (e.g.

H1N1 and H3N2 are currently the most common strains circulating in humans (WHO, 2017)).

Symptoms include fever, muscle and joint pain, cough and malaise. It replicates in epithelial cells

(Figure 1.4) in both the upper and lower airways (Kuiken et al., 2012), resulting in epithelial

destruction (Taubenberger and Morens, 2008).

Influenza virus is recognised by pattern recognition receptors (Kreijtz, Fouchier and Rimmelzwaan,

2011). Viral double-stranded and single-stranded RNA are recognised in the cytoplasm by TLR3 and

TLR7 respectively (Ichinohe, Iwasaki and Hasegawa, 2008). Another example of a cytosolic receptor

for influenza viruses is RIG-1 (Loo et al., 2008). Downstream, activation of these receptors results in

the activation of a variety of signalling pathways including the NF-κB, MAPK, PI3K/Akt and PKC/PKR

pathways (Gaur, Munjhal and Lal, 2011). In turn, this leads to the secretion of type I interferons,

cytokines such as IL-6 and IL-8 and chemokines such as CCL-2 (Iwasaki and Pillai, 2014).

including TLRs, which induces cytokine release. Airway macrophages also play a role in influenza

infection by phagocytosing infected cells, and activating CD4+ and CD8+ cytotoxic T-cells (Kreijtz,

Fouchier and Rimmelzwaan, 2011). Currently available treatments include antivirals, which inhibit

the neuraminidase protein, and those which block M2 proton channels. However, resistance to these

treatments can develop. Mice are the most commonly used animal to model influenza infections

(Bouvier and Lowen, 2010). Generally, mice are considered a good model, which is used for in vivo

safety and efficacy tests of antiviral drugs (Bouvier and Lowen, 2010). However, there are differences

in infection including no fever or cough symptoms in mice (Bouvier and Lowen, 2010).

30

Infection with the influenza virus can directly affect the ECM in the lung, through the manipulation of

matrix gene expression and alteration of matrix degradation. In epithelial cell lines (Vero and MDCK),

influenza A virus can induce type IV collagenases, MMP-9 and MMP-2 (Yeo et al., 1999). This MMP-

9 induction has also been demonstrated in the lung in a mouse model along with oxidative stress

(Lee et al., 2013). Another group has shown that MMP-9 upregulation in influenza infection is

mediated by TNF-α, MAPK pathways and activation of NF-κB and AP-1 (S. Wang et al., 2010). MMP-

9 substrates, collagen IV and FN, are highly decreased after influenza A virus infection as expected,

whilst other matrix proteins not targeted by MMP-9 such as laminin were unchanged. As well as

alterations to collagen IV, influenza infection results in increased collagen fibres around the airways

(Anikina, Potapova and Shkurupy, 2013). The role that TGF-β plays in influencing matrix is well

Figure 1.4 Influenza virus replication in epithelial cells. Hemagglutinin on the virus surface binds to receptors with sialic acid on the epithelial cell surface (1) allowing the viral particle to be endocytosed (2). Once internalised, the M2 proton channels acidify the endosome, which results in the fusion of the viral envelope to the endosomal membrane, releasing the viral RNA (vRNA) and proteins (3). The vRNA is transported to the nucleus and used to produce new vRNA and mRNA (4). The mRNA is translated in the cytoplasm to produce the viral proteins. Hemagglutinin and neuraminidase cluster at a bulge in the cell membrane, and vRNA and other viral proteins enter the membrane protrusion, which then buds off the cell to form new virus particles (5). They are released from the cell by cleavage via neuraminidase. Upon the release of new viral particles the host cell dies.

31

known. Influenza virus can manipulate this process by inducing the activation of latent TGF-β via the

increase of αvβ6 integrin and thus increases collagen deposition (Jolly et al., 2014).

1.3 Long term changes to the lung microenvironment

After the resolution of lung inflammation the lung may not return back to exactly the same naïve state

it was in previously, and it is well known that the response to a fresh stimulus may be altered as a

result (Goulding et al., 2007). Sometimes this altered state is protective. For example, the microbial

product CpG DNA or a modified bacterial labile toxin (LTK63) provide protection against a range of

respiratory pathogens (Williams et al., 2004; Edwards et al., 2005). This remains true after the

resolution of the initial inflammatory insult (Page, Scott and Manabe, 2006), with both beneficial

(Walzl et al., 2000; Selin et al., 2006) and negative effects (Beadling and Slifka, 2004; Brundage,

2006) on subsequent secondary infections.

1.3.1 The lung microenvironment in health

The lung serves to allow gaseous exchange between the air and the blood. However, this means

that the lungs are directly exposed to airborne pathogens and particulates. Despite initial belief that

the lower respiratory tract was sterile, it is now known that commensal microbiota is present

(Baughman et al., 1987). As such, there needs to be tight immune regulation to ensure that the lung

responds appropriately to stimuli.

There are both airway and interstitial macrophage populations in the lung (Cai et al., 2014). Activation

causes polarisation, with different markers expressed depending on the inflammatory milieu present.

New macrophages are monocyte-derived. Whilst airway macrophages are long-lived, there is greater

turnover of interstitial macrophages (Cai et al., 2014). Airway macrophages are amongst the first

cells to come into contact with any antigens in the lungs. As such, they must be tightly regulated to

ensure a proportionate response (for review see (Hussell and Bell, 2014)). At homeostasis, airway

macrophages are negatively regulated through inhibitory receptors such as CD200R. Ligands for

these receptors are expressed on the epithelium, which the airway macrophages are in close contact

with.

1.3.2 Long term changes to airway macrophages

Following resolution of severe inflammatory responses, the regulation of airway macrophages, and

thus their response to further stimulus, is altered (Kaur et al., 2015). Airway macrophages are

32

ordinarily derived from the foetal liver, and are extremely long-lived with low turnover (Tan and

Krasnow, 2016). However, airway macrophages are depleted after infection, and though replenished

from circulating monocytes they have a dampened response (Didierlaurent et al., 2008). What drives

this dampened response is unclear and is a subject in this thesis. Clinical evidence shows that

blunted macrophage responses are present across a wide range of lung pathologies including allergy

and fibrosis, as well as following infection. This, in part, explains their association with recurring

bacterial complications (exacerbations), which has also been confirmed in animal models (Habibzay,

Weiss and Hussell, 2013; McCullers, 2014). Reduced macrophage activity is associated with an

increase of negative regulators such as CD200R and interleukin (IL)-10 (van der Sluijs et al., 2004;

Snelgrove et al., 2008; Goulding et al., 2011) that restrict TLR responses (Didierlaurent et al., 2008).

1.3.3 Other long-term cellular changes

Macrophages are not alone in their alteration following a first inflammatory event. Increased levels

of IL-10 in the lung, for example after influenza infection, directly impair bacterial clearance by

neutrophils (Alonso et al., 2003; van der Sluijs et al., 2006), and there is enhanced antigen-

presentation (Beyer et al., 2004). Also, memory T cells from the first inflammatory event can undergo

bystander activation to a subsequent unrelated infection, and thus have a long term influence (Hogan

et al., 2001; de Bree et al., 2005). Also present after multiple pulmonary inflammatory conditions is

a long-lasting increase in goblet cell numbers (Lamb and Reid, 1968; Lucey et al., 1988; Harkema

and Hotchkiss, 1992; Tesfaigzi et al., 2004). Though a long-term effect is visible on immune cells,

what causes these changes, and particularly what maintains them, are unknown.

Long term effects on the lung cellular environment also encompass the concept of trained immunity

(Netea et al., 2016). This is where cells of the innate immune system, rather than being non-specific,

can adapt from previous inflammatory occasions (Netea and van der Meer, 2017). This trained

immunity is in part through epigenetic changes within the cells (Ng et al., 2013; Lee et al., 2015).

1.3.4 Long-term alterations to the ECM

Long term changes to the ECM in the lung are most notable in many chronic conditions. For example,

airway wall remodelling in asthma patients includes thickening of the airway basement membrane

(Huber, 1922) whilst in emphysema there are reduced numbers of elastic fibres (Black et al., 2008).

These alterations to the ECM both during (Talmi-Frank et al., 2016) and post-inflammation (Singh et

al., 2016), modify the tissue structure and directly influence the immune cells within the tissue.

33

Increased deposition of collagen and FN may lead to additional binding sites for bacteria (de

Bentzmann, Plotkowski and Puchelle, 1996). The ECM can affect inflammation in a number of ways

including cell migration, proliferation and activation (Burgess et al., 2016). Thus, any long-term ECM

alterations affect future immune responses.

1.4 Immune regulation by non-coding RNA

One way of altering cellular responsiveness is via an alteration in non-coding RNA (ncRNA). There

are multiple different types of ncRNA, including short-interfering RNA (siRNA), microRNA (miRNA),

long non-coding RNA (lncRNA), vault RNA (vtRNA) and piwi-interacting RNA (piRNA) (Ma et al.,

2016).

piRNA is the most abundant group of small ncRNAs. Originally, it was thought that expression of

piRNA was confined to germline cells, but they have now been found in somatic cells in multiple

tissues and species (Yan et al., 2011). In mouse germline cells, piRNA represses the activity of virus-

like transposable elements (Siomi et al., 2011), so it is thought that they may have a similar function

in somatic cells (Jeang, 2012). They are differentially expressed during influenza infection (Peng et

al., 2011).

lncRNAs are greater than 200 nucleotides long and can be classified into sub groups based on their

genomic locations and relationship with neighbouring genes. They are important regulatory

molecules and can interact with DNA, RNA and proteins. Influenza virus induces differential

expression of a large number of lncRNAs (Landeras-Bueno and Ortín, 2016). One example, VIN, is

induced by influenza A but not influenza B virus (Winterling et al., 2014). Downregulation of VIN

reduces viral gene expression, although the mechanism is unknown (Winterling et al., 2014).

There are 4 vtRNAs in humans, varying from 80-150 nucleotides. They make up part of the

cytoplasmic particle vaults along with ribonucleoproteins. As well as being associated with cancer

and drug resistance, vtRNAs are upregulated by influenza virus and promote viral replication (Ma et

al., 2016).

1.4.1 miRNA

We have chosen to focus of miRNA as many miRNAs are implicated in a wide range of inflammatory

and fibrotic conditions. miRNAs are short non-coding single strands of RNA approximately 18-24

nucleotides in length, which can inhibit target proteins through the prevention of translation or the

34

degradation of mRNA (Pasquinelli, 2012). miRNAs have specific ‘seed’ sequences on the loop

portion of the miRNA which target complimentary sequences on the target mRNA found primarily in

the 3’ untranslated region (Flynt and Lai, 2008). The miRNA repertoire is altered dramatically during

disease (Pasquinelli, 2012), with a high number of these targeting proteins which regulate the activity

of innate immune cells (Taganov et al., 2006; Graff et al., 2012; Luo et al., 2013).

miRNA is formed in a multi-step process from longer strands of protein or non-protein coding mRNA

(Flynt and Lai, 2008) (Figure 1.5). These initial precursors, known as primary miRNA (pri-miRNA)

are processed in the nucleus by the microprocessor complex comprising of class 2 RNase III enzyme

Drosha along with co-factor DiGeorge syndrome critical region in gene 8 (DGCR8) to form precursor

miRNA (pre-miRNA) which is approximately 60-70 nucleotides in length. Next, the pre-miRNA is

transported to the cytoplasm by exportin-5 for further processing. This is performed by Dicer, another

RNase III type protein. This produces two strands of miRNA (-5p and -3p strands), one of which is

then usually degraded although both can be functional. The final miRNA is then loaded onto an

Argonaute family protein complex known as the RNA-induced silencing complex (RISC) which then

binds to and silences the mRNA target of the miRNA (for review see (Wahid et al., 2010)).

Figure 1.5 The miRNA processing pathway. The miRNA gene is transcribed to pri-miRNA and cleaved by Drosha in the nucleus to for pre-miRNA. It is then exported from the nucleus and processed further by Dicer to form mature miRNA. Finally, it is assembled in the RISC complex which then binds and represses the target mRNAs. Taken from (O’Kelly et al., 2012), with permission from Nature Publishing Group.

35

miRNA half-life ranges from 28-220 hours in mouse embryonic fibroblasts, which is longer than the

typical 10 hours for mRNA (Gantier et al., 2011). Serum miRNAs are also long lived (Z. Zhang et al.,

2012). However, the half-life can be much shorter for individual miRNAs with active degradation, and

there are at least four ribonucleases which have been reported to degrade miRNA (Z. Zhang et al.,

2012). A number of mechanisms for targeting miRNA for degradation have been investigated. It is

apparent that, despite their short length, there are sequences within the miRNAs themselves that

regulate decay rate (Z. Zhang et al., 2012). Cellular adhesion, uridylation and target-binding also

regulate degradation (Hwang, Wentzel and Mendell, 2009; Ameres et al., 2010; Baccarini et al.,

2011; Chatterjee et al., 2011).

1.4.2 miRNA and Influenza virus infection

miRNAs are known to play a key role in immunity (see Table 1.1 for examples of miRNAs in

immunity). It has been demonstrated that the expression levels of over 100 miRNAs are changed as

a result of influenza virus infection (Tambyah et al., 2013; Bao et al., 2015; Makkoch et al., 2016).

Some host miRNAs inhibit influenza A virus replication including miR-323 (Song et al., 2010) and let-

7c (Ma et al., 2012). Likewise, miR-485 restricts viral replication through the targeting of both host

and viral transcripts (Ingle et al., 2015). Other examples are miR-584-5p and miR-1249, which target

influenza viral polymerase PB2, in turn reducing viral replication (R. Wang et al., 2017). Differences

in pathogenicity can affect the miRNA influence on viral replication, with H5N1 capable of

downregulating miR-1249, but not H1N1 (R. Wang et al., 2017).

On the other hand miRNA expression can also dampen the immune response to influenza, for

example through miR-144 targeting TRAF6-IRF7 signalling (Rosenberger et al., 2017) and the

association of the upregulation of miR-4776 with increased viral survival (Othumpangat et al., 2017).

Another miRNA involved in modulating viral replication is miR-9 (Dong et al., 2017). However, in this

case it is hijacked by the virus to increase replication. Infection induces expression of miR-9 in A549

epithelial cells, in turn inhibiting production of monocyte chemoattractant protein 1-induced protein 1

(MCPIP1) which targets and degrades viral RNA.

36

Table 1.1 Examples of miRNA involvement in immunity

miRNA Function in immunity Reference

miR-147b Induced upon stimulation of multiple TLRs (including TLR4, TLR2 and TLR3). Negatively regulates TLR-associated signalling events in murine macrophages. Knockdown increases inflammatory cytokine expression in TLR-stimulated cells.

(Liu et al., 2009)

miR-155 miR-155 miRNA determines the level of SOCS1 (suppressor of cytokine signalling 1) and proliferation of regulatory T-cells.

(Lu et al., 2009)

miR-144 Targets TRAF6-IRF7 signalling. (Rosenberger et al., 2017)

Let-7c let-7c is expressed at a high level in M2 macrophages. let-7c levels are also greater in alveolar macrophages from fibrotic lungs compared to normal lungs. LPS stimulation reduces let-7c expression. let-7c targets the transcription factor C/EBP-δ, which plays an important role in inflammatory response. let-7c also regulates bactericidal and phagocytic activities of macrophages.

(Banerjee et al., 2013)

miR-146a miR-146a dampens lipopolysaccharide (LPS) signalling through simultaneous targeting of TRAF6 and IRAK1, thus controlling production of TNF-α.

(Taganov et al., 2006)

miR-181a Modulates T-cell sensitivity. (Q.-J. Li et al., 2007)

miR-150 miR-150 controls B-lymphocyte development by precisely regulating the concentration of c-Myb within a narrow range.

(Xiao et al., 2007)

miR-9 miR-9 is up-regulated in both human polymorphonuclear neutrophils and monocytes after TLR4 activation. It can also be induced by TLR2 and TLR7/8 agonists and by TNF-α and IL-1β.

(Bazzoni et al., 2009)

miR-19b Downregulation of miR-19b results in increased TLR2 expression in rheumatoid fibroblast-like synoviocytes.

(Philippe et al., 2012)

miR-503 Regulates the immune response to ionising radiation through suppression of CD40.

(Cheng et al., 2012)

miRNA changes have also been found in approaches examining specific cell types. miR-34c is

downregulated in both PBMCs and BAL cells for the course of the 35 day influenza virus infection

study in rhesus monkeys (Rivera et al., 2016). More broadly, in piglet airway macrophages, 70

miRNAs are differentially expressed on day 4 post-infection including the upregulation of miR-155

and the downregulation of let-7c (Jiang et al., 2015).

miRNAs may therefore be useful tools as therapeutic agents, such as the incorporation of miR-155

into the influenza vaccine to enhance its immunogenicity (Izzard et al., 2017). The incorporation of

Let-7b response elements has been used to attenuate the pathogenicity of an influenza A virus strain

(Tan et al., 2016). In fact, artificial miRNAs targeting influenza virus hemagglutinin can protect mice

against infection (Tang et al., 2016). Diagnostically, a small scale study has indicated the possibility

of using miRNAs detected in throat swabs for confirming influenza A and influenza B virus infections

(Peng et al., 2016). However, it should be noted that in mice genetic background affects miRNA

expression in the lung both pre- and post-influenza infection (Preusse, Schughart and Pessler, 2017).

37

1.4.3 miRNA and pulmonary fibrosis

There are a number of miRNAs shown to be important during fibrosis. For example, miR-147b (miR-

147-3p in mice, referred to as miR-147b throughout) is a miRNA derived from the mRNA of the

protein normal mucosa of oesophagus specific 1 (NMES1) and is induced upon the activation of

TLRs (Liu et al., 2009). miR-147b is detected in macrophages, including airway macrophages, and

regulates the macrophage inflammatory response following TLR stimulation (Liu et al., 2009) and

cell invasiveness (Lee et al., 2014). It is up regulated in human inflammatory trachomatous scarring

(Derrick et al., 2013), suggesting possible links to the control of wound healing and the ECM.

Similarly, miR-155 is associated with the TLR-induced macrophage inflammatory response

(O’Connell et al., 2007), and reduces ECM protein production in skin wounds (Yang et al., 2014). It

is expressed by airway macrophages (Vegh et al., 2013) and is found in both idiopathic pulmonary

fibrosis and cystic fibrosis patients (Bhattacharyya et al., 2011; Li et al., 2014). miR-21 is increased

in the lungs of IPF patients and bleomycin treated mice, and antisense miR-21 reduces the severity

of fibrosis in mice (G. Liu et al., 2010).

The Let7 miRNA family are some of the most widely expressed miRNAs, and play a role in renal and

as well as pulmonary fibrosis (Pandit et al., 2010; Pandit, Milosevic and Kaminski, 2011; Brennan et

al., 2013). Overexpression of let-7d in multiple human fibroblast cell lines decreases levels of FN and

α-SMA mRNA, with phenotypic changes including reduced proliferation and motility (Huleihel et al.,

2014). miR-206 also targets FN (Zhang et al., 2013). Similarly, in vitro in pulmonary epithelial and

lung fibroblast cell lines overexpression of miR-483-5p increases α‑SMA and FN expression (Shen

et al., 2017). miR-483-5p is significantly downregulated in COPD lungs (Shen et al., 2017). As well

as influencing the protein components of the ECM, the glycosaminoglycan HA has also been linked

to miRNA regulation. miR-26b can enhance apoptosis through the targeting of HA synthase 2 in

ovarian cells (Liu et al., 2016) and HA binding to its receptor CD44 induces expression of miR-21,

miR-10b and miR-302 (Bourguignon et al., 2010, 2012; Bourguignon, 2016).

miRNA expression is also linked with the basement membrane. In ageing and senescence, the

basement membrane may become weakened, with lower collagen IV levels correlating with an

increase in miR-29 levels (Takahashi et al., 2012). A possible mechanism has been shown in hepatic

stellate cells, where inhibition of collagen I and IV synthesis is via hepatocyte growth factor induction

of miR-29 (Kwiecinski et al., 2011). On the other hand, collagen synthesis and fibrosis can be

promoted by TGF-β1 suppression of miR-29 (Wang et al., 2012). Similarly, miR-21 is also known to

38

target collagen IV in human granulosa cell lines (Mase et al., 2012), and in turn can be induced by

type I collagen (C. Li et al., 2011). Finally, in keratinocytes inhibition of miR-135b increases

expression of collagen IV (Choi et al., 2016).

1.5 Thesis hypothesis and aims

The impact of matrix alterations on innate immunity from the healthy to the inflammation repaired

state is currently unknown. We hypothesise that dramatic matrix alterations persist in inflammatory

resolution that will impede airway macrophage activity by increasing miRNA species with known

inhibitory effects on TLR and cytokine receptor signalling. Reduced TLR responsiveness contributes

to an inability to handle further infections in a wide variety of prevalent respiratory diseases.

Modulation of restricted matrix recognition receptors by inhalational therapeutics provides an

alternative strategy to alleviate disease exacerbation. Therefore, the objectives of this thesis are

(Figure 1.6):

1. To investigate the matrisome after influenza infection at 14 days using mass spectrometry,

as well as miRNAs known to modulate immunity

2. To examine whether the microbiome may affect the ECM at homeostasis, and whether this

depends on age

3. To develop a non-infectious model of pulmonary inflammation using carbon nanotubes and

to examine the ECM and miRNA within this model

39

Figure 1.6 Thesis objectives. 1) To investigate the matrisome after influenza infection at 14 days using mass spectrometry. 2) To examine whether the microbiome may affect the ECM at homeostasis, and whether this depends on age. 3) To develop a model of pulmonary inflammation using carbon nanotubes and to examine matrix and miRNA within this model

40

2. Materials and Methods

41

2.1 Laboratory Animals and in vivo models

2.1.1 Animals

Adult female C57BL/6 mice (Envigo, UK) were aged 6-8 weeks for in vivo experimentation unless

otherwise stated. Germ free C57BL/6 mice were derived in house by the facility. Neonates up to day

7 on SPF and GF backgrounds were used from mice bred in house by the facility. All mice were

maintained with a 12 hour light-dark cycle and given free access to food and water in accordance

with Home Office and Institutional guidelines. Mice were acclimatised for at least 1 week prior to in

vivo experimentation. Mice were euthanised by rising concentration of carbon dioxide, cervical

dislocation or intraperitoneal (i.p.) pentobarbitone injection and exsanguination of the femoral artery

depending on the experimental requirements.

2.1.2 Sample Collection

BAL fluid was collected by instilling 3×1mL Hanks buffered salt solution containing 1:100 EDTA to

the lungs via a tracheal cannula. Lung lobes were collected and either: fixed in formalin (10%) and

paraffin embedded for histological analysis, or lobes were snap frozen using dry ice/liquid nitrogen

and stored at -80°C to be used in RT-qPCR.

2.1.3 Influenza model

Mice received a single intranasal dose of 5 P.F.U. Puerto Rico/8/34 H1N1 (PR8) influenza A virus in

50μL PBS under isoflurane anaesthesia. Mice were euthanised by i.p. pentobarbitone injection and

exsanguination of the femoral artery at specific time points up to approximately 4 months.

2.1.4 Carbon nanotube model of pulmonary inflammation with and without infection

Mice received either one or two intranasal doses of 12.5 - 30μg/mouse carbon nanotubes (659258,

Sigma, UK) roughly suspended in PBS or PBS alone. At time points ranging up to 4 months mice

were sacrificed by i.p. pentobarbitone injection and exsanguination of the femoral artery. Mice

receiving an infection on Day 7 after a single dose of CNT received either 5 P.F.U. PR8 influenza A

virus or 1x105 colony forming units (C.F.U.) Streptococcus pneumoniae strain D39 (NCTC 7466).

Influenza infected animals were sacrificed on day 14 and S. pneumoniae infected animals on day 9.

42

2.1.5 Quantification of bacteria

Bacteria were quantified using a C.F.U. assay. Whole blood was collected from the femoral artery

(100μL blood in 20μL heparin). Whole lung was homogenised in 300μL PBS using a Bullet Blender

Storm 24 (BBY24M, Next Advance, New York, USA) with 3.2mm ball bearings (SSB32, Web

scientific, UK), and a further 200μL PBS added. Blood and lung samples were diluted 10-fold to give

a total of 8 serial dilutions and plated in duplicate on Colombia blood agar plates (PB122A, SLS, UK).

Plates were then incubated overnight at 37°C and colonies manually counted.

2.1.6 In vivo treatment with hyaluronan

Mice were treated intranasally with HA (1138kDa, HYA-1000KEF, Hyalose, Oklahoma, US), 50µL at

1mg/mL in PBS or PBS under light isoflurane anaesthesia. After 24 hours, mice were culled using

pentobarbitone and femoral artery exsanguination and BAL fluid collected (as above). Cells were

plated in a 48-well plate and left for 30 min for the airway macrophages to adhere. Non-adherent

cells were then removed, and the airway macrophages (95% pure) washed with RPMI 1640 media

(R8758, Sigma) containing 1% pen/strep (P0781, Sigma) and 10% FBS (10500064, Life

Technologies, UK), collected in 200μL QIAzol lysis reagent (79306, Qiagen, UK) and stored at -80°C

for PCR analysis.

2.2 In vitro cell treatments

2.2.1 In vitro treatment of murine airway macrophages with ECM components

BAL fluid from naïve C57BL/6 mice was collected as described above. Groups of up to 10 mice were

pooled, cells isolated by centrifugation and red blood cells lysed with ammonium-chloride-potassium

buffer. The cells were plated in supplemented RPMI containing 1% FBS and 1% pen/strep in 96-well

plates at a density of 100,000 cells per well. Cells were left to adhere for approximately 1 hour and

the non-adherent cells removed. Airway macrophages (CD11c+F4/80+) were 95% pure. Cell were

treated with HA (20μg/mL, 1138kDa, HYA-1000KEF, Hyalose) or FN (25μg/mL, F1056, Sigma) or

the equivalent volume of PBS in the supplemented RPMI media. Some cells were then further treated

with LPS (100ng/mL, tlrl-eplps, Invivogen, France) 30min after the initial stimulation. Cell lysates

were collected after 4 or 24 hours using 200μL QIAzol lysis reagent and stored frozen at -80°C.

43

2.3 Histology

2.3.1 Haematoxylin and Eosin

Haematoxylin and eosin (H&E) staining was performed on 5μm paraffin sections using a Shandon

Varistain 24-4 (ThermoFisher, UK) or a Leica ST5010 Autostainer XL and mounted manually using

DPX (06522-100ML, Sigma) or with a Leica CV5030 auto coverslipper.

2.3.2 Masson’s trichrome

Paraffin sections (5μm) were dewaxed and rehydrated, then stained with Celestine blue (C-7143,

Sigma) for 10s before washing in running tap water for 1 min. All further washes were in ddH2O for

1 min. Next, sections were stained with Mayer’s haematoxylin (35060 4T, BDH, UK) for 10s, washed

and stained in 1% Ponceau fuschin (HD1785-10, TCS biosciences, UK) in 1% acetic acid for 2 mins.

Sections were then washed and placed in 1% phosphomolybdic acid (P-0550, Sigma) until the

collagen decolourised (approximately 2 mins). Next, sections were washed and then counterstained

in 0.5% soluble blue (M-5528, Sigma) in 2.5% acetic acid for 45s. Finally, sections were washed,

dehydrated to xylene and mounted using DPX.

2.3.3 Fluorescent immunohistochemistry staining for hyaluronan

Paraffin sections (5μm) were subject to an all-in-one dewaxing and epitope retrieval procedure by

heating in BioOptica W-Cap TEC buffer, pH 8.0 (3815-6315/L, Leica, UK) at 95°C in a water bath for

1 hour and cooling for 30 min at room temperature. Negative control sections were digested with

10U/mL Streptomyces hyaluronidase (389561, Merck/Calbiolchem, UK) in PBS in a humidity

chamber at 37°C for 2 hours. A biotin block was performed using a kit (SP-2002, Vector, UK)

according to the manufacturer’s instructions. All sections were blocked with 1% BSA in PBS for 1

hour and then stained with 5μg/mL HA binding protein (HABP, 385911, Merck/Calbiolchem) in block

solutions overnight at 4°C. Sections were then incubated in 20μg/mL Streptavidin AF-488 (S-3254,

Invitrogen, UK) in block solution at room temperature for 45 min in the dark. Slides were washed 2x

with PBS followed by a distilled water wash and dried. Slides were mounted using ProLong Gold

Antifade w/ DAPI (P36935, Invitrogen, coverslips MIC3246, SLS).

44

2.3.4 Image acquisition

Images were acquired using a [20x/0.80 Plan Apo] objective using the 3D Histech Pannoramic 250

Flash II slide scanner and images taken at 5-40x magnification using Pannoramic Viewer Software

v1.15.4 (3D Histech, Hungary).

2.3.5 Quantification of hyaluronan staining

HA staining was quantified using ImageJ software (version 1.50d) (Rasband, 1997). Images of lungs

were taken using Pannoramic Viewer software (see above) and the colours separated in ImageJ

using the ‘Split Channels’ command. The image corresponding to the green HA staining was selected

and the percentage of pixels above the intensity threshold calculated. Data were then exported and

statistical analysis performed in GraphPad (version 7). ANOVAs were used for statistical testing.

2.4 RNA extraction and qPCR

2.4.1 RNA extraction

Total RNA extraction was carried out using a miRNeasy Micro Kit (217084, Qiagen) according to the

manufacturer’s instructions. Cells were lysed by the addition of a further 500μL QIAzol lysis reagent

and vortexed for 1 min before incubation at room temperature (RT) for 5 min. Whole lung was

homogenised in 1mL QIAzol lysis reagent using a T25 basic Ultra-turrax homogeniser (IKA, UK) with

S-25-D-10G-KS blades. To all samples, 140μL chloroform was added, shaken for 15 sec and

incubated at RT for 2 min then centrifuged at 12,000 x g at 4°C for 15 min. The aqueous phase was

removed and then mixed thoroughly with 1.5 volumes of ethanol and transferred to a spin column.

The column was centrifuged in a collection tube at 8000 x g for 15 sec at RT. The flow through was

discarded and the centrifugation repeated with 700μL Buffer RWT, followed by 500μL Buffer RPE

and then 500μL 80% ethanol (2 min). The membrane was dried by centrifugation at full speed for 5

min and the RNA eluted with 14μL RNase-free water by centrifugation at full speed for 1 min. The

RNA was quantified using a nanodrop (ThermoFisher model 2000c). RNA was stored at -80°C.

2.4.2 Reverse Transcription and RT-qPCR

All materials used for reverse transcription and RT-qPCR were purchased from Life Technologies.

The following reverse transcription and RT-qPCR primers were used hsa-let-7b (000378), hsa-let-7c

(000379), mmu-miR-155 (002571), hsa-miR-21 (000397), hsa-miR-147b (002262), NMES1 (also

45

known as AA467197, Mm01268692_m1), hnRNP A1 (Mm01303205_g1), KHSRP

(mM01232868_g1), Lin28b (Mm01190673_m1), CD44 (Mm01277163_m1), H19

(Mm01156721_g1), Lin28a (Mm00524077_m1), IL-6 (Mm00446190_m1), mmu-miR-503 (002456),

mmu-miR-424 (001076), HAS2 (Mm00515089_m1), 18s (4310893E), Gapdh (Mm99999915_g1),

Gas6 (Mm00490378_m1), Fn1 (Mm01256744_m1), Tnc (Mm00495662_m1), F13a1

(Mm00472334_m1), Anxa5 (Mm01293059_m1), Svep1 (Mm01346904_m1), TLR4

(Mm00445273_m1). Random hexamers (N8080127) were used for mRNA transcription.

Reverse transcription was performed using the Taqman microRNA Reverse Transcription Kit

(4366597) according to the manufacturer’s instructions using diluted RNA at a concentration of

10ng/mL. Samples were heated to 42°C for 1 hour then 95°C for 5 min using a Veriti 96-Well

Thermocycler (Applied Biosystems, UK). Samples were then cooled to 4°C or stored at -20°C until

used for RT-qPCR.

For RT-qPCR 1μL of cDNA was plated in duplicate for each sample in a 384 well plate with 9μL PCR

reaction mix (5μL 2x Taqman Fast Universal PCR reaction mix (4364103), 3.5μL RNase-free water,

0.5μL primers). The RT-qPCR reaction was then run on a QuantStudio 12K Flex PCR system (Life

Technologies). Samples were heated to 95°C for 20 sec, and then went through 40 cycles of 95°C x

1 sec and 60°C x 20 sec. Data was quantified by the ΔΔCT method using QuantStudio 12K Flex

Software (version 1.1.1, Life Technologies). Statistical analysis was carried out and graphs

generated using GraphPad (versions 6.04 and 7). T-tests were used for comparisons of data with

two groups unless data normalisation requirements were not met due to group variance differences,

whereupon Mann-Whitney U analysis was performed. ANOVAs were used for analysis with multiple

groups.

2.5 Mass Spectrometry

2.5.1 Mass spectrometry reagents

Acetonitrile (CHROMASOLV Plus), formic acid, dithiothreitol (DTT) and iodoacetamide (IA) were

purchased from Sigma; sequencing grade trypsin was purchased from Promega, UK; R3 beads were

purchased from Applied Biosystems; the protein standard containing carboxymethylated peptides

from 6 non-human proteins [cytochrome c (Bos taurus), lysozyme (Gallus gallus domesticus), alcohol

dehydrogenase (Saccharomyces cerevisiae), bovine serum albumin (Bos taurus), apo-transferrin

(Bos taurus), -galactosidase (Escherichia coli)] was purchased from Dionex (ThermoFisher).

46

Perforated V-bottom 96-well plates were purchased from Proxeon (ThermoFisher) and 96-well

collection plates were purchased from ThermoFisher. 96-well plates with 0.2 m PVDF membrane

were purchased from Corning, UK.

2.5.2 Protein extraction from whole lung

Protein extraction was based on previously published methods (Lennon et al., 2014). Whole lung

lobes were weighed and chopped into approximately 1mm3 pieces. Tissue was washed three times

with ice-cold PBS then further minced. Tissue was then suspended in ice cold TB 5:1 buffer volume

to tissue weight (10mM Tris, 150mM NaCl, 25mM EDTA, 1% (v/v) Triton X-100 with 25 μg/ml

Leupeptin, 25 μg/ml Aprotinin and 0.5 mM AEBSF), sheared through a 21G needle and left on a rotor

overnight at 4°C. Samples were centrifuged 14,000 xg, 10 min at 4°C and the supernatant collected

and frozen (Fraction 1). Pellet was resuspended in ice cold EB (20mM NH4OH, 0.5% (v/v) Trition-

X100 in PBS), sheared and left on a rotor for 1 hour at 4°C. Samples were centrifuged and the

supernatant taken off as in the previous stage (Fraction 2). Pellet was resuspended in PBS with

DNase (25μg/mL, 18047019, ThermoFisher) and RNase (25μg/mL, EN0531, ThermoFisher) and left

on a rotor for 30 min at RT. The samples were then centrifuged and supernatant discarded (unused

fraction). Pellets were resuspended in guanidine solution (4M Guanidine hydrochloride, 50mM

sodium acetate, 25mM EDTA with protease inhibitors, pH 5.8) and left on a rotor for 24-48 hours at

RT until samples were fully dissolved. Proteins were precipitated with 10:1 volume absolute ethanol

at -20°C overnight, centrifuged at 16,000g for 45 min, the pellets washed with 90% ethanol, then

resuspended in 5x sample buffer (7% SDS, 30% glycerol, 0.2M Tris-HCl, 0.01% bromophenol blue,

10% β-mercaptoethanol, pH 6.8) (Fraction 3).

2.5.3 In-gel proteolytic digestion

Protein samples were resolved by SDS-PAGE and visualized by Coomassie InstantBlue (ISB1L,

Expedeon, Cambridgeshire, UK) staining. Band density was then used to equalised loading.

Samples were then run on gels for 3 mins to produce gel tops. Gel tops were subjected to in-gel

trypsin digestion as described previously (Humphries et al., 2009). Gel tops for each sample were

cut into ~1 mm3 pieces. Gel pieces were destained three times with 50% Acetonitrile and 50%

ammonium bicarbonate solution for 30 minutes to remove protein stain, dehydrated by immersing in

acetonitrile followed by vacuum centrifugation for 30 minutes. Subsequently, gel pieces were

reduced in 10 mM DTT, alkylated in 55 mM IA and washed with alternating washes of ammonium

47

bicarbonate and acetonitrile. Next, gel pieces were dehydrated and digested with sequencing grade

trypsin (12.5ng/μL). Peptides from gel slices were collected in one wash of 99.8% (v/v) acetonitrile,

and 0.2% (v/v) formic acid and one wash of 50% (v/v) acetonitrile and 0.1% (v/v) formic acid. Peptides

were desiccated in a vacuum centrifuge and resuspended in 50 l of 5% (v/v) acetonitrile and 0.1%

(v/v) formic acid.

2.5.4 Offline peptide desalting

Peptides were desalted offline using 1 mg of R3 beads placed in each well of a 96 well plate with 0.2

um PVDF membrane. R3 beads were washed with 50% (v/v) acetonitrile followed by 0.1% (v/v)

formic acid. Peptide samples were then added to the beads, washed twice with 0.1% (v/v) formic

acid, and peptides eluted in 50 % (v/v) acetonitrile, 0.1% (v/v) formic acid. Peptides were desiccated

in a vacuum centrifuge and resuspended in 10 l of 5% (v/v) acetonitrile and 0.1% (v/v) formic acid.

2.5.5 MS data acquisition

Liquid chromatography–tandem MS analysis was performed using a nanoACQUITY

UltraPerformance liquid chromatography system (Waters, Elstree, UK) coupled offline to an Orbitrap

Elite analyser (ThermoFisher) for experiments. Peptides were separated on a bridged ethyl hybrid

C18 analytical column (250 mm length, 75 μm inner diameter, 1.7 μm particle size, 130 Å pore size;

Waters) using a 45-min linear gradient from 1% to 25% (v/v) acetonitrile in 0.1% (v/v) formic acid at

a flow rate of 200 nl/min. Peptides were automatically selected for fragmentation by data-dependent

analysis.

2.5.6 MS data analysis

Tandem mass spectra were extracted using extract_msn (ThermoFisher) and executed in Mascot

Daemon (version 2.5.1; Matrix Science, London, UK). Peak list files were searched against a

modified version of the Uniprot mouse database (version 3.70; release date January 2015),

containing ten additional contaminant and reagent sequences of non-mouse origin, using Mascot

(Perkins et al., 1999). Carbamidomethylation of cysteine was set as a fixed modification; oxidation

of methionine, proline and lysine were allowed as variable modifications. Only tryptic peptides were

considered, with up to one missed cleavage permitted. Monoisotopic precursor mass values were

used, and only +2, +3 and +4 charged precursor ions were considered. Mass tolerances for precursor

and fragment ions were 5 ppm and 0.5 Da respectively. MS datasets were validated using rigorous

48

statistical algorithms at both the peptide and protein level (Keller et al., 2002; Nesvizhskii et al., 2003)

implemented in Scaffold (version 4.6; Proteome Software, Portland, OR, USA). Protein identifications

were accepted upon assignment of at least two unique validated peptides with ≥90% probability,

resulting in ≥99% probability at the protein level and an estimated 0.1% protein false discovery rate

for all datasets.

2.5.7 MS data quantification

Relative protein abundance was calculated using peptide intensity (Lennon et al., 2014). Orbitrap

MS data were entered into Progenesis LCMS (Non Linear Dynamics Ltd, Newcastle upon Tyne, UK).

Alignment of chromatograms was carried out using the automatic alignment algorithm, followed by

manual validation and adjustment of the aligned chromatograms. All features with greater than one

isotope were used for peptide identifications. Progenesis created the peak list file that was exported

and searched in Mascot. Spectra were extracted using extract_msn (Thermo Fisher Scientific,

Waltham, MA, USA) executed in Mascot Daemon (version 2.5.1; Matrix Science, London, UK) and

imported back into Progenesis to acquire intensity data. The fold change, confidence score and p-

values were calculated by the software using the spectral counts. Peptide and protein data were then

exported from Progenesis as .csv files to be analysed in Excel. Proteins with more than one unique

peptide with p≤0.05 and a confidence score greater than the threshold given by the software were

counted as significantly altered. Quantification for each individual protein used spectral counting.

Counts were normalised for each protein by calculating the z-transformed mean normalised protein

intensities (z-score), which gives values relative to the average count for all samples for that protein.

Z-scores were then used to create heat maps, network maps and solubility plots.

2.5.8 Hierarchical clustering analysis

Z-scores were used for hierarchical clustering of proteomic data. Agglomerative hierarchical

clustering was performed using MultiExperiment Viewer (version 4.9.0) (Saeed et al., 2003). Protein

hits were hierarchically clustered on the basis of Euclidean distance, and distances between hits

were computed using a complete-linkage matrix. Clustering results were visualised as heat maps

using MultiExperiment Viewer (version 4.9.0).

49

2.5.9 Protein interaction network analysis

Protein interaction network analysis was performed using Cytoscape (version 3.4.0) (Shannon et al.,

2003) with normalised intensity data from the Progenesis software. Proteins identified in at least two

biological replicates were mapped onto a merged human, mouse and rat interactome built from

Protein Interaction Network Analysis platform Homo sapiens network (release date 10 December

2012), Mus musculus network (release date, 10 December 2012) and the Rattus norvegicus network

(release date 10 December 2012) (Wu et al., 2009), the ECM interactions database MatrixDB

(release date 20 April 2012) (Chautard et al., 2009), and a literature-curated database of integrin-

based adhesion–associated proteins (Zaidel-Bar and Geiger, 2010). Topological parameters were

computed using the NetworkAnalyzer plug-in (Assenov et al., 2008).

2.6 Electron microscopy

2.6.1 Serial block-face scanning electron microscopy

Serial block-face scanning electron microscopy (SBFSEM) was used to investigate lung

ultrastructure. Samples were prepared as previously described (Randles et al., 2016). Tissue

samples were cut into 1mm3 pieces and fixed for 1 hour in in 0.1 M sodium cacodylate buffer (pH

7.2) with 2% glutaraldehyde. Samples were then stained for 1 hour with 1% osmium tetroxide, 1.5%

potassium ferrocyanide in 0.1M cacodylate buffer, followed by 1 hour with 1% thiocarbohydrazide.

Next, samples were further stained with 1% osmium tetroxide and soaked in 1% uranyl acetate

overnight then incubated at 60 °C with lead aspartate pH 5.5 for one hour. Samples were dehydrated

with ethanol, infiltrated with TAAB 812 hard resin (TAAB, UK) and polymerised for 12 hours at 60°C.

Samples were mounted onto aluminium cryo pins (70446, Electron Microscopy Sciences, PA, USA)

using cyanoacrylate glue and the block surfaces trimmed at 90°. A conductive gold coating was

applies to the block, and the blocks placed in a Quanta 250 FEG (FEI Company, Oregon,

USA) + Gatan 3view system. A 41 μm × 41 μm field of view was used with a 4096 × 4096 scan, giving

a 10nm approximate pixel size. Approximately 1000 serial images through the block were taken using

a section thickness of 50nm.

50

3. Changes to the lung matrisome after influenza infection

resolution

51

3.1 Introduction

In this chapter we take the unbiased approach of tandem mass spectrometry to understand whether

the ECM returns to its original composition following the resolution of acute inflammatory disease

caused by influenza A virus infection.

3.1.1 The extracellular matrix and influenza infection

Influenza virus is known to influence collagen production. On the one hand, it promotes collagen

deposition through αvβ6 integrin-mediated TGF-β activation (Jolly et al., 2014). However, the

influenza virus non-structural protein NS1 induces collagen triple helix repeat containing 1 protein

(Zhu et al., 2016) which inhibits collagen expression (Pyagay et al., 2005). The influence of influenza

virus on collagen deposition is therefore likely to change depending on the viral strain. In C57BL/6

mice infection with H5N1 increases the volume density of collagen fibres by 3-fold on day 1 and 15-

fold on day 14 (Anikina, Potapova and Shkurupy, 2013). This does not seem to be mouse strain

specific since in BALB/c mice severe fibrosis is present in a sub-population of mice at day 30 with

increased collagen shown by highly elevated hydroxyproline levels (Qiao et al., 2009). However, the

impact of altered matrix proteins on the long-term lung health is unknown. Collagen has been known

for some time to affect the positioning on immune cells, The collagen-binding integrin receptors α1β1

and α2β1 are expressed on CD8+ and CD4+ T cells, respectively during influenza infection (Richter

et al., 2007), causing their localisation to the collagen IV-rich basement membrane (CD8+) or

collagen I interstitial spaces (CD4+).

With regards to the ECM and associated proteins, influenza virus also up-regulates intracellular

adhesion molecule (ICAM)-1, which is an integrin-binding glycoprotein associated with adhering cells

to one another or the ECM, and also regulates the survival of influenza virus in lung epithelial cells

by altering NF-κB (Othumpangat et al., 2016). In addition, the level of the secreted protein

osteopontin which has properties of both structural matrix proteins and cytokines, correlates with

pulmonary damage in influenza virus infected patients (Zhu et al., 2015).

There are many methods to degrade or remodel ECM and these are described in section 1.2.1 in

the introduction. In this chapter, we identify alterations in matrix metalloproteinases (MMP). MMP-9

is a 92kDa gelatinase and type IV collagenase. In vitro, H1N1 infection in human foetal membrane

cells increases pro-MMP-9 secretion at 24-48 hours, with corresponding protein activity levels and a

52

parallel increase in mRNA levels (Uchide et al., 2016). In epithelial cell lines, MMP-9 (Vero cells) or

MMP-2 (MDCK cells) are upregulated after H3N2 influenza virus infection (Yeo et al., 1999).

In vivo, MMP-9 is required for neutrophil migration to the lung in a TLR-dependent manner (Bradley

et al., 2012). It is associated with a more severe lung pathology in mice (Lee et al., 2013), and is

induced via TNFα in other organs, including the heart and brain, as well as the lungs (S. Wang et al.,

2010). Macrophage and fibroblast-specific expression of MMP-2, MMP-9 and MMP-10 as well as

TIMP-2 in H5N1 influenza virus infection results in progressive fibrosis through an imbalance of

collagen synthesis and degradation (Anikina et al., 2013). In proteomic studies, increased MMP-9 is

observed in parallel to decreased junction proteins in a short term influenza virus time course by

mass spectrometry (Shen et al., 2016). In an H3N2 mouse model, inhibition with doxycycline (an

MMP inhibitor) significantly reduces inflammation, although viral titres are unaffected (Ng et al.,

2012). H1N1 influenza virus infection induces MMP-14 (MT1-MMP), with inhibition reducing

structural tissue damage, but not the immune response (Talmi-Frank et al., 2016).

By proteomics, the acute effects of influenza A virus on the lung matrisome have been examined by

ion-current-based mass spectrometry (Shen et al., 2016; Talmi-Frank et al., 2016). In terms of the

matrisome, Shen et al. focused on more soluble proteins involved in epithelial barrier integrity and

found decreased junctional proteins and increased MMP-9 in influenza virus infected mice. Whilst

Talmi-Frank et al. did look at structural ECM proteins, and saw decreased basement membrane

proteins in influenza virus infected animals, they only looked at proteomics up to 120 hours post-

infection.

3.1.2 Whole tissue proteomics by mass spectrometry

In this chapter we use whole tissue proteomics, which allows an unbiased approach. Mass

spectrometry involves the ionisation of the target and the detection of the mass to charge (m/z) ratio

of the ions produced. However, due to the complexity of biological samples, proteins are digested

(often with trypsin) to peptides to increase the chances of protein identification (Randles and Lennon,

2015). As the m/z ratio can be the same for multiple peptides, for more accurate peptide identification

tandem mass spectrometry (MS/MS) then fragments the peptides further and produces spectra for

each. Comparison to protein databases allows the identification of peptides, then their parent

proteins. As some peptides are found in multiple proteins, this is controlled for by identifying proteins

using peptides unique to them along with possible post-translational modifications by allowing for

53

specific mass variations of peptides when searching the protein databases (Byron, Humphries and

Humphries, 2013). Fractionation of proteins is often used to separate out samples to make

identification easier. Separation of proteins prior to MS, for example by liquid chromatography (LC),

is also common. Care must be taken that less abundant proteins are not missed as the signals from

the most abundant proteins can overwhelm those that are less abundant.

In terms of quantification, relative quantification is most commonly used to avoid the need for

reference standards for each protein/peptide (Randles and Lennon, 2015). Both labelling and label-

free options for quantification are available, but label-free is more frequently used, particularly for

tissue samples. Label-free quantification involves spectral counting. Relative protein abundance is

calculated using the spectral count assigned to each protein (the sum of that for each of the

constituent peptides) normalised as a percentage of the total number of spectra within the sample.

Care must be taken on what comparisons are made using this method. For example, some groups

compare the same protein between different samples, but not different proteins within the same

sample.

3.1.3 Objectives

Whilst it is known that the ECM has a multitude of roles aside from structural support, including

immune regulation, only a limited number of studies have looked at how the ECM changes in the

lung after infection, and the subsequent effects this may have. In this chapter, the aims are:

1. To establish a method for proteomic analysis of whole mouse lung after an influenza virus

infection using mass spectrometry

2. To identify the matrisome proteins altered after the influenza virus infection and localise

where they are expressed within the tissue

3. To identify whether the protein changes observed correlate with changes in the mRNA for

the same gene

54

3.2 Results

3.2.1 Extraction and detection of proteins in murine lung at day 14 post-influenza infection

To examine how lung ECM changes after resolution of influenza virus infection we infected mice with

PR8 H1N1 influenza virus intranasally. This infection causes weight loss that is linked to cellular

infiltration into the airspaces and the production of inflammatory cytokines that cause appetite

suppression. Viral titres peak on days 4-6, weight loss on days 7-9 (Figure 3.1) and disease and viral

resolution occurs between days 10-14. We harvested lungs at day 14 and extracted proteins in a

fractionation approach based on solubility (Figure 3.3). In total, four fractions were generated. The

fraction generated after the nucleic acid digest was not included in the analysis as minimal amounts

of additional proteins were extracted by this method. The final fraction was enriched for the most

insoluble proteins and thus was enriched for ECM proteins. After protein extraction, protein gels were

run (Figure 3.2) to calculate protein levels and ensure equal amounts of each sample were used for

the trypsin digestion. A clear pattern of bands was visible across all samples in each of the fractions,

demonstrating that the fractionation approach was successful. Even at this crude level, differences

were observed between the PBS control and influenza groups (Figure 3.2).

To analyse the proteins present in each fraction LC-MS/MS was performed. Clear differences

between the proteins detected in each fraction were observed by agglomerative hierarchical

clustering (indicated by red, yellow and green bars in Figure 3.4). Agglomerative hierarchical

clustering is a bottom-up approach starting with each protein as an individual cluster, and then

successively merging pairs of similar clusters until only one remains. As expected, the greatest

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

W e ig h t L o s s

D a y

Pe

rc

en

ta

ge

Orig

ina

l B

od

y W

eig

ht

(%)

P B S

F lu

Figure 3.1 Weight loss chart of influenza virus infection in mice. Female C57BL/6 mice were given a single intranasal dose of 5 P.F.U. PR8 influenza virus on Day 0 and weight loss monitored over the 14 day time course. Percentage body weight was calculated compared to the starting weight of each mouse on day 0. Mean ± SEM, n = 4.

55

number of highly expressed proteins is within fraction 1. Differences between control and flu animals

within each fraction can also be observed (Figure 3.4).

Influenza Infection

Lung Collection and Homogenisation

Detergent Extraction

Alkaline Extraction

DNase Digestion

Guanidine Solution

Trypsin Digestion and Peptide Desalting

Fraction 1

Fraction 2

Fraction 3

Mass Spectrometry

Unused Fraction

Figure 3.3 Flow diagram of murine lung protein extraction for mass spectrometry. Proteins were extracted from a single lung lobe based on solubility by increasing detergent stringency. Fraction 3 is the matrisome-enriched fraction.

Figure 3.2 Coomassie stained protein gels of fractions 1-3. Mice received 5 P.F.U. PR8 influenza virus. Proteins were extracted from whole lung of mice at day 14 post-influenza infection via fractionation based on solubility. Each lane represents a single mouse. n = 4.

Fraction 1 PBS Flu

Fraction 2 PBS Flu

Fraction 3 PBS Flu

56

Figure 3.4 Heat map of proteins detected in mouse lungs post-influenza virus infection. Mice received 5 P.F.U. PR8 influenza virus and proteins identified in whole lung at day 14 by tandem mass spectrometry. Hierarchical clustering analysis was performed of the relative abundance of total proteins identified across all samples and fractions using the normalised z-score for each individual protein, where red is increased and blue is decreased in relation to the protein average level. Red, yellow and green bars indicate clear protein signatures for each of the three fractions. n = 4.

PBS Flu PBS Flu PBS Flu

Fraction 1 Fraction 2 Fraction 3

57

3.2.2 Identification of matrisome proteins within the mass spectrometry data

As we are interested in the matrisome, we identified the matrisome proteins present in the MS data

using the online resource ‘The Matrisome Project’ (Naba et al., 2012). This contains an in silico

database of mouse matrisome proteins and their category, for example glycoproteins or ECM-

affiliated proteins. Those found to be significantly altered in the matrisome-enriched fraction 3 are

shown in Figure 3.5, and those with the highest fold changes in expression listed in Table 3.1 and

Table 3.2. In general, basement membrane proteins including Col4a5 and Col4a3 were

downregulated in the resolved influenza virus (Flu) samples (fold change -4.62 and -4.59

respectively). Other ECM proteins such as FN (8.39 fold change) and tenascin C (8.65 fold change)

were increased.

Matrisome proteins were also identified in fractions 1 and 2, although these tended to be ECM-

associated proteins rather than core matrix proteins (Figure 3.6). Amongst these, ECM degradation

Figure 3.5 Heat map of significantly altered matrisome proteins in the matrisome-enriched fraction 3 from mouse lung post-influenza virus infection. Mice received 5 P.F.U. PR8 influenza virus and proteins identified in whole lung at day 14 by tandem mass spectrometry. Hierarchical clustering analysis of the alteration of matrisome protein expression based on the z-score. n = 4.

58

enzymes including MMP-2 (fraction 2) and a number of cathepsins (fraction 1) were upregulated

after influenza virus infection resolution.

Figure 3.6 Heat map of significantly altered matrisome proteins in protein fractions 1 and 2 from mouse lung post-influenza virus infection. Mice received 5 P.F.U. PR8 influenza virus and proteins identified in whole lung at day 14 by tandem mass spectrometry. Hierarchical clustering analysis of the alteration of matrisome protein expression based on the z-score. n = 4.

59

Table 3.1 Most highly decreased proteins in the matrisome enriched fraction 3 in mouse lung at day 14 after influenza virus infection. Mice received 5 P.F.U. PR8 influenza virus and proteins identified in whole lung at day 14 by tandem mass spectrometry. n = 4.

Gene Symbol

Fold Change

p-value

Comments Reference

Svep1 -4.30 0.0002 Sushi, Von Willebrand Factor Type A, EGF And Pentraxin Domain Containing 1

Potential biomarker for lung cancer with metastatic pleural effusion

(Chen et al., 2014)

Anxa5 -4.06 0.0144 Annexin A5 Increased in lung cancer and COPD BALF

Binds to phosphatidylserine

(Boersma et al., 2005;

Pastor et al., 2013)

Egfl7 -3.51 0.0002 EGF-like domain-containing protein 7 Contains sequence for miR-126 and miR-126*

within intron 9. Promotes cells invasion and angiogenesis in

pancreatic carcinoma

(Musiyenko et al., 2008;

Shen et al., 2016)

Col4a5 -2.62 0.0006 Collagen Type IV alpha 5 Part of basement membrane (minor Col IV).

Required for lung cancer progression

(Xiao et al., 2015)

Acan -2.61 0.0189 Aggrecan Involved in wound healing/repair in skin (high in granular phase, then decreased) and cartilage

(Li et al., 2011; Velasco et al.,

2011) Col4a3 -2.59 2.59E-

05 Collagen Type IV alpha 3

Part of basement membrane. Has suppressed expression in COPD.

(Acquaah-Mensah et al.,

2012) Col18a1 -2.31 0.0028 Collagen Type XVIII alpha 1

Component of vascular/epithelial BMs. Associated with poorer prognosis in non-small cell lung

carcinoma

(Iizasa et al., 2004)

Col4a4 -2.08 0.0007 Collagen Type IV alpha 4 In alveolar BM of normal lung. Get gradual loss in

bronchioloalveolar carcinoma.

(Nakano et al., 2001)

Col4a1 -1.93 0.0004 Collagen Type IV alpha 1 Deposited in fibroblastic foci in usual interstitial

pneumonia and inhibit fibroblast migration. Stimulated by TGF-β

(Urushiyama et al., 2015)

F13b -1.91 0.0128 Coagulation Factor XIII, B Polypeptide Linked to cystic fibrosis

(Eiberg et al., 1985)

Col4a2 -1.81 0.0001 Collagen Type IV alpha 2 Deposited in fibroblastic foci in usual interstitial

pneumonia and inhibit fibroblast migration. Stimulated by TGF-β

(Urushiyama et al., 2015)

Npnt -1.67 0.0034 Nephronectin BM component. Downregulated by TGF-β. Loss promotes metastasis in malignant melanoma.

(Kahai et al., 2010; Kuphal et al., 2008)

Hspg2 -1.60 0.0031 Heparan Sulfate Proteoglycan 2 (perlecan). BM component. Upregulated by TGF-β in airway

smooth muscle cells from COPD.

(Ichimaru et al., 2012)

Lama3 -1.45 0.0074 Laminin alpha 3 BM component. Reduced in fibrotic regions of the

lung

(Morales-Nebreda et al.,

2015)

60

Table 3.2 Most highly increased proteins in the matrisome enriched fraction 3 in mouse lung at day 14 after influenza virus infection. Mice received 5 P.F.U. PR8 influenza virus and proteins identified in whole lung at day 14 by tandem mass spectrometry. n = 4.

Gene Symbol

Fold Change

p-value Comments Reference

F13a1 10.37 0.0027 Coagulation Factor XIII, A1 Polypeptide Involved in cross-linking ECM proteins

(Richardson et al., 2013)

Tnc 8.65 0.0003 Tenascin C

Drives persistence of organ fibrosis (skin and lung). Can be induced by TGF-β

(Bhattacharyya et al., 2016; Estany et al.,

2014)

Fn1 8.39 0.0002 Fibronectin

Matrix glycoprotein increased in pulmonary models of inflammation and fibrosis

(Gupta, Reinhart and Bhalla,

1998)

Tgm1 5.66 0.0010

Transglutaminase 1 Cross-linking enzyme expressed in healthy

bronchial epithelium with a possible role in lung cancer.

(Martinet et al., 2003)

Plg 5.01 0.0053 Plasminogen

Activated to plasmin, it protects against fibrosis (Bauman et al.,

2010)

Serpinf2 4.47 0.0085

Serpin Peptidase Inhibitor, Clade F (Alpha-2 Antiplasmin, Pigment Epithelium Derived

Factor), Member 2 Plasmin inhibitor, altered in liver fibrosis in

Hepatitis C

(Caillot et al., 2009)

Lgals8 4.21 0.0104

Lectin, Galactoside-Binding, Soluble, 8 (also galectin 8)

Has 6 isoforms, expressed in some cancers (including in the lung)

In asthmatic BAL. Can bind integrins

(Bidon-Wagner and Le Pennec, 2004; Cederfur

et al., 2012)

Sftpa1 3.66 0.0008 Surfactant Protein A1

Mutation in gene linked to IPF (Nathan et al.,

2016)

S100a11 3.56 0.0099 S100 calcium-binding protein A11

Differentially expressed in lung cancer tissues (Hao et al.,

2012)

Itih1 3.45 0.0027

Inter-Alpha-Trypsin Inhibitor Heavy Chain 1 Part of the inter-alpha trypsin inhibitor complex.

Interaction with hyaluronan associated with inflammation.

(Zhuo et al., 2006)

Gpc1 3.20 0.0014 Glypican 1

Involved in tumour angiogenesis, modulates metastatic potential (pancreas)

(Aikawa et al., 2008)

Vtn 3.07 0.0022 Vitronectin

ECM glycoprotein increased in interstitial lung disease patient BAL

(Pohl et al., 1991)

Anxa7 3.06 0.0153 Annexin A7

Targeting by miR-155 in prostate cancer (Cai et al., 2015)

Serpinh1 2.98 0.0010

Serpin Peptidase Inhibitor, Clade H (Heat Shock Protein 47), Member 1, (Collagen Binding

Protein 1) Pro-collagen specific molecular chaperone

increased in fibrosis models

(Widmer et al., 2012)

Tgfbi 2.84 0.0274

Transforming Growth Factor, Beta-Induced, 68kDa

Enhances cell adhesion, decreases capacity of MMP-2 and -9. Binds FN and Col I.

(Billings et al., 2002; Wen et

al., 2011)

61

3.2.3 Overlap of proteins identified by mass spectrometry in the different fractions

To quantify the effectiveness of protein fractionation and matrisome enrichment, the overlap of

protein identities between the fractions was calculated (Figure 3.7a). The matrisome enriched

fraction contained the fewest proteins, indicative of successful enrichment. The greatest overlap of

proteins was between the two more soluble fractions, with 2,224 proteins in common of a total of

3,897 proteins identified in the two fractions combined. 253 proteins were unique to the ECM-

enriched fraction. This same analysis was performed for the matrisome proteins identified in each

fraction (Figure 3.7b). The highest number of matrisome proteins (both unique and shared) was in

the enriched fraction as expected. Those unique to fractions 1 and 2 are likely to be the more soluble

matrisome–associated proteins rather than core matrix proteins.

Freshly produced matrix is more soluble as it is yet to cross-link with other matrix components.

Therefore, it is possible to see the same signal in fractions 1 and 3 but not in fraction 2. Matrisome

proteins found in both fractions 1 and 3, but not in fraction 2, include Lama2, Vcam1 and Col6a6.

Some, such as Vcam1, are not significantly altered after influenza virus infection. However, Col6a6

was significantly increased after influenza virus infection in fraction 1, suggesting synthesis (p =

0.02), but not in fraction 3 (p = 0.43). This indicates the importance of examining the more soluble

fractions are well as the matrisome-enriched fraction.

Figure 3.7 Venn diagrams showing the overlap between proteins identified in the different fractions in both control mice and 14 days post-influenza virus infection in mice. a) all proteins identified and b) matrisome proteins. Mice received 5 P.F.U. PR8 influenza virus and proteins identified in whole lung at day 14 by mass spectrometry. n = 4.

18

1554

11 27

53

17

Fraction 1

(109)

Fraction 2

(112)

Fraction 3

(135)

1173

354253

69 1296

928

146

Fraction 1 (3466)

Fraction 2

(2724)

Fraction 3

(1396)

a b

62

3.2.4 Alteration of matrisome protein solubility after influenza infection

More insoluble matrix is indicative of fibrosis, whilst an increase in solubility suggests new matrix

production. Hence, we compared the solubility of various matrisome proteins using their relative

abundance across the protein fractions (Figure 3.8). FN is primarily found in the ECM-enriched

fraction, as is Col4a1. This is reflected below by their dominance in fraction 3. On the other hand

tenascin C, which is expressed at very low levels in healthy lung, was found fractions 2 and 3 in

influenza virus-resolved mice. This indicates production in a more soluble form before binding to

other ECM components and becoming less soluble. Other proteins such as Col1a1 showed little

change in solubility whether analysed in PBS control mice or after influenza virus infection.

Figure 3.8 Solubility plots of proteins identified post influenza virus infection in mouse lung. Mice received 5 P.F.U. PR8 influenza virus and proteins identified in whole lung at day 14 by mass spectrometry. z-scores were calculated for each protein for all samples across all fractions and plotted to examine solubility. Mean ± SEM, n = 4.

F 1 F 2 F 3

-1

0

1

2

3

F n 1

z-s

co

re

C o n tro l

F lu

F 1 F 2 F 3

-1

0

1

2

3

T n c

z-s

co

re

F 1 F 2 F 3

-2

-1

0

1

2

3

T h b s 1

z-s

co

re

F 1 F 2 F 3

-1

0

1

2

C o l1 a 1

z-s

co

re

F 1 F 2 F 3

-1

0

1

2

C o l4 a 1

z-s

co

re

F 1 F 2 F 3

-2

-1

0

1

2

S e rp in h 1

z-s

co

re

63

3.2.5 Network analysis of matrisome proteins in the matrisome-enriched fraction

As matrix proteins are known to bind and interact with one another, we generated a network map of

the interactions of the matrisome proteins identified in the matrisome-enriched fraction (Figure 3.9).

This allowed us to examine how interconnected the matrisome proteins are and whether there is a

relationship between those increased or decreased after influenza virus infection. Two of the most

highly increased proteins after influenza virus infection, FN and tenascin C, were among those with

the highest number of known interactions (35 and 15 interactions, respectively). This indicates that

they may have important roles and that a change in their expression levels could have far-reaching

Figure 3.9 Network map of known interactions between matrisome proteins identified in the matrisome-enriched fraction 3 post-influenza virus infection in mice. Mice received 5 P.F.U. PR8 influenza virus and proteins identified in whole lung at day 14 by mass spectrometry. Nodes (circles) represent proteins and edges (lines) represent an interaction. Those with the most interaction are in the centre of the diagram and proteins with no interactions on the outside. Red = increased expression, blue = decreased expression after influenza virus infection.

64

consequences. Those with less or no known interactions tended to be less abundantly expressed

proteins rather than core lung structural ECM.

The program Cytoscape used to generate Figure 3.9 then allows focusing on nodes of particular

interest to look at specific gene interactions. Figure 3.10a shows the interactome between the

increased proteins within our data set, with a high number of interactions with FN. However, it should

be noted that this interactome is influenced on what has actually been discovered in the past, and

so other important consequences may be contained within the data set. In the decreased protein

network (Figure 3.10b), links were primarily between collagen IV subunits and laminin subunits, again

suggesting deficiencies within the basement membrane.

a b

Figure 3.10 Network maps of increased and decreased proteins after influenza virus infection in mice in the matrisome-enriched protein fraction 3. Mice received 5 P.F.U. PR8 influenza virus and proteins identified in whole lung at day 14 by mass spectrometry. a) increased proteins, b) decreased proteins after infection. Nodes (circles) represent proteins and edges (lines) represent an interaction. Red = increased expression, blue = decreased expression after influenza infection.

65

3.2.6 mRNA and miRNA expression after influenza infection

To examine whether the protein expression changes see are due to transcriptional alterations, five

of the significantly altered proteins were examined at mRNA level in whole lung in parallel samples

to those used for the mass spectrometry (Figure 3.11). No significant changes were observed in the

mRNA of the genes selected, suggesting that the changes may be in the post-transcription regulation

of these proteins. Tenascin C showed variable up-regulation with two highly increased animals in flu,

one slightly increased and one the same as the control group. This may reflect infection severity in

the animals and should be further examined in future experiments.

The laboratory has a long-term interest in macrophage regulation by microRNA species that may, in

part be driven by matrix alterations. We therefore examined the expression levels of those miRNAs

known to be associated with a fibrosis and TLR response, particularly miR-147b, miR-155, and

miRNA let7c (Figure 3.12). miR-147b and miR-155 both trended towards being increased in the

influenza virus resolved samples compared to controls, as was NMES1 the parent RNA of miR-147b.

However, none reached statistical significance due to high variability between animals, perhaps

reflecting the severity of infection. Let7 levels remained unchanged, reflecting the fact that resolution

of the infection has already occurred.

We also examined whether mRNA levels of matrix proteins or miRNA may be altered at later time

points after influenza virus infection, using samples from another influenza time-course run by the

lab using an identical infection (Figure 3.13). After either 6 or 10 weeks, there were no differences in

miR-147b or miR-155 between animals which had been infected and controls. However, there was

a trend to increased levels of matrix components FN and tenascin C compared to control animals,

reaching significance for tenascin C at 10 weeks (p=0.0019). These results for tenascin C are in

Figure 3.11 mRNA expression of significantly altered matrisome proteins at day 14 post-influenza virus infection in mouse lung. Mice were treated with 5 P.F.U PR8 influenza virus, and whole lungs taken at day 14. Total RNA was extracted and matrix protein mRNA expression of Fn1, Tnc, F13a1, Anxa5 and Svep1 examined by RT-qPCR. Mean ± SD, n = 4.

P B S F l u

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

F n 1

Fo

ld

C

ha

ng

e

P B S F l u

0

2

4

6

8

1 0

T n c

P B S F l u

0 . 0

0 . 5

1 . 0

1 . 5

F 1 3 a 1

P B S F l u

0 . 0

0 . 5

1 . 0

1 . 5

A n x a 5

P B S F l u

0 . 0

0 . 5

1 . 0

1 . 5

S v e p 1

66

contrast with our data for 14 days and may be due to the variability at the earlier timepoint or indicate

that matrix mRNA levels fluctuate despite long-term protein upregulation.

Fo

ld C

ha

nge

P B S F lu

0 .0

0 .5

1 .0

1 .5

2 .0

L e t7 cR

ela

tiv

e E

xp

re

ss

ion

P B S F lu

0

2

4

6

8

N M E S 1

Re

lati

ve

Ex

pre

ss

ion

P B S F lu

0

2

4

6

8

1 0

m iR -1 4 7 b

Re

lati

ve

Ex

pre

ss

ion

P B S F lu

0

1

2

3

m iR -1 5 5

Re

lati

ve

Ex

pre

ss

ion

Figure 3.12 miRNA expression at day 14 post-influenza virus infection in mouse lung. Mice were treated with 5 P.F.U PR8 influenza virus, and whole lungs taken at day 14. Total RNA was extracted and miRNA expression of let7c, miR-155 and miR-147b examined by RT-qPCR. Mean ± SD, n = 4.

6 W e e k s 1 0 W e e k s

0

1

2

3

F N

Fo

ld C

ha

ng

e

C o n tro l

F lu

6 W e e k s 1 0 W e e k s

0

1

2

3

4

5

T n c

C o n tro l

F lu

6 W e e k s 1 0 W e e k s

0

1

2

3

m iR -1 4 7 b

C o n tro l

F lu

6 W e e k s 1 0 W e e k s

0

1

2

3

m iR -1 5 5

C o n tro l

F lu

6 W e e k s 1 0 W e e k s

0

1

2

3

m iR -1 5 5

C o n tro l

F lu

Figure 3.13 mRNA and miRNA expression at 6 weeks and 10 weeks post-influenza virus infection in mouse lung. Mice were treated with 5 P.F.U PR8 influenza virus, and whole lungs taken at 6 and 10 weeks. Total RNA was extracted and matrix protein mRNA expression of Fn1 and Tnc and miRNA expression of miR-147b and miR-155 examined by RT-qPCR. Mean ± SD, n = 4.** p≤0.01

**

67

3.2.7 Electron microscopy images after flu

In order to visualise matrix changes in situ we employed electron microscopy imaging. Serial block

face scanning electron microscopy was used to collect approximately 1000 serial images each from

2 areas of a control lung and a lung post-influenza virus infection. As backscattered electrons are

detected to form the images, a TEM-like image is produced. These serial images allow for an

enhanced identification of cell types and features. The images demonstrated increased cellularity in

the influenza-treated mice (Figure 3.14). Airway macrophages were clearly visible in both control and

infected images, as were areas of collagen fibrils. These fibrils were more associated with alveolar

walls than with capillaries. Whilst no quantification was performed for this thesis, future analysis could

be performed to demonstrate collagen bundle size and association with cells, as well as basement

membrane thickness. The sequential nature of these images is particularly suited to this

quantification. However, more lung areas would be needed to control for natural variation.

Figure 3.14 EM images of mouse lung at day 14-post influenza virus infection. Control (left) and infected (right). Mice were treated with 5 P.F.U PR8 influenza virus, and whole lungs taken at day 14. mm3 sections of whole lung were fixed in 2% gluteraldehyde and stained with osmium tetroxide. Serial block face scanning electron microscopy was used to collect approximately 1000 serial images for both control and influenza tissue and Individual images taken using 3Dmod. Red arrows = collagen fibrils; blue arrows = alveolar macrophages. Scale bar 5000nm.

Control Influenza

68

3.2.8 HA expression during an influenza time course

Some of the matrisome is made up of glycosaminoglycans, which aren’t visible using protein mass

spectrometry. We therefore decided to look additionally at the expression of HA, as it is highly

abundant within the lung and our lab has previously demonstrated alteration during influenza

infection (unpublished data). Fluorescent staining was used to examine HA expression over an

influenza virus infection time course, and the lung area fraction of fluorescence above threshold

calculated as a method of quantification (Figure 3.15). Samples were taken from a previous influenza

time course run by the lab using the same methods. HA levels were markedly increased at day 8

and day 11 post-infection but had visually reduced again by day 21.

Control Day 4

Day 8 Day 11 Day 21

P B S D a y 4 D a y 8 D a y 1 1 D a y 2 1

0

1 0

2 0

3 0

A re a F ra c t io n

Pe

rc

en

tag

e a

bo

ve

th

re

sh

old

* *

*

Figure 3.15 Hyaluronan fluorescent staining in mouse lung during an influenza virus time course. Mice received a single intranasal dose of 5 P.F.U. PR8 influenza virus at day 0. At various time points, lung lobes were fixed in formalin, paraffin embedded and stained using hyaluronan binding protein. HAase enzyme was used as a control for specific HA staining. Green = HA staining, blue = DAPI staining (HAase control only). Staining was quantified as the percentage of the image area with fluorescence above the threshold value. Data represented as mean ± SD, n = 5 lungs per time point. * p ≤ 0.05, ** p ≤ 0.01.

HAase

69

3.3 Discussion

In this chapter, we have shown that the lung matrisome is altered 14 days after an influenza infection

in mice, with increased levels of interstitial matrix proteins such as FN and tenascin C and decreased

levels of basement membrane proteins including collagen IV and laminin subunits. Day 14 was

chosen as it represents the period of disease resolution. Influenza virus is usually cleared by day 10

and by day 14 lung histopathology is macroscopically back to its original state. However, research in

the group has shown that although macroscopically normal, several immune cell subtypes,

particularly airway macrophages, remain altered for long periods of time (Didierlaurent et al., 2008;

Goulding et al., 2011). Matrix production and turnover are affected by macrophage activity and so

the premise of this thesis was that a change in matrix was driving these alterations.

3.3.1 Extraction and detection of proteins in murine lung at day 14 post-influenza infection

We took a fractionation approach on whole tissue protein extraction to unravel matrix components

from more soluble proteins. This is a common process for complex tissues and has been performed

on a number of tissues (Decaris et al., 2014; Lennon et al., 2014). Depending on the tissue in

question, some of the fractions do not draw out additional protein species. In our study, the fraction

after DNase and RNase treatment was not used in the mass spectrometry as minimal protein was

extracted at this stage. As expected, fraction 3 contained the least soluble proteins and was thus

enriched for matrisome proteins. However, there was significant overlap of protein identifications

between the factions. This likely represents the natural turnover of matrix components such that

clearance is mediated by digestion and release. It could also reflect however an inefficient extraction

method. Furthermore, newly produced matrix is only insoluble after it has integrated with the rest of

the tissue matrix structure via cross-linking. It is therefore relevant to study multiple fractions.

Previously, four different matrisome enrichment techniques have been directly compared in four

different tissues including lung (Krasny et al., 2016). These protocols involved analysis only of the

matrisome-enriched fraction. For the decellularisation process, two of the protocols used focused on

triton-based and SDS-based methods. However, all four protocols resulted in a loss of matrisome-

associated proteins, which is expected due to their more soluble nature. Hence, we examined the

earlier factions as well as the enriched fraction. The triton based-method, whilst not identical to that

used here, was similar enough to demonstrate that it is an effective protocol for enrichment. It has

also been suggested that no enrichment is required for identification of the more abundant matrisome

proteins. Therefore, the method of extraction, to some extent, depends on the questions asked.

70

However, we chose to use enrichment since our study is hypothesis free, so required analysis of as

much of the matrisome as possible. The method we chose to use has been previously optimised for

fractionation and analysis of the matrisome by Lennon et al., 2014.

We saw a variability in the level of proteins found within each individual group. In infected animals,

this may be explained by variations in the severity of infection. Variation in uninfected control animals

may represent natural variability within the population. The use of larger groups of together with other

methods of protein analysis such as western blot would help to increase the robustness of the data

and reduce the effects of this variability. Larger n numbers would also be able to confirm the mRNA

analysis.

3.3.2 Alteration of basement membrane matrix

The reduction of many matrix proteins directly linked to the basement membrane is interesting. The

basement membrane in the lung consists of the alveolar basement membrane, the bronchiolar

basement membrane and the vascular basement membrane. Alveolar basement membrane

formation involves fusion of epithelial and endothelial basement membranes to facilitate gaseous

exchange (Vaccaro and Brody, 1981). Epithelial cells synthesise the upper basement membrane

layers, while the lower lamina reticularis is predominantly synthesised by fibroblasts (Howat et al.,

2001). Alveolar epithelial cells synthesize laminin-1, entactin, type IV collagen, and perlecan, as well

as playing a role in laminin-1 assembly in vitro (Furuyama and Mochitate, 2000). The reason for

decreased basement membrane revealed in our study is not currently known but may reflect reduced

production from fibroblasts or airway epithelial cells, which are well known to be damaged by

influenza virus infection. It may also be due to enhanced expression of matrix degrading enzymes,

or an imbalance between production and degradation. Basement membrane defects after

inflammation are also common to other organs, such as decreased glomerular basement membrane

proteins in autoimmune kidney disease (Gubler, 2008).

Amongst other enzymes (including MMP-9), collagen IV is affected by the type IV collagenase MMP-

2, which we observed was increased in fraction 2. Up-regulation of MMP2 has been reported in

influenza virus infection before (Gualano et al., 2008; Pan et al., 2011; Chen et al., 2016).

Furthermore, MMP-2 in the BALF occurs by day 3 post-infection, and is further increased in mice

subsequently exposed to cigarette smoke (Gualano et al., 2008). In humans, higher plasma levels

of MMP-2 occurred in survivors of severe H7N9 infection after 1 month, with levels returning to

71

normal by 3 months (Chen et al., 2016). Finally, in the heart an upregulation of proMMP-2 in the

myocardium and cardiomyoblasts occurs after influenza A virus infection (Pan et al., 2011). Overall,

this data suggests that the reduced amount of collagen IV after influenza virus infection may in part

be explained by heightened enzymatic degradation.

3.3.3 Interstitial matrix protein alteration after flu

Though basement membrane proteins were reduced, proteins associated with interstitial

extracellular matrix were increased. This deposition could clearly be seen by electron microscopy

where collagen fibres were seen to develop into cable like structures. Such changes in composition

affect many different aspects of lung physiology and include vascular permeability (Mammoto et al.,

2013) and leukocyte retention, accumulation, proliferation, migration, differentiation, and activation

(Wight et al., 2017). Here we show that many extracellular matrix proteins are increased during and

following influenza virus infection. Some are only expressed in the least soluble fraction 3 (e.g. Col

1a1 and Col 4a1) and others are dominant in both fractions 2 and 3, such as tenascin C. Those

matrix associated proteins in fractions 1 and 2 (the highly soluble proteins) include those associated

with maturation of collagen, e.g. Serpin H1 (increased in fractions 2 and 3). Serpin H1, otherwise

known as Hsp47 is an endoplasmic reticulum resident, collagen specific molecular chaperone. Its

presence prevents local unfolding and aggregate formation and mice lacking this gene produce

abnormal collagen fibrils (Ito and Nagata, 2017).

We also examined HA since this matrix component has already been shown to increase during

influenza virus infection (Hussell and Bell, unpublished observations), as well as in other pulmonary

models including bleomycin and house dust mite models (Teder et al., 2002; Ernst et al., 2012) and

LPS and Staphylococcal enterotoxin B induced inflammation (Liang et al., 2007; van der Windt et al.,

2011; Uchakina et al., 2013). In humans, HA is associated with poor lung function in a number of

conditions including asthma and acute respiratory distress syndrome, as well as being elevated in

COPD patients (for a review see (Lauer et al., 2015)).

In the healthy lung, mostly high molecular weight HA is present, located in peribronchial and

perialveolar regions, where it provides structural integrity and displays anti-inflammatory properties

(Noble, 2002; Yang et al., 2012). During inflammation, however, degradation to low molecular weight

HA occurs via hyaluronidases and ROS (Noble, 2002; Jiang, Liang and Noble, 2010; Monzon et al.,

2010; Lennon and Singleton, 2011). Low molecular weight HA is more widely distributed in the lung,

72

and has been observed surrounding airway macrophages (Liang et al., 2011). Low molecular HA is

reported to be pro-inflammatory (Rooney et al., 1993; Deed et al., 1997; Toole, 2004), although

endotoxin contamination of the HA may have induced some of these effects (Dong et al., 2016).

Furthermore, high molecular weight HA blocks the pro-inflammatory effects of low molecular weight

HA in some studies (Jiang, Liang and Noble, 2011; Yang et al., 2012). Long term changes in HA

levels and its molecular weight may therefore have pathological consequences and may be

amenable to therapeutic manipulation. Future experiments could therefore examine the molecular

weight of HA during an influenza time course and long term after resolution. The introduction of high

molecular weight HA after infection would be an interesting way to demonstrate any therapeutic

benefits.

The glycoprotein FN, one of the most highly increased matrix proteins identified in our study, is

important for cell adhesion and migration and for wound repair. FN can be cleaved by a number of

MMPs including MMP-1, -3, -13 and -14 (X. Zhang et al., 2012). FN has previously been shown to

be increased in the BAL of asthmatic and interstitial lung disease patients (Rennard and Crystal,

1982; Ohke et al., 2001) As well as being one of the most highly increased protein in our dataset, FN

was also the protein with the most interactions in the network map of matrix proteins in the

matrisome-enriched fraction 3. However, this must be treated with caution as these network maps

have known interactions only and thus those with a higher number of interactions may simply have

been investigated more and so may not represent true level of inter-connectedness. Nevertheless,

network maps still allow the examination of interconnectedness of a group of proteins (in this case

the matrisome) and how any altered proteins within this group are linked. Overall, our data and data

from other groups suggest that FN could be a key target for therapeutic intervention in lung disease.

Also highly increased in our data, tenascin C is a glycoprotein with similar structural features to FN.

Whilst normally only present during development in health, it is increased in the lungs in asthma,

usual interstitial pneumonia and IPF patients (Laitinen et al., 1997; Amin et al., 2000; Pääkkö et al.,

2000; Estany et al., 2014), as well as in a bleomycin models of pulmonary fibrosis (Zhao, Young and

McIntosh, 1998; Carey et al., 2010). In human fibrotic lungs tenascin C is synthesised at high levels

in fibroblasts and can be induced in these cells by TGF-β (Estany et al., 2014). It associates with

glycoproteins versican and FN in fibrotic foci (Estany et al., 2014). Tenascin C can drive the

persistence of fibrosis via TLR4 activation of fibroblast collagen production (Bhattacharyya et al.,

73

2016), and regulate TLR4 signalling after LPS (Piccinini and Midwood, 2012). Thus, tenascin C may

have a key role in infections taking place secondary to a previous inflammatory event.

Though we are the first to examine long term matrix changes by tandem mass spectrometry after

influenza virus infection, this has been performed after bleomycin treatment (Decaris et al., 2014).

They used a labelling quantification method with 2H2O drinking water and so were able to calculate

of the percentage of newly synthesised proteins. Whilst this method provides detailed information

about protein turnover, it is less reliable for proteins with a faster turnover such as biglycan as they

are close to fully labelled by 1 week. The group also used sequential protein extraction in fractions

based on solubility, although the methodology varied slightly to ours due to the higher percentage of

insoluble proteins in the more fibrotic bleomycin model. A further two mass spectrometry studies of

a bleomycin model in rats used an isobaric tag for quantitation (Fukunaga et al., 2015; Yang et al.,

2017). As in our model, increased collagen was observed, along with a number of differentially

expressed ECM receptors (Yang et al., 2017). Another group, after proteomics revealed decreased

structural ECM proteins at 120 hours post-influenza virus infection and an increased in mRNA of

MMP-14 found that prevention of ECM degradation by blocking MMP-14 was effective at reducing

the severity of a secondary bacterial infection (Talmi-Frank et al., 2016). This suggests that the

alteration of ECM degradation may be a useful therapeutic strategy after infection. Future

experiments could make use of specific degradation enzymes to examine this possibility.

3.3.4 Other matrix changes

There are a number of other matrix changes which may not be picked up by our mass spectrometry

analysis. For example, different isoforms may not be differentiated between as all the peptides

detected are from the same protein. Examination of the specific peptides detected may reveal some

insight but only if there are peptides unique to each isoform. This may also be the case for any

alterations to post-translational modification, particularly as the mass changes between modified

peptides is often extremely small (Parker et al., 2010). The stability of the modification under the

conditions used for sample preparation and the mass spectrometry itself also affects whether it would

be possible to detect.

3.3.5 mRNA and miRNA expression after influenza infection

We demonstrate here that matrix protein mRNA levels do not correlate with the increased protein

levels at this time point. This could be due to alteration in protein degradation rather than changes to

74

synthesis. It is also possible that the mRNA levels were altered at an earlier time point and have

since returns to baseline levels. The matrix proteins in question could also be regulated by post-

transcriptional or post-translational methods. miRNA analysis of bleomycin-treated rat lung alongside

the proteomics revealed a large number of downregulated miRNA species including miR-144-3p

which has FN1 as a predicted target (Fukunaga et al., 2015). miR-21-5p was found to be upregulated.

In our hands, miR-155 is increased after influenza infection, although an outlier with low expression

prevented it from reaching statistical significance. However, it is likely to do so in future repetitions of

this experiment. miR-155 has been implicated in lung disease, with elevated serum levels associated

with FVC and radiological features in IPF and elevated levels in lung epithelial cells in cystic fibrosis

(Bhattacharyya et al., 2011; Li et al., 2014). miR-155 is strongly correlated with SSC-ILD patient

progression and KO mice had milder fibrosis in response to bleomycin (Christmann et al., 2016). As

well as the fact that miR-155 can be induced by TLR ligands one of the targets for miR-155 is MyD88,

a TLR receptor adaptor (Tang et al., 2010). It regulates the MyD88 levels in a dose- and time-

dependent manner and the reduction of MyD88 protein leads to decreased IL-8 levels. The targeting

of MyD88 could in part be how miR-155 plays a role in macrophage TLR receptor tolerance, in which

cells become less responsive after previous infection or activation. This pathway is also linked to

specific matrix proteins For example, it has previously been shown that tenascin-C is able to

modulate inflammatory mediators via the upregulation of miR-155 (Piccinini and Midwood, 2012).

In liver fibrosis, mice deficient in miR-155 had attenuated levels of fibrosis although levels of

inflammation remained unchanged. Likewise, an antagomir reduced fibrosis in skin wounds by

reducing mRNA and protein of collagen I, collagen III and α-SMA. The antagomir also reduced TNF-

α, CCL2 and IL-1β levels as well as increasing IL-10 (Csak et al., 2015). Therefore, the manipulation

of miR-155 could provide a mechanism to reduce pulmonary fibrosis after infection. Future

experiments could utilise miR-155 knockout mice to examine the effects of matrisome changes after

influenza infection.

75

4. Influences of commensal bacteria, age and matrix proteins on

the lung

76

4.1 Introduction

Having observed persistent changes in lung matrix following the resolution of inflammation in the last

chapter we next examined possible direct effects of matrix components of airway macrophage

immunity, as well as what might influence matrix complexity in health. Research has consistently

shown that environmental factors and age influence immune reactivity in the airspaces and so will

be studied here.

4.1.1 The lung microbiome

The lung was originally believed to be a sterile environment (Baughman et al., 1987), so much so

that it was not included in the National Institutes of Health's initial Human Microbiome Project

(Proctor, 2011). However, it is now possible to detect highly diverse bacterial communities through

high-throughput sequencing (Hilty et al., 2010; Erb-Downward et al., 2011; Huang et al., 2011). The

microbiota can be affected by a number of factors including geographical location, exposure to other

individuals and household pets. The location of the sample within an individual lung also affects the

microbiota detected (Erb-Downward et al., 2011). Whilst the microbiota during infections in diseases

such as cystic fibrosis is important, the overwhelming nature of the infection can make it hard to

measure (Beck, Young and Huffnagle, 2012). Another confounding factor is the potential of bacterial

biofilm contamination in intubated patients (Cairns et al., 2011), although it is known that the detection

of microbes within the lung is not due to bronchoscope contamination (Erb-Downward et al., 2011).

The composition of the microbiota is thought to directly affect lung architecture, with differences in

alveolar size and mucus production (Yun et al., 2014). The effects of the microbiota are at least in

part through tonic TLR activation, as whilst germ free mice struggle to control pulmonary infection,

prior TLR activation restores the response to the level seen in mice with microbiota present

(Fagundes et al., 2012). Circulating natural IgG antibodies induced by the microbiota are likewise

important in the host response to inflammatory stimuli via influencing pro-inflammatory gene

expression and down-regulating IL-10 (Cisalpino et al., 2017). The lung microbiome also directly

promotes tolerance to allergens via the induction of regulatory T-cells (Gollwitzer et al., 2014).

Though a wide diversity of bacterial species are observed in the airspaces in health, in disease the

repertoire is skewed by dominant species. For example, in BAL, Haemophilus species are more

prevalent in asthmatic or COPD patients, whereas Bacteroidetes is dominant in controls (Hilty et al.,

2010). In new-born infants, development of chronic lung disease is associated with the presence of

77

Ureaplasma species (Beeton et al., 2011). As such, it is important therapeutically to understand how

the microbiota may be having these effects.

4.1.2 The effect of the gut microbiome on lung immunity

The gut microbiota is known to affect lung immunity (Vutcovici, Brassard and Bitton, 2016). Putting

antibiotics in drinking water and thus altering the gut microbiota increases viral titres in multiple viral

infections (Abt et al., 2012). Animal studies also show that alteration of the gut microbiota can

eliminate the need for OVA sensitisation in allergic airway inflammation models, increasing

inflammation and goblet cell metaplasia (Noverr et al., 2004, 2005). A diverse gut microbiota protects

against mortality in pneumococcal pneumonia in mice, whereas depletion of the microbiota reduces

the ability of airway macrophages to phagocytose the bacteria (Schuijt et al., 2016). Asthma in

children is associated with antibiotic use in early life or maternal antibiotic use during pregnancy

(Lapin et al., 2015; Metsälä et al., 2015; Korpela et al., 2016; Mulder et al., 2016). It is therefore

important to consider the microbiome of other tissues in association with that of the lung and to take

this into account when working with germ free animals.

4.1.3 Differences in neonate and adult lung structure

In humans, lung development is not complete at birth and continues for up to several years

postnatally (Burri, 2006). The majority of the alveoli form after birth (Stocks, Hislop and Sonnappa,

2013), hence there are substantial structural changes. In rats, alveolarisation lasts up until about 2

weeks post birth, and in humans for approximately 2 years (Burri, 2006). Initially, new alveolar septae

form with a double capillary network and over time the interstitium of the septae decreases and the

capillary networks merge (Burri, 2006). As such, lung tissue volume decreases as the lung volume

increases. The ECM provides mechanical and structural factors which help with these processes

(Mammoto and Ingber, 2010; Mammoto, Mammoto and Ingber, 2012). Delaying the process of

alveolarisation by treatment with dexamethasone in turn delays the expression of elastin, tenascin C

and α-SMA indicating the importance of these ECM proteins in lung development (Roth-Kleiner et

al., 2014). The known influences of the ECM on immune function indicate that the incomplete

structural development in neonates may be one of the reasons why they respond differently to

infection.

78

4.1.4 Immune differences between neonate and adult

It is well known that the immune system develops over a lifetime, and thus neonates have a different

immune system to adults (Basha, Surendran and Pichichero, 2014). Initially, maternal antibodies

protect neonates during initial pathogen exposure for up to 6 months (Waaijenborg et al., 2013). As

adaptive immune responses are yet to develop, innate immune responses are crucial in neonates

(Levy, 2007). Differences in innate immune responses between neonate and adult are apparent. For

example, there are lower neutrophil numbers in neonates (Melvan et al., 2010), and they are less

responsive to chemokines (Weinberger et al., 2001) and have an impaired TLR responses (Al-

Hertani et al., 2007). Neonates also have fewer dendritic cells in the lung, with reduced

responsiveness (Roux et al., 2011; Ruckwardt et al., 2014). A bias towards Th2 cytokine production

is also observed (Roux et al., 2011).

4.1.5 ECM effects on macrophages

The ECM can affect macrophage phenotype and function via both matrix structural features and

immune receptor signalling (McWhorter, Davis and Liu, 2015; Piccinini et al., 2016). For example, a

high substrate stiffness results in macrophages spreading more, whereas soft substrates result in a

rounder phenotype (Blakney, Swartzlander and Bryant, 2012). Macrophage cellular elongation and

alignment with matrix grooves and ridges is also observed (Wójciak-Stothard et al., 1995), affecting

migration and phagocytosis. Furthermore, macrophages preferentially adhere to rough over flat

surfaces (Rich and Harris, 1981). Surface roughness modulates inflammatory cytokine production,

although conflicting reports suggests that there is also a dependence on macrophage type and the

topology of the rough surface (Refai et al., 2004; Tan et al., 2006; Lee et al., 2011; McWhorter, Davis

and Liu, 2015).

Another mechanical change with can be sensed by macrophages is stretching. Cyclic stretching of

lung tissue takes place during the breathing cycle, which induces IL-8 secretion in airway

macrophages (Pugin et al., 1998). In turn, stretching can affect ECM composition by altering

macrophage expression of MMPs including MMP-1, -3 and -9 (Pugin et al., 1998; Yang et al., 2000).

Cyclic stretching also enhances the effects of LPS stimulation on macrophages (Pugin et al., 1998).

In terms of non-mechanical ECM effects on macrophages, the ECM protein tenascin C directly

stimulates TLR4 signalling in macrophages, with differing cytokine activation upon LPS stimulation

(Piccinini et al., 2016). Macrophages stimulated by tenascin C also increased ECM synthesis,

79

indicating a positive feedback loop (Piccinini et al., 2016). It is also increased in macrophages upon

LPS stimulation, promoting inflammation via the induction of miR-155 (Piccinini and Midwood, 2012).

4.1.6 Objectives

It is clear that there are a number of properties within the lung which contribute to the diversity

observed in immunity and hence the response to infection. The aims of this chapter are:

1. To examine the effects of matrix proteins HA and FN on miRNA expression in airway

macrophages

2. To examine the impact factors which may affect the lung architecture and matrix in health:

age and the microbiome

3. To examine the effects of these factors of lung mRNA and miRNA expression, in particular

mRNAs miRNAs known to alter immune regulation or fibrosis

80

4.2 Results

4.2.1 Airway macrophages do not have an altered miRNA profile following fibronectin

treatment

As we have shown that FN is altered following influenza virus infection, we examined how it might

affect immunity through airway macrophage miRNA expression, as it has previously been

demonstrated that tenascin C upregulates miR-155 in macrophages (Piccinini and Midwood, 2012).

Murine airway macrophages were isolated from BAL by adhesion and incubated with FN. Initial

results demonstrated an increase in NMES1, miR-147b and miR-155 in response to FN (Figure 4.1).

However, later results with a different batch of FN from the same source showed minimal changes

in miRNA expression in response FN (Figure 4.1). miR-147b and the parent mRNA NMES1 were

unchanged, and miR-155 increased less than 2-fold. In contrast with this, the positive control, LPS,

induced up to an 8-fold change in miR-155 and miR-147b and around a 70-fold increase in NMES1

levels. It is therefore highly likely that contamination gave rise to the initial results found, and care

should be taken in future experiments to use multiple batched of a protein to verify results. Delivery

methods of FN stimulation were examined with the initial batch of FN, and it was found that delivery

as a soluble component was preferable to using coated plates (Figure 4.2).

81

C o n tr o l F N L P S

0

2 0

4 0

6 0

8 0

1 0 0

N M E S 1

Fo

ld C

ha

ng

e

* * *

C o n tr o l F N L P S

0

1

2

3

4

5

m iR -1 4 7 b

Fo

ld C

ha

ng

e

*

C o n tr o l F N L P S

0

2

4

6

8

1 0

m iR -1 5 5

Fo

ld C

ha

ng

e

* * *

*

Figure 4.1 Treatment of mouse alveolar macrophages with fibronectin in vitro. Alveolar macrophages were isolated from naïve mouse BAL by adherence and treated with fibronectin (25μg/mL), LPS (100ng/mL) or PBS for 4 hours. Relative gene expression examined by RT-qPCR for miR-155, miR-147b and NMES1. Expression relative to the PBS control mice. n=3. * p≤0.05, *** p≤0.001

a

b

82

Figure 4.2 Fibronectin treatment of mouse airway macrophages via different delivery methods. Alveolar macrophages were isolated from naïve mouse BAL. They were then either plated on fibronectin-coated plated or treated with the equivalent amount of FN (25μg/mL) as a soluble component in the media for 4 hours. PBS was used as a control. Relative gene expression examined by RT-qPCR for miR-155, miR-147b and NMES1. Expression relative to the PBS control mice. n=3.

83

4.2.2 Airway macrophages have an altered miRNA profile following hyaluronan treatment

The lack of an effect of fibronectin on airway macrophage miRNA expression was surprising since a

previous PhD project had shown miRNA up-regulation to a disparate array of proteins relevant to

lung inflammation and structure (though fibronectin and HA were not included), These changes

included a consistent up regulation of Let7 family members and a down regulation of miR-322/424

and miR-503 on ex vivo airway macrophages from a variety of inflammation models. Fibronectin

clearly does not alter macrophage miRNAs. We therefore next examined whether HA, which we

earlier demonstrated to be altered by influenza virus infection, also has no effect. Incubation of

murine airway macrophages with HA (molecular weight 1138kDa) resulted in an up regulation of

miRNAs Let7b and Let7c after 24 hours (p = 0.0159 and p = 0.0317 respectively) but not 4 hours

(Figure 4.3a). Expression of miR-322/424 and miR-503 were unchanged. Known regulators of the

Let7 family were next examined to determine whether their expression patterns reflected those of

Let7. The two most widely studied regulators of Let7 in development and cancer, Lin28a and Lin28b,

were not detected in airway macrophages (data not shown). The alternative regulators

Heterogeneous Nuclear Ribonucleoprotein A1 (hnRNP A1) and KH-Type Splicing Regulatory Protein

(KHSRP) were expressed by airway macrophages, but expression was not altered in response to

HA at either time point (Figure 4.3b). Another alternative regulator, H19, was also not expressed

(data not shown). HA predominantly binds to CD44. We therefore examined whether HA had either

a positive or a negative feedback effect on its expression, but no effect was observed (Figure 4.3c).

We next attempted to recapitulate the effect of HA in vivo via intranasal delivery of HA. This had no

effect on subsequent airway macrophage Let7b or Let7c expression at 24hr (Figure 4.3d), which

likely reflects the difficulties in applying HA to the small airways that contain the macrophages.

84

Fo

ld C

ha

nge

Figure 4.3 Treatment of mouse alveolar macrophages with hyaluronan ex vivo and in vivo. Alveolar macrophages isolated from naïve mouse BAL treated with hyaluronan (50μg/mL) or PBS for 4 or 24 hours and relative gene expression examined by RT-qPCR. a) Let7b, Let7c miR-322/424 and miR-503 miRNAs A significant difference was detected between treatment groups at 24 hours for both let7b and let7c by the Mann-Whitney test, * p≤0.05. b) Let7 regulators hnRNP A1 and KHSRP. c) HA receptor CD44. Alveolar macrophages isolated from the BAL of mice treated with intranasal HA (50µg) for 24 hours. d) Let7b and Let7c miRNA expression. Expression relative to the PBS control at each time point. n=3-5.

4 h r 2 4 h r

0

2

4

6L e t7 b

P B S

H A

4 h r 2 4 h r

0

2

4

6

8

1 0L e t7 c

P B S

H A

4 h r 2 4 h r

0

2

4

6

8m iR -3 2 2 /4 2 4

P B S

H A

4 h r 2 4 h r

0

1

2

3

4m iR -5 0 3

P B S

H A

4 h r 2 4 h r

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5h n R N P A 1

P B S

H A

4 h r 2 4 h r

0 .0

0 .5

1 .0

1 .5

2 .0K H S R P

P B S

H A

4 h r 2 4 h r

0 .0

0 .5

1 .0

1 .5

2 .0C D 4 4

P B S

H A

2 4 h r

0

1

2

3L e t7 b

P B S

H A

2 4 h r

0

1

2

3L e t7 c

P B S

H A

a

b c

d

* *

85

4.2.3 The effects of age and the microbiome on lung architecture and matrix

As we have shown that miRNA can be altered by specific matrix components, we next decided to

examine other features which may potentially affect the matrix in health; age and the microbiome.

To determine whether the absence of the microbiome affected the gross architecture of the lung, we

first examined H&E stained sections of GF and SPF mouse lungs. No overt structural differences

were observed (Figure 4.4). This applied across the age range of the mice examined, from day 7

neonates to 10 months of age. Further to this, Masson’s trichrome staining for collagen fibres, usually

seen associated with the airways and blood vessels, also showed no difference between SPF and

GF adult mice (Figure 4.5).

Next, as we have previously seen that HA is altered during and after lung inflammation, we stained

HA using an HA binding protein to examine the impact of the microbiome (Figure 4.6). However, we

observed no differences between SPF and GF mice. HA staining was primarily confined to around

large airways and blood vessels in all groups, similar to the localisation of collagen fibres seen in the

Masson’s trichrome staining.

86

Ne

on

ate

Day 7

9

Weeks

4 m

onth

s

10 m

onth

s

SPF GF

Figure 4.4 H&E staining of SPF and GF mouse lungs. Lung lobes were collected from naïve GF mice on a C57BL/6 background and matched SPF C57BL/6 mice aged between 7 days and 10 months, formalin fixed and paraffin embedded. 5μm sections were stained with H&E. Original magnification 2x, scale bars 1000μm. Representative images of at least n = 4 per group.

87

Figure 4.5 Masson’s Trichrome staining of SPF and GF mouse lung. Lung lobes were collected from naïve GF mice on a C57BL/6 background and matched SPF C57BL/6 mice aged between 7 days and 10 months, formalin fixed and paraffin embedded. 5μm sections were stained with Masson’s trichrome. Blue = collagen fibres. Original magnification 20x, scale bars 100μm. Representative images of at least n = 4 per group.

GF

S

PF

88

Figure 4.6 HA in germ free mouse lungs. Lung lobes were collected from naïve GF mice on a C57BL/6 background and matched SPF C57BL/6 mice aged between 7 days and 10 months, formalin fixed and paraffin embedded. 5μm sections were stained with HABP. Original magnification 5x, scale bars 500μm. Representative images of at least n = 4 per group.

SPF GF

9 W

eeks

10 m

onth

s

89

4.2.4 The effect of the microbiome and age on lung RNA expression in mice

Extracellular matrix components affect the miRNA repertoire expression of lung macrophages. Whilst

in our earlier data we did not show a correlation between matrix mRNA and protein levels, it may be

that mRNA changes were at a different time point than the one examined. As such, we examined

the mRNA of matrix components as we anticipated that germ free mice may have altered matrix

proteins. However, confirming the results of the histology above, we did not observe differences in

the mRNA levels of matrix proteins FN, TNC and F13a1 (Figure 4.7).

Similarly, we did not see the difference in miRNA species in whole mouse lung preparations between

SPF and GF mice. No differences were seen in the levels of let7b, let7c, miR-21, miR-155, miR-147b

or NMES1 the parent mRNA of miR-147b (Figure 4.8).

S P F G F

0 .0

0 .5

1 .0

1 .5

F n 1

Fo

ld C

ha

ng

e

S P F G F

0 .0

0 .5

1 .0

1 .5

2 .0

T n c

Fo

ld C

ha

ng

e

S P F G F

0 .0

0 .5

1 .0

1 .5

2 .0

F 1 3 a 1

Fo

ld C

ha

ng

e

Figure 4.7 Matrix mRNA expression in germ free mice. Lung lobes from naïve GF and SPF mice with a C57BL/6 background aged 9 weeks were collected and RT-qPCR performed for matrix proteins FN, TNC and F13a1. Data shown relative to the SPF animals and displayed as mean + standard deviation. n = 4.

90

We next examined whether a difference in miRNA expression or extracellular matrix protein mRNA

occurred in GF or SPF mice with ageing (Figure 4.9). Interestingly, SPF mice expressed higher levels

of miR-147b and parent mRNA NMES1 in day 1 neonates then their GF counterparts (p=0.0225 and

p=0.0005 respectively). NMES1 levels in the SPF neonates were also higher than in SPFs in any

other age group (p=0.0031 vs Day 7, p=0.0012 vs 9 weeks and p=0.0015 vs 10 months). miR-147b

is known to regulate inflammatory cytokines after TLR stimulation in macrophages (Liu et al., 2009)

and so this suggests that mice are born with suppressed inflammation that is consistent with their

deficiency in anti-vaccine responses (Demirjian and Levy, 2009). This wanes with age, implying mice

become gradually more inflammatory as they age. This early peak of NMES1 and miR-147b was not

observed in germ free mice, suggesting that exposure to the microbiome may drive early regulation.

miR-155 was also increased in SPF mice at early time points compared to GF mice but did not reach

statistical significance.

S P F G F

0 .0

0 .5

1 .0

1 .5

2 .0

L e t7 b

Fo

ld C

ha

ng

e

S P F G F

0 .0

0 .5

1 .0

1 .5

L e t7 c

Fo

ld C

ha

ng

e

S P F G F

0 .0

0 .5

1 .0

1 .5

2 .0

N M E S 1

Fo

ld C

ha

ng

e

S P F G F

0 .0

0 .5

1 .0

1 .5

2 .0

m iR -1 4 7 b

Fo

ld C

ha

ng

e

S P F G F

0 .0

0 .5

1 .0

1 .5

m iR -1 5 5

Fo

ld C

ha

ng

e

S P F G F

0 .0

0 .5

1 .0

1 .5

2 .0

m iR -2 1

Fo

ld C

ha

ng

eFigure 4.8 miRNA expression in whole lung of adult GF mice. Lung lobes from naïve GF and SPF mice with a C57BL/6 background aged 9 weeks were collected and RT-qPCR performed for miRNA species let7b, let7c, miR-21, miR-155, mi147b and mRNA NMES1. Data shown relative to the SPF animals and displayed as mean + standard deviation. n = 4

91

Another interesting observation was that FN was higher at day 1 and day 7 in both GF and SPF mice

but dropped thereafter (all p-values <0.0001). Due to its role in sensing bacterial pathogens TLR4

mRNA levels were also determined, but no differences were detected between SPF and GF. On the

other hand, Day 7 SPF levels of TLR4 mRNA were lower than in the other age groups (p=0.0378 vs

Day 1, p=0.0042 vs 9 weeks and p=0.0017 vs 10 months). There were also no differences in Gas6

expression, a protein previously shown to be affected by the microbiome in the gingiva (Nassar et

al., 2017).

Fo

ld C

ha

nge

Figure 4.9 miRNA expression in whole lung of SPF and GF mice over time. Lungs were taken from C57BL/6 mice aged between 1 day and 10 months and RT-qPCR performed. Data shown relative to SPF 9 week adult mice and displayed as mean + standard deviation. n = 3-6. Statistical analysis was done using a 2-way ANOVA. * p≤0.05, ** p≤0.01, *** p≤0.001. +++ p≤0.001 vs Day 1 and Day 7.

D a y 1 D a y 7 9 W e e k s 1 0 m o n th s

0

1

2

3

4

2 0

3 0

4 0

5 0

N M E S 1

S P F

G F

D a y 1 D a y 7 9 W e e k s 1 0 m o n th s

0

5

1 0

1 5

m iR -1 4 7 b

S P F

G F

D a y 1 D a y 7 9 W e e k s 1 0 m o n th s

0

1

2

3

m iR -1 5 5

S P F

G F

D a y 1 D a y 7 9 W e e k s 1 0 m o n th s

0

2

4

6

8

1 0

F N 1

S P F

G F

D a y 1 D a y 7 9 W e e k s 1 0 m o n th s

0 .0

0 .5

1 .0

1 .5

T L R 4

S P F

G F

D a y 1 D a y 7 9 W e e k s 1 0 m o n th s

0 .0

0 .5

1 .0

1 .5

G a s 6

S P F

G F

*

* *** **

**

*

+++ +++ +++

+++

92

4.3 Discussion

In this chapter, we have shown that whilst there are many similarities between GF and SPF mice,

the lack of microbiota results in differences in miRNA expression in neonates. Neonates from both

groups also had higher FN mRNA expression than adults. FN expression did not particularly affect

miRNA expression in macrophages however, so it appears the two observations are not linked. On

the other hand, HA stimulation of macrophages increased pro-resolution let7 miRNAs. Overall, this

builds on evidence for a complex microenvironment affecting lung immunity.

4.3.1 ECM stimulation of airway macrophages

The upregulation of the Let7 family in response to high molecular weight HA is interesting and implies

a negative feedback loop to cease inflammation. This is consistent with previous work in the

laboratory indicating that Let7 is involved in the resolution phase of inflammation following

inflammatory lung disease. The mechanism of regulation of Let7 however is currently unknown. The

two most common regulators of the Let7 family in development and cancer are Lin28a and Lin28b

(Thornton and Gregory, 2012). However, this association was observed in less differentiated cells

and we failed to detect them in airway macrophages. hnRNP A1, another negative regulator of Let7

(Michlewski and Cáceres, 2010), and KHSRP, a positive regulator of the Let7 family (Michlewski and

Cáceres, 2010), were detected in airway macrophages but unaltered by HA treatment. Similarly H19,

expressed during development and in cancer (Kallen et al., 2013), was also not detected in airway

macrophages indicating that changes in Let7b and Let7c is not due to a down-regulation of currently

identified regulators. One possibility is regulation via methylation, which has been demonstrated for

Let7a (Brueckner et al., 2007) and could be tested in airway macrophages in future. We were

surprised that intranasal delivery of HA had no effect on airway macrophages in vivo. This is likely to

reflect difficulties in distribution to the smaller airways where airway macrophages reside, which could

be proven using fluorescent-conjugated HA. Alternatively it might be due to the high turnover of HA

that is reported to be between 2-6 minutes in homeostasis (Ghosh et al., 2015).

The lack of effect on miR-322/424 and miR-503 was interesting since their down regulation has been

observed following a multitude of inflammatory pathologies in murine models. Since these miRNAs

are high in health one might not expect their alteration by processes dominant in resolution. Rather,

they are more likely to be affected by early events such as disruption of macrophage contact with

the respiratory epithelium.

93

A high level of batch variation was present in our experiments involving FN. As such, it is difficult to

draw conclusions as to its effect. However, it is more likely that one batch contained a contaminant

such as LPS, giving a false positive. LPS is known to increase miR-155 in BMDMs (O’Connell et al.,

2007), which we have replicated in airway macrophages. However, miR-155 was also slightly

increased by FN in both batches, making it less likely that it was a false positive. miR-155 is also

linked to another ECM protein, tenascin C, in macrophages (Piccinini and Midwood, 2012). miR-155

can stimulate expression of miR-147-3p in murine macrophages (Dueck et al., 2014), which is

consistent here with our data on airway macrophages. It would be of interest to use antagomirs to

miR-155 to determine its role in expression of miR-147b. miR-155 is involved in fibrosis and wound

healing in skin, with an antagomir reducing the number of macrophages present at the wound site

and reducing mRNA and protein levels of col1, col3 and α-SMA (Yang et al., 2014). As we have seen

that ECM components may increase the levels of miR-155, it is possible that there is a positive

feedback loop with miR-155 and ECM production, which could potentially be manipulated

therapeutically. Future experiments should source multiple batches of an ECM protein from multiple

sources to confirm any effects.

4.3.2 Differences between GF and SPF mouse lung mRNA and miRNA expression

Gas6 is an adaptor protein for TAM receptors, binding the phosphatidylserine present on apoptotic

cells and triggering phagocytosis (Lemke and Burstyn-Cohen, 2010). Interestingly, although Gas6 is

expressed in the gingiva only in SPF mice and not in GF mice (Nassar et al., 2017), this does not

translate to the lung. However, analysing whole lung data may cover up more subtle changes in

single cell types. For example, Gas6 expression in the gingiva is in the epithelium and linked to the

microbiota as co-caging GF with SPF mice restored some Gas6 expression. In this instance,

expression is induced via TLR signalling through MyD88 (Nassar et al., 2017).

Similarly, our data does not show a difference between TLR4 mRNA expression in whole lung of GF

and SPF mice. However, TLRs are known to play a role as GF mice have increased susceptibility to

K. pneumoniae infection (Fagundes et al., 2012) which can be reversed by TLR activation (Arts,

Joosten and Netea, 2016). It is possible that protein and mRNA levels do not correlate, and further

studies are required to examine protein levels by flow cytometry or Western blot. It is also possible

that though TLRs themselves are not altered in GF mice downstream signalling is.

94

Whilst we have focused on the possible effects of the lung microbiota in our work, the gut microbiota

is also linked with respiratory disease, including asthma and influenza infection (Kraft et al., 1976;

Abt et al., 2012; Ferreira et al., 2014; Von Wichert, Barth and Von Wichert, 2015). Whilst a diverse

gut microbiota is postulated to protect against mortality in S. pneumoniae infection in mice, this has

been disputed as alterations to the lung microbiota, rather than the gut was not considered (Dickson

and Cox, 2017).

Our observation of heightened miR-147b and miR-155 in SPF neonate mouse lung, and their relative

absence from GF lung in neonatal mice, is interesting and may have implications for neonatal

immune responses. miRNAs are also altered in the colon and ileum of GF mice that have been

reconstituted with SPF-microbiota (Dalmasso et al., 2011). Furthermore, the caecum miRNA profile

differs between SPF and GF mice (Singh et al., 2012). Likewise, the responses during infection also

differ, with SPF mice infected with Listeria monocytogenes downregulating 5 miRNAs that remained

unchanged in GF mice including miR-378 and miR-200c (Archambaud et al., 2013). The gut

microbiota also affects miRNA expression in the hippocampus (Chen et al., 2017) and in the liver

(Blasco-Baque et al., 2017). The microbiota therefore influences miRNA species locally, and in

distant sites. In future, it would be interesting to examine more types of miRNA via a more unbiased

array to pick up any other differences. It would also be interesting to look at individual cell types and

how they may be affected by these miRNAs. Further differences may also be picked up this way as

looking at the whole tissue can often mask these changes.

4.3.3 Microbiome effects on the ECM

In addition to miRNAs, the microbiota also has the potential to directly alter the matrisome (Alfano et

al., 2015). For example, a large proportion of gram-positive bacteria produce hyaluronidase, which

may lead to the presence of smaller pro-inflammatory HA fragments as well as reducing total HA

levels (Kostyukova et al., 1995; Hynes et al., 2000). The fact we did not observe any differences in

HA staining levels between GF and SPF mouse lung was interesting. It is possible matrix modification

is a feature of more pathogenic microorganisms who create excess “danger” signals during their

replication. The presence of collagen was also unaffected even though bacterial collagenase

production is well recognised, promotes bacterial spread (Watanabe, 2004; Wysocki et al., 2013;

Langston and Carson, 2014), and can digest collagens of varying sizes and types (Peterkofsky and

Diegelmann, 1971; Birkedal-Hansen, 1987). In the gut, isolates of individual bacterial species are

capable of degrading gelatin and collagens I and IV, as well as decreasing trans-epithelial resistance

95

in culture (Pruteanu et al., 2011). On the other hand, we did not see modification of matrix mRNA

after influenza infection in the previous chapter despite altered protein levels (see section 3.2.6). As

such, it is unsurprising that we did not observe any differences in mRNA expression of matrix proteins

FN, TNC and F13a1 in adult GF and SPF mice, and further protein studies should be carried out for

confirmation. Quantification of histology would also give a better indication of any differences, both

in term of the ECM and the cell types present. Cell types present could also be identified by flow

cytometry in future experiments, which would clearly show any changes in proportions and numbers

of immune cells.

4.3.4 Differences between neonate and adult

Neonatal immunity, and the clearance of infections, are reduced compared to adult mice.

Furthermore neonatal macrophages are less responsive than those seen in adult mice (Garvy and

Harmsen, 1996; Kurkjian et al., 2012; Garvy and Qureshi, 2017). This correlates with our finding that

immunomodulatory miRNAs miR-147b and miR-155 are more highly expressed in the lungs of SPF

neonate mice than adult mice. Differences in miRNA expression have also previously been noted

between neonate and adult mice. For example miR-411 and miR-376, which target Ras activation

and the formation of pulmonary surfactant respectively, are both expressed at much higher levels in

neonates (Izzotti et al., 2009). In SPF mice, it was interesting to note that miR-147b up-regulation

disappeared after 7 days. It would be interesting to perform a more detailed time course to narrow

down the precise point of this change. Whilst most colonisation of the lung by microorganisms occurs

after birth, there is some evidence that a limited amount of colonisation takes place in utero (Dickson

et al., 2016; Gallacher and Kotecha, 2016). An increased expression of miRNAs that impede

inflammatory responses may therefore protect the airspaces that are still developing. It would be of

interest to perform a time course to correlate miRNA expression and macrophage activity in the same

samples. This however, is technically difficult in very young mice (day 1 or day 7) due to the low

number of macrophages available.

In contrast to our results demonstrating that TLR4 expression is lower in day 7 neonates compared

to other age groups. Similarly, another group has shown that TLR4 expression in whole lung tissue

is lower in day 7 neonates compared to adult mice (Gabehart et al., 2015). However, they did not

examine day 1 neonates. As we have used C57BL/6 mice and Gabehart et al. use Balb/c mice, this

consistency across both strains indicates that this may be an important mechanism during early life

96

immune development. It is clear from this data that more work is needed to examine the possible

differences in neonates between days 1-7.

97

5. Carbon Nanotube model of pulmonary inflammation in the lung

98

5.1 Introduction

In the previous chapters we have investigated the impact of a self-limiting viral infection on matrix

composition in the lung and in turn, the matrix impact on macrophage regulation through microRNA

species. In this chapter, we investigate whether a non-infectious pulmonary inflammatory model

using carbon nanotubes (CNTs) produces similar effects. CNTs are cylindrical nanomaterials made

of carbon in a graphene-like structure with a diameter of nanometres, and lengths of up to hundreds

of microns. CNT can be either single-walled (SWCNT) or multi-walled (MWCNT). CNT can be up to

hundreds of microns long, and so have an extremely high aspect ratio. They can also be

functionalised to add specific properties. Due to high mechanical and elastic strength, as well as their

thermal and electrical properties, they are increasingly used in industry and manufacturing including

in nanocomposites, sports equipment and electronics (Baughman, 2013; Kovochich et al., 2017;

Mocan et al., 2017). However, the effect of occupational exposure is poorly understood.

5.1.1 Carbon nanotube exposure and health concerns

The uses of CNTs mean that they are being manufactured in increasing amounts year on year, with

the global market for CNT worth $700 million in 2015 (BIS Research, 2016). However, the health

impacts of exposure to CNTs are still not fully known, and the range of results found suggests that

the impacts of different CNT are not always the same (Luanpitpong, Wang and Rojanasakul, 2014).

As they have a high aspect ratio there is some concern that they may have effects similar to asbestos,

which also has a high aspect ratio (Craig et al., 2008). Standardised methods for detecting CNTs

which have been released from nanocomposites have yet to be developed, so the potential exposure

levels from these materials is unknown (Kovochich et al., 2017).

It has previously been demonstrated that CNT can be found in the environment in ambient air

samples in the USA and trapped in domestic spider webs in India (Murr et al., 2004; Murr and

Guerrero, 2006; Sonkar, Tripathi and Sarkar, 2009), with their production from spark-ignited engines

noted (Lagally et al., 2012; Jung et al., 2013). These CNT may directly affect pulmonary health, as

they have been found in BAL fluid airway macrophages of asthmatic children along with amorphous

carbon using high resolution TEM analysis (Kolosnjaj-Tabi et al., 2015). The group also

demonstrated that CNT could be found in both vehicle exhausts and dust from around the city. As

well as possible direct effects to health, CNT can adsorb a variety of substances including

carcinogenic pollutants polycyclic aromatic hydrocarbons (Yang, Zhu and Xing, 2006). It has

99

therefore been suggested that they could be efficient vectors for air pollutants, compounding any

health effects.

As there is some evidence that respiratory exposure to CNTs causes negative health effects, in the

USA the exposure limit recommended by the National Institute for Occupational Safety and Health

(NIOSH) is 1μg/m3 elemental carbon as a respirable mass 8 hour time-weighted average. If a worker

breathes 16.8m3 air in 8 hours, this is equivalent of a maximum exposure of 16.8μg/day (NIOSH,

2013). However, this is more of an arbitrary limit due to the lack of data on how individual types of

nanotubes affect health. It terms of industrial exposure, personal breathing zone mass

concentrations have been measured at levels varying from undetected to over 1000 μg/m3 (Maynard

et al., 2004; Han et al., 2008; Lee et al., 2010; Methner et al., 2010, 2012; WTEC et al., 2011; Dahm

et al., 2012; Erdely et al., 2013), although these measures were not all equivalent and not all are

specific to CNT rather than carbon in general. As such, it is reasonable to assume that CNT exposure

may present a hazard to human health and as such should be investigated.

5.1.2 Respiratory models using CNTs

A number of models have been developed in order to examine the effects of pulmonary exposure to

CNT (J. G. Li et al., 2007; Shvedova et al., 2008; Ma-Hock et al., 2009; Huizar et al., 2011; Porter et

al., 2015). However, whilst it is clear that many CNT cause some toxicity, the range of CNT, the

doses and methods used and the highly variable results make it difficult to draw any general

conclusions. These models have shown that CNT are able to persist long-term within the lung,

including persisting until at least 6 months in rats (Elgrabli et al., 2008). CNT may also induce the

formation of pulmonary granulomatous inflammation with localised fibrosis (Shvedova et al., 2005).

There is also the possibility of CNT affecting the immune response to pulmonary infection. As such,

a limited amount of research has been performed examining whether any such effects occur. In vitro,

CNT can increase influenza infectivity (Sanpui et al., 2014). In mice SWCNT and LPS co-exposure

increased inflammatory mediators compared to LPS alone (Inoue et al., 2008). Pre-exposure to

various antigens before CNT exposure including LPS, ovalbumin (OVA) and house dust mite (HDM)

all resulted in increased inflammation or fibrosis (Ryman-Rasmussen et al., 2009; Cesta et al., 2010;

Sayers et al., 2013; Shipkowski et al., 2015; Thompson et al., 2015). Thus, as well as their standalone

effects, it seems that CNT may also increase adverse effects from pulmonary infection.

100

5.1.3 CNT and macrophages

In the lungs, the main cell that CNTs end up within is macrophages, where they can undergo slow

degradation (Landry et al., 2016). Airway macrophages are necessary for the inflammatory response

to CNT in vivo (Frank, Birch and Yadav, 2015). MWCNT have been observed to enter human

monocyte derived macrophages passively as well as through active phagocytosis (Cheng et al.,

2009). Incomplete internalisation (known as frustrated phagocytosis) of the CNT can cause oxidative

stress and lead to cell death (Brown et al., 2007). It has been shown that oxidative enzymes can

induce nanotube degradation in vitro (Allen et al., 2008; Kagan et al., 2010). The degradation causes

holes to appear in the nanotubes and decreased wall thickness seen using TEM analysis (Elgrabli

et al., 2015), with the process affected by impurities present or functionalisation of the nanotubes.

The degradation products of this process are less toxic than the original nanosystems (Elgrabli et al.,

2015). In vivo in rats it has been indicated that, MWCNT induce NOX2 complex and a subsequent

production of ROS in macrophages resulting in structural degradation (Elgrabli et al., 2015).

As well as being degraded by macrophages, CNT induce a macrophage inflammatory response.

MWCNT induce a dose-dependent up-regulation of MMP-10 mRNA in mouse airway macrophages

(Vandivort et al., 2017). MMP-10 knockout macrophages underwent increased caspase-3 dependent

cell death. In vivo these mice also had reduced macrophage survival along with impaired clearance

of MWCNT, indicating the role of MMP-10 in the response to MWCNT. A mediator in airway

macrophages in response to CNT is the TLR adaptor MyD88 (Frank, Birch and Yadav, 2015). As

CNT are produced using metal catalysts, contamination with these can also cause inflammation. For

example, MWCNT contaminated with nickel can induce the NLRP3 inflammasome activation in

murine airway macrophages (Hamilton et al., 2012).

5.1.4 Objectives

Although some models have been developed using CNTs to examine their effects, they are not

standardised and detailed mechanisms for how they interact with the respiratory system are still

unknown. This chapter will explore the development and characterisation of a CNT mouse model of

pulmonary inflammation, with the specific aims:

1. To develop a murine model of pulmonary granulomatous inflammation using MWCNTs

2. To examine miRNA changes in the lung induced by MWCNT

101

3. To examine the how this CNT model of pulmonary inflammation could affect subsequent

pulmonary infection with PR8 influenza virus or Streptococcus pneumoniae

102

5.2 Results

5.2.1 Development of a carbon nanotube model of pulmonary granulomatous inflammation

We aimed to set up a model of pulmonary granulomatous inflammation using multi-wall carbon

nanotubes. We therefore began by instilling CNTs in mice, examining their effect 7 days later. Carbon

nanotubes were generally found close to the airways but were unevenly distributed throughout the

lung lobes (Figure 5.1a) making attempts to quantify them unviable. CNTs were present in both the

upper and the lower lobes of the lung (Figure 5.1b). Extracellular aggregates were observed as well

as some partially or completely within cells, often airway macrophages (Figure 5.1c). Histology also

indicated an influx of inflammatory cells in many of the areas with CNT, which would be interesting

to further identify and quantify in future studies. However, cytokines TNF-α and IL-6 were not

detected at this time point, although examination other time points and cytokines would be

informative. A lower dose of 12.5μg/mouse and a higher dose of 25μg/mouse were compared (Figure

5.2), and it was decided that the higher dose gave more consistent histology. Similarly, we examined

whether a repeat dose would increase the number of aggregates observed within the lung, and whilst

this appeared to be the case the uneven distribution meant that this was not quantified (Figure 5.3).

Next CNT effects were observed over a longer time course of 28 days. Although the repeated dose

model appeared to slightly increase the number of aggregates observed, a single dose of

30μg/mouse was settled upon for the time course. This was as a single dose reduced the model time

frame and was adequate to test our hypothesis, allowing a clear view of CNT persistence within the

lung and their effects on immunity over time. CNTs were visible within the lung at all time points, up

to and including 28 days (Figure 5.4). Staining for collagen fibres using Masson’s trichrome did not

show any localisation of CNT with collagen fibres (Figure 5.5), nor additional collagen around the

airways compared to control mice.

As HA expression in the lung is known to increase after influenza infection, we looked at whether the

same is true in CNT treated animals. No differences were observed in staining between mice treated

with CNT for 4-10 days and control animals (Figure 5.6).

103

Figure 5.1 Imaging of carbon nanotubes within the mouse lung. Mice received a 30μg of MWCNT roughly suspended in 50μL PBS via intranasal administration and whole lung taken at day 7. H&E staining of 5μm paraffin sections was performed. a) Differences in CNT distribution at different points through the same lung lobe. Original magnification 20x. Scale bar 100μm. b) CNTs are distributed in both upper and lower lobes within the lung. Original magnification 20x. Scale bar 100μm c) CNTs are found both extracellularly (blue arrow) and intracellularly (yellow arrow). Original magnification 40x. Scale bar 50μm. Representative images of at least n=4 per group.

c

Lower Lobe Upper Lobe b

1st Image 2

nd Image a

104

12.5

μg

25μ

g

Figure 5.2 Imaging of carbon nanotubes within the mouse lung after 2 different doses. Mice received either 12.5μg or 25μg of MWCNT roughly suspended in 50μL PBS via intranasal administration and whole lung taken at day 7. H&E staining of 5μm paraffin sections was performed. Original magnification 20x. Scale bar 100μm. Representative images of at least n=3 per group.

105

Sin

gle

Dose

T

wo

do

se

s

Figure 5.3 H&E imaging of CNT in mouse lung after a single dose or two doses. Mice received a 30μg of MWCNT roughly suspended in 50μL PBS via intranasal administration, followed by either a second identical dose on day 7 or PBS. Whole lung was taken at day 21 and H&E staining of 5μm paraffin sections was performed. Original magnification 20x. Scale bars 100μm. Representative images of 5 mice per group.

106

Figure 5.4 Distribution of carbon nanotubes within the mouse lung. Mice were treated with a single intranasal dose of 30μg/mouse CNTs, lungs taken and formalin fixed at Days 4-28 and 5μm paraffin sections stained with H&E. CNTs indicated by black arrows. Original magnification 20x. Scale bars 100μm. Representative images of at least 4 mice per group.

Control Day 4

Day 7 Day 10

Day 21 Day 28

107

Figure 5.5 Collagen in mouse lungs treated with CNT. Mice were treated with a single intranasal dose of 30μg/mouse CNTs, lungs taken and formalin fixed at Days 4-10 and 5μm paraffin sections stained with Masson’s trichrome. Blue = collagen fibres. Original magnifications of 10x. Scale bar 200μm. Representative images of all time points and at least 4 mice per group.

Contr

ol

CN

T

108

Figure 5.6 Hyaluronan in mouse lungs treated with CNT. Mice were treated with a single intranasal dose of 30μg/mouse CNTs, lungs taken and formalin fixed at Days 4-10 and 5μm paraffin sections stained with HABP. Original magnifications of 5x. Scale bars 500μm. Representative images of at least 4 mice per group.

Control Day 4

Day 7 Day 10

109

5.2.2 RNA expression after CNT administration in whole lung

As miRNA species are important in immune regulation, and we have shown that they are increased

after influenza infection, we also examined their levels in this non-infection model of pulmonary

inflammation. RNA levels in whole lung tissue changed according to time after CNT administration.

Both miR-147b and parent mRNA NMES1 were increased during the shorter 7 day time course

(Figure 5.7a) and again in the longer 28 day time course (Figure 5.7b). The let7 family remained

unchanged across all time points (Figure 5.7b, data not shown). IL-6 was slightly increased at day

28 but not at day 21. To examine possible feedback from HA expression, the HA receptor CD44

mRNA levels were examined. Expression was unchanged at the later time points (Figure 5.7c) but

Figure 5.7 RNA expression in whole lung after CNT treatment. Mice received a single dose of 30μg/mouse CNT in 50μL PBS via intranasal administration. At various time points between days 4-28, whole lung was taken and RT-qPCR performed. Data relative to animals receiving PBS only. Data expressed as mean + SD, n = 3-5

0

2

4

6

8

1 0N M E S 1

*

C o n tro l

D a y 4

D a y 7

0

1

2

3

4N M E S 1

0

2

4

6

8

1 0m iR -1 4 7 b

Fo

ld C

ha

ng

e

0

1

2

3

4L e t7 b

C o n tro l

D a y 2 1

D a y 2 8

0

1

2

3IL 6

Fo

ld C

ha

ng

e

0 .0

0 .5

1 .0

1 .5

2 .0C D 4 4

C o n tro l

D a y 2 1

D a y 2 8

0

5

1 0

1 5m iR -1 4 7 b

Fo

ld C

ha

ng

e

a

b

c

110

was not examined in the shorter time course. A second dose of CNT 1 week after the first further

increased NMES1, miR-147b and miR-155 levels in whole lung (Figure 5.8). This again suggests

that two administrations of CNT produces more profound effects.

0

1

2

3

4

5

m iR -1 5 5

Fo

ld C

ha

ng

e

0

2

4

6

8

m iR -1 4 7 b

*

0

1

2

3

4

5

N M E S 1

O n e d o se

T w o d o se s

**

Figure 5.8 Difference in whole lung miRNA expression in mice treated with two doses of CNT compared to a single dose. Mice received 1 or 2 doses of 30μg/mouse of CNT in 50μL PBS via intranasal administration 7 days apart and whole lung taken at day 21. RT-qPCR was performed to examine RNA levels. Data relative to animals receiving the single dose of CNT. Data shown as mean + standard deviation. n=3. * p ≤ 0.05, ** p ≤ 0.01

111

5.2.3 miRNA expression after CNT administration in airway macrophages

As miRNA levels were altered in whole lung after CNT administration, we next examined the levels

specifically in airway macrophages to determine whether these are one of the cell types producing

these miRNAs. Results were similar to those seen for whole lung with NMES1 and miR-147b

increased, but not the let7 family (Figure 5.9, data not shown). miR-155 was also increased. A second

dose of CNT further increased miRNA expression in airway macrophages at day 21 (Figure 5.10).

Figure 5.10 Difference in airway macrophage miRNA expression in mice treated with two doses of CNT compared to a single dose. Mice received 1 or 2 doses of 30μg/mouse of CNT in 50μL PBS via intranasal administration 7 days apart and whole lung taken at day 21. RT-qPCR was performed to examine RNA levels. Data relative to animals receiving the single dose of CNT. Data shown as mean + standard deviation. n=3. * p ≤ 0.05, ** p ≤ 0.01

0

1

2

3m iR -1 5 5

Fo

ld C

ha

ng

e

**

0

2

4

6

8m iR -1 4 7 b

*

0

2

4

6

8N M E S 1

O n e D o s e

T w o D o s e s

*

Figure 5.9 miRNA expression in airway macrophages of mice treated with carbon nanotubes. Mice received 30μg/mouse of CNT in 50μL PBS via intranasal administration and whole lung taken at day 7. RT-qPCR was performed to examine RNA levels. Data relative to control animals. Data shown as mean + standard deviation. n=3.

C o n tr o l C N T

0

1

2

3

4

5

m iR -1 5 5

Fo

ld C

ha

ng

e

C o n tr o l C N T

0

5

1 0

1 5

2 0

2 5

m iR -1 4 7 b

C o n tr o l C N T

0

2 0

4 0

6 0

8 0

N M E S 1

112

5.2.4 Effect of pre-administration of CNT on infection with influenza or S. pneumoniae

As the CNT persist within the lung and are able to affect immune function, we next examined how

pre-exposure to CNT affected mice subsequently infected with either a virus (PR8 influenza A virus)

or a bacterium (S. pneumoniae). Mice were infected 7 days after CNT administration. Body weights

were tracked as a percentage of individual mouse weight at day 0 (Figure 5.11). Towards the end of

the experiment, mice inflected with influenza started to lose weight, regardless of whether or not they

had been pre-exposed to CNT. C.F.U. counts of S. pneumoniae in blood and whole lung homogenate

were inconclusive due to high variability in the pneumonia only control group (Figure 5.12), although

counts matched between individual mouse lung and blood.

Histology showed that aggregates of CNT persisted within the lungs regardless of whether the mice

were infected (Figure 5.13). In influenza infected animals, the CNT aggregates were found both

within and outside sites of influenza-related inflammation. Inflammation was less visible in mice

infected with S. pneumoniae at this time point. Likewise, there was no difference in HA staining

regardless of treatment group (Figure 5.14).

We also examined miR-147b, miR-155, NMES1 and IL-6 RNA expression levels in whole lung within

the model (Figure 5.15). miR-147b was more highly induced by influenza and CNT and influenza

Figure 5.11 Weight chart of mice treated with CNT and then infected. Mice received 30μg/mouse CNT in 50μL PBS or PBS alone via intranasal administration, followed by intranasal infection with either 5 P.F.U. PR8 influenza A virus or 1x105 C.F.U. S. pneumoniae in 50μL PBS on day 7. S. pneumoniae infected animals were harvested at Day 9 after a 48 hour infection and influenza infected animals harvested at day 14 after a 7 day infection. Body weight calculated for each mouse based on the weight at Day 0. Data shown as mean only for clarity, n = 4 per treatment group. Arrow and dotted line indicate the infection on day 7. CNT carbon nanotubes; PBS phosphate buffered saline; Flu = PR8 influenza A virus; SPN = S. pneumoniae.

0 5 1 0 1 5

8 5

9 0

9 5

1 0 0

1 0 5

1 1 0

1 1 5

D a y

Pe

rc

en

ta

ge

O

rig

in

al B

od

y W

eig

ht

(

%)

C N T

P B S

C N T

F l u

C N T

S P N

P B S

F l u

P B S

S P N

113

than by CNT exposure alone. Whilst it did not appear to be induced by S. pneumoniae at greater

levels than CNT, the combination of the two appeared to have a greater effect (p=0.0138 vs CNT

alone and p=0.0379 vs S. pneumoniae alone). Parent mRNA NMES1 did not show the same pattern

but was also induced by influenza with pre-exposure to CNT (p=0.0217). S. pneumoniae did not

enhance expression compared to CNT alone. miR-155 was induced by both infections to greater

levels than by CNT alone, but again the combination of exposures did not enhance the effect,

although this was not significant. Whilst IL-6 appeared to be induced more by infection than by CNT

alone, the relative levels of induction were highly variable.

From these experiments we can conclude that carbon nanotubes do not appreciably affect the

pathophysiology of influenza or S. pneumoniae infection, despite their remaining presence, but do

alter miRNA expression.

P n e u m o n ia C N T + P n e u m o n ia

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

1 0 8

1 0 9

L u n g h o m o g e n a te

CF

U p

er m

L

P n e u m o n ia C N T + P n e u m o n ia

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

1 0 8

1 0 9

1 0 1 0

B lo o d

CF

U p

er m

L

Figure 5.12 C.F.U. after S. pneumoniae infection with and without pre-treatment with CNT. administration, followed by intranasal infection with 1x105 C.F.U. S. pneumoniae in 50μL PBS on day 7. Whole lungs and whole blood were collected at day 9 after a 48 hour infection. Lung homogenate and whole blood were serially diluted and plated on horse blood Columbia agar plates, colonies counted after 24 hours and C.F.U. calculated. Data shown as mean C.F.U., n=4.

114

Ca

rbo

n n

ano

tub

es a

lone

In

flu

en

za

alo

ne

C

arb

on

na

no

tub

es

Influ

en

za

C

arb

on

nan

otu

bes

S.

pne

um

onia

e

S.

pne

um

onia

e

Figure 5.13 H&E staining of mouse lung after treatment with carbon nanotubes and infection. Mice received 30μg/mouse CNT in 50μL PBS or PBS alone via intranasal administration, followed by intranasal infection with either 5 P.F.U. PR8 influenza A virus or 1x105 C.F.U. S. pneumoniae in 50μL PBS on day 7. S. pneumoniae infected animals were harvested at Day 9 after a 48 hour infection and influenza infected animals harvested at day 14 after a 7 day infection. Whole lung lobes were formalin fixed, paraffin embedded and 5μm sections stained with H&E. Original magnification 2x and 20x, scale bars 1000μm and 100μm respectively. n = 4.

115

Figure 5.14 Hyaluronan staining in mouse lung in the lungs of mice treated with CNT and infected with influenza or S. pneumoniae. Mice received 30μg/mouse CNT in 50μL PBS or PBS alone via intranasal administration, followed by intranasal infection with either 5 P.F.U. PR8 influenza A virus or 1x105 C.F.U. S. pneumoniae in 50μL PBS on day 7. No control/control group was used for this study. S. pneumoniae infected animals were harvested at Day 9 after a 48 hour infection and influenza infected animals harvested at day 14 after a 7 day infection. Whole lung lobes were formalin fixed, paraffin embedded and 5μm sections stained with HA binding protein. Original magnification 5x, scale bars 500μm. n = 4.

Con

tro

l In

fluen

za

S

. p

ne

um

on

iae

CNT Control

116

Figure 5.15 miRNA expression in whole lung after influenza or pneumonia infection in mice pre-treated with CNT. Mice received 30μg/mouse CNT in 50μL PBS or PBS alone via intranasal administration, followed by intranasal infection with either 5 P.F.U. PR8 influenza A virus or 1x105 C.F.U. S. pneumoniae in 50μL PBS on day 7. S. pneumoniae infected animals were harvested at Day 9 after a 48 hour infection and influenza infected animals harvested at day 14 after a 7 day infection. RT-qPCR was performed on RNA extracted from whole lung for a) miR-155, miR-147b and parent NMES1 and b) IL-6. Data shown as mean + SD, n = 4. * p≤0.05

C N T F lu C N T

F lu

S P N C N T

S P N

0

5

1 0

1 5

2 0

2 5

N M E S 1

Fo

ld C

ha

ng

e

C N T F lu C N T

F lu

S P N C N T

S P N

0

5

1 0

1 5

m iR -1 4 7 b

C N T F lu C N T

F lu

S P N C N T

S P N

0

2

4

6

8

m iR -1 5 5

C N T F lu C N T

F lu

S P N C N T

S P N

0

2 0

4 0

6 0

8 0

IL -6

Fo

ld C

ha

ng

e

a

b

*

*

*

117

5.3 Discussion

In this chapter, we have shown that CNT can induce certain miRNA species in whole lung and

specifically within airway macrophages in mice. However, in our hands pre-administration of CNT

before an infection did not make an appreciable difference to the outcome. This work should be

extended to other mouse strains as Wang et al. recently reported a hierarchy of responses to

MWCNTs in vitro and in vivo with Balb/c > A/J > C57BL/6 > NOD/ShiLtJ for IL-1 production (X.

Wang et al., 2017).

In our mouse studies, we opted not to use surfactant to help with the dispersion of the CNT to reflect

better how environmental exposure may occur. Similarly, we did not use sonication to improve

dispersion as this may cause damage to the nanotubes and has previously been shown to induce

the formation of toxic by-products from surfactants (Wang et al., 2013).

5.3.1 Effect of CNT on macrophages

In terms of macrophages, CNT can induce very different responses depending on the type of

nanotube (Palomäki et al., 2014). In vitro in RAW 264.7 macrophages, exposure to CNT induced

oxidative DNA damage, ROS release, ultrastructural damage, apoptosis and necrosis (Migliore et

al., 2010; Di Giorgio et al., 2011). A high concentration of MWCNT can also induce the release of

lactate dehydrogenase (LDH) in the LDH cytotoxicity assay in the same cell line (Shimizu et al.,

2013). Another study has also shown that MWCNTs have an effect on macrophage viability using

the mouse monocyte cell line J774 (Kumarathasan et al., 2015). Four different cytotoxicity assays

were used for a variety of CNTs, encompassing single and multi-walled, pristine and oxidised. This

study found that relative cytotoxicity of CNTs varied depending on the assay used. This highlights

the intrinsic ability of different CNT to interfere with assays involving dyes. This is also in line with

other conflicting reports within the literature as to the effects of functionalisation, agglomeration and

diameter of CNTs on their cytotoxicity (Fenoglio et al., 2012; Hamilton et al., 2013; Eom, Jeong and

Choi, 2015; Zhang et al., 2015; Allegri et al., 2016). Therefore, individual CNTs must be examined

separately rather than assuming that all CNTs behave in the same manner. It would also be important

to confirm major findings by using multiple tests to overcome any potential confounding influences.

We have found that CNT induce the expression of certain miRNAs in airway macrophages, as

discussed below.

118

5.3.2 Induction of miRNA by CNT

We have demonstrated that MWCNT can induce miR-147b and miR-155 in both whole lung and

airway macrophages. Some recent studies have demonstrated alterations in miRNA after exposure

to CNT (Zhao et al., 2014; Dymacek et al., 2015; Barna et al., 2016; Snyder-Talkington et al., 2016).

In vitro, miR-1 is suppressed by MWCNT in A549 epithelial cells, in turn reducing cell-cell contact

(Pacurari et al., 2017). In human bronchial epithelial cells, treatment with MWCNT-7 reduces

mitochondrial membrane potential, negatively correlating with miR-1275 levels (Nymark et al., 2015).

A number of other miRNAs and genes are also dysregulated after treatment. In vivo, similar to our

results, in a C57BL/6 mouse CNT aspiration model miRNAs are differentially regulated in whole lung

including miR-147b, miR-188 and miR-327 (Dymacek et al., 2015). Alterations in miRNA have also

been shown in more long-term models. In MWCNT-induced fibrosis in B6C3F1 mice at 17 months,

14 miRNAs were increased compared to control animals including miR-324-5p, miR-27a, miR-27b-

3p and let-7d-3p (Snyder-Talkington et al., 2016). Likewise, in a MWCNT mouse model of

sarcoidosis, miR-33 was elevated in both BAL cells and lung granulomatous tissue 60 days after

treatment (Barna et al., 2016) in turn repressing lipid transporters ABCA1 and ABCG1 which can

regulate inflammation. These findings have been replicated in human sarcoidosis patients.

Therefore, there is little doubt that CNT exposure has significant impacts of miRNA species, though

our study is the first to focus on airway macrophages. Evaluation of a wider range of miRNA species

would give a more enhanced understanding of the effects of CNT in the future, for example through

a more unbiased array.

5.3.3 Effects of CNT on the lung ECM

It has clearly been demonstrated that CNT can induce pulmonary fibrosis in vivo by a number of

groups (Dong and Ma, 2016; Pacurari, May and Tchounwou, 2017; Qin et al., 2017). In terms of

underlying mechanisms for fibrosis, in our model they still need to be investigated but others have

shown that the NFκB pathway plays an important role (Pacurari, May and Tchounwou, 2017; Qin et

al., 2017).

We have shown that HA staining in the lung is unaltered after a single administration of MWCNT in

the tissue. It has previously been shown that MWCNT can induce the gelation of unmodified HA

(Zamora-Ledezma et al., 2013), but the effect of CNT on HA in vivo has not been investigated.

However, due to the non-immunogenic properties of high molecular weight HA, the possibility of HA

119

functionalisation of CNT for medical use is being investigated (Marega et al., 2011; Hussain et al.,

2016). It is therefore vital to see if CNT may have unintended effects on HA.

CNT can directly induce a number of other ECM proteins. The ECM glycoprotein thrombospondin-1,

which mediates cell adhesion and binds a number of other ECM components, is induced in A549

airway epithelial cell line by MWCNT in a dose- and time- dependent manner (Pacurari et al., 2017).

Also in A549 cells, MWCNT have been shown to induce Col3a1, TGF-β, MMP-9 and MMP-12 mRNA

(Pacurari, May and Tchounwou, 2017), again demonstrating that epithelial cells may play a key role

in the remodelling process in response to MWCNT. This is particularly relevant as they are one of

the first cell types to come into contact with CNT upon exposure. MWCNT-induced fibrosis is also

promoted via TIMP1 stimulation of fibroblast activation (Dong and Ma, 2017). Conditioned medium

from RAW 264.7 macrophages treated with MWCNT is capable of inducing WI38-VA13

immortalised human lung fibroblasts to differentiate into myofibroblasts (He et al., 2011), again

promoting a pro-fibrotic phenotype.

Whilst our Masson’s trichrome staining did not reveal any collagen fibres around CNT deposits, it

has previously been demonstrated that a single dose of MWCNT is sufficient to increase the amount

of collagen fibres in the lung at around 7 days, with the mRNA and protein levels of Col1a1, Col1a2,

and Fn1 also increased (Dong et al., 2015). Levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-

1α and IL-6 peaked at days 1-3, whilst levels of TGF-β1 and PDGF-AA remained increased up to

day 14. As fibrotic changes to the ECM often persist long term, this demonstrates that CNT exposure

could result in chronic changes to lung structure and thus alter how the immune system responds to

future inflammatory insults. Repeated exposure, such as in our model using two doses of CNT, is

perhaps more likely to induce fibrotic effects by increasing the number of aggregates in the lung and

re-inducing pro-inflammatory cytokines which peak early after administration. In future experiments,

various positive controls could be used to determine the specific effects of carbon nanotubes. Carbon

black would control for the effects of carbon alone, and asbestos is a good control for a high aspect

ratio substance that induces lung pathology. Quantification of histology would also allow for a better

understanding of both cellular and ECM alterations.

5.3.4 CNT and pulmonary infection

Our preliminary data suggests that CNT pre-exposure may not have a dramatic effect on influenza

virus or S. pneumoniae infections in terms of gross histology and HA levels at the time points we

120

examined. The wide variation in C.F.U. numbers in control animals could indicate a better clearance

of the s. pneumoniae infection, but further experimentation would be needed for confirmation. It is

highly unlikely that it would be due to a lack of infection in these mice as all mice displayed the same

visual symptoms of sickness. Likewise, future experiments measuring levels of influenza virus in the

lungs, such as the plaque assay, would give a better outcome for the viral infections. Future

experiments with a time course with different levels of infection would help to examine the pathology

of CNT more effectively.

There is a limited amount of research on the effect of CNTs on pulmonary infections, with some

conflicting results. In contrast to our results, it has been observed in vitro that 24 hour pre-exposure

to SWCNTs increases the infectivity of influenza A virus H1N1 in small airway epithelial cells (SAECs)

(Sanpui et al., 2014), independent of SWCNT aggregate size, electronic structure and stability. On

the other hand, incubation of E.coli with SWCNT results in decreased bacterial viability in contact

with the SWCNTs, but not those that were free-floating (Kang et al., 2007). This implies a direct

physical interaction between the bacteria and the SWCNT, whereas the study with influenza virus

implied that physical interaction was unnecessary for the effects seen due to the long pre-exposure

time needed. Chlamydia treated macrophages have enhanced IL-1β secretion when stimulated with

CNT via NLRP3 inflammasome activation (Matsuo et al., 2015). It is difficult to compare across

studies due to the differences in the CNT used and the different infections. As it is known that different

CNT can induce different reactions in the lung, caution must be used when interpreting these studies

on their effects.

Whilst ours appears to be the first study to look at pre-exposure CNT and influenza or S. pneumoniae

infection in vivo, there is some data on the influence of pre-exposure to CNTs on other infections in

vivo, again with conflicting results. Pre-exposure of mice to SWCNT 3 days before Listeria

monocytogenes infection results in a more pro-fibrotic response with increased lesions (Shvedova

et al., 2008). Bacterial load is elevated and phagocytosis efficiency is decreased. In contrast, in mice

treated bi-weekly to helical CNT for 3 weeks, no difference in clearance of Pseudomonas aeruginosa

24 hrs after exposure is observed (Walling et al., 2013), although levels of chemoattractants KC and

MCP-1 are increased. Likewise, the early immune response to Toxoplasma gondii after 2 daily doses

of SWCNT (Swedin et al., 2012) showed no alteration to parasite burden in both the lungs and the

spleen. A less pronounced effect in this model would perhaps be expected, given that the parasite

is administered intravenously rather than via the lungs. Co-exposure of mice to SWCNT and LPS,

121

whilst not altering lung inflammation levels, increases the amounts of fibrinogen, KC and IL-1β

present compared to mice treated with LPS alone (Inoue et al., 2008). Again, it is difficult to draw

conclusions for a general effect of CNT due to the range of infections and CNT used.

It is also possible that exposure to CNT after exposure to an antigen may occur. One group has

performed a number of these studies with antigens including LPS (Cesta et al., 2010), OVA (Ryman-

Rasmussen et al., 2009; Sayers et al., 2013; Thompson et al., 2015) and HDM (Shipkowski et al.,

2015). OVA sensitised mice have increased levels of PDGF-AA in the BAL fluid 1 day after MWCNT

administration, as well as increased IL-5 mRNA in whole lung compared to OVA or MWCNT alone

(Ryman-Rasmussen et al., 2009). At Day 14 collagen thickness around the bronchiole basement

membrane is increased. The inflammation exacerbation is further enhanced by knock-out of the

COX-2 gene (Sayers et al., 2013). With regards to the remodelling, STAT1-/- mice have enhanced

airway fibrosis, goblet cell hyperplasia and apoptosis after OVA and MWCNTs at 21 days compared

to WT mice (Thompson et al., 2015), indicating that STAT1 has a protective role in this environment.

HDM sensitisation before MWCNT exposure results in increased inflammatory cell counts and

increased lung IL-13, IL-5 and CCL2 mRNA compared to HDM and MWCNT only treatment

(Shipkowski et al., 2015). Masson’s trichrome reveals amplified fibrosis at day 21. The LPS pre-

treatment study, performed in rats, also demonstrates increased fibrosis with pre-sensitisation along

with higher PDGF-AA production by epithelial cells and macrophages (Cesta et al., 2010). Together,

the work of this group suggests that exposure to CNT after antigen can lead to increased

inflammation and ECM remodelling. As such, it is likely that CNT can enhance the response of the

lung to infection regardless of the order of exposure. Whilst in our model many of these effects were

not observed, this could be due to the unique properties of the CNTs we used. It would also be

interesting to see whether this is still the case in our longer model with the repeated CNT

administration.

122

6. Discussion

123

In this thesis, we have examined how the local microenvironment of the lung is affected by

inflammation and how the microenvironment affects immunity. Firstly, we have used mass

spectrometry to demonstrate that the lung matrisome is altered after the resolution of influenza virus

infection. This includes increased FN and tenascin C and decreased basement membrane proteins.

We also demonstrate that there are a number of other influencing factors on the ECM including age,

the microbiome and non-pathogenic inflammation. miRNAs are differentially regulated both after

influenza infection and in a non-infectious inflammatory model. Direct modification of miRNA

expression by matrix components indicate a possible mechanism for how matrix influences immunity

and are therefore a potential therapeutic target in lung diseases.

6.1 Effects of alteration of the interstitial ECM

We have defined matrisome proteins according to a previously compiled in silico database (Naba et

al., 2012). A caveat of this approach is that any newer matrisome proteins that are not part of this

resource would not be identified as such in our dataset. However, future retrospective analysis can

be done on the mass spectrometry dataset as more ECM proteins are discovered. Mapping how the

matrisome of the lung changes in the disease state and in resolution is important in the development

of novel therapeutic targets, which can then be validated in human models.

As the extracellular matrix dictates the stiffness of the tissue, changes to the ECM can alter cell

behaviour, including migration and proliferation. Stiffness also directly feeds back into remodelling

by influencing fibroblast activation, with fibroblasts from IPF patients able to return to a more “healthy”

phenotype when grown on substrates mimicking the stiffness of the healthy lung (Marinković, Liu

and Tschumperlin, 2013). In terms of migration, the density and orientation of ECM fibres can control

the migration of immune cells, with looser areas facilitating, and denser areas impeding, migration

(Bonnans, Chou and Werb, 2014). This has possible therapeutic applications, as treatment with

collagenase is able to increase T-cell contact with cancer cells (Bonnans, Chou and Werb, 2014).

An increase in lung cellularity is observed in the resolution of many inflammatory conditions (Bice

and Weissman, 1991; You et al., 2006). This has led to the belief that some patients remain inflamed.

However, our results indicate a different scenario whereby recruited immune cells may simply be

retained by a “stickier” matrix. Macrophages in the airspaces and lung tissue are associated, for

example, with excess hyaluronan. Up-regulated CD44 on macrophages may facilitate retention.

Similarly macrophages recognise fibronectin via integrin receptors that would also facilitate retention

of cells (Kradin et al., 1986; Malik et al., 2010; Kitamura, Qian and Pollard, 2015). We also observed

124

that collagen was present in a different format in inflammatory resolution compared to health;

predominantly tracts of highly organised structures. These too may retain, or even re-direct cells in

the resolved lung. Therefore, a resolved lung might appear to remain inflamed when the cells are

simply unable to leave. This is supported by the common observation that cells that remain in

inflammatory resolution are not continuously producing inflammatory cytokines. However, should

they be there in greater numbers when the next antigen enters the respiratory tract, the larger cellular

burden will likely plead to more total cytokines being produced – hence a new concept for

inflammatory exacerbations.

The retention of altered matrix and immune cells also occurs with non-infectious particles. CNTs are

known to induce fibrosis in the lungs (for review see (Vietti, Lison and van den Brule, 2015)), however

the outcome depends on the precise physical chemical properties of the CNT and the system in

which they are tested. For example, despite increasing matrix components in vivo, fibronectin is

reduced in HEK293 and human dermal fibroblasts after CNT treatment (Cui et al., 2005; Tian et al.,

2006). Single cell line assays therefore do not recapitulate the complexity of contributing factors in

vivo. Furthermore, some CNT have no effect on airway collagen in vivo (Ryman-Rasmussen et al.,

2009), which contrasts with the increased production of collagen and tenascin C in other models (L.

Wang et al., 2010; Hussain et al., 2014). Overall, this highlights the complexity of the effects of CNT

on the ECM and the need for individual CNTs to be tested. It also reflects the caution needed in

using CNT in a therapeutic setting since they may be non-pathogenic in one setting, but pathogenic

in another.

6.2 Alteration of the basement membrane

The prolonged defect in basement membrane proteins shown in this thesis after the resolution of

influenza virus infection in the lung is fascinating. The loss of basement membrane severely hinders

the ability of the lung to repair itself after injury (Strieter, 2008). A decrease in basement membrane

is likely to affect the migration of cells from the capillaries into the lung and further into the airspaces.

Such a prolonged defect would have considerable consequences for future infections and render the

lung susceptible to excessive inflammatory damage. The remaining increased permeability would

also enhance the access of commensal and environmental antigens into the lung interstitial space,

where innate immunity is less restrained than in the airspaces. Decreased capillary basement

membrane can also lead to alveolar haemorrhage, as seen in the autoimmune disease

Goodpastures syndrome, in which antibodies against basement membrane components are

125

generated, primarily attacking the glomeruli in the kidneys (Ball and Young, 1998; Lahmer and

Heemann, 2012; Greco et al., 2015; Foster, 2017). The thickness of the basement membrane is

important for gas exchange. Though we see a reduction in basement membrane this might not imply

more efficient gaseous exchange as presumably the correct mechanisms of such exchange may

require its presence. Whilst reepithelialisation or reendothelialisation occur after mild injury to the

basement membrane, a high loss of basement membrane integrity is associated with the destruction

of the lung architecture through alveolar collapse and pulmonary fibrosis (Strieter, 2008). Excessive

extracellular matrix may impede efficient exchange of gases (Agustí et al., 1991).

So far, we have examined the matrisome by mass spectrometry at a 14 day time point after influenza

infection. We do not currently know whether these alterations persist, whether basement membrane

and extracellular matrix both need to return to homeostasis, or whether future inflammatory insults

can make the situation better or worse. There is the possibility that any damage will heal over time,

as well as the possibility that there is long term damage. A 6 month time point is planned after which

mass spectrometry will be performed to further investigate this question. It will also be necessary to

track basement membrane repair by electron microscopy of lung sections to unravel whether

basement membrane alteration occur at the vascular or epithelial barrier or both.

In a non-infectious setting, the effects of CNT on basement membrane are largely unknown. Whilst

we have not yet directly measured the levels of basement membrane proteins in our model, it is

known that collagen IV and laminin levels are decreased in HEK293 cells and human dermal

fibroblasts after SWCNT stimulation (Cui et al., 2005; Tian et al., 2006). This suggests that decreased

basement membrane matrix components may be common to both infectious and non-infectious

inflammatory responses. Alterations to basement membrane components will be exacerbated by the

presence of degrading enzymes such as MMP-9 by CNT, which is observed in response to multiple

types of CNT in both epithelial cells and fibroblasts (L. Wang et al., 2010; Mishra et al., 2012; Polimeni

et al., 2015), as well as in vivo (L. Wang et al., 2010). Basement membrane disruption after CNT

exposure is also observed by electron microscopy (Ge et al., 2012). The induction of matrix

metalloproteinases by infectious and non-infectious antigens may therefore lead to a common defect

in basement membrane. To that end, MMP-9 continues to be raised long after inflammation has

resolved, for example following smoking cessation (Louhelainen et al., 2010).

126

6.3 Therapeutic implications

We have previously used hyaluronidase to reduce the build-up of high molecular weight HA in the

airways following influenza virus infection (Bell and Hussell, unpublished data). Similarly, HA binding

peptides may block macrophage CD44 from binding to HA and facilitate their migration out of the

lung. Others have used HA to suppress macrophage activation and collagen deposition after

bleomycin-induced inflammation and to block ozone induced airway hyperresponsiveness (Savani

et al., 2000; Garantziotis et al., 2009). The therapeutic potential of HA administration will therefore

depend on its chemical properties and the route by which it is administered.

Similarly, blocking FN reduces airway hyperresponsiveness in an acute model, but not a chronic

model of asthma using ovalbumin, which may be explained by the release of trapped immune cells,

though this was not tested (Assayag and Berkman, 2016). There are other potential reagents that

should be tested to limit FN retention in the inflammation resolved lung, including the peptide inhibitor

of FN assembly pUR4, which improves liver fibrosis in mice (Altrock et al., 2015). Also the natural

flavonoid silibinin inhibits FN-induced motility and invasiveness in human prostate carcinoma cells,

that in turn inhibit metastasis in vivo (Singh et al., 2008; Deep et al., 2014).

FN derived peptides have also been suggested for therapeutic use. Three different soluble FN

peptides are reported to induce apoptosis in lung fibroblasts (Hadden and Henke, 2000), which could

reduce the production of extracellular matrix. Another peptide accelerates wound repair of punch

biopsy wounds in mice, particularly genetically obese diabetic mice (Livant, Brabec, Kurachi, et al.,

2000). Modification of this peptide into an inhibitor reverses tumour metastases in rats (Livant,

Brabec, Pienta, et al., 2000). However, whilst peptides may work well for skin wounds fibronectin

peptides are quickly cleared through the renal system and thus may not be the best candidate for

other therapies (Humphries, Yamada and Olden, 1988).

Another way to modify the ECM is via the MMPs. The non-specific MMP inhibitor doxycycline reduces

lung injury in mice infected with influenza virus (Ng et al., 2012). IPF in humans and the bleomycin

mouse model show improvement with doxycycline treatment (Fujita et al., 2006; Bhattacharyya et

al., 2009; Mishra et al., 2011). Inhibition of MMP-14 in influenza virus infection in mice reduces tissue

damage and also prevents bacterial dissemination in a secondary infection model (Talmi-Frank et

al., 2016). Reduced lung pathology after influenza virus infection also occurs with an MMP-2/-9

inhibitor (Lee et al., 2013). Together, these studies show that MMPs could be targeted as a way of

returning the ECM to its pre-infection state.

127

As well as the interstitial ECM, basement membrane is another potential therapeutic target. A proof

of principle study demonstrates that increased secretion of a single collagen IV trimer into the

basement membrane by podocytes can slow kidney disease progression in the basement membrane

disease Alport syndrome (Lin et al., 2014). Similarly, improvement is seen in a muscle basement

membrane muscular dystrophy model deficient in one of the laminin genes (lama2) with expression

of transgenes designed to increase the binding of the remaining laminin to cells (Reinhard et al.,

2017). This indicates that the basement membrane can be targeted to improve disease outcome,

which is highly useful as basement membrane is altered in many different lung diseases.

Another aspect of the lung microenvironment which can alter infection outcome is the microbiota.

The presence of specific bacteria species in BAL fluid are associated with IPF disease progression,

as has total bacterial burden (Han et al., 2014; Molyneaux et al., 2014), although causality is yet to

be established. The microbiota also plays a key role in immune responses to viral infection (Robinson

and Pfeiffer, 2014). Higher influenza viral titres are present in antibiotic-treated mice compared to

conventional mice (Ichinohe et al., 2011; Abt et al., 2012), and germ free mice are more susceptible

to influenza virus infection (Dolowy and Muldoon, 1964). Infection with influenza virus also alters the

gut microbiota and causes intestinal injury, via lung derived Th17 cells (Wang et al., 2014). On the

other hand, the microbiota is not required for immune responses to infections which are not

dependent on inflammasome activation (Ichinohe et al., 2011). These alterations to the commensal

bacteria may be therapeutic targets for improving outcomes in these conditions. However, more

research is needed to determine causality and to investigate whether changes to the microbiome in

infection or fibrosis are able to resolve to the healthy state.

6.4 Future Directions

As our mass spectrometry was carried out at an early resolution time point, it is important that further

work is carried out at later time points to confirm how long lasting these changes are, either via further

mass spectrometry or through selective examination of particular proteins already determined to be

altered at the 14 day time point, for example via western blot. This would allow more accurate

identification of therapeutic targets. Whilst much of our work has focused on influenza virus as an

infectious inflammatory model, many inflammatory insults to the lung are through non-infectious

sources. It would therefore be interesting to examine further the matrix changes in our non-infectious

CNT model of pulmonary inflammation to see how they differ from those caused by an infection.

128

Likewise, the effects of the microbiome on the lung ECM both in homeostasis and with inflammation

could lead to novel mechanisms for manipulating infectious outcomes.

Further investigation of the mechanisms of how matrix components alter immunity in vitro could also

be carried out via the use of blocking antibodies for ECM receptors. Elucidation of the mechanisms

may provide more suitable downstream therapeutic targets. Other methods of targeting matrisome

components should also be considered, given the broad specificity of cell ECM receptors. Whilst we

have focused on airway macrophages for this thesis, it would also be interesting to expand this further

and look at other immune cells as well as non-immune cells. For example, epithelial cells produce

many inflammatory mediators and have a direct interaction with the basement membrane.

Our laboratory has previously shown that the use of exogenous hyaluronidase to degrade excess

HA improves the outcome of influenza virus infection in vivo (unpublished data). However, HA is just

one of many matrisome components to remain altered upon resolution. Other ECM components

increased after influenza such as fibronectin could be targeted with similar methods using blocking

antibodies or methods of specific degradation. Alternatively, it may be possible to induce the

synthesis, or block the degradation, of those proteins decreased after influenza virus infection, with

emphasis on basement membrane proteins such as laminin. Examination of different time points is

also important in determining how such treatments might work in a therapeutic setting. A treatment

would be easiest to administer during the initial inflammatory insult or soon after resolution to improve

adverse outcomes particularly in regards to future injury.

As we have shown here that matrisome components can influence miRNA expression, it would be

interesting to examine how alteration of miRNA influences the outcome of inflammation, particularly

a secondary insult after the resolution of the first. This could be done through the use of antagomirs

or knockout mice. For example, it has been demonstrated that mice lacking miR-155 recover from

influenza infection faster than their wild type counterparts (Pociask et al., 2017).

6.5 Conclusions

This thesis has contributed knowledge to the field in several ways:

a) Most studies examine increases in extracellular matrix during the height of inflammatory disease.

We now reveal that matrix alterations persist after inflammatory resolution and likely contribute to

ongoing poor lung performance.

129

b) We have identified a key deficit in basement membrane proteins that will affect epithelial integrity

and the balance of fluids/matrix in the airspaces.

c) In the resolution of both infectious and non-infectious inflammation, upregulated matrix proteins

alter miRNA species in macrophages. These miRNA species impede subsequent inflammation and

likely contribute to enhanced susceptibility to bacterial infections.

d) Collectively the data implies that perhaps chronic conditions are not permanently inflamed, but

rather reflect the retention of cells in a more complex matrix. Modulation of complex matrix would

therefore represent an alternative strategy to remove cells, with the potential to inflame, from the

lung.

130

7. Bibliography

Abt, M. C., Osborne, L. C., Monticelli, L. A., Doering, T. A., Alenghat, T., Sonnenberg, G. F., Paley, M. A., Antenus, M., Williams, K. L., Erikson, J., Wherry, E. J. and Artis, D. (2012) ‘Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity’, Immunity, 37(1), pp. 158–170. doi: 10.1016/j.immuni.2012.04.011.

Adhyatmika, A., Putri, K. S. S., Beljaars, L. and Melgert, B. N. (2015) ‘The Elusive Antifibrotic Macrophage.’, Frontiers in medicine. Frontiers Media SA, 2, p. 81. doi: 10.3389/fmed.2015.00081.

Agustí, A. G. N., Roca, J., Gea, J., Wagner, P. D., Xaubet, A. and Rodriguez-Roisin, R. (1991) ‘Mechanisms of Gas-exchange Impairment in Idiopathic Pulmonary Fibrosis’, American Review of Respiratory Disease. American Lung Association, 143(2), pp. 219–225. doi: 10.1164/ajrccm/143.2.219.

Al-Hertani, W., Yan, S. R., Byers, D. M. and Bortolussi, R. (2007) ‘Human newborn polymorphonuclear neutrophils exhibit decreased levels of MyD88 and attenuated p38 phosphorylation in response to lipopolysaccharide.’, Clinical and investigative medicine. Medecine clinique et experimentale, 30(2), pp. E44-53. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17716541 (Accessed: 3 October 2017).

Alfano, M., Canducci, F., Nebuloni, M., Clementi, M., Montorsi, F. and Salonia, A. (2015) ‘The interplay of extracellular matrix and microbiome in urothelial bladder cancer’, Nature Reviews Urology, 13(2), pp. 77–90. doi: 10.1038/nrurol.2015.292.

Allegri, M., Perivoliotis, D. K., Bianchi, M. G., Chiu, M., Pagliaro, A., Koklioti, M. A., Trompeta, A. F. A., Bergamaschi, E., Bussolati, O. and Charitidis, C. A. (2016) ‘Toxicity determinants of multi-walled carbon nanotubes: The relationship between functionalization and agglomeration’, Toxicology Reports, 3, pp. 230–243. doi: 10.1016/j.toxrep.2016.01.011.

Allen, B. L., Kichambare, P. D., Gou, P., Vlasova, I. I., Kapralov, A. A., Konduru, N., Kagan, V. E. and Star, A. (2008) ‘Biodegradation of single-walled carbon nanotubes through enzymatic catalysis’, Nano Letters. American Chemical Society, 8(11), pp. 3899–3903. doi: 10.1021/nl802315h.

Alonso, J.-M., Guiyoule, A., Zarantonelli, M. L., Ramisse, F., Pires, R., Antignac, A., Deghmane, A. E., Huerre, M., van der Werf, S. and Taha, M.-K. (2003) ‘A model of meningococcal bacteremia after respiratory superinfection in influenza A virus-infected mice.’, FEMS microbiology letters, 222(1), pp. 99–106. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12757952 (Accessed: 18 September 2017).

Altrock, E., Sens, C., Wuerfel, C., Vasel, M., Kawelke, N., Dooley, S., Sottile, J. and Nakchbandi, I. A. (2015) ‘Inhibition of fibronectin deposition improves experimental liver fibrosis’, Journal of Hepatology, 62(3), pp. 625–633. doi: 10.1016/j.jhep.2014.06.010.

Ameres, S. L., Horwich, M. D., Hung, J.-H., Xu, J., Ghildiyal, M., Weng, Z. and Zamore, P. D. (2010) ‘Target RNA-Directed Trimming and Tailing of Small Silencing RNAs’, Science, 328(5985), pp. 1534–1539. doi: 10.1126/science.1187058.

Amin, K., Lúdvíksdóttir, D., Janson, C., Nettelbladt, O., Bjórnsson, E., Roomans, G. M., Boman, G., Sevéus, L. and Venge, P. (2000) ‘Inflammation and structural changes in the airways of patients with atopic and nonatopic asthma’, American Journal of Respiratory and Critical Care Medicine. American Thoracic SocietyNew York, NY, 162(6), pp. 2295–2301. doi: 10.1164/ajrccm.162.6.9912001.

Anikina, A. G., Potapova, O. V., Shkurupii, V. A. and Shestopalov, A. M. (2013) ‘Role of matrix metalloproteinases and their inhibitor in the development of early pulmonary fibrosis in mice infected with influenza A/H5N1 A/GOOSE/Krasnoozerskoye/627/05 virus’, Bulletin of Experimental Biology and Medicine, 156(1), pp. 11–14. doi: 10.1007/s10517-013-2265-3.

Anikina, A. G., Potapova, O. V. and Shkurupy, V. A. (2013) ‘Morphofunctional Characteristics of Fibroblasts and Fibrogenesis in the Lungs of Mice Infected with Influenza A/H5N1 A/Goose/Krasnoozerskoye/627/05 Virus’, Bulletin of Experimental Biology and Medicine, 154(3), pp. 361–364. doi: 10.1007/s10517-013-1951-5.

Aono, Y., Ledford, J. G., Mukherjee, S., Ogawa, H., Nishioka, Y., Sone, S., Beers, M. F., Noble, P. W. and Wright, J. R. (2012) ‘Surfactant Protein-D Regulates Effector Cell Function and Fibrotic Lung

131

Remodeling in Response to Bleomycin Injury’, American Journal of Respiratory and Critical Care Medicine, 185(5), pp. 525–536. doi: 10.1164/rccm.201103-0561OC.

Arai, E., Nishida, Y., Wasa, J., Urakawa, H., Zhuo, L., Kimata, K., Kozawa, E., Futamura, N. and Ishiguro, N. (2011) ‘Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo’, British Journal of Cancer, 105(12), pp. 1839–1849. doi: 10.1038/bjc.2011.459.

Archambaud, C., Sismeiro, O., Toedling, J., Soubigou, G., Becavin, C., Lechat, P., Lebreton, A., Ciaudo, C. and Cossart, P. (2013) ‘The Intestinal Microbiota Interferes with the microRNA Response upon Oral Listeria Infection’, mBio, 4(6), pp. e00707-13-e00707-13. doi: 10.1128/mBio.00707-13.

Arts, R. J. W., Joosten, L. A. B. and Netea, M. G. (2016) ‘Immunometabolic circuits in trained immunity’, Seminars in Immunology, 28(5), pp. 425–430. doi: 10.1016/j.smim.2016.09.002.

Assayag, M. and Berkman, N. (2016) ‘Blocking of EDA-Fibronectin Attenuates Airway Hyperresponsivenss in a Murine Model of Acute and Chronic Allergen-Induced Airway Remodeling’, The FASEB Journal. Federation of American Societies for Experimental Biology, 30(1 Supplement), p. 1263.1-1263.1. Available at: http://www.fasebj.org/content/30/1_Supplement/1263.1 (Accessed: 11 October 2017).

Assenov, Y., Ramirez, F., Schelhorn, S. E., Lengauer, T. and Albrecht, M. (2008) ‘Computing topological parameters of biological networks’, Bioinformatics, 24(2), pp. 282–284. doi: 10.1093/bioinformatics/btm554.

Atabai, K., Jame, S., Azhar, N., Kuo, A., Lam, M., McKleroy, W., Dehart, G., Rahman, S., Xia, D. D., Melton, A. C., Wolters, P., Emson, C. L., Turner, S. M., Werb, Z. and Sheppard, D. (2009) ‘Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages.’, The Journal of clinical investigation. American Society for Clinical Investigation, 119(12), pp. 3713–22. doi: 10.1172/JCI40053.

Augusto, L. A., Synguelakis, M., Johansson, J., Pedron, T., Girard, R. and Chaby, R. (2003) ‘Interaction of pulmonary surfactant protein C with CD14 and lipopolysaccharide.’, Infection and immunity, 71(1), pp. 61–7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12496149 (Accessed: 4 September 2017).

Aytekin, M., Comhair, S. A. A., de la Motte, C., Bandyopadhyay, S. K., Farver, C. F., Hascall, V. C., Erzurum, S. C. and Dweik, R. A. (2008) ‘High levels of hyaluronan in idiopathic pulmonary arterial hypertension’, AJP: Lung Cellular and Molecular Physiology, 295(5), pp. L789–L799. doi: 10.1152/ajplung.90306.2008.

Baccarini, A., Chauhan, H., Gardner, T. J., Jayaprakash, A. D., Sachidanandam, R. and Brown, B. D. (2011) ‘Kinetic Analysis Reveals the Fate of a MicroRNA following Target Regulation in Mammalian Cells’, Current Biology, 21(5), pp. 369–376. doi: 10.1016/j.cub.2011.01.067.

Ball, J. A. and Young, K. R. (1998) ‘Pulmonary manifestations of Goodpasture’s syndrome. Antiglomerular basement membrane disease and related disorders.’, Clinics in chest medicine, 19(4), p. 777–91, ix. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9917968 (Accessed: 20 September 2017).

Banerjee, S., Xie, N., Cui, H., Tan, Z., Yang, S., Icyuz, M., Abraham, E. and Liu, G. (2013) ‘MicroRNA let-7c regulates macrophage polarization’, J Immunol, 190(12), pp. 6542–6549. doi: 10.4049/jimmunol.1202496.

Bao, Y., Gao, Y., Jin, Y., Cong, W., Pan, X. and Cui, X. (2015) ‘MicroRNA expression profiles and networks in mouse lung infected with H1N1 influenza virus’, Molecular Genetics and Genomics. Springer Berlin Heidelberg, 290(5), pp. 1885–1897. doi: 10.1007/s00438-015-1047-1.

Barna, B. P., McPeek, M., Malur, A., Fessler, M. B., Wingard, C. J., Dobbs, L., Verbanac, K. M., Bowling, M., Judson, M. A. and Thomassen, M. J. (2016) ‘Elevated MicroRNA-33 in sarcoidosis and a carbon nanotube model of chronic granulomatous disease’, American Journal of Respiratory Cell and Molecular Biology. American Thoracic Society, 54(6), pp. 865–871. doi: 10.1165/rcmb.2015-0332OC.

Barron, L. and Wynn, T. A. (2011) ‘Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages.’, American journal of physiology. Gastrointestinal

132

and liver physiology. American Physiological Society, 300(5), pp. G723-8. doi: 10.1152/ajpgi.00414.2010.

Basha, S., Surendran, N. and Pichichero, M. (2014) ‘Immune responses in neonates.’, Expert review of clinical immunology. NIH Public Access, 10(9), pp. 1171–84. doi: 10.1586/1744666X.2014.942288.

Baughman, R. H. (2013) ‘Carbon nanotubes: present and future commercial applications.’, Science., 339(6119), pp. 535–9. doi: 10.1126/science.1222453.

Baughman, R. P., Thorpe, J. E., Staneck, J., Rashkin, M. and Frame, P. T. (1987) ‘Use of the Protected Specimen Brush in Patients with Endotracheal or Tracheostomy Tubes’, Chest, 91(2), pp. 233–236. doi: 10.1378/chest.91.2.233.

Bazzoni, F., Rossato, M., Fabbri, M., Gaudiosi, D., Mirolo, M., Mori, L., Tamassia, N., Mantovani, A., Cassatella, M. A. and Locati, M. (2009) ‘Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals’, Proceedings of the National Academy of Sciences, 106(13), pp. 5282–5287. doi: 10.1073/pnas.0810909106.

Beadling, C. and Slifka, M. K. (2004) ‘How do viral infections predispose patients to bacterial infections?’, Current opinion in infectious diseases, 17(3), pp. 185–91. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15166819 (Accessed: 18 September 2017).

Beck, J. M., Young, V. B. and Huffnagle, G. B. (2012) ‘The microbiome of the lung’, Translational Research, pp. 258–266. doi: 10.1016/j.trsl.2012.02.005.

Beckett, B. S. (1976) Biology : a modern introduction. Oxford University Press. Available at: https://books.google.co.uk/books?id=IrCTghhgKh0C&pg=PA100&lpg=PA100&dq=lung+surface+area+90m2&source=bl&ots=UhqwFcvHWv&sig=_srHaSbTCILzyUZYG2eZntfzMkw&hl=en&sa=X&ved=0ahUKEwjgo-bZlZHaAhXHLsAKHeSQA8kQ6AEIaTAL#v=onepage&q=lung surface area 90m2&f=false (Accessed: 29 March 2018).

Beeton, M. L., Maxwell, N. C., Davies, P. L., Nuttall, D., McGreal, E., Chakraborty, M., Spiller, O. B. and Kotecha, S. (2011) ‘Role of pulmonary infection in the development of chronic lung disease of prematurity’, European Respiratory Journal, 37(6), pp. 1424–1430. doi: 10.1183/09031936.00037810.

de Bentzmann, S., Plotkowski, C. and Puchelle, E. (1996) ‘Receptors in the Pseudomonas aeruginosa adherence to injured and repairing airway epithelium.’, American journal of respiratory and critical care medicine, 154(4 Pt 2), pp. S155-62. doi: 10.1164/ajrccm/154.4_Pt_2.S155.

Bernhard, W. (2016) ‘Lung surfactant: Function and composition in the context of development and respiratory physiology’, Annals of Anatomy - Anatomischer Anzeiger, 208, pp. 146–150. doi: 10.1016/j.aanat.2016.08.003.

Beyer, M., Bartz, H., Hörner, K., Doths, S., Koerner-Rettberg, C. and Schwarze, J. (2004) ‘Sustained increases in numbers of pulmonary dendritic cells after respiratory syncytial virus infection.’, The Journal of allergy and clinical immunology, 113(1), pp. 127–33. doi: 10.1016/j.jaci.2003.10.057.

Bhattacharyya, P., Nag, S., Bardhan, S., Acharya, D., Paul, R., Dey, R., Ghosh, M., Dey, R. and Saha, I. (2009) ‘The role of long-term doxycycline in patients of idiopathic pulmonaryfibrosis: The results of an open prospective trial.’, Lung India : official organ of Indian Chest Society. Wolters Kluwer -- Medknow Publications, 26(3), pp. 81–5. doi: 10.4103/0970-2113.53231.

Bhattacharyya, S., Balakathiresan, N. S., Dalgard, C., Gutti, U., Armistead, D., Jozwik, C., Srivastava, M., Pollard, H. B. and Biswas, R. (2011) ‘Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8’, J Biol Chem, 286(13), pp. 11604–11615. doi: 10.1074/jbc.M110.198390.

Bhattacharyya, S., Wang, W., Morales-Nebreda, L., Feng, G., Wu, M., Zhou, X., Lafyatis, R., Lee, J., Hinchcliff, M., Feghali-Bostwick, C., Lakota, K., Budinger, G. R., Raparia, K., Tamaki, Z. and Varga, J. (2016) ‘Tenascin-C drives persistence of organ fibrosis’, Nat Commun, 7, p. 11703. doi: 10.1038/ncomms11703.

Bice, D. E. and Weissman, D. N. (1991) ‘Long-term maintenance of localized antibody responses in the lung’, Immunology, 74, pp. 215–222. Available at:

133

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1384595/pdf/immunology00113-0043.pdf (Accessed: 10 November 2017).

Birkedal-Hansen, H. (1987) ‘Catabolism and turnover of collagens: collagenases.’, Methods in enzymology, 144, pp. 140–71. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3041177 (Accessed: 17 August 2017).

Birkelbach, B., Lutz, D., Ruppert, C., Henneke, I., Lopez-Rodriguez, E., Günther, A., Ochs, M., Mahavadi, P. and Knudsen, L. (2015) ‘Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model’, American Journal of Physiology - Lung Cellular and Molecular Physiology, 309(1), pp. L63–L75. doi: 10.1152/ajplung.00279.2014.

BIS Research (2016) Global Carbon Nanotube Market - Analysis &amp; Forecast, 2016 - 2022 (Focus on CNT Type, End User Application &amp; Region), BIS Research. Available at: https://bisresearch.com/industry-report/carbon-nano-tube-cnt-market-report-forecast.html (Accessed: 31 July 2017).

Bjermer, L., Lundgren, R. and Hällgren, R. (1989) ‘Hyaluronan and type III procollagen peptide concentrations in bronchoalveolar lavage fluid in idiopathic pulmonary fibrosis.’, Thorax, 44(2), pp. 126–31. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2928996 (Accessed: 12 September 2017).

Black, K. E., Collins, S. L., Hagan, R. S., Hamblin, M. J., Chan-Li, Y., Hallowell, R. W., Powell, J. D. and Horton, M. R. (2013) ‘Hyaluronan fragments induce IFNβ via a novel TLR4-TRIF-TBK1-IRF3-dependent pathway’, J Inflamm (Lond), 10(1), p. 23. doi: 10.1186/1476-9255-10-23.

Black, P. N., Ching, P. S. T., Beaumont, B., Ranasinghe, S., Taylor, G. and Merrilees, M. J. (2008) ‘Changes in elastic fibres in the small airways and alveoli in COPD.’, The European respiratory journal. European Respiratory Society, 31(5), pp. 998–1004. doi: 10.1183/09031936.00017207.

Blakney, A. K., Swartzlander, M. D. and Bryant, S. J. (2012) ‘The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels’, J Biomed Mater Res A. NIH Public Access, 100(6), pp. 1375–1386. doi: 10.1002/jbm.a.34104.

Bland, R. D., Mokres, L. M., Ertsey, R., Jacobson, B. E., Jiang, S., Rabinovitch, M., Xu, L., Shinwell, E. S., Zhang, F. and Beasley, M. A. (2007) ‘Mechanical ventilation with 40% oxygen reduces pulmonary expression of genes that regulate lung development and impairs alveolar septation in newborn mice’, American Journal of Physiology - Lung Cellular and Molecular Physiology, 293(5). Available at: http://ajplung.physiology.org/content/293/5/L1099?ijkey=01b4546be4a60ab75a174506aaaf45ebeaf90198&keytype2=tf_ipsecsha (Accessed: 14 August 2017).

Blasco-Baque, V., Coupé, B., Fabre, A., Handgraaf, S., Gourdy, P., Arnal, J.-F., Courtney, M., Schuster-Klein, C., Guardiola, B., Tercé, F., Burcelin, R. and Serino, M. (2017) ‘Associations between hepatic miRNA expression, liver triacylglycerols and gut microbiota during metabolic adaptation to high-fat diet in mice’, Diabetologia, 60(4), pp. 690–700. doi: 10.1007/s00125-017-4209-3.

Bonnans, C., Chou, J. and Werb, Z. (2014) ‘Remodelling the extracellular matrix in development and disease.’, Nature reviews. Molecular cell biology. NIH Public Access, 15(12), pp. 786–801. doi: 10.1038/nrm3904.

Boorsma, C. E., Draijer, C. and Melgert, B. N. (2013) ‘Macrophage heterogeneity in respiratory diseases.’, Mediators of inflammation. Hindawi, 2013, p. 769214. doi: 10.1155/2013/769214.

Boskovic, J., Arnold, J. N., Stilion, R., Gordon, S., Sim, R. B., Rivera-Calzada, A., Wienke, D., Isacke, C. M., Martinez-Pomares, L. and Llorca, O. (2006) ‘Structural model for the mannose receptor family uncovered by electron microscopy of Endo180 and the mannose receptor.’, The Journal of biological chemistry. American Society for Biochemistry and Molecular Biology, 281(13), pp. 8780–7. doi: 10.1074/jbc.M513277200.

Botas, C., Poulain, F., Akiyama, J., Brown, C., Allen, L., Goerke, J., Clements, J., Carlson, E., Gillespie, A. M., Epstein, C. and Hawgood, S. (1998) ‘Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D.’, Proceedings of the National Academy

134

of Sciences of the United States of America, 95(20), pp. 11869–74. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9751757 (Accessed: 4 September 2017).

Bourguignon, L. Y. W. (2016) ‘Matrix Hyaluronan Promotes Specific MicroRNA Upregulation Leading to Drug Resistance and Tumor Progression.’, International journal of molecular sciences. Multidisciplinary Digital Publishing Institute (MDPI), 17(4), p. 517. doi: 10.3390/ijms17040517.

Bourguignon, L. Y. W., Wong, G., Earle, C. and Chen, L. (2012) ‘Hyaluronan-CD44v3 Interaction with Oct4-Sox2-Nanog Promotes miR-302 Expression Leading to Self-renewal, Clonal Formation, and Cisplatin Resistance in Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma’, Journal of Biological Chemistry, 287(39), pp. 32800–32824. doi: 10.1074/jbc.M111.308528.

Bourguignon, L. Y. W., Wong, G., Earle, C., Krueger, K. and Spevak, C. C. (2010) ‘Hyaluronan-CD44 interaction promotes c-Src-mediated twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to Rho-kinase-associated cytoskeleton activation and breast tumor cell invasion.’, The Journal of biological chemistry. American Society for Biochemistry and Molecular Biology, 285(47), pp. 36721–35. doi: 10.1074/jbc.M110.162305.

Bouvier, N. M. and Lowen, A. C. (2010) ‘Animal Models for Influenza Virus Pathogenesis and Transmission.’, Viruses. Multidisciplinary Digital Publishing Institute (MDPI), 2(8), pp. 1530–1563. doi: 10.3390/v20801530.

Bradley, L. M., Douglass, M. F., Chatterjee, D., Akira, S. and Baaten, B. J. G. (2012) ‘Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling’, PLoS Pathogens, 8(4). doi: 10.1371/journal.ppat.1002641.

de Bree, G. J., van Leeuwen, E. M. M., Out, T. A., Jansen, H. M., Jonkers, R. E. and van Lier, R. A. W. (2005) ‘Selective accumulation of differentiated CD8+ T cells specific for respiratory viruses in the human lung.’, The Journal of experimental medicine. Rockefeller University Press, 202(10), pp. 1433–42. doi: 10.1084/jem.20051365.

Brennan, E. P., Nolan, K. A., Börgeson, E., Gough, O. S., McEvoy, C. M., Docherty, N. G., Higgins, D. F., Murphy, M., Sadlier, D. M., Ali-Shah, S. T., Guiry, P. J., Savage, D. A., Maxwell, A. P., Martin, F., Godson, C. and Consortium, G. (2013) ‘Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFβR1’, J Am Soc Nephrol, 24(4), pp. 627–637. doi: 10.1681/ASN.2012060550.

Brown, D. M. M., Kinloch, I. A. A., Bangert, U., Windle, A. H. H., Walter, D. M. M., Walker, G. S. S., Scotchford, C. A. A., Donaldson, K. and Stone, V. (2007) ‘An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis’, Carbon. Pergamon, 45(9), pp. 1743–1756. doi: 10.1016/j.carbon.2007.05.011.

Brueckner, B., Stresemann, C., Kuner, R., Mund, C., Musch, T., Meister, M., Sültmann, H. and Lyko, F. (2007) ‘The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function’, Cancer Res, 67(4), pp. 1419–1423. doi: 10.1158/0008-5472.CAN-06-4074.

Brundage, J. F. (2006) ‘Interactions between influenza and bacterial respiratory pathogens: implications for pandemic preparedness.’, The Lancet. Infectious diseases, 6(5), pp. 303–12. doi: 10.1016/S1473-3099(06)70466-2.

Bühling, F., Röcken, C., Brasch, F., Hartig, R., Yasuda, Y., Saftig, P., Brömme, D. and Welte, T. (2004) ‘Pivotal role of cathepsin K in lung fibrosis.’, The American journal of pathology. American Society for Investigative Pathology, 164(6), pp. 2203–16. doi: 10.1016/S0002-9440(10)63777-7.

Burgess, J. K., Mauad, T., Tjin, G., Karlsson, J. C. and Westergren-Thorsson, G. (2016) ‘The extracellular matrix – the under-recognized element in lung disease?’, Journal of Pathology. John Wiley & Sons, Ltd, pp. 397–409. doi: 10.1002/path.4808.

Burgess, J. K. and Weckmann, M. (2012) ‘Matrikines and the lungs’, Pharmacology and Therapeutics, pp. 317–337. doi: 10.1016/j.pharmthera.2012.02.002.

Burri, P. H. (2006) ‘Structural aspects of postnatal lung development - alveolar formation and growth.’, Biology of the neonate. Karger Publishers, 89(4), pp. 313–22. doi: 10.1159/000092868.

Byron, A., Humphries, J. D. and Humphries, M. J. (2013) ‘Defining the extracellular matrix using proteomics’, Int J Exp Pathol, 94(2), pp. 75–92. doi: 10.1111/iep.12011.

135

Cai, Y., Sugimoto, C., Arainga, M., Alvarez, X., Didier, E. S. and Kuroda, M. J. (2014) ‘In vivo characterization of alveolar and interstitial lung macrophages in rhesus macaques: implications for understanding lung disease in humans.’, Journal of immunology (Baltimore, Md. : 1950). NIH Public Access, 192(6), pp. 2821–9. doi: 10.4049/jimmunol.1302269.

Cairns, S., Thomas, J. G., Hooper, S. J., Wise, M. P., Frost, P. J., Wilson, M. J., Lewis, M. A. O. and Williams, D. W. (2011) ‘Molecular Analysis of Microbial Communities in Endotracheal Tube Biofilms’, PLoS ONE. Edited by N. Ahmed. Public Library of Science, 6(3), p. e14759. doi: 10.1371/journal.pone.0014759.

Cantor, J. O., Cerreta, J. M., Armand, G. and Turino, G. M. (1998) ‘Aerosolized Hyaluronic Acid Decreases Alveolar Injury Induced by Human Neutrophil Elastase’, Experimental Biology and Medicine. SAGE PublicationsSage UK: London, England, 217(4), pp. 471–475. doi: 10.3181/00379727-217-44260.

Cantor, J. O. and Turino, G. M. (2004) ‘Can Exogenously Administered Hyaluronan Improve Respiratory Function in Patients With Pulmonary Emphysema?’, Chest, 125(1), pp. 288–292. doi: 10.1378/chest.125.1.288.

Carey, W. A., Taylor, G. D., Dean, W. B. and Bristow, J. D. (2010) ‘Tenascin-C deficiency attenuates TGF-β-mediated fibrosis following murine lung injury’, American Journal of Physiology - Lung Cellular and Molecular Physiology, 299(6). Available at: http://ajplung.physiology.org/content/299/6/L785.short (Accessed: 14 August 2017).

Cesta, M. F., Ryman-Rasmussen, J. P., Wallace, D. G., Masinde, T., Hurlburt, G., Taylor, A. J. and Bonner, J. C. (2010) ‘Bacterial lipopolysaccharide enhances PDGF signaling and pulmonary fibrosis in rats exposed to carbon nanotubes’, Am J Respir Cell Mol Biol, 43(2), pp. 142–151. doi: 10.1165/rcmb.2009-0113OC.

Chapman, H. A., Reilly, J. J. and Kobzik, L. (1988) ‘Role of Plasminogen Activator in Degradation of Extracellular Matrix Protein by Live Human Alveolar Macrophages’, American Review of Respiratory Disease, 137(2), pp. 412–419. doi: 10.1164/ajrccm/137.2.412.

Chatterjee, S., Fasler, M., Büssing, I. and Großhans, H. (2011) ‘Target-Mediated Protection of Endogenous MicroRNAs in C. elegans’, Developmental Cell, 20(3), pp. 388–396. doi: 10.1016/j.devcel.2011.02.008.

Chautard, E., Ballut, L., Thierry-Mieg, N. and Ricard-Blum, S. (2009) ‘MatrixDB, a database focused on extracellular protein-protein and protein-carbohydrate interactions’, Bioinformatics, 25(5), pp. 690–691. doi: 10.1093/bioinformatics/btp025.

Chen, J., Cui, G., Lu, C., Ding, Y., Gao, H., Zhu, Y., Wei, Y., Wang, L., Uede, T., Li, L. and Diao, H. (2016) ‘Severe Infection With Avian Influenza A Virus is Associated With Delayed Immune Recovery in Survivors’, Medicine (Baltimore), 95, p. e2606. doi: 10.1097/md.0000000000002606.

Chen, J., Zeng, B., Li, W., Zhou, C., Fan, S., Cheng, K., Zeng, L., Zheng, P., Fang, L., Wei, H. and Xie, P. (2017) ‘Effects of gut microbiota on the microRNA and mRNA expression in the hippocampus of mice’, Behavioural Brain Research, 322(Pt A), pp. 34–41. doi: 10.1016/j.bbr.2017.01.021.

Cheng, C., Müller, K. H., Koziol, K. K. K., Skepper, J. N., Midgley, P. A., Welland, M. E. and Porter, A. E. (2009) ‘Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells’, Biomaterials, 30(25), pp. 4152–4160. doi: 10.1016/j.biomaterials.2009.04.019.

Cheng, G., Sun, S., Wang, Z. and Jin, S. (2012) ‘Investigation of the interaction between the MIR-503 and CD40 genes in irradiated U937 cells’, Radiation Oncology (London, England). BioMed Central, 7, p. 38. doi: 10.1186/1748-717X-7-38.

Choi, H.-R., Nam, K.-M., Lee, H.-S., Yang, S.-H., Kim, Y.-S., Lee, J., Date, A., Toyama, K. and Park, K.-C. (2016) ‘Phlorizin, an Active Ingredient of Eleutherococcus senticosus , Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen’, Oxidative Medicine and Cellular Longevity, 2016, pp. 1–8. doi: 10.1155/2016/3859721.

Christmann, R. B., Wooten, A., Sampaio-Barros, P., Borges, C. L., Carvalho, C. R. R., Kairalla, R. A., Feghali-Bostwick, C., Ziemek, J., Mei, Y., Goummih, S., Tan, J., Alvarez, D., Kass, D. J., Rojas, M., de Mattos, T. L., Parra, E., Stifano, G., Capelozzi, V. L., Simms, R. W. and Lafyatis, R. (2016) ‘miR-155 in the progression of lung fibrosis in systemic sclerosis’, Arthritis Research & Therapy,

136

18(1), p. 155. doi: 10.1186/s13075-016-1054-6.

Cisalpino, D., Fagundes, C. T., Brito, C. B., Ascenção, F. R., Queiroz-Junior, C. M., Vieira, A. T., Sousa, L. P., Amaral, F. A., Vieira, L. Q., Nicoli, J. R., Teixeira, M. M. and Souza, D. G. (2017) ‘Microbiota-Induced Antibodies Are Essential for Host Inflammatory Responsiveness to Sterile and Infectious Stimuli’, The Journal of Immunology, 198(10), pp. 4096–4106. doi: 10.4049/jimmunol.1600852.

Clark, R. A. F., An, J.-Q., Greiling, D., Khan, A. and Schwarzbauer, J. E. (2003) ‘Fibroblast Migration on Fibronectin Requires Three Distinct Functional Domains’, Journal of Investigative Dermatology, 121(4), pp. 695–705. doi: 10.1046/j.1523-1747.2003.12484.x.

Collum, S. D., Chen, N.-Y., Hernandez, A. M., Hanmandlu, A., Sweeney, H., Mertens, T. C. J., Weng, T., Luo, F., Molina, J. G., Davies, J., Horan, I. P., Morrell, N. W., Amione-Guerra, J., Al-Jabbari, O., Youker, K., Sun, W., Rajadas, J., Bollyky, P. L., Akkanti, B. H., Jyothula, S., Sinha, N., Guha, A. and Karmouty-Quintana, H. (2017) ‘Inhibition of hyaluronan synthesis attenuates pulmonary hypertension associated with lung fibrosis’, British Journal of Pharmacology. doi: 10.1111/bph.13947.

Craig, A. P., Rodger, D., Ian, K., Andrew, M., William, A. H. W., Anthony, S., Vicki, S., Simon, B., William, M. and Ken, D. (2008) ‘Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study’, Nature nanotechnology. Nature Publishing Group, 3(7), pp. 423–428. doi: 10.1038/nnano.2008.111.

Csak, T., Bala, S., Lippai, D., Kodys, K., Catalano, D., Iracheta-Vellve, A. and Szabo, G. (2015) ‘MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis’, PLoS One, 10(6), p. e0129251. doi: 10.1371/journal.pone.0129251.

Cui, D., Tian, F., Ozkan, C. S., Wang, M. and Gao, H. (2005) ‘Effect of single wall carbon nanotubes on human HEK293 cells’, Toxicology Letters. Elsevier, 155(1), pp. 73–85. doi: 10.1016/j.toxlet.2004.08.015.

Culty, M., O’Mara, T. E., Underhill, C. B., Yeager, H. and Swartz, R. P. (1994) ‘Hyaluronan receptor (CD44) expression and function in human peripheral blood monocytes and alveolar macrophages’, J Leukoc Biol. Society for Leukocyte Biology, 56(5), pp. 605–611. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7525818 (Accessed: 25 August 2017).

Dahm, M. M., Evans, D. E., Schubauerberigan, M. K., Birch, M. E. and Fernback, J. E. (2012) ‘Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers’, in Annals of Occupational Hygiene. NIH Public Access, pp. 542–556. doi: 10.1093/annhyg/mer110.

Dalmasso, G., Nguyen, H. T. T., Yan, Y., Laroui, H., Charania, M. A., Ayyadurai, S., Sitaraman, S. V. and Merlin, D. (2011) ‘Microbiota Modulate Host Gene Expression via MicroRNAs’, PLoS ONE. Edited by F. R. DeLeo, 6(4), p. e19293. doi: 10.1371/journal.pone.0019293.

Danen, E. (2013) Integrins: An Overview of Structural and Functional Aspects, Madame Curie Bioscience Database [Internet]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK6259/ (Accessed: 15 September 2017).

Davis, G. E., Bayless, K. J., Davis, M. J. and Meininger, G. A. (2000) ‘Regulation of Tissue Injury Responses by the Exposure of Matricryptic Sites within Extracellular Matrix Molecules’, The American Journal of Pathology, 156(5), pp. 1489–1498. doi: 10.1016/S0002-9440(10)65020-1.

Decaris, M. L., Gatmaitan, M., FlorCruz, S., Luo, F., Li, K., Holmes, W. E., Hellerstein, M. K., Turner, S. M. and Emson, C. L. (2014) ‘Proteomic Analysis of Altered Extracellular Matrix Turnover in Bleomycin-induced Pulmonary Fibrosis’, Molecular & Cellular Proteomics, 13(7), pp. 1741–1752. doi: 10.1074/mcp.M113.037267.

Deed, R., Rooney, P., Kumar, P., Norton, J. D., Smith, J., Freemont, A. J. and Kumar, S. (1997) ‘Early-response gene signalling is induced by angiogenic oligosaccharides of hyaluronan in endothelial cells. Inhibition by non-angiogenic, high-molecular-weight hyaluronan.’, International journal of cancer, 71(2), pp. 251–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9139851 (Accessed: 11 September 2017).

137

Deep, G., Kumar, R., Jain, A. K., Agarwal, C. and Agarwal, R. (2014) ‘Silibinin inhibits fibronectin induced motility, invasiveness and survival in human prostate carcinoma PC3 cells via targeting integrin signaling.’, Mutation research. NIH Public Access, 768, pp. 35–46. doi: 10.1016/j.mrfmmm.2014.05.002.

Delmage, J. M., Powars, D. R., Jaynes, P. K. and Allerton, S. E. (1986) ‘The selective suppression of immunogenicity by hyaluronic acid’, Ann Clin Lab Sci, 16(4), pp. 303–310. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2427004.

Demirjian, A. and Levy, O. (2009) ‘Safety and efficacy of neonatal vaccination.’, European journal of immunology. NIH Public Access, 39(1), pp. 36–46. doi: 10.1002/eji.200838620.

Derrick, T., Roberts, C., Rajasekhar, M., Burr, S. E., Joof, H., Makalo, P., Bailey, R. L., Mabey, D. C., Burton, M. J. and Holland, M. J. (2013) ‘Conjunctival MicroRNA expression in inflammatory trachomatous scarring’, PLoS Negl Trop Dis, 7(3), p. e2117. doi: 10.1371/journal.pntd.0002117.

Dickson, R. P. and Cox, M. J. (2017) ‘Gut microbiota and protection from pneumococcal pneumonia’, Gut, 66(2), p. 384.3-384. doi: 10.1136/gutjnl-2016-311823.

Dickson, R. P., Erb-Downward, J. R., Martinez, F. J. and Huffnagle, G. B. (2016) ‘The Microbiome and the Respiratory Tract.’, Annual review of physiology. NIH Public Access, 78, pp. 481–504. doi: 10.1146/annurev-physiol-021115-105238.

Didierlaurent, A., Goulding, J., Patel, S., Snelgrove, R., Low, L., Bebien, M., Lawrence, T., van Rijt, L. S., Lambrecht, B. N., Sirard, J.-C. and Hussell, T. (2008) ‘Sustained desensitization to bacterial Toll-like receptor ligands after resolutionof respiratory influenza infection’, Journal of Experimental Medicine, 205(2). Available at: http://jem.rupress.org/content/205/2/323?ijkey=0d9f46b915afe9e57c02977a23e1f5600b6f0c7c&keytype2=tf_ipsecsha (Accessed: 11 September 2017).

Dolowy, W. C. and Muldoon, R. L. (1964) ‘Studies of Germfree Animals. I. Response of Mice to Infection with Influenza a Virus’, Proc Soc Exp Biol Med, 116, pp. 365–371. doi: 10.3181/00379727-116-29249.

Dong, C., Sun, X., Guan, Z., Zhang, M. and Duan, M. (2017) ‘Modulation of influenza A virus replication by microRNA-9 through targeting MCPIP1’, Journal of Medical Virology, 89(1), pp. 41–48. doi: 10.1002/jmv.24604.

Dong, J. and Ma, Q. (2016) ‘Myofibroblasts and lung fibrosis induced by carbon nanotube exposure’, Particle and Fibre Toxicology, 13(1), p. 60. doi: 10.1186/s12989-016-0172-2.

Dong, J. and Ma, Q. (2017) ‘TIMP1 promotes multi-walled carbon nanotube-induced lung fibrosis by stimulating fibroblast activation and proliferation’, Nanotoxicology, 11(1), pp. 41–51. doi: 10.1080/17435390.2016.1262919.

Dong, J., Porter, D. W., Batteli, L. A., Wolfarth, M. G., Richardson, D. L. and Ma, Q. (2015) ‘Pathologic and molecular profiling of rapid-onset fibrosis and inflammation induced by multi-walled carbon nanotubes’, Archives of Toxicology. Springer Berlin Heidelberg, 89(4), pp. 621–633. doi: 10.1007/s00204-014-1428-y.

Dong, Y., Arif, A., Olsson, M., Cali, V., Hardman, B., Dosanjh, M., Lauer, M., Midura, R. J., Hascall, V. C., Brown, K. L., Johnson, P., Arif , A., Olsson, M., Cali, V., Hardman, B., Dosanjh, M., Lauer, M., Midura, R. J., Hascall, V. C., Brown, K. L. and Johnson, P. (2016) ‘Endotoxin free hyaluronan and hyaluronan fragments do not stimulate TNF-α, interleukin-12 or upregulate co-stimulatory molecules in dendritic cells or macrophages’, Scientific Reports, 6(1), p. 36928. doi: 10.1038/srep36928.

Du, J., Chen, X., Liang, X., Zhang, G., Xu, J., He, L., Zhan, Q., Feng, X. Q., Chien, S. and Yang, C. (2011) ‘Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity’, Proc Natl Acad Sci U S A, 108(23), pp. 9466–9471. doi: 10.1073/pnas.1106467108.

Dueck, A., Eichner, A., Sixt, M. and Meister, G. (2014) ‘A miR-155-dependent microRNA hierarchy in dendritic cell maturation and macrophage activation’, FEBS Lett, 588(4), pp. 632–640. doi: 10.1016/j.febslet.2014.01.009.

Dunsmore, S. E., Eugene, D. and Eugene Rannels, D. (1996) ‘Extracellular matrix biology in the

138

lung’, Am. J. Physiol.Lung Cell. Mol. Physiol, 270(14), pp. 3–27. Available at: http://ajplung.physiology.org/content/ajplung/270/1/L3.full.pdf (Accessed: 23 August 2017).

Dymacek, J., Snyder-Talkington, B. N., Porter, D. W., Mercer, R. R., Wolfarth, M. G., Castranova, V., Qian, Y. and Guo, N. L. (2015) ‘mRNA and miRNA regulatory networks reflective of multi-walled carbon nanotube-induced lung inflammatory and fibrotic pathologies in mice’, Toxicol Sci, 144(1), pp. 51–64. doi: 10.1093/toxsci/kfu262.

Edwards, L., Williams, A. E., Krieg, A. M., Rae, A. J., Snelgrove, R. J. and Hussell, T. (2005) ‘Stimulation via Toll-like receptor 9 reduces Cryptococcus neoformans-induced pulmonary inflammation in an IL-12-dependent manner.’, European journal of immunology, 35(1), pp. 273–81. doi: 10.1002/eji.200425640.

Elgrabli, D., Dachraoui, W., Ménard-Moyon, C., Liu, X. J., Bégin, D., Bégin-Colin, S., Bianco, A., Gazeau, F. and Alloyeau, D. (2015) ‘Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway’, ACS Nano, 9(10), pp. 10113–10124. doi: 10.1021/acsnano.5b03708.

Elgrabli, D., Floriani, M., Abella-Gallart, S., Meunier, L., Gamez, C., Delalain, P., Rogerieux, F., Boczkowski, J. and Lacroix, G. (2008) ‘Biodistribution and clearance of instilled carbon nanotubes in rat lung.’, Part. Fibre Toxicol., 5(1), p. 20. doi: 10.1186/1743-8977-5-20.

Engel, J., Odermatt, E., Engel, A., Madri, J. A., Furthmayr, H., Rohde, H. and Timpl, R. (1981) ‘Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix’, Journal of Molecular Biology, 150(1), pp. 97–120. doi: 10.1016/0022-2836(81)90326-0.

Engelholm, L. H., List, K., Netzel-Arnett, S., Cukierman, E., Mitola, D. J., Aaronson, H., Kjøller, L., Larsen, J. K., Yamada, K. M., Strickland, D. K., Holmbeck, K., Danø, K., Birkedal-Hansen, H., Behrendt, N. and Bugge, T. H. (2003) ‘uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion.’, The Journal of cell biology. The Rockefeller University Press, 160(7), pp. 1009–15. doi: 10.1083/jcb.200211091.

Eom, H.-J., Jeong, J.-S. and Choi, J. (2015) ‘Effect of aspect ratio on the uptake and toxicity of hydroxylated-multi walled carbon nanotubes in the nematode, &lt;i&gt;Caenorhabditis elegans&lt;/i&gt’;, Environmental Health and Toxicology, 30, p. e2015001. doi: 10.5620/eht.e2015001.

Erb-Downward, J. R., Thompson, D. L., Han, M. K., Freeman, C. M., McCloskey, L., Schmidt, L. A., Young, V. B., Toews, G. B., Curtis, J. L., Sundaram, B., Martinez, F. J. and Huffnagle, G. B. (2011) ‘Analysis of the Lung Microbiome in the “Healthy” Smoker and in COPD’, PLoS ONE. Edited by S. Bereswill. Public Library of Science, 6(2), p. e16384. doi: 10.1371/journal.pone.0016384.

Erdely, A., Dahm, M., Chen, B. T., Zeidler-Erdely, P. C., Fernback, J. E., Birch, M. E., Evans, D. E., Kashon, M. L., Deddens, J. A., Hulderman, T., Bilgesu, S. A., Battelli, L., Schwegler-Berry, D., Leonard, H. D., McKinney, W., Frazer, D. G., Antonini, J. M., Porter, D. W., Castranova, V. and Schubauer-Berigan, M. K. (2013) ‘Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology.’, Particle and fibre toxicology, 10(1), p. 53. doi: 10.1186/1743-8977-10-53.

Erickson, H. P. and Carrell, N. A. (1983) ‘Fibronectin in extended and compact conformations. Electron microscopy and sedimentation analysis’, Journal of Biological Chemistry, 258(23), pp. 14539–14544.

Ernst, G., Lompardía, S., Cordo Russo, R., Gentilini, V., Venturiello, S., Galíndez, F., Grynblat, P. and Hajos, S. E. (2012) ‘Corticosteroid administration reduces the concentration of hyaluronan in bronchoalveolar lavage in a murine model of eosinophilic airway inflammation’, Inflammation Research. SP Birkhäuser Verlag Basel, 61(12), pp. 1309–1317. doi: 10.1007/s00011-012-0530-y.

Estany, S., Vicens-Zygmunt, V., Llatjós, R., Montes, A., Penín, R., Escobar, I., Xaubet, A., Santos, S., Manresa, F., Dorca, J. and Molina-Molina, M. (2014) ‘Lung fibrotic tenascin-C upregulation is associated with other extracellular matrix proteins and induced by TGFβ1’, BMC Pulm Med, 14, p. 120. doi: 10.1186/1471-2466-14-120.

Exposito, J.-Y., Valcourt, U., Cluzel, C. and Lethias, C. (2010) ‘The fibrillar collagen family.’, International journal of molecular sciences. Multidisciplinary Digital Publishing Institute (MDPI),

139

11(2), pp. 407–26. doi: 10.3390/ijms11020407.

Fagundes, C. T., Amaral, F. A., Vieira, A. T., Soares, A. C., Pinho, V., Nicoli, J. R., Vieira, L. Q., Teixeira, M. M. and Souza, D. G. (2012) ‘Transient TLR Activation Restores Inflammatory Response and Ability To Control Pulmonary Bacterial Infection in Germfree Mice’, The Journal of Immunology, 188(3), pp. 1411–1420. doi: 10.4049/jimmunol.1101682.

Fahy, J. V and Dickey, B. F. (2010) ‘Airway mucus function and dysfunction.’, The New England journal of medicine. NIH Public Access, 363(23), pp. 2233–47. doi: 10.1056/NEJMra0910061.

Fenoglio, I., Aldieri, E., Gazzano, E., Cesano, F., Colonna, M., Scarano, D., Mazzucco, G., Attanasio, A., Yakoub, Y., Lison, D. and Fubini, B. (2012) ‘Thickness of multiwalled carbon nanotubes affects their lung toxicity’, Chemical Research in Toxicology. American Chemical Society, 25(1), pp. 74–82. doi: 10.1021/tx200255h.

Ferreira, C. M., Vieira, A. T., Vinolo, M. A. R., Oliveira, F. A., Curi, R. and Martins, F. dos S. (2014) ‘The Central Role of the Gut Microbiota in Chronic Inflammatory Diseases’, Journal of Immunology Research, 2014, pp. 1–12. doi: 10.1155/2014/689492.

Flynt, A. S. and Lai, E. C. (2008) ‘Biological principles of microRNA-mediated regulation: shared themes amid diversity’, Nat Rev Genet, 9(11), pp. 831–842. doi: 10.1038/nrg2455.

Foster, M. H. (2017) ‘Basement membranes and autoimmune diseases’, Matrix Biology. Elsevier, 57–58, pp. 149–168. doi: 10.1016/j.matbio.2016.07.008.

Frank, E. A., Birch, M. E. and Yadav, J. S. (2015) ‘MyD88 mediates in vivo effector functions of alveolar macrophages in acute lung inflammatory responses to carbon nanotube exposure’, Toxicology and Applied Pharmacology, 288(3), pp. 322–329. doi: 10.1016/j.taap.2015.08.004.

Fujita, M., Ye, Q., Ouchi, H., Harada, E., Inoshima, I., Kuwano, K. and Nakanishi, Y. (2006) ‘Doxycycline attenuated pulmonary fibrosis induced by bleomycin in mice.’, Antimicrobial agents and chemotherapy. American Society for Microbiology (ASM), 50(2), pp. 739–43. doi: 10.1128/AAC.50.2.739-743.2006.

Fukunaga, S., Kakehashi, A., Sumida, K., Kushida, M., Asano, H., Gi, M. and Wanibuchi, H. (2015) ‘Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model’, Toxicology and Applied Pharmacology, 286(3), pp. 188–197. doi: 10.1016/j.taap.2015.04.014.

Furuyama, a and Mochitate, K. (2000) ‘Assembly of the exogenous extracellular matrix during basement membrane formation by alveolar epithelial cells in vitro.’, Journal of cell science, 113 ( Pt 5, pp. 859–868.

Gabehart, K., Correll, K. A., Loader, J. E., White, C. W. and Dakhama, A. (2015) ‘The lung response to ozone is determined by age and is partially dependent on toll-Like receptor 4’, Respiratory Research. BioMed Central, 16(117), pp. 1–13. doi: 10.1186/s12931-015-0279-2.

Gallacher, D. J. and Kotecha, S. (2016) ‘Respiratory Microbiome of New-Born Infants.’, Frontiers in pediatrics. Frontiers Media SA, 4, p. 10. doi: 10.3389/fped.2016.00010.

Gane, J. and Stockley, R. (2012) ‘Mechanisms of neutrophil transmigration across the vascular endothelium in COPD’, Thorax, 67(6), pp. 553–561. doi: 10.1136/thoraxjnl-2011-200088.

Gantier, M. P., McCoy, C. E., Rusinova, I., Saulep, D., Wang, D., Xu, D., Irving, A. T., Behlke, M. A., Hertzog, P. J., Mackay, F. and Williams, B. R. G. (2011) ‘Analysis of microRNA turnover in mammalian cells following Dicer1 ablation’, Nucleic Acids Research, 39(13), pp. 5692–5703. doi: 10.1093/nar/gkr148.

Gao, F., Koenitzer, J. R., Tobolewski, J. M., Jiang, D., Liang, J., Noble, P. W. and Oury, T. D. (2008) ‘Extracellular Superoxide Dismutase Inhibits Inflammation by Preventing Oxidative Fragmentation of Hyaluronan’, Journal of Biological Chemistry, 283(10), pp. 6058–6066. doi: 10.1074/jbc.M709273200.

Garantziotis, S., Li, Z., Potts, E. N., Kimata, K., Zhuo, L., Morgan, D. L., Savani, R. C., Noble, P. W., Foster, W. M., Schwartz, D. A. and Hollingsworth, J. W. (2009) ‘Hyaluronan Mediates Ozone-induced Airway Hyperresponsiveness in Mice’, Journal of Biological Chemistry, 284(17), pp. 11309–11317.

140

doi: 10.1074/jbc.M802400200.

Gardai, S. J., Xiao, Y.-Q., Dickinson, M., Nick, J. A., Voelker, D. R., Greene, K. E. and Henson, P. M. (2003) ‘By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation.’, Cell, 115(1), pp. 13–23. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14531999 (Accessed: 4 September 2017).

Garvy, B. A. and Harmsen, A. G. (1996) ‘Susceptibility to Pneumocystis carinii infection: Host responses of neonatal mice from immune or naive mothers and of immune or naive adults’, Infection and Immunity, 64(10), pp. 3987–3992. Available at: http://iai.asm.org/content/64/10/3987.full.pdf (Accessed: 17 July 2017).

Garvy, B. A. and Qureshi, M. H. (2017) ‘Environment Mice Is Due to an Inadequate Lung Infection in Neonatal Pneumocystis carinii Delayed Inflammatory Response to Delayed Inflammatory Response to Pneumocystis carinii Infection in Neonatal Mice Is Due to an Inadequate Lung Environment’, J Immunol, 165, pp. 6480–6486. doi: 10.4049/jimmunol.165.11.6480.

Gaur, P., Munjhal, A. and Lal, S. K. (2011) ‘Influenza virus and cell signaling pathways.’, Medical science monitor : international medical journal of experimental and clinical research. International Scientific Information, Inc., 17(6), p. RA148-54. doi: 10.12659/MSM.881801.

Ge, C., Meng, L., Xu, L., Bai, R., Du, J., Zhang, L., Li, Y., Chang, Y., Zhao, Y. and Chen, C. (2012) ‘Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes’, Nanotoxicology. Taylor & Francis, 6(5), pp. 526–542. doi: 10.3109/17435390.2011.587905.

Gelse, K., Pöschl, E. and Aigner, T. (2003) ‘Collagens - Structure, function, and biosynthesis’, Advanced Drug Delivery Reviews, pp. 1531–1546. doi: 10.1016/j.addr.2003.08.002.

George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H. and Hynes, R. O. (1993) ‘Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin.’, Development (Cambridge, England), 119(4), pp. 1079–1091. doi: 10.1083/jcb.200107107.

Ghosh, S., Hoselton, S. A., Dorsam, G. P. and Schuh, J. M. (2015) ‘Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease’, Immunobiology, 220(5), pp. 575–588. doi: 10.1016/j.imbio.2014.12.005.

Gibbings, S. L., Thomas, S. M., Atif, S. M., McCubbrey, A. L., Desch, A. N., Danhorn, T., Leach, S. M., Bratton, D. L., Henson, P. M., Janssen, W. J. and Jakubzick, C. V. (2017) ‘Three Unique Interstitial Macrophages in the Murine Lung at Steady State’, American Journal of Respiratory Cell and Molecular Biology, 57(1), pp. 66–76. doi: 10.1165/rcmb.2016-0361OC.

Di Giorgio, M. L., Bucchianico, S. Di, Ragnelli, A. M., Aimola, P., Santucci, S. and Poma, A. (2011) ‘Effects of single and multi walled carbon nanotubes on macrophages: Cyto and genotoxicity and electron microscopy’, Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 722(1), pp. 20–31. doi: 10.1016/j.mrgentox.2011.02.008.

Glasser, S. W., Burhans, M. S., Korfhagen, T. R., Na, C.-L., Sly, P. D., Ross, G. F., Ikegami, M. and Whitsett, J. A. (2001) ‘Altered stability of pulmonary surfactant in SP-C-deficient mice’, Proceedings of the National Academy of Sciences, 98(11), pp. 6366–6371. doi: 10.1073/pnas.101500298.

Glasser, S. W., Hagood, J. S., Wong, S., Taype, C. A., Madala, S. K. and Hardie, W. D. (2016) ‘Mechanisms of Lung Fibrosis Resolution.’, The American journal of pathology. American Society for Investigative Pathology, 186(5), pp. 1066–77. doi: 10.1016/j.ajpath.2016.01.018.

Glasser, S. W., Senft, A. P., Whitsett, J. A., Maxfield, M. D., Ross, G. F., Richardson, T. R., Prows, D. R., Xu, Y. and Korfhagen, T. R. (2008) ‘Macrophage dysfunction and susceptibility to pulmonary Pseudomonas aeruginosa infection in surfactant protein C-deficient mice.’, Journal of immunology (Baltimore, Md. : 1950), 181(1), pp. 621–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18566429 (Accessed: 4 September 2017).

Glentis, A., Gurchenkov, V. and Vignjevic, D. M. (2014) ‘Assembly, heterogeneity, and breaching of the basement membranes’, Cell Adhesion & Migration. Taylor & Francis, 8(3), pp. 236–245. doi: 10.4161/cam.28733.

Gollwitzer, E. S., Saglani, S., Trompette, A., Yadava, K., Sherburn, R., McCoy, K. D., Nicod, L. P.,

141

Lloyd, C. M. and Marsland, B. J. (2014) ‘Lung microbiota promotes tolerance to allergens in neonates via PD-L1’, Nat Med. BMJ Publishing Group, 20(6), pp. 642–647. doi: 10.1038/nm.3568.

Goodison, S., Urquidi, V. and Tarin, D. (1999) ‘CD44 cell adhesion molecules’, Mol Pathol, 52(4), pp. 189–196. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10694938.

Goulding, J., Godlee, A., Vekaria, S., Hilty, M., Snelgrove, R. and Hussell, T. (2011) ‘Lowering the Threshold of Lung Innate Immune Cell Activation Alters Susceptibility to Secondary Bacterial Superinfection’, The Journal of Infectious Diseases. Oxford University Press, 204(7), pp. 1086–1094. doi: 10.1093/infdis/jir467.

Goulding, J., Snelgrove, R., Saldana, J., Didierlaurent, A., Cavanagh, M., Gwyer, E., Wales, J., Wissinger, E. L. and Hussell, T. (2007) ‘Respiratory infections: do we ever recover?’, Proceedings of the American Thoracic Society. American Thoracic Society, 4(8), pp. 618–25. doi: 10.1513/pats.200706-066TH.

Goyal, A., Pal, N., Concannon, M., Paul, M., Doran, M., Poluzzi, C., Sekiguchi, K., Whitelock, J. M., Neill, T. and Iozzo, R. V (2011) ‘Endorepellin, the angiostatic module of perlecan, interacts with both the α2β1 integrin and vascular endothelial growth factor receptor 2 (VEGFR2): a dual receptor antagonism.’, The Journal of biological chemistry. American Society for Biochemistry and Molecular Biology, 286(29), pp. 25947–62. doi: 10.1074/jbc.M111.243626.

Graff, J. W., Dickson, A. M., Clay, G., McCaffrey, A. P. and Wilson, M. E. (2012) ‘Identifying functional microRNAs in macrophages with polarized phenotypes’, J Biol Chem, 287(26), pp. 21816–21825. doi: 10.1074/jbc.M111.327031.

Greco, A., Rizzo, M. I., De Virgilio, A., Gallo, A., Fusconi, M., Pagliuca, G., Martellucci, S., Turchetta, R., Longo, L. and De Vincentiis, M. (2015) ‘Goodpasture’s syndrome: A clinical update’, Autoimmunity Reviews. Elsevier, 14(3), pp. 246–253. doi: 10.1016/j.autrev.2014.11.006.

Gualano, R. C., Hansen, M. J., Vlahos, R., Jones, J. E., Park-Jones, R. A., Deliyannis, G., Turner, S. J., Duca, K. A. and Anderson, G. P. (2008) ‘Cigarette smoke worsens lung inflammation and impairs resolution of influenza infection in mice’, Respiratory Research, 9(1), p. 53. doi: 10.1186/1465-9921-9-53.

Gubler, M. C. (2008) ‘Inherited diseases of the glomerular basement membrane’, Nature Clinical Practice Nephrology, 4(1), pp. 24–37. doi: 10.1038/ncpneph0671.

Günther, A., Schmidt, R., Nix, F., Yabut-Perez, M., Guth, C., Rosseau, S., Siebert, C., Grimminger, F., Morr, H., Velcovsky, H. G. and Seeger, W. (1999) ‘Surfactant abnormalities in idiopathic pulmonary fibrosis, hypersensitivity pneumonitis and sarcoidosis.’, The European respiratory journal, 14(3), pp. 565–73. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10543276 (Accessed: 4 September 2017).

Gupta, S. K., Reinhart, P. G. and Bhalla, D. K. (1998) ‘Enhancement of fibronectin expression in rat lung by ozone and an inflammatory stimulus.’, The American journal of physiology, 275(2 Pt 1), pp. L330-5. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9700094 (Accessed: 11 September 2017).

Habibzay, M., Weiss, G. and Hussell, T. (2013) ‘Bacterial superinfection following lung inflammatory disorders’, Future Microbiology, 8(2), pp. 247–256. doi: 10.2217/fmb.12.143.

Haczku, A. (2008) ‘Protective role of the lung collectins surfactant protein A and surfactant protein D in airway inflammation’, Journal of Allergy and Clinical Immunology, 122(5), pp. 861–879. doi: 10.1016/j.jaci.2008.10.014.

Hadden, H. L. and Henke, C. A. (2000) ‘Induction of Lung Fibroblast Apoptosis by Soluble Fibronectin Peptides’, American Journal of Respiratory and Critical Care Medicine. American Thoracic SocietyNew York, NY, 162(4), pp. 1553–1560. doi: 10.1164/ajrccm.162.4.2001015.

Hamilton, R. F., Buford, M., Xiang, C., Wu, N. and Holian, A. (2012) ‘NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination.’, Inhalation toxicology. Taylor & Francis, 24(14), pp. 995–1008. doi: 10.3109/08958378.2012.745633.

Hamilton, R. F., Wu, Z., Mitra, S., Shaw, P. K. and Holian, A. (2013) ‘Effect of MWCNT size,

142

carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology’, Particle and Fibre Toxicology, 10(1), p. 57. doi: 10.1186/1743-8977-10-57.

Han, J. H., Lee, E. J., Lee, J. H., So, K. P., Lee, Y. H., Bae, G. N., Lee, S.-B., Ji, J. H., Cho, M. H. and Yu, I. J. (2008) ‘Monitoring Multiwalled Carbon Nanotube Exposure in Carbon Nanotube Research Facility’, Inhalation Toxicology. Taylor & Francis, 20(8), pp. 741–749. doi: 10.1080/08958370801942238.

Han, M. K., Zhou, Y., Murray, S., Tayob, N., Noth, I., Lama, V. N., Moore, B. B., White, E. S., Flaherty, K. R., Huffnagle, G. B., Martinez, F. J. and COMET Investigators (2014) ‘Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study’, The Lancet Respiratory Medicine, 2(7), pp. 548–556. doi: 10.1016/S2213-2600(14)70069-4.

Hansen, N. U. B., Genovese, F., Leeming, D. J. and Karsdal, M. A. (2015) ‘The importance of extracellular matrix for cell function and in vivo likeness’, Experimental and Molecular Pathology, 98(2), pp. 286–294. doi: 10.1016/j.yexmp.2015.01.006.

Haq, I., Lowrey, G. E., Kalsheker, N. and Johnson, S. R. (2011) ‘Matrix metalloproteinase-12 (MMP-12) SNP affects MMP activity, lung macrophage infiltration and protects against emphysema in COPD’, Thorax, 66(11), pp. 970–976. doi: 10.1136/thx.2011.159087.

Hardie, W. D., Hagood, J. S., Dave, V., Perl, A.-K. T., Perl, A.-K. T., Whitsett, J. A., Korfhagen, T. R. and Glasser, S. (2010) ‘Signaling pathways in the epithelial origins of pulmonary fibrosis’, Cell Cycle, 9(14), pp. 2841–2848. doi: 10.4161/cc.9.14.12268.

Harkema, J. R. and Hotchkiss, J. A. (1992) ‘In vivo effects of endotoxin on intraepithelial mucosubstances in rat pulmonary airways. Quantitative histochemistry.’, The American journal of pathology. American Society for Investigative Pathology, 141(2), pp. 307–17. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1497089 (Accessed: 18 September 2017).

Hartney, J. M., Brown, J., Chu, H. W., Chang, L. Y., Pelanda, R. and Torres, R. M. (2010) ‘Arhgef1 regulates alpha5beta1 integrin-mediated matrix metalloproteinase expression and is required for homeostatic lung immunity’, Am J Pathol, 176(3), pp. 1157–1168. doi: 10.2353/ajpath.2010.090200.

He, X., Young, S.-H., Schwegler-Berry, D., Chisholm, W. P., Fernback, J. E. and Ma, Q. (2011) ‘Multiwalled Carbon Nanotubes Induce a Fibrogenic Response by Stimulating Reactive Oxygen Species Production, Activating NF-κB Signaling, and Promoting Fibroblast-to-Myofibroblast Transformation’, Chemical Research in Toxicology. American Chemical Society, 24(12), pp. 2237–2248. doi: 10.1021/tx200351d.

Heino, J. (2014) ‘Cellular Signaling by Collagen-Binding Integrins’, in. Springer, Dordrecht, pp. 143–155. doi: 10.1007/978-94-017-9153-3_10.

Hilty, M., Burke, C., Pedro, H., Cardenas, P., Bush, A., Bossley, C., Davies, J., Ervine, A., Poulter, L., Pachter, L., Moffatt, M. F. and Cookson, W. O. C. (2010) ‘Disordered Microbial Communities in Asthmatic Airways’, PLoS ONE. Edited by O. Neyrolles. Public Library of Science, 5(1), p. e8578. doi: 10.1371/journal.pone.0008578.

Hogan, R. J., Zhong, W., Usherwood, E. J., Cookenham, T., Roberts, A. D. and Woodland, D. L. (2001) ‘Protection from respiratory virus infections can be mediated by antigen-specific CD4(+) T cells that persist in the lungs.’, The Journal of experimental medicine. Rockefeller University Press, 193(8), pp. 981–6. doi: 10.1084/JEM.193.8.981.

Hohenester, E. and Yurchenco, P. D. (2013) ‘Laminins in basement membrane assembly’, Cell Adhesion and Migration, pp. 56–63. doi: 10.4161/cam.21831.

Howat, W. J., Holmes, J. A., Holgate, S. T. and Lackie, P. M. (2001) ‘Basement membrane pores in human bronchial epithelium: a conduit for infiltrating cells?’, The American journal of pathology, 158(2), pp. 673–80. doi: 10.1016/S0002-9440(10)64009-6.

Huang, G., Zhang, Y., Kim, B., Ge, G., Annis, D. S., Mosher, D. F. and Greenspan, D. S. (2009) ‘Fibronectin binds and enhances the activity of bone morphogenetic protein 1.’, The Journal of biological chemistry. American Society for Biochemistry and Molecular Biology, 284(38), pp. 25879–88. doi: 10.1074/jbc.M109.024125.

Huang, Y. J., Nelson, C. E., Brodie, E. L., DeSantis, T. Z., Baek, M. S., Liu, J., Woyke, T., Allgaier,

143

M., Bristow, J., Wiener-Kronish, J. P., Sutherland, E. R., King, T. S., Icitovic, N., Martin, R. J., Calhoun, W. J., Castro, M., Denlinger, L. C., Dimango, E., Kraft, M., Peters, S. P., Wasserman, S. I., Wechsler, M. E., Boushey, H. A., Lynch, S. V and National Heart, Lung, and Blood Institute’s Asthma Clinical Research Network (2011) ‘Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma’, Journal of Allergy and Clinical Immunology, 127(2), p. 372–381.e3. doi: 10.1016/j.jaci.2010.10.048.

Huber, H. L. (1922) ‘The Pathology of Bronchial Asthma’, Archives of Internal Medicine. American Medical Association, 30(6), p. 689. doi: 10.1001/archinte.1922.00110120002001.

Huizar, I., Malur, A., Midgette, Y. A., Kukoly, C., Chen, P., Ke, P. C., Podila, R., Rao, A. M., Wingard, C. J., Dobbs, L., Barna, B. P., Kavuru, M. S. and Thomassen, M. J. (2011) ‘Novel murine model of chronic granulomatous lung inflammation elicited by carbon nanotubes’, American Journal of Respiratory Cell and Molecular Biology, 45(4), pp. 858–866. doi: 10.1165/rcmb.2010-0401OC.

Huleihel, L., Ben-Yehudah, A., Milosevic, J., Yu, G., Pandit, K., Sakamoto, K., Yousef, H., LeJeune, M., Coon, T. A., Redinger, C. J., Chensny, L., Manor, E., Schatten, G. and Kaminski, N. (2014) ‘Let-7d microRNA affects mesenchymal phenotypic properties of lung fibroblasts.’, American journal of physiology. Lung cellular and molecular physiology. American Physiological Society, 306(6), pp. L534-42. doi: 10.1152/ajplung.00149.2013.

Humphries, J. D., Byron, A., Bass, M. D., Craig, S. E., Pinney, J. W., Knight, D. and Humphries, M. J. (2009) ‘Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6’, Sci Signal, 2(87), p. ra51. doi: 10.1126/scisignal.2000396.

Humphries, M. J., Yamada, K. M. and Olden, K. (1988) ‘Investigation of the biological effects of anti-cell adhesive synthetic peptides that inhibit experimental metastasis of B16-F10 murine melanoma cells.’, The Journal of clinical investigation. American Society for Clinical Investigation, 81(3), pp. 782–90. doi: 10.1172/JCI113384.

Hussain, S., Ji, Z., Taylor, A. J., Degraff, L. M., George, M., Tucker, C. J., Chang, C. H., Li, R., Bonner, J. C. and Garantziotis, S. (2016) ‘Multiwalled Carbon Nanotube Functionalization with High Molecular Weight Hyaluronan Significantly Reduces Pulmonary Injury’, ACS Nano. American Chemical Society, 10(8), pp. 7675–7688. doi: 10.1021/acsnano.6b03013.

Hussain, S., Sangtian, S., Anderson, S. M., Snyder, R. J., Marshburn, J. D., Rice, A. B., Bonner, J. C. and Garantziotis, S. (2014) ‘Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts.’, Particle and fibre toxicology. BioMed Central, 11, p. 28. doi: 10.1186/1743-8977-11-28.

Hussell, T. and Bell, T. J. (2014) ‘Alveolar macrophages: plasticity in a tissue-specific context’, Nature Reviews Immunology. Nature Research, 14(2), pp. 81–93. doi: 10.1038/nri3600.

Huveneers, S., Truong, H., Fässler, R., Sonnenberg, A. and Danen, E. H. J. (2008) ‘Binding of soluble fibronectin to integrin α5β1 – link to focal adhesion redistribution and contractile shape’, Journal of Cell Science, 121(15). Available at: http://jcs.biologists.org/content/121/15/2452 (Accessed: 10 August 2017).

Hwang, H.-W., Wentzel, E. A. and Mendell, J. T. (2009) ‘Cell-cell contact globally activates microRNA biogenesis.’, Proceedings of the National Academy of Sciences of the United States of America, 106(17), pp. 7016–21. doi: 10.1073/pnas.0811523106.

Hynes, R. O. (1990) Fibronectins. New York, NY: Springer New York (Springer Series in Molecular Biology). doi: 10.1007/978-1-4612-3264-3.

Hynes, R. O. and Naba, A. (2012) ‘Overview of the matrisome--an inventory of extracellular matrix constituents and functions.’, Cold Spring Harbor perspectives in biology. Cold Spring Harbor Laboratory Press, 4(1), p. a004903. doi: 10.1101/cshperspect.a004903.

Hynes, W. L., Walton, S. L., T.R., W., J.R., B., L.W., W., L., F. and D., S. (2000) ‘Hyaluronidases of Gram-positive bacteria’, FEMS Microbiology Letters. Williams and Wilkins, Los Angeles, CA, 183(2), pp. 201–207. doi: 10.1111/j.1574-6968.2000.tb08958.x.

Ichinohe, T., Iwasaki, A. and Hasegawa, H. (2008) ‘Innate sensors of influenza virus: clues to developing better intranasal vaccines.’, Expert review of vaccines. NIH Public Access, 7(9), pp. 1435–45. doi: 10.1586/14760584.7.9.1435.

144

Ichinohe, T., Pang, I. K., Kumamoto, Y., Peaper, D. R., Ho, J. H., Murray, T. S. and Iwasaki, A. (2011) ‘Microbiota regulates immune defense against respiratory tract influenza A virus infection.’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 108(13), pp. 5354–9. doi: 10.1073/pnas.1019378108.

Ikegami, M., Korfhagen, T. R., Bruno, M. D., Whitsett, J. A. and Jobe, A. H. (1997) ‘Surfactant metabolism in surfactant protein A-deficient mice.’, The American journal of physiology, 272(3 Pt 1), pp. L479-85. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9124605 (Accessed: 4 September 2017).

Ingle, H., Kumar, S., Raut, A. A., Mishra, A., Kulkarni, D. D., Kameyama, T., Takaoka, A., Akira, S. and Kumar, H. (2015) ‘The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication’, Science Signaling, 8(406), p. ra126-ra126. doi: 10.1126/scisignal.aab3183.

Inoue, K., Takano, H., Koike, E., Yanagisawa, R., Sakurai, M., Tasaka, S., Ishizaka, A. and Shimada, A. (2008) ‘Effects of pulmonary exposure to carbon nanotubes on lung and systemic inflammation with coagulatory disturbance induced by lipopolysaccharide in mice’, Exp Biol Med (Maywood), 233(12), pp. 1583–1590. doi: 10.3181/0805-RM-179.

Ito, S. and Nagata, K. (2017) ‘Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone.’, Seminars in cell & developmental biology, 62, pp. 142–151. doi: 10.1016/j.semcdb.2016.11.005.

Iwasaki, A. and Pillai, P. S. (2014) ‘Innate immunity to influenza virus infection.’, Nature reviews. Immunology. NIH Public Access, 14(5), pp. 315–28. doi: 10.1038/nri3665.

Izzard, L., Dlugolenski, D., Xia, Y., McMahon, M., Middleton, D., Tripp, R. A. and Stambas, J. (2017) ‘Enhanced immunogenicity following miR-155 incorporation into the influenza A virus genome’, Virus Research, 235, pp. 115–120. doi: 10.1016/j.virusres.2017.04.002.

Izzotti, A., Calin, G. A., Steele, V. E., Croce, C. M. and De Flora, S. (2009) ‘Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light.’, The FASEB journal : official publication of the Federation of American Societies for Experimental Biology. Federation of American Societies for Experimental Biology, 23(9), pp. 3243–3250. doi: 10.1096/fj.09-135251.

Jalkanen, S. and Jalkanen, M. (1992) ‘Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin’, J Cell Biol, 116(3), pp. 817–825. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1730778.

Janssen, W. J., McPhillips, K. A., Dickinson, M. G., Linderman, D. J., Morimoto, K., Xiao, Y. Q., Oldham, K. M., Vandivier, R. W., Henson, P. M. and Gardai, S. J. (2008) ‘Surfactant Proteins A and D Suppress Alveolar Macrophage Phagocytosis via Interaction with SIRPα’, American Journal of Respiratory and Critical Care Medicine, 178(2), pp. 158–167. doi: 10.1164/rccm.200711-1661OC.

Jeang, K.-T. (2012) ‘RNAi in the regulation of mammalian viral infections’, BMC Biology, 10(1), p. 58. doi: 10.1186/1741-7007-10-58.

Jiang, D., Liang, J., Fan, J., Yu, S., Chen, S., Luo, Y., Prestwich, G. D., Mascarenhas, M. M., Garg, H. G., Quinn, D. A., Homer, R. J., Goldstein, D. R., Bucala, R., Lee, P. J., Medzhitov, R. and Noble, P. W. (2005) ‘Regulation of lung injury and repair by Toll-like receptors and hyaluronan’, Nat Med, 11(11), pp. 1173–1179. doi: 10.1038/nm1315.

Jiang, D., Liang, J. and Noble, P. W. (2010) ‘Regulation of Non-Infectious Lung Injury, Inflammation, and Repair by the Extracellular Matrix Glycosaminoglycan Hyaluronan’, The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 293(6), pp. 982–985. doi: 10.1002/ar.21102.

Jiang, D., Liang, J. and Noble, P. W. (2011) ‘Hyaluronan as an immune regulator in human diseases’, Physiol Rev, 91(1), pp. 221–264. doi: 10.1152/physrev.00052.2009.

Jiang, P., Zhou, N., Chen, X., Zhao, X., Li, D., Wang, F., Bi, L. and Zhang, D. (2015) ‘Integrative analysis of differentially expressed microRNAs of pulmonary alveolar macrophages from piglets during H1N1 swine influenza A virus infection.’, Scientific reports. Nature Publishing Group, 5, p. 8167. doi: 10.1038/srep08167.

145

Johansson, S., Svineng, G., Wennerberg, K., Armulik, A. and Lohikangas, L. (1997) ‘Fibronectin-integrin interactions’, Front Biosci, 2, pp. d126-46. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9159220.

Johnson, Z., Proudfoot, A. E. and Handel, T. M. (2005) ‘Interaction of chemokines and glycosaminoglycans: A new twist in the regulation of chemokine function with opportunities for therapeutic intervention’, Cytokine & Growth Factor Reviews, 16(6), pp. 625–636. doi: 10.1016/j.cytogfr.2005.04.006.

Jolly, L., Stavrou, A., Vanderstoken, G., Meliopoulos, V. A., Habgood, A., Tatler, A. L., Porte, J., Knox, A., Weinreb, P., Violette, S., Hussell, T., Kolb, M., Stampflix, M. R., Schultz-Cherry, S. and Jenkins, G. (2014) ‘Influenza promotes collagen deposition via αvβ6 integrin-mediated transforming growth factor β activation’, Journal of Biological Chemistry, 289(51), pp. 35246–35263. doi: 10.1074/jbc.M114.582262.

Jung, H. S., Miller, A., Park, K. and Kittelson, D. B. (2013) ‘Carbon nanotubes among diesel exhaust particles: real samples or contaminants?’, Journal of the Air & Waste Management Association, 63(10), pp. 1199–1204. doi: 10.1080/10962247.2013.812048.

Kagan, V. E., Konduru, N. V., Feng, W., Allen, B. L., Conroy, J., Volkov, Y., Vlasova, I. I., Belikova, N. A., Yanamala, N., Kapralov, A., Tyurina, Y. Y., Shi, J., Kisin, E. R., Murray, A. R., Franks, J., Stolz, D., Gou, P., Klein-Seetharaman, J., Fadeel, B., Star, A. and Shvedova, A. A. (2010) ‘Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation.’, Nature nanotechnology, 5(5), pp. 354–359. doi: 10.1038/nnano.2010.44.

Kallen, A. N., Zhou, X. B., Xu, J., Qiao, C., Ma, J., Yan, L., Lu, L., Liu, C., Yi, J. S., Zhang, H., Min, W., Bennett, A. M., Gregory, R. I., Ding, Y. and Huang, Y. (2013) ‘The imprinted H19 lncRNA antagonizes let-7 microRNAs’, Mol Cell, 52(1), pp. 101–112. doi: 10.1016/j.molcel.2013.08.027.

Kaur, M., Bell, T., Salek-Ardakani, S. and Hussell, T. (2015) ‘Macrophage adaptation in airway inflammatory resolution’, European Respiratory Review, 24(137). Available at: http://err.ersjournals.com/content/24/137/510.long (Accessed: 13 September 2017).

Kefalides, N. A. and Borel, J. P. (2005) ‘Functions of Basement Membranes’, Current Topics in Membranes, pp. 79–111. doi: 10.1016/S1063-5823(05)56004-6.

Keller, A., Nesvizhskii, A. I., Kolker, E. and Aebersold, R. (2002) ‘Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search’, Anal Chem, 74(20), pp. 5383–5392. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12403597.

Kim, S. H., Turnbull, J. and Guimond, S. (2011) ‘Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor’, J Endocrinol, 209(2), pp. 139–151. doi: 10.1530/JOE-10-0377.

Kitamura, T., Qian, B.-Z. and Pollard, J. W. (2015) ‘Immune cell promotion of metastasis.’, Nature reviews. Immunology. NIH Public Access, 15(2), pp. 73–86. doi: 10.1038/nri3789.

Koli, K., Hyytiäinen, M., Ryynänen, M. J. and Keski-Oja, J. (2005) ‘Sequential deposition of latent TGF-β binding proteins (LTBPs) during formation of the extracellular matrix in human lung fibroblasts’, Experimental Cell Research, 310(2), pp. 370–382. doi: 10.1016/j.yexcr.2005.08.008.

Kolosnjaj-Tabi, J., Just, J., Hartman, K. B., Laoudi, Y., Boudjemaa, S., Alloyeau, D., Szwarc, H., Wilson, L. J. and Moussa, F. (2015) ‘Anthropogenic Carbon Nanotubes Found in the Airways of Parisian Children’, EBioMedicine, 2(11), pp. 1697–1704. doi: 10.1016/j.ebiom.2015.10.012.

Korpela, K., Salonen, A., Virta, L. J., Kekkonen, R. A., Forslund, K., Bork, P. and de Vos, W. M. (2016) ‘Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children’, Nature Communications, 7, p. 10410. doi: 10.1038/ncomms10410.

Kostyukova, N. N., Volkova, M. O., Ivanova, V. V. and Kvetnaya, A. S. (1995) ‘A study of pathogenic factors of Streptococcus pneumoniae strains causing meningitis’, FEMS Immunology & Medical Microbiology. Oliver and Boyd, London, 10(2), pp. 133–138. doi: 10.1111/j.1574-695X.1995.tb00022.x.

Kovochich, M., Fung, C.-C. D., Avanasi, R. and Madl, A. K. (2017) ‘Review of techniques and studies characterizing the release of carbon nanotubes from nanocomposites: Implications for exposure and

146

human health risk assessment’, Journal of Exposure Science and Environmental Epidemiology. Nature Publishing Group, (March), pp. 1–13. doi: 10.1038/jes.2017.6.

Kradin, R. L., Zhu, Y., Hales, C. A., Bianco, C. and Colvin, R. B. (1986) ‘Response of pulmonary macrophages to hyperoxic pulmonary injury: Acquisition of surface fibronectin and fibrin/ogen and enhanced expression of a fibronectin receptor’, American Journal of Pathology, 125(2). Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1888255/pdf/amjpathol00152-0139.pdf (Accessed: 10 November 2017).

Kraft, S. C., Earle, R. H., Roesler, M. and Esterly, J. R. (1976) ‘Unexplained bronchopulmonary disease with inflammatory bowel disease.’, Archives of internal medicine, 136(4), pp. 454–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1267553 (Accessed: 8 August 2017).

Krasny, L., Paul, A., Wai, P., Howard, B. A., Natrajan, R. C. and Huang, P. H. (2016) ‘Comparative proteomic assessment of matrisome enrichment methodologies’, Biochemical Journal, 473(21), pp. 3979–3995. doi: 10.1042/BCJ20160686.

Kreijtz, J. H. C. M., Fouchier, R. A. M. and Rimmelzwaan, G. F. (2011) ‘Immune responses to influenza virus infection’, Virus Research. Elsevier, pp. 19–30. doi: 10.1016/j.virusres.2011.09.022.

Kuiken, T., Riteau, B., Fouchier, R. A. M. and Rimmelzwaan, G. F. (2012) ‘Pathogenesis of influenza virus infections: The good, the bad and the ugly’, Current Opinion in Virology. Elsevier, pp. 276–286. doi: 10.1016/j.coviro.2012.02.013.

Kumarathasan, P., Breznan, D., Das, D., Salam, M. A., Siddiqui, Y., Mackinnon-Roy, C., Guan, J., De Silva, N., Simard, B. and Vincent, R. (2015) ‘Cytotoxicity of carbon nanotube variants: A comparative in vitro exposure study with A549 epithelial and J774 macrophage cells’, Nanotoxicology. Informa Healthcare, 9(2), pp. 1743–5390. doi: 10.3109/17435390.2014.902519.

Kurkjian, C., Hollifield, M., Lines, J. L., Rogosky, A., Empey, K. M., Qureshi, M., Brown, S. A. and Garvy, B. A. (2012) ‘Alveolar macrophages in neonatal mice are inherently unresponsive to Pneumocystis murina infection’, Infection and Immunity. American Society for Microbiology, 80(8), pp. 2835–2846. doi: 10.1128/IAI.05707-11.

Kwiecinski, M., Noetel, A., Elfimova, N., Trebicka, J., Schievenbusch, S., Strack, I., Molnar, L., von Brandenstein, M., Töx, U., Nischt, R., Coutelle, O., Dienes, H. P. and Odenthal, M. (2011) ‘Hepatocyte Growth Factor (HGF) Inhibits Collagen I and IV Synthesis in Hepatic Stellate Cells by miRNA-29 Induction’, PLoS ONE. Edited by C. Emanueli, 6(9), p. e24568. doi: 10.1371/journal.pone.0024568.

Lagally, C. D., Reynolds, C. C. O., Grieshop, A. P., Kandlikar, M. and Rogak, S. N. (2012) ‘Carbon Nanotube and Fullerene Emissions from Spark-Ignited Engines’, Aerosol Science and Technology. Taylor & Francis Group, 46(August 2013), pp. 156–164. doi: 10.1080/02786826.2011.617399.

Lahmer, T. and Heemann, U. (2012) ‘Anti-glomerular basement membrane antibody disease: A rare autoimmune disorder affecting the kidney and the lung’, Autoimmunity Reviews, 12(2), pp. 169–173. doi: 10.1016/j.autrev.2012.04.002.

Lai, T. and Chiam, K. H. (2011) ‘Mechanochemical model of cell migration on substrates of varying stiffness’, Phys Rev E Stat Nonlin Soft Matter Phys, 84(6 Pt 1), p. 61907. doi: 10.1103/PhysRevE.84.061907.

Laitinen, A., Altraja, A., Kämpe, M., Linden, M., Virtanen, I. and Laitinen, L. A. (1997) ‘Tenascin is increased in airway basement membrane of asthmatics and decreased by an inhaled steroid’, American Journal of Respiratory and Critical Care Medicine. American Thoracic SocietyNew York, NY, 156(3 I), pp. 951–958. doi: 10.1164/ajrccm.156.3.9610084.

Lamb, D. and Reid, L. (1968) ‘Mitotic rates, goblet cell increase and histochemical changes in mucus in rat bronchial epithelium during exposure to sulphur dioxide.’, The Journal of pathology and bacteriology, 96(1), pp. 97–111. doi: 10.1002/path.1700960111.

Land, W. G. (2015) ‘The Role of Damage-Associated Molecular Patterns (DAMPs) in Human Diseases: Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine.’, Sultan Qaboos University medical journal. Sultan Qaboos University, 15(2), pp. e157-70. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26052447 (Accessed: 28 March 2018).

147

Landeras-Bueno, S. and Ortín, J. (2016) ‘Regulation of influenza virus infection by long non-coding RNAs’, Virus Research, 212, pp. 78–84. doi: 10.1016/j.virusres.2015.08.008.

Landry, M., Pinault, M., Tchankouo, S., Charon, É., Ridoux, A., Boczkowski, J., Mayne-L’Hermite, M. and Lanone, S. (2016) ‘Early signs of multi-walled carbon nanotbues degradation in macrophages, via an intracellular pH-dependent biological mechanism; importance of length and functionalization.’, Particle and fibre toxicology. BioMed Central, 13(1), p. 61. doi: 10.1186/s12989-016-0175-z.

Langston, J. P. and Carson, C. C. (2014) ‘Peyronie’s disease: Review and recent advances’, Maturitas, 78(4), pp. 341–343. doi: 10.1016/j.maturitas.2014.05.024.

Lapin, B., Piorkowski, J., Ownby, D., Freels, S., Chavez, N., Hernandez, E., Wagner-Cassanova, C., Pelzel, D., Vergara, C. and Persky, V. (2015) ‘Relationship between prenatal antibiotic use and asthma in at-risk children’, Annals of Allergy, Asthma & Immunology, 114(3), pp. 203–207. doi: 10.1016/j.anai.2014.11.014.

Lauer, M. E., Dweik, R. A., Garantziotis, S. and Aronica, M. A. (2015) ‘The Rise and Fall of Hyaluronan in Respiratory Diseases’, International Journal of Cell Biology. Hindawi, 2015, pp. 1–15. doi: 10.1155/2015/712507.

Laurent, G. J. (1986) ‘Lung collagen: more than scaffolding.’, Thorax, 41(6), pp. 418–28. doi: 10.1136/thx.41.6.418.

Laurent, G. J. (1987) ‘Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass.’, The American journal of physiology, 252(1 Pt 1), pp. C1-9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3544859 (Accessed: 12 September 2017).

Laurent, T. C. and Fraser, J. R. (1992) ‘Hyaluronan.’, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 6(7), pp. 2397–404. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1563592 (Accessed: 1 September 2017).

Lee, C. G., McCarthy, S., Gruidl, M., Timme, C. and Yeatman, T. J. (2014) ‘MicroRNA-147 induces a mesenchymal-to-epithelial transition (MET) and reverses EGFR inhibitor resistance’, PLoS One, 9(1), p. e84597. doi: 10.1371/journal.pone.0084597.

Lee, J. H., Lee, S.-B., Bae, G. N., Jeon, K. S., Yoon, J. U., Ji, J. H., Sung, J. H., Lee, B. G., Lee, J. H., Yang, J. S., Kim, H. Y., Kang, C. S. and Yu, I. J. (2010) ‘Exposure assessment of carbon nanotube manufacturing workplaces.’, Inhal. Toxicol. Taylor & Francis, 22(September 2009), pp. 369–381. doi: 10.3109/08958370903367359.

Lee, J., Zhang, T., Hwang, I., Kim, A., Nitschke, L., Kim, M., Scott, J. M., Kamimura, Y., Lanier, L. L. and Kim, S. (2015) ‘Epigenetic Modification and Antibody-Dependent Expansion of Memory-like NK Cells in Human Cytomegalovirus-Infected Individuals’, Immunity, 42(3), pp. 431–442. doi: 10.1016/j.immuni.2015.02.013.

Lee, S., Choi, J., Shin, S., Im, Y.-M., Song, J., Kang, S. S., Nam, T.-H., Webster, T. J., Kim, S.-H. and Khang, D. (2011) ‘Analysis on migration and activation of live macrophages on transparent flat and nanostructured titanium’, Acta Biomaterialia, 7(5), pp. 2337–2344. doi: 10.1016/j.actbio.2011.01.006.

Lee, Y. H., Lai, C. L., Hsieh, S. H., Shieh, C. C., Huang, L. M. and Wu-Hsieh, B. A. (2013) ‘Influenza A virus induction of oxidative stress and MMP-9 is associated with severe lung pathology in a mouse model’, Virus Research, 178(2), pp. 411–422. doi: 10.1016/j.virusres.2013.09.011.

Leitinger, B. (2011) ‘Transmembrane collagen receptors’, Annu Rev Cell Dev Biol, 27, pp. 265–290. doi: 10.1146/annurev-cellbio-092910-154013.

Lemke, G. and Burstyn-Cohen, T. (2010) ‘TAM receptors and the clearance of apoptotic cells.’, Annals of the New York Academy of Sciences. NIH Public Access, 1209, pp. 23–9. doi: 10.1111/j.1749-6632.2010.05744.x.

Lennon, F. E. and Singleton, P. A. (2011) ‘Role of hyaluronan and hyaluronan-binding proteins in lung pathobiology’, American Journal of Physiology - Lung Cellular and Molecular Physiology, 301(2). Available at: http://ajplung.physiology.org/content/301/2/L137 (Accessed: 25 August 2017).

148

Lennon, R., Byron, A., Humphries, J. D., Randles, M. J., Carisey, A., Murphy, S., Knight, D., Brenchley, P. E., Zent, R. and Humphries, M. J. (2014) ‘Global analysis reveals the complexity of the human glomerular extracellular matrix’, J Am Soc Nephrol, 25(5), pp. 939–951. doi: 10.1681/ASN.2013030233.

Levy, O. (2007) ‘Innate immunity of the newborn: basic mechanisms and clinical correlates’, Nature Reviews Immunology. Nature Publishing Group, 7(5), pp. 379–390. doi: 10.1038/nri2075.

Li, C., Nguyen, H. T., Zhuang, Y., Lin, Y., Flemington, E. K., Guo, W., Guenther, J., Burow, M. E., Morris, G. F., Sullivan, D. and Shan, B. (2011) ‘Post-transcriptional up-regulation of miR-21 by type I collagen’, Molecular Carcinogenesis, 50(7), pp. 563–570. doi: 10.1002/mc.20742.

Li, J. G., Li, W. X., Xu, J. Y., Cai, X. Q., Liu, R. L., Li, Y. J., Zhao, Q. F. and Li, Q. N. (2007) ‘Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation’, Environmental Toxicology. Wiley Subscription Services, Inc., A Wiley Company, 22(4), pp. 415–421. doi: 10.1002/tox.20270.

Li, P., Li, J., Chen, T., Wang, H., Chu, H., Chang, J., Zang, W., Wang, Y., Ma, Y., Du, Y., Zhao, G. and Zhang, G. (2014) ‘Expression analysis of serum microRNAs in idiopathic pulmonary fibrosis’, Int J Mol Med, 33(6), pp. 1554–1562. doi: 10.3892/ijmm.2014.1712.

Li, Q.-J., Chau, J., Ebert, P. J. R., Sylvester, G., Min, H., Liu, G., Braich, R., Manoharan, M., Soutschek, J., Skare, P., Klein, L. O., Davis, M. M. and Chen, C.-Z. (2007) ‘miR-181a Is an Intrinsic Modulator of T Cell Sensitivity and Selection’, Cell, 129(1), pp. 147–161. doi: 10.1016/j.cell.2007.03.008.

Li, Y., Jiang, D., Liang, J., Meltzer, E. B., Gray, A., Miura, R., Wogensen, L., Yamaguchi, Y. and Noble, P. W. (2011) ‘Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44’, The Journal of Experimental Medicine, 208(7), pp. 1459–1471. doi: 10.1084/jem.20102510.

Liang, J., Jiang, D., Griffith, J., Yu, S., Fan, J., Zhao, X., Bucala, R. and Noble, P. W. (2007) ‘CD44 is a negative regulator of acute pulmonary inflammation and lipopolysaccharide-TLR signaling in mouse macrophages.’, Journal of immunology (Baltimore, Md. : 1950), 178(4), pp. 2469–75. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17277154 (Accessed: 8 September 2017).

Liang, J., Jiang, D., Jung, Y., Xie, T., Ingram, J., Church, T., Degan, S., Leonard, M., Kraft, M. and Noble, P. W. (2011) ‘Role of hyaluronan and hyaluronan-binding proteins in human asthma’, J Allergy Clin Immunol, 128(2), p. 403–411.e3. doi: 10.1016/j.jaci.2011.04.006.

Lin, X., Suh, J. H., Go, G. and Miner, J. H. (2014) ‘Feasibility of repairing glomerular basement membrane defects in Alport syndrome.’, Journal of the American Society of Nephrology : JASN. American Society of Nephrology, 25(4), pp. 687–92. doi: 10.1681/ASN.2013070798.

Liu, F., Mih, J. D., Shea, B. S., Kho, A. T., Sharif, A. S., Tager, A. M. and Tschumperlin, D. J. (2010) ‘Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression’, J Cell Biol, 190(4), pp. 693–706. doi: 10.1083/jcb.201004082.

Liu, G., Friggeri, A., Yang, Y., Milosevic, J., Ding, Q., Thannickal, V. J., Kaminski, N. and Abraham, E. (2010) ‘miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis’, The Journal of Experimental Medicine, 207(8), pp. 1589–1597. doi: 10.1084/jem.20100035.

Liu, G., Friggeri, A., Yang, Y., Park, Y. J., Tsuruta, Y. and Abraham, E. (2009) ‘miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses’, Proc Natl Acad Sci U S A, 106(37), pp. 15819–15824. doi: 10.1073/pnas.0901216106.

Liu, J., Tu, F., Yao, W., Li, X., Xie, Z., Liu, H., Li, Q. and Pan, Z. (2016) ‘Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-Caspase-3 pathway by targeting HAS2’, Scientific Reports, 6(1), p. 21197. doi: 10.1038/srep21197.

Livant, D. L., Brabec, R. K., Kurachi, K., Allen, D. L., Wu, Y., Haaseth, R., Andrews, P., Ethier, S. P. and Markwart, S. (2000) ‘The PHSRN sequence induces extracellular matrix invasion and accelerates wound healing in obese diabetic mice.’, The Journal of clinical investigation. American Society for Clinical Investigation, 105(11), pp. 1537–45. doi: 10.1172/JCI8527.

Livant, D. L., Brabec, R. K., Pienta, K. J., Allen, D. L., Kurachi, K., Markwart, S. and Upadhyaya, A.

149

(2000) ‘Anti-invasive, antitumorigenic, and antimetastatic activities of the PHSCN sequence in prostate carcinoma.’, Cancer research, 60(2), pp. 309–20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10667582 (Accessed: 11 October 2017).

Loo, Y.-M., Fornek, J., Crochet, N., Bajwa, G., Perwitasari, O., Martinez-Sobrido, L., Akira, S., Gill, M. A., Garcia-Sastre, A., Katze, M. G. and Gale, M. (2008) ‘Distinct RIG-I and MDA5 Signaling by RNA Viruses in Innate Immunity’, Journal of Virology, 82(1), pp. 335–345. doi: 10.1128/JVI.01080-07.

López-Guisa, J. M., Cai, X., Collins, S. J., Yamaguchi, I., Okamura, D. M., Bugge, T. H., Isacke, C. M., Emson, C. L., Turner, S. M., Shankland, S. J. and Eddy, A. A. (2012) ‘Mannose receptor 2 attenuates renal fibrosis.’, Journal of the American Society of Nephrology : JASN. American Society of Nephrology, 23(2), pp. 236–51. doi: 10.1681/ASN.2011030310.

Lopez-Rodriguez, E., Boden, C., Echaide, M., Perez-Gil, J., Kolb, M., Gauldie, J., Maus, U. A., Ochs, M. and Knudsen, L. (2016) ‘Surfactant dysfunction during overexpression of TGF-β1 precedes profibrotic lung remodeling in vivo’, American Journal of Physiology - Lung Cellular and Molecular Physiology, 310(11), pp. L1260–L1271. doi: 10.1152/ajplung.00065.2016.

Lopez-Rodriguez, E., Gay-Jordi, G., Mucci, A., Lachmann, N. and Serrano-Mollar, A. (2017) ‘Lung surfactant metabolism: early in life, early in disease and target in cell therapy’, Cell and Tissue Research. Springer Berlin Heidelberg, 367(3), pp. 721–735. doi: 10.1007/s00441-016-2520-9.

Louhelainen, N., Stark, H., Mazur, W., Rytilä, P., Djukanovic, R. and Kinnula, V. L. (2010) ‘Elevation of sputum matrix metalloproteinase-9 persists up to 6 months after smoking cessation: a research study.’, BMC pulmonary medicine. BioMed Central, 10, p. 13. doi: 10.1186/1471-2466-10-13.

Lu, L.-F., Thai, T.-H., Calado, D. P., Chaudhry, A., Kubo, M., Tanaka, K., Loeb, G. B., Lee, H., Yoshimura, A., Rajewsky, K. and Rudensky, A. Y. (2009) ‘Foxp3-Dependent MicroRNA155 Confers Competitive Fitness to Regulatory T Cells by Targeting SOCS1 Protein’, Immunity, 30(1), pp. 80–91. doi: 10.1016/j.immuni.2008.11.010.

Lu, P., Takai, K., Weaver, V. M. and Werb, Z. (2011) ‘Extracellular matrix degradation and remodeling in development and disease.’, Cold Spring Harbor perspectives in biology. Cold Spring Harbor Laboratory Press, 3(12). doi: 10.1101/cshperspect.a005058.

Luanpitpong, S., Wang, L. and Rojanasakul, Y. (2014) ‘The effects of carbon nanotubes on lung and dermal cellular behaviors.’, Nanomedicine (London, England). NIH Public Access, 9(6), pp. 895–912. doi: 10.2217/nnm.14.42.

Lucattelli, M., Cavarra, E., M. de Santi, M., Tetley, T. D., Martorana, P. A. and Lungarella, G. (2003) ‘Collagen phagocytosis by lung alveolar macrophages in animal models of emphysema’, European Respiratory Journal, 22(5). Available at: http://erj.ersjournals.com/content/22/5/728 (Accessed: 10 August 2017).

Lucey, E. C., Stone, P. J., Christensen, T. G., Breuer, R. and Snider, G. L. (1988) ‘An 18-month study of the effects on hamster lungs of intratracheally administered human neutrophil elastase.’, Experimental lung research, 14(5), pp. 671–86. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3224598 (Accessed: 18 September 2017).

Luo, X., Ranade, K., Talker, R., Jallal, B., Shen, N. and Yao, Y. (2013) ‘microRNA-mediated regulation of innate immune response in rheumatic diseases’, Arthritis Res Ther, 15(2), p. 210. doi: 10.1186/ar4194.

Lutz, D., Gazdhar, A., Lopez-Rodriguez, E., Ruppert, C., Mahavadi, P., Günther, A., Klepetko, W., Bates, J. H., Smith, B., Geiser, T., Ochs, M. and Knudsen, L. (2015) ‘Alveolar Derecruitment and Collapse Induration as Crucial Mechanisms in Lung Injury and Fibrosis’, American Journal of Respiratory Cell and Molecular Biology, 52(2), pp. 232–243. doi: 10.1165/rcmb.2014-0078OC.

Ma-Hock, L., Treumann, S., Strauss, V., Brill, S., Luizi, F., Mertler, M., Wiench, K., Gamer, A. O., van Ravenzwaay, B. and Landsiedel, R. (2009) ‘Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months’, Toxicological Sciences. McGraw-Hill, New York, 112(2), pp. 468–481. doi: 10.1093/toxsci/kfp146.

Ma, Y.-J., Yang, J., Fan, X.-L., Zhao, H.-B., Hu, W., Li, Z.-P., Yu, G.-C., Ding, X.-R., Wang, J.-Z., Bo, X.-C., Zheng, X.-F., Zhou, Z. and Wang, S.-Q. (2012) ‘Cellular microRNA let-7c inhibits M1 protein

150

expression of the H1N1 influenza A virus in infected human lung epithelial cells’, Journal of Cellular and Molecular Medicine, 16(10), pp. 2539–2546. doi: 10.1111/j.1582-4934.2012.01572.x.

Ma, Y., Ouyang, J., Wei, J., Maarouf, M. and Chen, J.-L. (2016) ‘Involvement of Host Non-Coding RNAs in the Pathogenesis of the Influenza Virus’, International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute, 18(1), p. 39. doi: 10.3390/ijms18010039.

Makkoch, J., Poomipak, W., Saengchoowong, S., Khongnomnan, K., Praianantathavorn, K., Jinato, T., Poovorawan, Y. and Payungporn, S. (2016) ‘Human microRNAs profiling in response to influenza A viruses (subtypes pH1N1, H3N2, and H5N1)’, Experimental Biology and Medicine. SAGE PublicationsSage UK: London, England, 241(4), pp. 409–420. doi: 10.1177/1535370215611764.

Malik, G., Knowles, L. M., Dhir, R., Xu, S., Yang, S., Ruoslahti, E. and Pilch, J. (2010) ‘Plasma fibronectin promotes lung metastasis by contributions to fibrin clots and tumor cell invasion.’, Cancer research. NIH Public Access, 70(11), pp. 4327–34. doi: 10.1158/0008-5472.CAN-09-3312.

Mammoto, A., Mammoto, T. and Ingber, D. E. (2012) ‘Mechanosensitive mechanisms in transcriptional regulation’, Journal of Cell Science, 125(13). Available at: http://jcs.biologists.org/content/125/13/3061 (Accessed: 18 August 2017).

Mammoto, A., Mammoto, T., Kanapathipillai, M., Wing Yung, C., Jiang, E., Jiang, A., Lofgren, K., Gee, E. P. S. and Ingber, D. E. (2013) ‘Control of lung vascular permeability and endotoxin-induced pulmonary oedema by changes in extracellular matrix mechanics’, Nature Communications, 4, p. 1759. doi: 10.1038/ncomms2774.

Mammoto, T. and Ingber, D. E. (2010) ‘Mechanical control of tissue and organ development’, Development, 137(9). Available at: http://dev.biologists.org/content/137/9/1407 (Accessed: 18 August 2017).

Manabe, R., Ohe, N., Maeda, T., Fukuda, T. and Sekiguchi, K. (1997) ‘Modulation of cell-adhesive activity of fibronectin by the alternatively spliced EDA segment.’, The Journal of cell biology. The Rockefeller University Press, 139(1), pp. 295–307. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9314547 (Accessed: 22 August 2017).

Marega, R., Bergamin, M., Aroulmoji, V., Dinon, F., Prato, M. and Murano, E. (2011) ‘Hyaluronan-carbon nanotube derivatives: Synthesis, conjugation with model drugs, and DOSY NMR characterization’, European Journal of Organic Chemistry. WILEY‐VCH Verlag, 2011(28), pp. 5617–5625. doi: 10.1002/ejoc.201100846.

Marinković, A., Liu, F. and Tschumperlin, D. J. (2013) ‘Matrices of physiologic stiffness potently inactivate idiopathic pulmonary fibrosis fibroblasts.’, American journal of respiratory cell and molecular biology. American Thoracic Society, 48(4), pp. 422–30. doi: 10.1165/rcmb.2012-0335OC.

Mase, Y., Ishibashi, O., Ishikawa, T., Takizawa, T., Kiguchi, K., Ohba, T., Katabuchi, H., Takeshita, T. and Takizawa, T. (2012) ‘MiR-21 is Enriched in the RNA-Induced Silencing Complex and Targets COL4A1 in Human Granulosa Cell Lines’, Reproductive Sciences, 19(10), pp. 1030–1040. doi: 10.1177/1933719112442245.

Maynard, A. D., Baron, P. A., Foley, M., Shvedova, A. A., Kisin, E. R. and Castranova, V. (2004) ‘Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material.’, Journal of toxicology and environmental health. Part A. Taylor & Francis Group, 67(January 2015), pp. 87–107. doi: 10.1080/15287390490253688.

McCullers, J. A. (2014) ‘The co-pathogenesis of influenza viruses with bacteria in the lung’, Nature Reviews Microbiology, 12(4), pp. 252–262. doi: 10.1038/nrmicro3231.

McDonald, J. a (1988) ‘Extracellular matrix assembly.’, Annual review of cell biology, 4(7), pp. 183–207. doi: 10.1146/annurev.cb.04.110188.001151.

McDonald, J. A., Kelley, D. G. and Broekelmann, T. J. (1982) ‘Role of fibronectin in collagen deposition: Fab’ to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix.’, The Journal of cell biology, 92(2), pp. 485–92. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7061591 (Accessed: 22 August 2017).

McGowan, S. E. and Thompson, R. J. (1989) ‘Extracellular matrix proteoglycan degradation by human alveolar macrophages and neutrophils.’, Journal of applied physiology (Bethesda, Md. :

151

1985), 66(1), pp. 400–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2917944 (Accessed: 10 August 2017).

McKallip, R., Hagele, H. and Uchakina, O. (2013) ‘Treatment with the Hyaluronic Acid Synthesis Inhibitor 4-Methylumbelliferone Suppresses SEB-Induced Lung Inflammation’, Toxins, 5(10), pp. 1814–1826. doi: 10.3390/toxins5101814.

McKallip, R. J., Ban, H. and Uchakina, O. N. (2015) ‘Treatment with the Hyaluronic Acid Synthesis Inhibitor 4-Methylumbelliferone Suppresses LPS-Induced Lung Inflammation’, Inflammation, 38(3), pp. 1250–1259. doi: 10.1007/s10753-014-0092-y.

McKeown-Longo, P. J. and Mosher, D. F. (1983) ‘Binding of plasma fibronectin to cell layers of human skin fibroblasts.’, The Journal of Cell Biology, 97(2). Available at: http://jcb.rupress.org/content/97/2/466 (Accessed: 10 August 2017).

McKleroy, W., Lee, T.-H. and Atabai, K. (2013) ‘Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis’, American Journal of Physiology - Lung Cellular and Molecular Physiology, 304(11). Available at: http://ajplung.physiology.org/content/304/11/L709#ref-3 (Accessed: 14 August 2017).

McWhorter, F. Y., Davis, C. T. and Liu, W. F. (2015) ‘Physical and mechanical regulation of macrophage phenotype and function.’, Cellular and molecular life sciences : CMLS. NIH Public Access, 72(7), pp. 1303–16. doi: 10.1007/s00018-014-1796-8.

Melvan, J. N., Bagby, G. J., Welsh, D. A., Nelson, S. and Zhang, P. (2010) ‘Neonatal sepsis and neutrophil insufficiencies.’, International reviews of immunology. NIH Public Access, 29(3), pp. 315–48. doi: 10.3109/08830181003792803.

Methner, M., Beaucham, C., Crawford, C., Hodson, L. and Geraci, C. (2012) ‘Field application of the Nanoparticle Emission Assessment Technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities.’, Journal of occupational and environmental hygiene. Taylor & Francis Group, 9(9), pp. 543–555. doi: 10.1080/15459624.2012.699388.

Methner, M., Hodson, L., Dames, A. and Geraci, C. (2010) ‘Nanoparticle Emission Assessment Technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials--Part B: Results from 12 field studies.’, Journal of occupational and environmental hygiene. Taylor & Francis Group, 7(3), pp. 163–76. doi: 10.1080/15459620903508066.

Metsälä, J., Lundqvist, A., Virta, L. J., Kaila, M., Gissler, M. and Virtanen, S. M. (2015) ‘Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood’, Clinical & Experimental Allergy, 45(1), pp. 137–145. doi: 10.1111/cea.12356.

Michlewski, G. and Cáceres, J. F. (2010) ‘Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis’, Nat Struct Mol Biol, 17(8), pp. 1011–1018. doi: 10.1038/nsmb.1874.

Migliore, L., Saracino, D., Bonelli, A., Colognato, R., D’Errico, M. R., Magrini, A., Bergamaschi, A. and Bergamaschi, E. (2010) ‘Carbon nanotubes induce oxidative DNA damage in RAW 264.7 cells’, Environmental and molecular mutagenesis, 51(4), pp. 294–303. doi: 10.1002/em.20545.

Misharin, A. V., Morales-Nebreda, L., Reyfman, P. A., Cuda, C. M., Walter, J. M., McQuattie-Pimentel, A. C., Chen, C.-I., Anekalla, K. R., Joshi, N., Williams, K. J. N., Abdala-Valencia, H., Yacoub, T. J., Chi, M., Chiu, S., Gonzalez-Gonzalez, F. J., Gates, K., Lam, A. P., Nicholson, T. T., Homan, P. J., Soberanes, S., Dominguez, S., Morgan, V. K., Saber, R., Shaffer, A., Hinchcliff, M., Marshall, S. A., Bharat, A., Berdnikovs, S., Bhorade, S. M., Bartom, E. T., Morimoto, R. I., Balch, W. E., Sznajder, J. I., Chandel, N. S., Mutlu, G. M., Jain, M., Gottardi, C. J., Singer, B. D., Ridge, K. M., Bagheri, N., Shilatifard, A., Budinger, G. R. S. and Perlman, H. (2017) ‘Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span’, Journal of Experimental Medicine. Available at: http://jem.rupress.org/content/early/2017/07/07/jem.20162152 (Accessed: 10 August 2017).

Mishra, A., Bhattacharya, P., Paul, S., Paul, R. and Swarnakar, S. (2011) ‘An alternative therapy for idiopathic pulmonary fibrosis by doxycycline through matrix metalloproteinase inhibition.’, Lung India : official organ of Indian Chest Society. Wolters Kluwer -- Medknow Publications, 28(3), pp. 174–9. doi: 10.4103/0970-2113.83972.

152

Mishra, A., Rojanasakul, Y., Chen, B. T., Castranova, V., Mercer, R. R. and Wang, L. (2012) ‘Assessment of Pulmonary Fibrogenic Potential of Multiwalled Carbon Nanotubes in Human Lung Cells’, Journal of Nanomaterials. Hindawi, 2012, pp. 1–11. doi: 10.1155/2012/930931.

Misra, S., Hascall, V. C., Markwald, R. R. and Ghatak, S. (2015) ‘Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer.’, Frontiers in immunology. Frontiers Media SA, 6, p. 201. doi: 10.3389/fimmu.2015.00201.

Mocan, T., Matea, C. T., Pop, T., Mosteanu, O., Buzoianu, A. D., Suciu, S., Puia, C., Zdrehus, C., Iancu, C. and Mocan, L. (2017) ‘Carbon nanotubes as anti-bacterial agents’, Cellular and Molecular Life Sciences. Springer International Publishing, pp. 1–13. doi: 10.1007/s00018-017-2532-y.

Molyneaux, P. L., Cox, M. J., Willis-Owen, S. A. G., Mallia, P., Russell, K. E., Russell, A.-M., Murphy, E., Johnston, S. L., Schwartz, D. A., Wells, A. U., Cookson, W. O. C., Maher, T. M. and Moffatt, M. F. (2014) ‘The Role of Bacteria in the Pathogenesis and Progression of Idiopathic Pulmonary Fibrosis’, American Journal of Respiratory and Critical Care Medicine, 190(8), pp. 906–913. doi: 10.1164/rccm.201403-0541OC.

Monzon, M. E., Fregien, N., Schmid, N., Falcon, N. S., Campos, M., Casalino-Matsuda, S. M. and Forteza, R. M. (2010) ‘Reactive Oxygen Species and Hyaluronidase 2 Regulate Airway Epithelial Hyaluronan Fragmentation’, Journal of Biological Chemistry, 285(34), pp. 26126–26134. doi: 10.1074/jbc.M110.135194.

Mulder, B., Pouwels, K. B., Schuiling-Veninga, C. C. M., Bos, H. J., de Vries, T. W., Jick, S. S. and Hak, E. (2016) ‘Antibiotic use during pregnancy and asthma in preschool children: the influence of confounding’, Clinical & Experimental Allergy, 46(9), pp. 1214–1226. doi: 10.1111/cea.12756.

Muro, A. F., Moretti, F. A., Moore, B. B., Yan, M., Atrasz, R. G., Wilke, C. A., Flaherty, K. R., Martinez, F. J., Tsui, J. L., Sheppard, D., Baralle, F. E., Toews, G. B. and White, E. S. (2008) ‘An essential role for fibronectin extra type III domain A in pulmonary fibrosis.’, American journal of respiratory and critical care medicine. American Thoracic Society, 177(6), pp. 638–45. doi: 10.1164/rccm.200708-1291OC.

Murr, L. E., Bang, J. J., Esquivel, E. V, Guerrero, P. A. and Lopez, D. A. (2004) ‘Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air’, Journal of Nanoparticle Research. Kluwer Academic Publishers, 6(1998), pp. 241–251. doi: 10.1023/B:NANO.0000034651.91325.40.

Murr, L. E. and Guerrero, P. A. (2006) ‘Carbon nanotubes in wood soot’, Atmospheric Science Letters. John Wiley & Sons, Ltd., 7(4), pp. 93–95. doi: 10.1002/asl.138.

Naba, A., Ding, H., Whittaker, C. A. and Hynes, R. O. (2012) The Matrisome Project, Matrisome Project. Available at: http://matrisomeproject.mit.edu/ (Accessed: 3 August 2017).

Nadkarni, P. P., Kulkarni, G. S., Cerreta, J. M., Ma, S. and Cantor, J. O. (2006) ‘Dichotomous effect of aerosolized hyaluronan in a hamster model of endotoxin-induced lung injury.’, Experimental lung research, 31(9–10), pp. 807–18. doi: 10.1080/01902140600574942.

Nassar, M., Tabib, Y., Capucha, T., Mizraji, G., Nir, T., Pevsner-Fischer, M., Zilberman-Schapira, G., Heyman, O., Nussbaum, G., Bercovier, H., Wilensky, A., Elinav, E., Burstyn-Cohen, T. and Hovav, A.-H. (2017) ‘GAS6 is a key homeostatic immunological regulator of host-commensal interactions in the oral mucosa.’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 114(3), pp. E337–E346. doi: 10.1073/pnas.1614926114.

Neill, T., Schaefer, L. and Iozzo, R. V. (2014) ‘Instructive Roles of Extracellular Matrix on Autophagy’, The American Journal of Pathology, 184(8), pp. 2146–2153. doi: 10.1016/j.ajpath.2014.05.010.

Nesvizhskii, A. I., Keller, A., Kolker, E. and Aebersold, R. (2003) ‘A statistical model for identifying proteins by tandem mass spectrometry’, Anal Chem, 75(17), pp. 4646–4658. Available at: https://www.ncbi.nlm.nih.gov/pubmed/14632076.

Netea, M. G., Joosten, L. A. B., Latz, E., Mills, K. H. G., Natoli, G., Stunnenberg, H. G., O’Neill, L. A. J. and Xavier, R. J. (2016) ‘Trained immunity: A program of innate immune memory in health and disease.’, Science (New York, N.Y.). American Association for the Advancement of Science, 352(6284), p. aaf1098. doi: 10.1126/science.aaf1098.

153

Netea, M. G. and van der Meer, J. W. M. (2017) ‘Trained Immunity: An Ancient Way of Remembering.’, Cell host & microbe. Elsevier, 21(3), pp. 297–300. doi: 10.1016/j.chom.2017.02.003.

Ng, H. H., Narasaraju, T., Phoon, M. C., Sim, M. K., Seet, J. E. and Chow, V. T. (2012) ‘Doxycycline treatment attenuates acute lung injury in mice infected with virulent influenza H3N2 virus: Involvement of matrix metalloproteinases’, Experimental and Molecular Pathology, 92(3), pp. 287–295. doi: 10.1016/j.yexmp.2012.03.003.

Ng, R. L. X., Scott, N. M., Strickland, D. H., Gorman, S., Grimbaldeston, M. A., Norval, M., Waithman, J. and Hart, P. H. (2013) ‘Altered immunity and dendritic cell activity in the periphery of mice after long-term engraftment with bone marrow from ultraviolet-irradiated mice.’, Journal of immunology (Baltimore, Md. : 1950). American Association of Immunologists, 190(11), pp. 5471–84. doi: 10.4049/jimmunol.1202786.

NIOSH (2013) ‘Occupational Exposure to Carbon Nanotubes and Nanofibers’, Current Intelligence Bulletin, (65), p. 184. Available at: https://www.cdc.gov/niosh/docs/2013-145/default.html (Accessed: 19 July 2017).

Nishimoto, T., Mlakar, L., Takihara, T. and Feghali-Bostwick, C. (2015) ‘An endostatin-derived peptide orally exerts anti-fibrotic activity in a murine pulmonary fibrosis model’, International Immunopharmacology, 28(2), pp. 1102–1105. doi: 10.1016/j.intimp.2015.07.039.

Noble, P. W. (2002) ‘Hyaluronan and its catabolic products in tissue injury and repair.’, Matrix biology : journal of the International Society for Matrix Biology, 21(1), pp. 25–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11827789 (Accessed: 11 September 2017).

Nogee, L. M. (2004) ‘Genetic mechanisms of surfactant deficiency.’, Biology of the neonate. Karger Publishers, 85(4), pp. 314–8. doi: 10.1159/000078171.

Noverr, M. C., Falkowski, N. R., McDonald, R. A., McKenzie, A. N. and Huffnagle, G. B. (2005) ‘Development of Allergic Airway Disease in Mice following Antibiotic Therapy and Fungal Microbiota Increase: Role of Host Genetics, Antigen, and Interleukin-13’, Infection and Immunity, 73(1), pp. 30–38. doi: 10.1128/IAI.73.1.30-38.2005.

Noverr, M. C., Noggle, R. M., Toews, G. B. and Huffnagle, G. B. (2004) ‘Role of antibiotics and fungal microbiota in driving pulmonary allergic responses.’, Infection and immunity. American Society for Microbiology (ASM), 72(9), pp. 4996–5003. doi: 10.1128/IAI.72.9.4996-5003.2004.

Nymark, P., Wijshoff, P., Cavill, R., van Herwijnen, M., Coonen, M. L. J., Claessen, S., Catalán, J., Norppa, H., Kleinjans, J. C. S. and Briedé, J. J. (2015) ‘Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells’, Nanotoxicology. Informa UK Limited, 5390(September), pp. 1–12. doi: 10.3109/17435390.2015.1017022.

O’Connell, R. M., Taganov, K. D., Boldin, M. P., Cheng, G. and Baltimore, D. (2007) ‘MicroRNA-155 is induced during the macrophage inflammatory response’, Proc Natl Acad Sci U S A, 104(5), pp. 1604–1609. doi: 10.1073/pnas.0610731104.

O’Kelly, F., Marignol, L., Meunier, A., Lynch, T. H., Perry, A. S. and Hollywood, D. (2012) ‘MicroRNAs as putative mediators of treatment response in prostate cancer’, Nature Reviews Urology. Nature Publishing Group, 9(7), pp. 397–407. doi: 10.1038/nrurol.2012.104.

O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R. and Folkman, J. (1997) ‘Endostatin: An Endogenous Inhibitor of Angiogenesis and Tumor Growth’, Cell, 88(2), pp. 277–285. doi: 10.1016/S0092-8674(00)81848-6.

Ohke, M., Tada, S., Nabe, M., Matsuo, K., Kataoka, M. and Harada, M. (2001) ‘The role of fibronectin in bronchoalveolar lavage fluid of asthmatic patients.’, Acta medica Okayama, 55(2), pp. 83–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11332203 (Accessed: 10 August 2017).

Olorundare, O. E., Peyruchaud, O., Albrecht, R. M. and Mosher, D. F. (2001) ‘Assembly of a fibronectin matrix by adherent platelets stimulated by lysophosphatidic acid and other agonists’, Blood, 98(1). Available at: http://www.bloodjournal.org/content/98/1/117?sso-checked=true (Accessed: 10 August 2017).

Othumpangat, S., Bryan, N., Beezhold, D. and Noti, J. (2017) ‘Upregulation of miRNA-4776 in

154

Influenza Virus Infected Bronchial Epithelial Cells Is Associated with Downregulation of NFKBIB and Increased Viral Survival’, Viruses, 9(5), p. 94. doi: 10.3390/v9050094.

Othumpangat, S., Noti, J. D., McMillen, C. M. and Beezhold, D. H. (2016) ‘ICAM-1 Regulates the survival of influenza virus in lung epithelial cells during the early stages of infection’, Virology, 487, pp. 85–94. doi: 10.1016/j.virol.2015.10.005.

Pääkkö, P., Kaarteenaho-Wiik, R., Pöllänen, R. and Soini, Y. (2000) ‘Tenascin mRNA expression at the foci of recent injury in usual interstitial pneumonia’, American Journal of Respiratory and Critical Care Medicine, 161(3 I), pp. 967–972. doi: 10.1164/ajrccm.161.3.9809115.

Pacurari, M., Kafoury, R., Turner, T., Taylor, S. and Tchounwou, P. B. (2017) ‘Thrombospondin-1 and microRNA-1 expression in response to multiwalled carbon nanotubes in alveolar epithelial cells’, Environmental Toxicology, 32(5), pp. 1596–1606. doi: 10.1002/tox.22387.

Pacurari, M., May, I. and Tchounwou, P. B. (2017) ‘Effects of lipopolysaccharide, multiwalled carbon nantoubes, and the combination on lung alveolar epithelial cells’, Environmental Toxicology, 32(2), pp. 445–455. doi: 10.1002/tox.22248.

Page, K. R., Scott, A. L. and Manabe, Y. C. (2006) ‘The expanding realm of heterologous immunity: friend or foe?’, Cellular microbiology, 8(2), pp. 185–96. doi: 10.1111/j.1462-5822.2005.00653.x.

Palomäki, J., Sund, J., Vippola, M., Kinaret, P., Greco, D., Savolainen, K., Puustinen, A. and Alenius, H. (2014) ‘A secretomics analysis reveals major differences in the macrophage responses towards different types of carbon nanotubes.’, Nanotoxicology. Informa Healthcare, 5390(6), pp. 1–10. doi: 10.3109/17435390.2014.969346.

Pan, H. Y., Yamada, H., Chida, J., Wang, S., Yano, M., Yao, M., Zhu, J. and Kido, H. (2011) ‘Up-regulation of ectopic trypsins in the myocardium by influenza A virus infection triggers acute myocarditis’, Cardiovascular Research, 89(3), pp. 595–603. doi: 10.1093/cvr/cvq358.

Pandit, K. V., Corcoran, D., Yousef, H., Yarlagadda, M., Tzouvelekis, A., Gibson, K. F., Konishi, K., Yousem, S. A., Singh, M., Handley, D., Richards, T., Selman, M., Watkins, S. C., Pardo, A., Ben-Yehudah, A., Bouros, D., Eickelberg, O., Ray, P., Benos, P. V. and Kaminski, N. (2010) ‘Inhibition and role of let-7d in idiopathic pulmonary fibrosis’, American Journal of Respiratory and Critical Care Medicine, 182(2), pp. 220–229. doi: 10.1164/rccm.200911-1698OC.

Pandit, K. V, Milosevic, J. and Kaminski, N. (2011) ‘MicroRNAs in idiopathic pulmonary fibrosis’, Transl Res, 157(4), pp. 191–199. doi: 10.1016/j.trsl.2011.01.012.

Papakonstantinou, E. and Karakiulakis, G. (2009) ‘The “sweet” and “bitter” involvement of glycosaminoglycans in lung diseases: pharmacotherapeutic relevance.’, British journal of pharmacology. Wiley-Blackwell, 157(7), pp. 1111–27. doi: 10.1111/j.1476-5381.2009.00279.x.

Parker, C. E., Mocanu, V., Mocanu, M., Dicheva, N. and Warren, M. R. (2010) Mass Spectrometry for Post-Translational Modifications, Neuroproteomics. CRC Press/Taylor & Francis. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21882444 (Accessed: 13 March 2018).

Pasquinelli, A. E. (2012) ‘MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship’, Nat Rev Genet, 13(4), pp. 271–282. doi: 10.1038/nrg3162.

Patel, N. R., Bole, M., Chen, C., Hardin, C. C., Kho, A. T., Mih, J., Deng, L., Butler, J., Tschumperlin, D., Fredberg, J. J., Krishnan, R. and Koziel, H. (2012) ‘Cell elasticity determines macrophage function’, PLoS One, 7(9), p. e41024. doi: 10.1371/journal.pone.0041024.

Peng, F., He, J., Loo, J. F. C., Yao, J., Shi, L., Liu, C., Zhao, C., Xie, W., Shao, Y., Kong, S. K. and Gu, D. (2016) ‘Identification of microRNAs in Throat Swab as the Biomarkers for Diagnosis of Influenza’, International Journal of Medical Sciences, 13(1), pp. 77–84. doi: 10.7150/ijms.13301.

Peng, X., Gralinski, L., Ferris, M. T., Frieman, M. B., Thomas, M. J., Proll, S., Korth, M. J., Tisoncik, J. R., Heise, M., Luo, S., Schroth, G. P., Tumpey, T. M., Li, C., Kawaoka, Y., Baric, R. S. and Katze, M. G. (2011) ‘Integrative deep sequencing of the mouse lung transcriptome reveals differential expression of diverse classes of small RNAs in response to respiratory virus infection.’, mBio. American Society for Microbiology (ASM), 2(6). doi: 10.1128/mBio.00198-11.

Pereira, M., Rybarczyk, B. J., Odrljin, T. M., Hocking, D. C., Sottile, J. and Simpson-Haidaris, P. J.

155

(2002) ‘The incorporation of fibrinogen into extracellular matrix is dependent on active assembly of a fibronectin matrix.’, Journal of cell science, 115(Pt 3), pp. 609–17. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11861767 (Accessed: 22 August 2017).

Perkins, D. N., Pappin, D. J., Creasy, D. M. and Cottrell, J. S. (1999) ‘Probability-based protein identification by searching sequence databases using mass spectrometry data’, Electrophoresis, 20(18), pp. 3551–3567. doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2.

Peterkofsky, B. and Diegelmann, R. (1971) ‘Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins’, Biochemistry. American Chemical Society, 10(6), pp. 988–994. doi: 10.1021/bi00782a009.

Petrigni, G. and Allegra, L. (2006) ‘Aerosolised hyaluronic acid prevents exercise-induced bronchoconstriction, suggesting novel hypotheses on the correction of matrix defects in asthma’, Pulmonary Pharmacology & Therapeutics, 19(3), pp. 166–171. doi: 10.1016/j.pupt.2005.03.002.

Philippe, L., Alsaleh, G., Suffert, G., Meyer, A., Georgel, P., Sibilia, J., Wachsmann, D. and Pfeffer, S. (2012) ‘TLR2 Expression Is Regulated by MicroRNA miR-19 in Rheumatoid Fibroblast-like Synoviocytes’, The Journal of Immunology, 188(1), pp. 454–461. doi: 10.4049/jimmunol.1102348.

Piccinini, A. M. and Midwood, K. S. (2012) ‘Endogenous Control of Immunity against Infection: Tenascin-C Regulates TLR4-Mediated Inflammation via MicroRNA-155’, Cell Reports, 2(4), pp. 914–926. doi: 10.1016/j.celrep.2012.09.005.

Piccinini, A. M., Zuliani-Alvarez, L., Lim, J. M. P. and Midwood, K. S. (2016) ‘Distinct microenvironmental cues stimulate divergent TLR4-mediated signaling pathways in macrophages.’, Science signaling. Europe PMC Funders, 9(443), p. ra86. doi: 10.1126/scisignal.aaf3596.

Plotnikov, S. V and Waterman, C. M. (2013) ‘Guiding cell migration by tugging’, Current Opinion in Cell Biology, 25(5), pp. 619–626. doi: 10.1016/j.ceb.2013.06.003.

Pociask, D. A., Robinson, K. M., Chen, K., Mchugh, K. J., Clay, M. E., Huang, G. T., Benos, P. V, Janssen-Heininger, Y. M. W., Kolls, J. K., Anathy, V. and Alcorn, J. F. (2017) ‘Epigenetic and Transcriptomic Regulation of Lung Repair during Recovery from Influenza Infection the PhD Program in Computational Biology’, Am J Pathol, 187, pp. 851–863. doi: 10.1016/j.ajpath.2016.12.012.

Pohl, W. R., Conlan, M. G., Thompson, A. B., Ertl, R. F., Romberger, D. J., Mosher, D. F. and Rennard, S. I. (1991) ‘Vitronectin in Bronchoalveolar Lavage Fluid Is Increased in Patients with Interstitial Lung Disease’, American Review of Respiratory Disease, 143(6), pp. 1369–1375. doi: 10.1164/ajrccm/143.6.1369.

Polimeni, M., Gulino, G. R., Gazzano, E., Kopecka, J., Marucco, A., Fenoglio, I., Cesano, F., Campagnolo, L., Magrini, A., Pietroiusti, A., Ghigo, D. and Aldieri, E. (2015) ‘Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway’, Particle and Fibre Toxicology. BioMed Central, 13(1), p. 27. doi: 10.1186/s12989-016-0138-4.

Porter, D. W., Hubbs, A. F., Chen, B. T., Mckinney, W., Mercer, R. R., Wolfarth, M. G., Battelli, L., Wu, N., Sriram, K., Leonard, S., Andrew, M., Willard, P., Tsuruoka, S., Endo, M., Tsukada, T., Munekane, F., Frazer, D. G. and Castranova, V. (2015) ‘Acute pulmonary dose – responses to inhaled multi-walled carbon nanotubes’, Nanotoxicology. Taylor & Francis, 7(May 2012), pp. 1179–1194. doi: 10.3109/17435390.2012.719649.

Preusse, M., Schughart, K. and Pessler, F. (2017) ‘Host Genetic Background Strongly Affects Pulmonary microRNA Expression before and during Influenza A Virus Infection’, Frontiers in Immunology. Frontiers, 8, p. 246. doi: 10.3389/fimmu.2017.00246.

Prieto, A. L., Edelman, G. M. and Crossin, K. L. (1993) ‘Multiple integrins mediate cell attachment to cytotactin/tenascin (flbronectin type m repeats/RGD sequence/extracellular matrix/cell adhesion)’, Cell Biology, 90, pp. 10154–10158. Available at: http://www.pnas.org/content/90/21/10154.full.pdf (Accessed: 14 August 2017).

Proctor, L. M. (2011) ‘The Human Microbiome Project in 2011 and Beyond’, Cell Host & Microbe, 10(4), pp. 287–291. doi: 10.1016/j.chom.2011.10.001.

156

Pruteanu, M., Hyland, N. P., Clarke, D. J., Kiely, B. and Shanahan, F. (2011) ‘Degradation of the extracellular matrix components by bacterial-derived metalloproteases’, Inflammatory Bowel Diseases, 17(5), pp. 1189–1200. doi: 10.1002/ibd.21475.

Pugin, J., Dunn, I., Jolliet, P., Tassaux, D., Magnenat, J. L., Nicod, L. P. and Chevrolet, J. C. (1998) ‘Activation of human macrophages by mechanical ventilation in vitro.’, The American journal of physiology, 275(6 Pt 1), pp. L1040-50. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9843840 (Accessed: 3 October 2017).

Pyagay, P., Heroult, M., Wang, Q., Lehnert, W., Belden, J., Liaw, L., Friesel, R. E. and Lindner, V. (2005) ‘Collagen triple helix repeat containing 1, a novel secreted protein in injured and diseased arteries, inhibits collagen expression and promotes cell migration’, Circulation Research, 96(2), pp. 261–268. doi: 10.1161/01.RES.0000154262.07264.12.

Qiao, J., Zhang, M., Bi, J., Wang, X., Deng, G., He, G., Luan, Z., Lv, N., Xu, T. and Zhao, L. (2009) ‘Pulmonary fibrosis induced by H5N1 viral infection in mice.’, Respiratory research, 10, p. 107. doi: 10.1186/1465-9921-10-107.

Qin, Y., Li, S., Zhao, G., Fu, X., Xie, X., Huang, Y., Cheng, X., Wei, J., Liu, H. and Lai, Z. (2017) ‘Long-term intravenous administration of carboxylated single-walled carbon nanotubes induces persistent accumulation in the lungs and pulmonary fibrosis via the nuclear factor-kappa b pathway’, International Journal of Nanomedicine, 12, pp. 263–277. doi: 10.2147/IJN.S123839.

Ramos, D. M., Chen, B., Regezi, J., Zardi, L. and Pytela, R. (1998) ‘Tenascin-C matrix assembly in oral squamous cell carcinoma.’, International journal of cancer, 75(5), pp. 680–7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9495234 (Accessed: 22 August 2017).

Randles, M. J., Collinson, S., Starborg, T., Mironov, A., Krendel, M., Königshausen, E., Sellin, L., Roberts, I. S. D., Kadler, K. E., Miner, J. H. and Lennon, R. (2016) ‘Three-dimensional electron microscopy reveals the evolution of glomerular barrier injury.’, Scientific reports, 6(May), p. 35068. doi: 10.1038/srep35068.

Randles, M. and Lennon, R. (2015) ‘Applying Proteomics to Investigate Extracellular Matrix in Health and Disease’, Curr Top Membr, 76, pp. 171–196. doi: 10.1016/bs.ctm.2015.06.001.

Rasband, W. S. (1997) ‘ImageJ’. U. S. National Institutes of Health, Bethesda, Maryland, USA. Available at: https://imagej.nih.gov/ij/.

Reddy, A. T., Lakshmi, S. P., Zhang, Y. and Reddy, R. C. (2014) ‘Nitrated fatty acids reverse pulmonary fibrosis by dedifferentiating myofibroblasts and promoting collagen uptake by alveolar macrophages.’, FASEB journal : official publication of the Federation of American Societies for Experimental Biology. The Federation of American Societies for Experimental Biology, 28(12), pp. 5299–310. doi: 10.1096/fj.14-256263.

Refai, A. K., Textor, M., Brunette, D. M. and Waterfield, J. D. (2004) ‘Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines’, Journal of Biomedical Materials Research, 70A(2), pp. 194–205. doi: 10.1002/jbm.a.30075.

Reinhard, J. R., Lin, S., McKee, K. K., Meinen, S., Crosson, S. C., Sury, M., Hobbs, S., Maier, G., Yurchenco, P. D. and Rüegg, M. A. (2017) ‘Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice.’, Science translational medicine. American Association for the Advancement of Science, 9(396), p. eaal4649. doi: 10.1126/scitranslmed.aal4649.

Rennard, S. I. and Crystal, R. G. (1982) ‘Fibronectin in human bronchopulmonary lavage fluid. Elevation in patients with interstitial lung disease’, J Clin Invest, 69(1), pp. 113–122. Available at: https://www.ncbi.nlm.nih.gov/pubmed/7054232.

Rennard, S. I., Hunninghake, G. W., Bitterman, P. B. and Crystal, R. G. (1981) ‘Production of fibronectin by the human alveolar macrophage: Mechanism for the recruitment of fibroblasts to sites of tissue injury in interstitial lung diseases’, 78(11), pp. 7147–7151. Available at: http://www.pnas.org/content/78/11/7147.full.pdf (Accessed: 10 August 2017).

Ricard-Blum, S. and Salza, R. (2014) ‘Matricryptins and matrikines: biologically active fragments of the extracellular matrix’, Experimental Dermatology, 23(7), pp. 457–463. doi: 10.1111/exd.12435.

Rich, A. and Harris, A. K. (1981) ‘Anomalous preferences of cultured macrophages for hydrophobic

157

and roughened substrata.’, Journal of cell science, 50, pp. 1–7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7033247 (Accessed: 3 October 2017).

Richter, M., Ray, S. J., Chapman, T. J., Austin, S. J., Rebhahn, J., Mosmann, T. R., Gardner, H., Kotelianski, V., deFougerolles, A. R. and Topham, D. J. (2007) ‘Collagen distribution and expression of collagen-binding alpha1beta1 (VLA-1) and alpha2beta1 (VLA-2) integrins on CD4 and CD8 T cells during influenza infection.’, Journal of immunology (Baltimore, Md. : 1950), 178, pp. 4506–4516. doi: 178/7/4506 [pii].

Rivera, A., Barr, T., Rais, M., Engelmann, F. and Messaoudi, I. (2016) ‘microRNAs Regulate Host Immune Response and Pathogenesis During Influenza Infection in Rhesus Macaques’, Viral Immunology, 29(4), pp. 212–227. doi: 10.1089/vim.2015.0074.

Robinson, C. M. and Pfeiffer, J. K. (2014) ‘Viruses and the Microbiota.’, Annual review of virology. NIH Public Access, 1, pp. 55–69. doi: 10.1146/annurev-virology-031413-085550.

Rooney, P., Wang, M., Kumar, P. and Kumar, S. (1993) ‘Angiogenic oligosaccharides of hyaluronan enhance the production of collagens by endothelial cells.’, Journal of cell science, 105 ( Pt 1), pp. 213–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7689574 (Accessed: 11 September 2017).

Rosenberger, C. M., Podyminogin, R. L., Diercks, A. H., Treuting, P. M., Peschon, J. J., Rodriguez, D., Gundapuneni, M., Weiss, M. J. and Aderem, A. (2017) ‘miR-144 attenuates the host response to influenza virus by targeting the TRAF6-IRF7 signaling axis’, PLOS Pathogens. Edited by C. B. Lopez. Public Library of Science, 13(4), p. e1006305. doi: 10.1371/journal.ppat.1006305.

Roth-Kleiner, M., Berger, T. M., Gremlich, S., Tschanz, S. A., Mund, S. I., Post, M., Stampanoni, M. and Schittny, J. C. (2014) ‘Neonatal steroids induce a down-regulation of tenascin-C and elastin and cause a deceleration of the first phase and an acceleration of the second phase of lung alveolarization’, Histochemistry and Cell Biology. Springer Berlin Heidelberg, 141(1), pp. 75–84. doi: 10.1007/s00418-013-1132-7.

Roux, X., Remot, A., Petit-Camurdan, A., Nahori, M.-A., Kiefer-Biasizzo, H., Marchal, G., Lagranderie, M. and Riffault, S. (2011) ‘Neonatal lung immune responses show a shift of cytokines and transcription factors toward Th2 and a deficit in conventional and plasmacytoid dendritic cells’, European Journal of Immunology, 41(10), pp. 2852–2861. doi: 10.1002/eji.201041224.

Rozario, T., Dzamba, B., Weber, G. F., Davidson, L. A. and DeSimone, D. W. (2009) ‘The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo.’, Developmental biology. NIH Public Access, 327(2), pp. 386–98. doi: 10.1016/j.ydbio.2008.12.025.

Ruckwardt, T. J., Malloy, A. M. W., Morabito, K. M. and Graham, B. S. (2014) ‘Quantitative and Qualitative Deficits in Neonatal Lung-Migratory Dendritic Cells Impact the Generation of the CD8+ T Cell Response’, PLoS Pathogens. Edited by A. Garcia-Sastre. Public Library of Science, 10(2), p. e1003934. doi: 10.1371/journal.ppat.1003934.

Ruoslahti, E. and Öbrink, B. (1996) ‘Common Principles in Cell Adhesion’, Experimental Cell Research, 227(1), pp. 1–11. doi: 10.1006/excr.1996.0243.

Russell, R. E. K., Thorley, A., Culpitt, S. V., Dodd, S., Donnelly, L. E., Demattos, C., Fitzgerald, M. and Barnes, P. J. (2002) ‘Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases’, American Journal of Physiology - Lung Cellular and Molecular Physiology, 283(4). Available at: http://ajplung.physiology.org/content/283/4/L867 (Accessed: 10 August 2017).

Ryman-Rasmussen, J. P., Tewksbury, E. W., Moss, O. R., Cesta, M. F., Wong, B. A. and Bonner, J. C. (2009) ‘Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma’, Am J Respir Cell Mol Biol. American Thoracic Society, 40(3), pp. 349–358. doi: 10.1165/rcmb.2008-0276OC.

Saari, H., Konttinen, Y. T., Friman, C. and Sorsa, T. (1993) ‘Differential effects of reactive oxygen species on native synovial fluid and purified human umbilical cord hyaluronate.’, Inflammation, 17(4), pp. 403–15. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8406685 (Accessed: 1 September 2017).

Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., Braisted, J., Klapa, M., Currier, T., Thiagarajan, M., Sturn, A., Snuffin, M., Rezantsev, A., Popov, D., Ryltsov, A., Kostukovich, E.,

158

Borisovsky, I., Liu, Z., Vinsavich, A., Trush, V. and Quackenbush, J. (2003) ‘TM4: a free, open-source system for microarray data management and analysis’, Biotechniques, 34(2), pp. 374–378. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12613259.

Sano, H., Chiba, H., Iwaki, D., Sohma, H., Voelker, D. R. and Kuroki, Y. (2000) ‘Surfactant Proteins A and D Bind CD14 by Different Mechanisms’, Journal of Biological Chemistry, 275(29), pp. 22442–22451. doi: 10.1074/jbc.M001107200.

Sanpui, P., Zheng, X., Loeb, J. C., Bisesi, J. H., Khan, I. A., Afrooz, A. R., Liu, K., Badireddy, A. R., Wiesner, M. R., Ferguson, P. L., Saleh, N. B., Lednicky, J. A. and Sabo-Attwood, T. (2014) ‘Single-walled carbon nanotubes increase pandemic influenza A H1N1 virus infectivity of lung epithelial cells’, Part Fibre Toxicol, 11, p. 66. doi: 10.1186/s12989-014-0066-0.

Savani, R. C., Hou, G., Liu, P., Wang, C., Simons, E., Grimm, P. C., Stern, R., Greenberg, A. H., DeLisser, H. M. and Khalil, N. (2000) ‘A Role for Hyaluronan in Macrophage Accumulation and Collagen Deposition after Bleomycin-Induced Lung Injury’, American Journal of Respiratory Cell and Molecular Biology. American Thoracic SocietyNew York, NY, 23(4), pp. 475–484. doi: 10.1165/ajrcmb.23.4.3944.

Sayers, B. C., Taylor, A. J., Glista-Baker, E. E., Shipley-Phillips, J. K., Dackor, R. T., Edin, M. L., Lih, F. B., Tomer, K. B., Zeldin, D. C., Langenbach, R. and Bonner, J. C. (2013) ‘Role of cyclooxygenase-2 in exacerbation of allergen-induced airway remodeling by multiwalled carbon nanotubes’, Am J Respir Cell Mol Biol, 49(4), pp. 525–535. doi: 10.1165/rcmb.2013-0019OC.

Schuijt, T. J., Lankelma, J. M., Scicluna, B. P., de Sousa e Melo, F., Roelofs, J. J. T. H., de Boer, J. D., Hoogendijk, A. J., de Beer, R., de Vos, A., Belzer, C., de Vos, W. M., van der Poll, T. and Wiersinga, W. J. (2016) ‘The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia’, Gut, 65(4), pp. 575–583. doi: 10.1136/gutjnl-2015-309728.

Sechler, J. L., Cumiskey, A. M., Gazzola, D. M. and Schwarzbauer, J. E. (2000) ‘A novel RGD-independent fibronectin assembly pathway initiated by alpha4beta1 integrin binding to the alternatively spliced V region.’, Journal of cell science, 113 ( Pt 8), pp. 1491–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10725231 (Accessed: 10 August 2017).

Sechler, J. L. and Schwarzbauer, J. E. (1998) ‘Control of cell cycle progression by fibronectin matrix architecture.’, The Journal of biological chemistry, 273(40), pp. 25533–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9748212 (Accessed: 22 August 2017).

Selin, L. K., Brehm, M. A., Naumov, Y. N., Cornberg, M., Kim, S.-K., Clute, S. C. and Welsh, R. M. (2006) ‘Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity.’, Immunological reviews, 211, pp. 164–81. doi: 10.1111/j.0105-2896.2006.00394.x.

Senior, R. M., Bielefeld, D. R. and Abensohn, M. K. (1975) ‘The effects of proteolytic enzymes on the tensile strength of human lung.’, The American review of respiratory disease, 111(2), pp. 184–8. doi: 10.1164/arrd.1975.111.2.184.

Shah, L. (2007) ‘Lung transplantation in sarcoidosis’, Semin Respir Crit Care Med, 28(1), pp. 134–140. doi: 10.1055/s-2007-970339.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) ‘Cytoscape: a software environment for integrated models of biomolecular interaction networks’, Genome Res, 13(11), pp. 2498–2504. doi: 10.1101/gr.1239303.

Shaykhiev, R., Krause, A., Salit, J., Strulovici-Barel, Y., Harvey, B.-G., O’Connor, T. P. and Crystal, R. G. (2009) ‘Smoking-Dependent Reprogramming of Alveolar Macrophage Polarization: Implication for Pathogenesis of Chronic Obstructive Pulmonary Disease’, The Journal of Immunology, 183(4), pp. 2867–2883. doi: 10.4049/jimmunol.0900473.

Shen, S., Li, J., Hilchey, S., Shen, X., Tu, C., Qiu, X., Ng, A., Ghaemmaghami, S., Wu, H., Zand, M. S. and Qu, J. (2016) ‘Ion-Current-Based Temporal Proteomic Profiling of Influenza-A-Virus-Infected Mouse Lungs Revealed Underlying Mechanisms of Altered Integrity of the Lung Microvascular Barrier’, Journal of Proteome Research, 15(2), pp. 540–553. doi: 10.1021/acs.jproteome.5b00927.

Shen, Z., Tang, W., Guo, J. and Sun, S. (2017) ‘miR-483-5p plays a protective role in chronic obstructive pulmonary disease’, International Journal of Molecular Medicine, 40(1), pp. 193–200. doi: 10.3892/ijmm.2017.2996.

159

Shi, F. and Sottile, J. (2008) ‘Caveolin-1-dependent β1 integrin endocytosis is a critical regulator of fibronectin turnover’, Journal of Cell Science, 121(14). Available at: http://jcs.biologists.org/content/121/14/2360 (Accessed: 10 August 2017).

Shifren, A. and Mecham, R. P. (2006) ‘The Stumbling Block in Lung Repair of Emphysema: Elastic Fiber Assembly’, Proceedings of the American Thoracic Society, 3(5), pp. 428–433. doi: 10.1513/pats.200601-009AW.

Shimizu, K., Uchiyama, A., Yamashita, M., Hirose, A., Nishimura, T. and Oku, N. (2013) ‘Biomembrane damage caused by exposure to multi-walled carbon nanotubes.’, The Journal of toxicological sciences. The Japanese Society of Toxicology, 38(1), pp. 7–12. doi: 10.2131/jts.38.7.

Shipkowski, K. A., Taylor, A. J., Thompson, E. A., Glista-Baker, E. E., Sayers, B. C., Messenger, Z. J., Bauer, R. N., Jaspers, I. and Bonner, J. C. (2015) ‘An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1’, PLoS One, 10(6), p. e0128888. doi: 10.1371/journal.pone.0128888.

Shvedova, A. A., Kisin, E., Murray, A. R., Johnson, V. J., Gorelik, O., Arepalli, S., Hubbs, A. F., Mercer, R. R., Keohavong, P., Sussman, N., Jin, J., Yin, J., Stone, S., Chen, B. T., Deye, G., Maynard, A., Castranova, V., Baron, P. A. and Kagan, V. E. (2008) ‘Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis’, American Journal of Physiology - Lung Cellular and Molecular Physiology. American Physiological Society, pp. L552–L565. doi: 10.1152/ajplung.90287.2008.

Shvedova, A. A., Kisin, E. R., Mercer, R., Murray, A. R., Johnson, V. J., Potapovich, A. I., Tyurina, Y. Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A. F., Antonini, J., Evans, D. E., Ku, B.-K., Ramsey, D., Maynard, A., Kagan, V. E., Castranova, V. and Baron, P. (2005) ‘Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice’, Am J Physiol Lung Cell Mol Physiol, 289(5), pp. L698-708. doi: 10.1152/ajplung.00084.2005.

Singh, B., Janardhan, K. S. and Kanthan, R. (2005) ‘Expression of angiostatin, integrin alphavbeta3, and vitronectin in human lungs in sepsis’, Exp Lung Res, 31(8), pp. 771–782. doi: 10.1080/01902140500324901.

Singh, N., Shirdel, E. A., Waldron, L., Zhang, R.-H., Jurisica, I. and Comelli, E. M. (2012) ‘The murine caecal microRNA signature depends on the presence of the endogenous microbiota.’, International journal of biological sciences, 8(2), pp. 171–86. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22211115 (Accessed: 30 August 2017).

Singh, N., Singh, S., Sharma, B. and Singh, V. (2016) ‘Swine flu fibrosis: Regressive or progressive?’, Lung India, 33(2), p. 219. doi: 10.4103/0970-2113.177453.

Singh, P., Carraher, C. and Schwarzbauer, J. E. (2010) ‘Assembly of Fibronectin Extracellular Matrix ECM: extracellular matrix’, Annu. Rev. Cell Dev. Biol, 26, pp. 397–419. doi: 10.1146/annurev-cellbio-100109-104020.

Singh, R. P., Raina, K., Sharma, G. and Agarwal, R. (2008) ‘Silibinin Inhibits Established Prostate Tumor Growth, Progression, Invasion, and Metastasis and Suppresses Tumor Angiogenesis and Epithelial-Mesenchymal Transition in Transgenic Adenocarcinoma of the Mouse Prostate Model Mice’, Clinical Cancer Research, 14(23), pp. 7773–7780. doi: 10.1158/1078-0432.CCR-08-1309.

Singleton, P. A., Mirzapoiazova, T., Guo, Y., Sammani, S., Mambetsariev, N., Lennon, F. E., Moreno-Vinasco, L. and Garcia, J. G. N. (2010) ‘High-molecular-weight hyaluronan is a novel inhibitor of pulmonary vascular leakiness.’, American journal of physiology. Lung cellular and molecular physiology. American Physiological Society, 299(5), pp. L639-51. doi: 10.1152/ajplung.00405.2009.

Singleton, P. A., Salgia, R., Moreno-Vinasco, L., Moitra, J., Sammani, S., Mirzapoiazova, T. and Garcia, J. G. N. (2007) ‘CD44 Regulates Hepatocyte Growth Factor-mediated Vascular Integrity’, Journal of Biological Chemistry, 282(42), pp. 30643–30657. doi: 10.1074/jbc.M702573200.

Siomi, M. C., Sato, K., Pezic, D. and Aravin, A. A. (2011) ‘PIWI-interacting small RNAs: the vanguard of genome defence’, Nature Reviews Molecular Cell Biology, 12(4), pp. 246–258. doi: 10.1038/nrm3089.

van der Sluijs, K. F., van Elden, L. J. R., Nijhuis, M., Schuurman, R., Pater, J. M., Florquin, S., Goldman, M., Jansen, H. M., Lutter, R. and van der Poll, T. (2004) ‘IL-10 Is an Important Mediator of

160

the Enhanced Susceptibility to Pneumococcal Pneumonia after Influenza Infection’, The Journal of Immunology, 172(12). Available at: http://www.jimmunol.org/content/172/12/7603?ijkey=a3aed0fb7d0745377f92fab136e04d429a57b0aa&keytype2=tf_ipsecsha (Accessed: 13 September 2017).

van der Sluijs, K. F., Nijhuis, M., Levels, J. H. M., Florquin, S., Mellor, A. L., Jansen, H. M., van der Poll, T. and Lutter, R. (2006) ‘Influenza-induced expression of indoleamine 2,3-dioxygenase enhances interleukin-10 production and bacterial outgrowth during secondary pneumococcal pneumonia.’, The Journal of infectious diseases, 193(2), pp. 214–22. doi: 10.1086/498911.

Snelgrove, R. J., Goulding, J., Didierlaurent, A. M., Lyonga, D., Vekaria, S., Edwards, L., Gwyer, E., Sedgwick, J. D., Barclay, A. N. and Hussell, T. (2008) ‘A critical function for CD200 in lung immune homeostasis and the severity of influenza infection.’, Nature immunology, 9(9), pp. 1074–83. doi: 10.1038/ni.1637.

Snyder-Talkington, B. N., Dong, C., Sargent, L. M., Porter, D. W., Staska, L. M., Hubbs, A. F., Raese, R., McKinney, W., Chen, B. T., Battelli, L., Lowry, D. T., Reynolds, S. H., Castranova, V., Qian, Y. and Guo, N. L. (2016) ‘mRNAs and miRNAs in whole blood associated with lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma after multi-walled carbon nanotube inhalation exposure in mice’, Journal of Applied Toxicology, 36(1), pp. 161–174. doi: 10.1002/jat.3157.

Sobin, S. S., Fung, Y. C. and Tremer, H. M. (1988) ‘Collagen and elastin fibers in human pulmonary alveolar walls’, Journal of Applied Physiology, 64(4). Available at: http://jap.physiology.org/content/64/4/1659?ijkey=cd7755da38ba8ec438534f3bd60434fbfeacd494&keytype2=tf_ipsecsha (Accessed: 13 September 2017).

Sokolowska, M., Chen, L. Y., Eberlein, M., Martinez-Anton, A., Liu, Y., Alsaaty, S., Qi, H. Y., Logun, C., Horton, M. and Shelhamer, J. H. (2014) ‘Low molecular weight hyaluronan activates cytosolic phospholipase A2α and eicosanoid production in monocytes and macrophages’, J Biol Chem, 289(7), pp. 4470–4488. doi: 10.1074/jbc.M113.515106.

Song, L., Liu, H., Gao, S., Jiang, W. and Huang, W. (2010) ‘Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells.’, Journal of virology. American Society for Microbiology, 84(17), pp. 8849–60. doi: 10.1128/JVI.00456-10.

Sonkar, S. K., Tripathi, S. and Sarkar, S. (2009) ‘Activation of aerial oxygen to superoxide radical by carbon nanotubes in indoor spider web trapped aerosol’, Current Science, 97(8), pp. 1227–1230. Available at: http://repository.ias.ac.in/76901/1/76901.pdf (Accessed: 31 July 2017).

Sottile, J. and Chandler, J. (2005) ‘Fibronectin matrix turnover occurs through a caveolin-1-dependent process.’, Molecular biology of the cell. American Society for Cell Biology, 16(2), pp. 757–68. doi: 10.1091/mbc.E04-08-0672.

Sottile, J. and Hocking, D. C. (2002) ‘Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions.’, Molecular biology of the cell. American Society for Cell Biology, 13(10), pp. 3546–59. doi: 10.1091/mbc.E02-01-0048.

Srivastava, M., Steinwede, K., Kiviranta, R., Morko, J., Hoymann, H.-G., Länger, F., Buhling, F., Welte, T. and Maus, U. A. (2008) ‘Overexpression of cathepsin K in mice decreases collagen deposition and lung resistance in response to bleomycin-induced pulmonary fibrosis’, Respiratory Research, 9(1), p. 54. doi: 10.1186/1465-9921-9-54.

Stocks, J., Hislop, A. and Sonnappa, S. (2013) ‘Early lung development: lifelong effect on respiratory health and disease’, The Lancet Respiratory Medicine, 1(9), pp. 728–742. doi: 10.1016/S2213-2600(13)70118-8.

Strieter, R. M. (2008) ‘What Differentiates Normal Lung Repair and Fibrosis?: Inflammation, Resolution of Repair, and Fibrosis’, Proceedings of the American Thoracic Society. American Thoracic Society, 5(3), pp. 305–310. doi: 10.1513/pats.200710-160DR.

Suki, B., Ito, S., Stamenović, D., Lutchen, K. R. and Ingenito, E. P. (2005) ‘Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces’, Journal of Applied Physiology, 98(5). Available at: http://jap.physiology.org/content/98/5/1892 (Accessed: 13 September 2017).

Sumi, M., Satoh, H., Kagohashi, K., Ishikawa, H. and Sekizawa, K. (2005) ‘Increased serum levels

161

of endostatin in patients with idiopathic pulmonary fibrosis’, Journal of Clinical Laboratory Analysis, 19(4), pp. 146–149. doi: 10.1002/jcla.20069.

Swindle, C. S., Tran, K. T., Johnson, T. D., Banerjee, P., Mayes, A. M., Griffith, L. and Wells, A. (2001) ‘Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor.’, The Journal of cell biology, 154(2), pp. 459–68. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11470832 (Accessed: 6 September 2017).

Tafolla, E., Wang, S., Wong, B., Leong, J. and Kapila, Y. L. (2005) ‘JNK1 and JNK2 Oppositely Regulate p53 in Signaling Linked to Apoptosis Triggered by an Altered Fibronectin Matrix’, Journal of Biological Chemistry, 280(20), pp. 19992–19999. doi: 10.1074/jbc.M500331200.

Taganov, K. D., Boldin, M. P., Chang, K.-J. J. and Baltimore, D. (2006) ‘NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses’, Proc Natl Acad Sci U S A, 103(33), pp. 12481–12486. doi: 10.1073/pnas.0605298103.

Takahashi, M., Eda, A., Fukushima, T. and Hohjoh, H. (2012) ‘Reduction of Type IV Collagen by Upregulated miR-29 in Normal Elderly Mouse and klotho-Deficient, Senescence-Model Mouse’, PLoS ONE. Edited by B. Tian, 7(11), p. e48974. doi: 10.1371/journal.pone.0048974.

Talmi-Frank, D., Altboum, Z., Solomonov, I., Udi, Y., Jaitin, D. A., Klepfish, M., David, E., Zhuravlev, A., Keren-Shaul, H., Winter, D. R., Gat-Viks, I., Mandelboim, M., Ziv, T., Amit, I. and Sagi, I. (2016) ‘Extracellular Matrix Proteolysis by MT1-MMP Contributes to Influenza-Related Tissue Damage and Mortality’, Cell Host & Microbe, 20(4), pp. 458–470. doi: 10.1016/j.chom.2016.09.005.

Tambyah, P. A., Sepramaniam, S., Mohamed Ali, J., Chai, S. C., Swaminathan, P., Armugam, A. and Jeyaseelan, K. (2013) ‘microRNAs in Circulation Are Altered in Response to Influenza A Virus Infection in Humans’, PLoS ONE. Edited by D. Barash. Am Heart Assoc., 8(10), p. e76811. doi: 10.1371/journal.pone.0076811.

Tan, K. S., Qian, L., Rosado, R., Flood, P. M. and Cooper, L. F. (2006) ‘The role of titanium surface topography on J774A.1 macrophage inflammatory cytokines and nitric oxide production’, Biomaterials, 27(30), pp. 5170–5177. doi: 10.1016/j.biomaterials.2006.05.002.

Tan, M., Sun, W., Feng, C., Xia, D., Shen, X., Ding, Y., Liu, Z., Xing, Z., Su, X. and Shi, Y. (2016) ‘The microRNA-let-7b-mediated attenuated strain of influenza A (H1N1) virus in a mouse model.’, Journal of infection in developing countries, 10(9), pp. 973–981. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27694730 (Accessed: 15 August 2017).

Tan, S. Y. S. and Krasnow, M. A. (2016) ‘Developmental origin of lung macrophage diversity.’, Development (Cambridge, England). Company of Biologists, 143(8), pp. 1318–27. doi: 10.1242/dev.129122.

Tang, B., Xiao, B., Liu, Z., Li, N., Zhu, E. D., Li, B. S., Xie, Q. H., Zhuang, Y., Zou, Q. M. and Mao, X. H. (2010) ‘Identification of MyD88 as a novel target of miR-155, involved in negative regulation of Helicobacter pylori-induced inflammation’, FEBS Letters, 584(8), pp. 1481–1486. doi: 10.1016/j.febslet.2010.02.063.

Tang, X., Zhang, H., Song, Y., Zhou, D. and Wang, J. (2016) ‘Hemagglutinin-targeting Artificial MicroRNAs Expressed by Adenovirus Protect Mice From Different Clades of H5N1 Infection’, Molecular Therapy - Nucleic Acids, 5, p. e311. doi: 10.1038/mtna.2016.25.

Taubenberger, J. K. and Morens, D. M. (2008) ‘The pathology of influenza virus infections.’, Annual review of pathology. NIH Public Access, 3, pp. 499–522. doi: 10.1146/annurev.pathmechdis.3.121806.154316.

Teder, P., Vandivier, R. W., Jiang, D., Liang, J., Cohn, L., Puré, E., Henson, P. M. and Noble, P. W. (2002) ‘Resolution of Lung Inflammation by CD44’, Science, 296(5565), pp. 155–158. doi: 10.1126/science.1069659.

Termeer, C., Benedix, F., Sleeman, J., Fieber, C., Voith, U., Ahrens, T., Miyake, K., Freudenberg, M., Galanos, C. and Simon, J. C. (2002) ‘Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4’, J Exp Med, 195(1), pp. 99–111. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11781369.

Tesfaigzi, Y., Harris, J. F., Hotchkiss, J. A. and Harkema, J. R. (2004) ‘DNA synthesis and Bcl-2

162

expression during development of mucous cell metaplasia in airway epithelium of rats exposed to LPS.’, American journal of physiology. Lung cellular and molecular physiology, 286(2), pp. L268-74. doi: 10.1152/ajplung.00172.2003.

Thompson, E. A., Sayers, B. C., Glista-Baker, E. E., Shipkowski, K. A., Ihrie, M. D., Duke, K. S., Taylor, A. J. and Bonner, J. C. (2015) ‘Role of signal transducer and activator of transcription 1 in murine allergen-induced airway remodeling and exacerbation by carbon nanotubes’, Am J Respir Cell Mol Biol, 53(5), pp. 625–636. doi: 10.1165/rcmb.2014-0221OC.

Thornton, J. E. and Gregory, R. I. (2012) ‘How does Lin28 let-7 control development and disease?’, Trends Cell Biol, 22(9), pp. 474–482. doi: 10.1016/j.tcb.2012.06.001.

Tian, F., Cui, D., Schwarz, H., Estrada, G. G. and Kobayashi, H. (2006) ‘Cytotoxicity of single-wall carbon nanotubes on human fibroblasts’, Toxicology in Vitro. Pergamon, 20(7), pp. 1202–1212. doi: 10.1016/j.tiv.2006.03.008.

To, W. S. and Midwood, K. S. (2011) ‘Plasma and cellular fibronectin: distinct and independent functions during tissue repair’, Fibrogenesis & Tissue Repair, 4(1), p. 21. doi: 10.1186/1755-1536-4-21.

Tolg, C., Telmer, P. and Turley, E. (2014) ‘Specific sizes of hyaluronan oligosaccharides stimulate fibroblast migration and excisional wound repair’, PLoS One, 9(2), p. e88479. doi: 10.1371/journal.pone.0088479.

Toole, B. P. (2004) ‘Hyaluronan: from extracellular glue to pericellular cue’, Nature Reviews Cancer, 4(7), pp. 528–539. doi: 10.1038/nrc1391.

Uchakina, O. N., Castillejo, C. M., Bridges, C. C. and McKallip, R. J. (2013) ‘The role of hyaluronic acid in SEB-induced acute lung inflammation.’, Clinical immunology (Orlando, Fla.), 146(1), pp. 56–69. doi: 10.1016/j.clim.2012.11.002.

Uchide, N., Obatake, K., Yamada, R., Sadanari, H., Matsubara, K., Murayama, T. and Ohyama, K. (2016) ‘Regulation of Matrix Metalloproteinases-2 and -9 Gene Expression in Cultured Human Fetal Membrane Cells by Influenza Virus Infection’, Biological & Pharmaceutical Bulletin, 39(12), pp. 1912–1921. doi: 10.1248/bpb.b16-00093.

Vaccaro, C. A. and Brody, J. S. (1981) ‘Structural features of alveolar wall basement membrane in the adult rat lung’, Journal of Cell Biology, 91(2 I), pp. 427–437. doi: 10.1083/jcb.91.2.427.

Vandivort, T. C., Birkland, T. P., Domiciano, T. P., Mitra, S., Kavanagh, T. J. and Parks, W. C. (2017) ‘Stromelysin-2 (MMP-10) facilitates clearance and moderates inflammation and cell death following lung exposure to long multiwalled carbon nanotubes’, International Journal of Nanomedicine. Dove Press, 12, pp. 1019–1031. doi: 10.2147/IJN.S123484.

Vegh, P., Foroushani, A. B., Magee, D. A., McCabe, M. S., Browne, J. A., Nalpas, N. C., Conlon, K. M., Gordon, S. V, Bradley, D. G., MacHugh, D. E. and Lynn, D. J. (2013) ‘Profiling microRNA expression in bovine alveolar macrophages using RNA-seq’, Vet Immunol Immunopathol, 155(4), pp. 238–244. doi: 10.1016/j.vetimm.2013.08.004.

Velling, T., Risteli, J., Wennerberg, K., Mosher, D. F. and Johansson, S. (2002) ‘Polymerization of Type I and III Collagens Is Dependent On Fibronectin and Enhanced By Integrins α 11 β 1 and α 2 β

1’, Journal of Biological Chemistry, 277(40), pp. 37377–37381. doi: 10.1074/jbc.M206286200.

Vietti, G., Lison, D. and van den Brule, S. (2015) ‘Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP)’, Particle and Fibre Toxicology, 13(1), p. 11. doi: 10.1186/s12989-016-0123-y.

Voisin, M.-B., Woodfin, A. and Nourshargh, S. (2009) ‘Monocytes and Neutrophils Exhibit Both Distinct and Common Mechanisms in Penetrating the Vascular Basement Membrane In Vivo’, Arteriosclerosis, Thrombosis, and Vascular Biology, 29(8). Available at: http://atvb.ahajournals.org/content/29/8/1193?ijkey=218a9297b199e5d8a20118d362e11f08eeb25807&keytype2=tf_ipsecsha (Accessed: 1 September 2017).

Vutcovici, M., Brassard, P. and Bitton, A. (2016) ‘Inflammatory bowel disease and airway diseases.’, World journal of gastroenterology. Baishideng Publishing Group Inc, 22(34), pp. 7735–41. doi: 10.3748/wjg.v22.i34.7735.

163

Waaijenborg, S., Hahné, S. J. M., Mollema, L., Smits, G. P., Berbers, G. A. M., van der Klis, F. R. M., de Melker, H. E. and Wallinga, J. (2013) ‘Waning of maternal antibodies against measles, mumps, rubella, and varicella in communities with contrasting vaccination coverage.’, The Journal of infectious diseases. Oxford University Press, 208(1), pp. 10–6. doi: 10.1093/infdis/jit143.

Wahid, F., Shehzad, A., Khan, T. and Kim, Y. Y. (2010) ‘MicroRNAs: Synthesis, mechanism, function, and recent clinical trials’, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1803(11), pp. 1231–1243. doi: 10.1016/j.bbamcr.2010.06.013.

Wallace, A. M., Sandford, A. J., English, J. C., Burkett, K. M., Li, H., Finley, R. J., Müller, N. L., Coxson, H. O., Paré, P. D. and Abboud, R. T. (2008) ‘Matrix Metalloproteinase Expression by Human Alveolar Macrophages in Relation to Emphysema’, COPD: Journal of Chronic Obstructive Pulmonary Disease, 5(1), pp. 13–23. doi: 10.1080/15412550701817789.

Walzl, G., Tafuro, S., Moss, P., Openshaw, P. J. and Hussell, T. (2000) ‘Influenza virus lung infection protects from respiratory syncytial virus-induced immunopathology.’, The Journal of experimental medicine. Rockefeller University Press, 192(9), pp. 1317–26. doi: 10.1084/JEM.192.9.1317.

Wan, Y.-Y., Tian, G.-Y., Guo, H.-S., Kang, Y.-M., Yao, Z.-H., Li, X.-L., Liu, Q.-H. and Lin, D.-J. (2013) ‘Endostatin, an angiogenesis inhibitor, ameliorates bleomycin-induced pulmonary fibrosis in rats’, Respiratory Research, 14(1), p. 56. doi: 10.1186/1465-9921-14-56.

Wang, B., Komers, R., Carew, R., Winbanks, C. E., Xu, B., Herman-Edelstein, M., Koh, P., Thomas, M., Jandeleit-Dahm, K., Gregorevic, P., Cooper, M. E. and Kantharidis, P. (2012) ‘Suppression of microRNA-29 Expression by TGF- 1 Promotes Collagen Expression and Renal Fibrosis’, Journal of the American Society of Nephrology, 23(2), pp. 252–265. doi: 10.1681/ASN.2011010055.

Wang, J., Li, F., Wei, H., Lian, Z.-X., Sun, R. and Tian, Z. (2014) ‘Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell–dependent inflammation’, The Journal of Experimental Medicine, 211(12), pp. 2397–2410. doi: 10.1084/jem.20140625.

Wang, L., Mercer, R. R., Rojanasakul, Y., Qiu, A., Lu, Y., Scabilloni, J. F., Wu, N. and Castranova, V. (2010) ‘Direct Fibrogenic Effects of Dispersed Single-Walled Carbon Nanotubes on Human Lung Fibroblasts’, Journal of Toxicology and Environmental Health, Part A. Taylor & Francis Group , 73(5–6), pp. 410–422. doi: 10.1080/15287390903486550.

Wang, R., Clark, R. A. F., Mosher, D. F. and Ren, X.-D. (2005) ‘Fibronectin’s Central Cell-binding Domain Supports Focal Adhesion Formation and Rho Signal Transduction’, Journal of Biological Chemistry, 280(31), pp. 28803–28810. doi: 10.1074/jbc.M501421200.

Wang, R., Hughes, T., Beck, S., Vakil, S., Li, S., Pantano, P. and Draper, R. K. (2013) ‘Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing.’, Nanotoxicology. NIH Public Access, 7(7), pp. 1272–81. doi: 10.3109/17435390.2012.736547.

Wang, R., Zhang, Y.-Y., Lu, J.-S., Xia, B.-H., Yang, Z.-X., Zhu, X.-D., Zhou, X.-W. and Huang, P.-T. (2017) ‘The highly pathogenic H5N1 influenza A virus down-regulated several cellular MicroRNAs which target viral genome’, Journal of Cellular and Molecular Medicine. doi: 10.1111/jcmm.13219.

Wang, S., Quang Le, T., Chida, J., Cisse, Y., Yano, M. and Kido, H. (2010) ‘Mechanisms of matrix metalloproteinase-9 upregulation and tissue destruction in various organs in influenza A virus infection.’, The journal of medical investigation : JMI, 57(1–2), pp. 26–34. doi: 10.2152/jmi.57.26.

Wang, S., Voisin, M.-B., Larbi, K. Y., Dangerfield, J., Scheiermann, C., Tran, M., Maxwell, P. H., Sorokin, L. and Nourshargh, S. (2006) ‘Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils’, Journal of Experimental Medicine, 203(6). Available at: http://jem.rupress.org/content/203/6/1519?ijkey=22056356c387e07fd665581fe8740b44e8f14c61&keytype2=tf_ipsecsha (Accessed: 1 September 2017).

Wang, X., Liao, Y.-P., Telesca, D., Chang, C. H., Xia, T. and Nel, A. E. (2017) ‘The Genetic Heterogeneity among Different Mouse Strains Impacts the Lung Injury Potential of Multiwalled Carbon Nanotubes’, Small, p. 1700776. doi: 10.1002/smll.201700776.

Watanabe, K. (2004) ‘Collagenolytic proteases from bacteria’, Applied Microbiology and Biotechnology. Springer-Verlag, 63(5), pp. 520–526. doi: 10.1007/s00253-003-1442-0.

164

Watanabe, K., Senju, S., Toyoshima, H. and Yoshida, M. (1997) ‘Thickness of the basement membrane of bronchial epithelial cells in lung diseases as determined by transbronchial biopsy’, Respiratory Medicine, 91(7), pp. 406–410. doi: 10.1016/S0954-6111(97)90254-7.

Weigel, P. H., Hascall, V. C. and Tammi, M. (1997) ‘Hyaluronan synthases.’, The Journal of biological chemistry. American Society for Biochemistry and Molecular Biology, 272(22), pp. 13997–4000. doi: 10.1074/JBC.272.22.13997.

Weinberger, B., Laskin, D. L., Mariano, T. M., Sunil, V. R., DeCoste, C. J., Heck, D. E., Gardner, C. R. and Laskin, J. D. (2001) ‘Mechanisms underlying reduced responsiveness of neonatal neutrophils to distinct chemoattractants.’, Journal of leukocyte biology. NIH Public Access, 70(6), pp. 969–76. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11739560 (Accessed: 3 October 2017).

White, E. S. (2015) ‘Lung extracellular matrix and fibroblast function.’, Annals of the American Thoracic Society. American Thoracic Society, 12 Suppl 1(Suppl 1), pp. S30-3. doi: 10.1513/AnnalsATS.201406-240MG.

WHO (2017) WHO | Influenza (Seasonal). World Health Organization. Available at: http://www.who.int/mediacentre/factsheets/fs211/en/ (Accessed: 25 September 2017).

Von Wichert, P., Barth, P. and Von Wichert, G. (2015) ‘Tracheal and bronchial involvement in colitis ulcerosa – a colo-bronchitic syndrome? A case report and some additional considerations’, German medical science : GMS e-journal, 13, p. Doc03. doi: 10.3205/000207.

Widmer, C., Gebauer, J. M., Brunstein, E., Rosenbaum, S., Zaucke, F., Drögemüller, C., Leeb, T. and Baumann, U. (2012) ‘Molecular basis for the action of the collagen-specific chaperone Hsp47/SERPINH1 and its structure-specific client recognition.’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 109(33), pp. 13243–7. doi: 10.1073/pnas.1208072109.

Wight, T. N., Frevert, C. W., Debley, J. S., Reeves, S. R., Parks, W. C. and Ziegler, S. F. (2017) ‘Interplay of extracellular matrix and leukocytes in lung inflammation.’, Cellular immunology, 312, pp. 1–14. doi: 10.1016/j.cellimm.2016.12.003.

Wijelath, E. S., Rahman, S., Namekata, M., Murray, J., Nishimura, T., Mostafavi-Pour, Z., Patel, Y., Suda, Y., Humphries, M. J. and Sobel, M. (2006) ‘Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism.’, Circulation research. NIH Public Access, 99(8), pp. 853–60. doi: 10.1161/01.RES.0000246849.17887.66.

Williams, A. E., Edwards, L., Humphreys, I. R., Snelgrove, R., Rae, A., Rappuoli, R. and Hussell, T. (2004) ‘Innate imprinting by the modified heat-labile toxin of Escherichia coli (LTK63) provides generic protection against lung infectious disease.’, Journal of immunology (Baltimore, Md. : 1950), 173(12), pp. 7435–43. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15585869 (Accessed: 18 September 2017).

van der Windt, G. J. W., Hoogendijk, A. J., de Vos, A. F., Kerver, M. E., Florquin, S. and van der Poll, T. (2011) ‘The role of CD44 in the acute and resolution phase of the host response during pneumococcal pneumonia.’, Laboratory investigation; a journal of technical methods and pathology, 91(4), pp. 588–97. doi: 10.1038/labinvest.2010.206.

Winterling, C., Koch, M., Koeppel, M., Garcia-Alcalde, F., Karlas, A. and Meyer, T. F. (2014) ‘Evidence for a crucial role of a host non-coding RNA in influenza A virus replication’, RNA Biology, 11(1), pp. 66–75. doi: 10.4161/rna.27504.

Wójciak-Stothard, B., Madeja, Z., Korohoda, W., Curtis, A. and Wilkinson, C. (1995) ‘Activation of macrophage-like cells by multiple grooved substrata. Topographical control of cell behaviour.’, Cell Biology International, 19(6), pp. 485–490. doi: 10.1006/cbir.1995.1092.

Wolf, K. and Friedl, P. (2011) ‘Extracellular matrix determinants of proteolytic and non-proteolytic cell migration’, Trends in Cell Biology, 21(12), pp. 736–744. doi: 10.1016/j.tcb.2011.09.006.

WTEC, Ku, B.-K., Evans, D. E. and Ruda-Eberenz, T. A. (2011) ‘Exposure and Emissions Monitoring during Carbon Nanofiber Production—Part I: Elemental Carbon and Iron–Soot Aerosols’, The Annals of Occupational Hygiene. U.S. Department of Health and Human Services.Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health,

165

DHHS (NIOSH) Publication, Cincinnati, OH, 82(9), pp. 638–47. doi: 10.1093/annhyg/mer073.

Wu, C., Hughes, P. E., Ginsberg, M. H. and McDonald, J. A. (1996) ‘Identification of a New Biological Function for the Integrin α v β 3 : Initiation of Fibronectin Matrix Assembly’, Cell Adhesion and Communication. Taylor & Francis, 4(3), pp. 149–158. doi: 10.3109/15419069609014219.

Wu, J., Vallenius, T., Ovaska, K., Westermarck, J., Makela, T. P. and Hautaniemi, S. (2009) ‘Integrated network analysis platform for protein-protein interactions’, Nat Methods, 6(1), pp. 75–77. doi: 10.1038/nmeth.1282.

Wynn, T. A. and Barron, L. (2010) ‘Macrophages: master regulators of inflammation and fibrosis’, Semin Liver Dis, 30(3), pp. 245–257. doi: 10.1055/s-0030-1255354.

Wysocki, A. B., Bhalla-Regev, S. K., Tierno, P. M., Stevens-Riley, M. and Wiygul, R.-C. (2013) ‘Proteolytic Activity by Multiple Bacterial Species Isolated From Chronic Venous Leg Ulcers Degrades Matrix Substrates’, Biological Research For Nursing. SAGE PublicationsSage CA: Los Angeles, CA, 15(4), pp. 407–415. doi: 10.1177/1099800412464683.

Xiao, C., Calado, D. P., Galler, G., Thai, T.-H., Patterson, H. C., Wang, J., Rajewsky, N., Bender, T. P. and Rajewsky, K. (2007) ‘MiR-150 Controls B Cell Differentiation by Targeting the Transcription Factor c-Myb’, Cell, 131(1), pp. 146–159. doi: 10.1016/j.cell.2007.07.021.

Yamada, C., Sano, H., Shimizu, T., Mitsuzawa, H., Nishitani, C., Himi, T. and Kuroki, Y. (2006) ‘Surfactant Protein A Directly Interacts with TLR4 and MD-2 and Regulates Inflammatory Cellular Response’, Journal of Biological Chemistry, 281(31), pp. 21771–21780. doi: 10.1074/jbc.M513041200.

Yan, Z., Hu, H. Y., Jiang, X., Maierhofer, V., Neb, E., He, L., Hu, Y., Hu, H., Li, N., Chen, W. and Khaitovich, P. (2011) ‘Widespread expression of piRNA-like molecules in somatic tissues’, Nucleic Acids Research, 39(15), pp. 6596–6607. doi: 10.1093/nar/gkr298.

Yang, C., Cao, M., Liu, H., He, Y., Xu, J., Du, Y., Liu, Y., Wang, W., Cui, L., Hu, J. and Gao, F. (2012) ‘The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering’, J Biol Chem, 287(51), pp. 43094–43107. doi: 10.1074/jbc.M112.349209.

Yang, J.-H., Sakamoto, H., Xu, E. C. and Lee, R. T. (2000) ‘Biomechanical Regulation of Human Monocyte/Macrophage Molecular Function’, The American Journal of Pathology, 156(5), pp. 1797–1804. doi: 10.1016/S0002-9440(10)65051-1.

Yang, K., Zhu, L. and Xing, B. (2006) ‘Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials’, Environmental Science and Technology. American Chemical Society, 40(6), pp. 1855–1861. doi: 10.1021/es052208w.

Yang, L. L., Liu, J. Q., Bai, X. Z., Fan, L., Han, F., Jia, W. B., Su, L. L., Shi, J. H., Tang, C. W. and Hu, D. H. (2014) ‘Acute downregulation of miR-155 at wound sites leads to a reduced fibrosis through attenuating inflammatory response’, Biochem Biophys Res Commun, 453(1), pp. 153–159. doi: 10.1016/j.bbrc.2014.09.077.

Yang, T., Jia, Y., Ma, Y., Cao, L., Chen, X. and Qiao, B. (2017) ‘Comparative Proteomic Analysis of Bleomycin-induced Pulmonary Fibrosis Based on Isobaric Tag for Quantitation’, The American Journal of the Medical Sciences, 353(1), pp. 49–58. doi: 10.1016/j.amjms.2016.11.021.

Yeo, S. J., Kim, S. J., Kim, J. H., Lee, H. J. and Kook, Y. H. (1999) ‘Influenza A virus infection modulates the expression of type IV collagenase in epithelial cells’, Archives of Virology, 144(7), pp. 1361–1370. doi: 10.1007/s007050050592.

Yokosaki, Y., Monis, H., Chen, J. and Sheppard, D. (1996) ‘Differential effects of the integrins alpha9beta1, alphavbeta3, and alphavbeta6 on cell proliferative responses to tenascin. Roles of the beta subunit extracellular and cytoplasmic domains.’, The Journal of biological chemistry. American Society for Biochemistry and Molecular Biology, 271(39), pp. 24144–50. doi: 10.1074/JBC.271.39.24144.

Yokoyama, K., Erickson, H. P., Ikeda, Y. and Takada, Y. (2000) ‘Identification of amino acid sequences in fibrinogen gamma -chain and tenascin C C-terminal domains critical for binding to integrin alpha vbeta 3.’, The Journal of biological chemistry. American Society for Biochemistry and Molecular Biology, 275(22), pp. 16891–8. doi: 10.1074/jbc.M000610200.

166

You, D., Becnel, D., Wang, K., Ripple, M., Daly, M. and Cormier, S. A. (2006) ‘Exposure of neonates to respiratory syncytial virus is critical in determining subsequent airway response in adults.’, Respiratory research. BioMed Central, 7(1), p. 107. doi: 10.1186/1465-9921-7-107.

Yue, B. (2014) ‘Biology of the extracellular matrix: an overview.’, Journal of glaucoma. NIH Public Access, 23(8 Suppl 1), pp. S20-3. doi: 10.1097/IJG.0000000000000108.

Yun, Y., Srinivas, G., Kuenzel, S., Linnenbrink, M., Alnahas, S., Bruce, K. D., Steinhoff, U., Baines, J. F. and Schaible, U. E. (2014) ‘Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture.’, PloS one. Public Library of Science, 9(12), p. e113466. doi: 10.1371/journal.pone.0113466.

Yurchenco, P. D. (2011) ‘Basement membranes: cell scaffoldings and signaling platforms.’, Cold Spring Harbor perspectives in biology. Cold Spring Harbor Laboratory Press, 3(2), p. a004911. doi: 10.1101/cshperspect.a004911.

Zaidel-Bar, R. and Geiger, B. (2010) ‘The switchable integrin adhesome’, J Cell Sci, 123(Pt 9), pp. 1385–1388. doi: 10.1242/jcs.066183.

Zamora-Ledezma, C., Buisson, L., Moulton, S. E., Wallace, G., Zakri, C., Blanc, C., Anglaret, E. and Poulin, P. (2013) ‘Carbon Nanotubes Induced Gelation of Unmodified Hyaluronic Acid’, Langmuir, 29(32), pp. 10247–10253. doi: 10.1021/la4016492.

Zhang, T., Tang, M., Kong, L., Li, H., Zhang, T., Xue, Y. and Pu, Y. (2015) ‘Surface modification of multiwall carbon nanotubes determines the pro-inflammatory outcome in macrophage’, Journal of Hazardous Materials, 284, pp. 73–82. doi: 10.1016/j.jhazmat.2014.11.013.

Zhang, X., Chen, C. T., Bhargava, M. and Torzilli, P. A. (2012) ‘A Comparative Study of Fibronectin Cleavage by MMP-1, -3, -13, and -14.’, Cartilage. SAGE Publications, 3(3), pp. 267–77. doi: 10.1177/1947603511435273.

Zhang, X., Xu, J., Wang, J., Gortner, L., Zhang, S., Wei, X., Song, J., Zhang, Y., Li, Q. and Feng, Z. (2013) ‘Reduction of MicroRNA-206 Contributes to the Development of Bronchopulmonary Dysplasia through Up-Regulation of Fibronectin 1’, PLoS ONE. Edited by R. Johnson, 8(9), p. e74750. doi: 10.1371/journal.pone.0074750.

Zhang, Z., Morla, A., Vuori, K., Bauer, J., Juliano, R. and Ruoslahti, E. (1993) ‘The alpha v beta 1 integrin functions as a fibronectin receptor but does not support fibronectin matrix assembly and cell migration on fibronectin’, The Journal of Cell Biology, 122(1). Available at: http://jcb.rupress.org/content/122/1/235 (Accessed: 10 August 2017).

Zhang, Z., Qin, Y.-W., Brewer, G. and Jing, Q. (2012) ‘MicroRNA degradation and turnover: regulating the regulators.’, Wiley interdisciplinary reviews. RNA. NIH Public Access, 3(4), pp. 593–600. doi: 10.1002/wrna.1114.

Zhao, Y., Wu, Q., Li, Y., Nouara, A., Jia, R. and Wang, D. (2014) ‘In vivo translocation and toxicity of multi-walled carbon nanotubes are regulated by microRNAs’, Nanoscale, 6(8), pp. 4275–4284. doi: 10.1039/c3nr06784j.

Zhao, Y., Young, S. L. and McIntosh, J. C. (1998) ‘Induction of tenascin in rat lungs undergoing bleomycin-induced pulmonary fibrosis’, American Journal of Physiology - Lung Cellular and Molecular Physiology, 274(6). Available at: http://ajplung.physiology.org/content/274/6/L1049?ijkey=3eafb543dd6cfde35baa483fa994d3444fa1aefe&keytype2=tf_ipsecsha (Accessed: 14 August 2017).

Zhu, C., Peng, G., Yi, W., Song, H., Liu, F. and Liu, X. (2016) ‘The Influenza A Virus Non-structural Protein NS1 Upregulates The Expression of Collagen Triple Helix Repeat Containing 1 Protein’, Scandinavian Journal of Immunology, 84(6), pp. 365–369. doi: 10.1111/sji.12496.

Zhu, Y., Wei, Y., Chen, J., Cui, G., Ding, Y., Kohanawa, M., Xu, X. and Diao, H. (2015) ‘Osteopontin exacerbates pulmonary damage in influenza-induced lung injury’, Japanese Journal of Infectious Diseases, 68(6), pp. 467–473. doi: 10.7883/yoken.JJID.2014.467.

Zhuo, L., Kanamori, A., Kannagi, R., Itano, N., Wu, J., Hamaguchi, M., Ishiguro, N. and Kimata, K. (2006) ‘SHAP Potentiates the CD44-mediated Leukocyte Adhesion to the Hyaluronan Substratum’, Journal of Biological Chemistry, 281(29), pp. 20303–20314. doi: 10.1074/jbc.M506703200.

167

Zuo, F., Kaminski, N., Eugui, E., Allard, J., Yakhini, Z., Ben-Dor, A., Lollini, L., Morris, D., Kim, Y., DeLustro, B., Sheppard, D., Pardo, A., Selman, M. and Heller, R. A. (2002) ‘Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans.’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 99(9), pp. 6292–7. doi: 10.1073/pnas.092134099.

Fraction 1

Gene symbol Peptide count Unique peptides Confidence score Anova (p) Max fold change Highest mean condition Description

1700009N14Rik 9 1 315.01 0.8568 1.04 Flu MCG49183

2310035C23Rik 15 2 116.13 0.9730 1.00 Flu Protein 2310035C23Rik

4732456N10Rik 9 0 339.14 --- Protein 4732456N10Rik

9030617O03Rik 4 2 44.19 0.3030 1.10 Flu Protein 9030617O03Rik

9030624J02Rik 13 2 144.34 0.5687 1.12 Flu Protein 9030624J02Rik (Fragment)

9030624J02Rik 5 0 44.78 --- Protein 9030624J02Rik (Fragment)

A2m 40 19 1216.99 0.2866 1.19 Flu Alpha-2-macroglobulin

A630010A05Rik 3 0 32.7 --- Protein A630010A05Rik (Fragment)

A830018L16Rik 21 3 91.81 0.4185 1.22 Flu Protein A830018L16Rik (Fragment)

Aacs 6 1 51.27 0.0011 2.52 Flu Acetoacetyl-CoA synthetase

Aak1 13 6 216.38 0.8427 1.02 Flu AP2-associated protein kinase 1

Aars 20 7 415.38 0.0885 1.56 Flu Alanine--tRNA ligase, cytoplasmic

Abat 2 1 6.06 0.0909 2.01 Flu 4-aminobutyrate aminotransferase, mitochondrial

Abca17 19 2 152.04 0.3847 1.14 Flu Protein Abca17

Abca3 27 2 386.91 0.0905 1.30 Flu ATP-binding cassette sub-family A member 3

Abca3 25 0 310.24 --- ATP-binding cassette sub-family A member 3

Abca8b 12 3 101.5 0.0872 1.62 PBS ATP-binding cassette sub-family A member 8-B

Abcb10 5 1 45.17 0.8567 1.12 Flu ATP-binding cassette sub-family B member 10, mitochondrial

Abcb1a 21 1 416.26 0.0996 1.34 PBS Multidrug resistance protein 1A

Abcb1b 20 1 336.44 0.9485 1.19 PBS ATP-binding cassette, sub-family B (MDR/TAP), member 1B

Abcb1b 8 0 66.64 --- Multidrug resistance protein 1B (Fragment)

Abcb4 9 0 135.86 --- Phosphatidylcholine translocator ABCB4

Abcc1 15 1 93.73 0.6125 1.09 Flu Multidrug resistance-associated protein 1

Abcc3 8 2 112.55 0.3852 1.40 Flu Canalicular multispecific organic anion transporter 2

Abcd1 9 2 103.29 0.2973 1.74 Flu ATP-binding cassette sub-family D member 1

Abcd3 17 10 481.52 0.0079 1.51 PBS ATP-binding cassette sub-family D member 3

Abce1 10 5 174.45 0.0781 1.62 Flu ATP-binding cassette sub-family E member 1

Abcf1 17 7 314.66 0.0226 1.57 Flu ATP-binding cassette sub-family F member 1

Abcf2 13 4 185.29 0.0306 1.52 Flu ATP-binding cassette sub-family F member 2

Abhd11 4 0 39 --- Alpha/beta hydrolase domain-containing protein 11

Abhd12 9 3 159.84 0.1549 1.31 Flu Monoacylglycerol lipase ABHD12

Abhd14b 5 2 139.76 0.5336 1.13 PBS Alpha/beta hydrolase domain-containing protein 14B (Fragment)

Abhd16a 12 4 209.93 0.3216 1.08 PBS Abhydrolase domain-containing protein 16A

Abhd16b 2 0 33.09 --- Abhydrolase domain-containing protein 16B

Abi1 7 2 65.82 0.2771 1.58 Flu Abl interactor 1

Abi2 4 2 30.4 0.1468 1.29 Flu Abl interactor 2

Ablim1 14 5 135.06 0.4311 1.17 Flu Actin-binding LIM protein 1

Abr 9 1 66.17 0.1942 1.42 Flu Active breakpoint cluster region-related protein

Abracl 1 0 52.87 --- Costars family protein ABRACL

Abtb2 2 0 11.8 --- Ankyrin repeat and BTB/POZ domain-containing protein 2

Acaa1a 14 8 613.34 0.0739 1.24 Flu 3-ketoacyl-CoA thiolase A, peroxisomal

Acaa2 43 26 2007.13 0.2213 1.23 PBS 3-ketoacyl-CoA thiolase, mitochondrial

Acaca 32 11 377.6 0.1955 1.22 Flu Acetyl-CoA carboxylase 1

Acacb 22 2 118.72 0.2781 1.12 Flu Acetyl-CoA carboxylase 2

Acad12 14 6 201.22 0.3879 1.13 PBS MCG142036

Acad8 13 0 360.41 --- Isobutyryl-CoA dehydrogenase, mitochondrial

Acad8 13 0 373.49 --- Isobutyryl-CoA dehydrogenase, mitochondrial

Acad9 26 7 493.46 0.8966 1.00 PBS Acyl-CoA dehydrogenase family member 9, mitochondrial

Acadl 30 12 1338.13 0.1666 1.20 PBS Long-chain specific acyl-CoA dehydrogenase, mitochondrial

Acadm 19 9 520.74 0.6548 1.14 PBS Medium-chain specific acyl-CoA dehydrogenase, mitochondrial

Acads 13 2 416.21 0.5828 1.11 PBS Short-chain specific acyl-CoA dehydrogenase, mitochondrial

Acads 23 0 376.7 --- Short-chain-specific acyl-CoA dehydrogenase, mitochondrial (Fragment)

Acadsb 15 8 443.7 0.5623 1.06 Flu Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial

Acadvl 27 17 1160.64 0.7360 1.02 PBS Very long-chain specific acyl-CoA dehydrogenase, mitochondrial

Acap2 13 1 226.64 0.5720 1.06 PBS Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 2

Acap3 11 1 69.69 0.3034 1.89 Flu Protein Acap3

Acat1 19 13 974.51 0.4110 1.11 PBS Acetyl-CoA acetyltransferase, mitochondrial

Acat2 5 2 79.03 0.7142 1.12 Flu Acetyl-CoA acetyltransferase, cytosolic

Acbd3 7 3 181.45 0.0214 1.40 Flu Golgi resident protein GCP60

Acbd5 8 3 63.19 0.5223 1.06 PBS Acyl-CoA-binding domain-containing protein 5

Ace 59 34 2387.17 0.0095 1.53 PBS Angiotensin-converting enzyme

Ace3 7 0 61.43 --- Angiotensin converting enzyme-like 3

Acin1 21 6 124.13 0.9767 1.00 PBS Apoptotic chromatin condensation inducer in the nucleus

Acin1 3 0 10.61 --- Apoptotic chromatin condensation inducer in the nucleus (Fragment)

Acly 44 23 1493.43 0.3990 1.11 Flu ATP-citrate synthase

Aco1 16 9 403.15 0.0116 2.00 Flu Cytoplasmic aconitate hydratase

Aco2 56 23 2582.38 0.2125 1.14 PBS Aconitate hydratase, mitochondrial

Acot1 14 0 347.98 --- Acyl-coenzyme A thioesterase 1

Acot13 2 1 33.17 0.1277 1.63 PBS Acyl-coenzyme A thioesterase 13

Acot2 18 5 638.14 0.3370 1.20 PBS Acyl-coenzyme A thioesterase 2, mitochondrial

Acot3 4 0 47.72 --- Acyl-coenzyme A thioesterase 3

Acot4 8 3 128.36 0.8614 1.02 PBS Acyl-coenzyme A thioesterase 4

Acot7 9 4 128.47 0.0296 1.43 Flu Cytosolic acyl coenzyme A thioester hydrolase

Acot8 3 1 34.98 0.3669 1.29 Flu Acyl-CoA thioesterase 8, isoform CRA_c

Acot9 20 6 295.29 0.2292 1.15 Flu Acyl-coenzyme A thioesterase 9, mitochondrial

Acox1 20 11 459.53 0.2009 1.20 Flu Peroxisomal acyl-coenzyme A oxidase 1

Acox3 8 3 135.61 0.1973 1.62 Flu Acyl-coenzyme A oxidase

Acox3 5 0 91.89 --- Peroxisomal acyl-coenzyme A oxidase 3 (Fragment)

Acp1 1 1 41.11 0.9819 1.08 PBS Low molecular weight phosphotyrosine protein phosphatase

Acp2 6 4 59.1 0.9959 1.01 PBS Lysosomal acid phosphatase

Acp5 5 2 52.01 0.1155 1.76 Flu Tartrate-resistant acid phosphatase type 5

Acp6 5 3 28.56 0.9181 1.03 Flu Lysophosphatidic acid phosphatase type 6

Acsf2 17 10 473.85 0.7681 1.09 Flu Acyl-CoA synthetase family member 2, mitochondrial

Acsl1 13 1 183.25 0.0263 1.70 PBS Long-chain-fatty-acid--CoA ligase 1 (Fragment)

Acsl1 35 16 1324.96 0.0630 1.35 PBS Long-chain-fatty-acid--CoA ligase 1

Acsl4 17 12 398.64 0.0710 1.33 Flu Long-chain-fatty-acid--CoA ligase 4

Acsl5 29 16 1163.01 0.1760 1.12 Flu Long-chain-fatty-acid--CoA ligase 5

Acsm1 3 1 34.53 0.6362 1.36 Flu Acyl-coenzyme A synthetase ACSM1, mitochondrial

Acss1 18 11 544.27 0.9440 1.01 Flu Acetyl-coenzyme A synthetase 2-like, mitochondrial

Acta1 58 0 3146.81 --- Actin, alpha skeletal muscle

Acta2 61 0 3650.86 --- Actin, aortic smooth muscle

Actb 72 17 3969.4 0.3347 1.20 PBS Actin, cytoplasmic 1

Actbl2 27 1 1409.99 0.4266 1.14 Flu Beta-actin-like protein 2

Actc1 66 0 3788.1 --- Actin, alpha cardiac muscle 1

Actg1 33 0 1705.19 --- Actin, cytoplasmic 2 (Fragment)

Actl6a 11 4 190.53 0.0414 1.24 Flu Actin-like protein 6A

Actn1 62 1 2663.68 0.1622 1.66 PBS Alpha actinin 1a

Actn1 62 0 2669.25 --- Alpha-actinin-1

Actn2 18 0 445.47 --- Alpha-actinin-2

Actn3 20 2 402.19 0.0535 1.76 PBS Alpha-actinin-3

Actn4 59 21 2519.27 0.2468 1.10 PBS Alpha-actinin-4

Actr10 5 4 115.7 0.8961 1.01 Flu Actin-related protein 10

Actr1a 12 3 520.24 0.6050 1.08 PBS Alpha-centractin

Actr1b 12 1 430.7 0.5249 1.14 PBS Beta-centractin

Actr2 27 12 999.28 0.0374 1.38 Flu Actin-related protein 2

Actr3 26 11 1050.38 0.0230 1.34 Flu Actin-related protein 3

Actr3b 8 0 218.01 --- Actin-related protein 3B

Acvrl1 7 4 268.64 0.0240 1.32 PBS Serine/threonine-protein kinase receptor R3

Acyp1 3 1 37.33 0.4675 1.19 Flu Acylphosphatase

Ada 9 2 51.56 0.2714 1.44 Flu Adenosine deaminase

Adam10 15 7 333.89 0.5571 1.09 Flu Disintegrin and metalloproteinase domain-containing protein 10

Adam17 9 4 82.4 0.8135 1.00 PBS Disintegrin and metalloproteinase domain-containing protein 17

Adam9 7 1 76.52 0.3449 1.45 Flu Disintegrin and metalloproteinase domain-containing protein 9

Adcy4 11 3 68.45 0.1267 1.23 PBS Adenylate cyclase type 4

Adcy9 10 4 89.18 0.3884 1.27 Flu Adenylate cyclase type 9

Add1 31 9 967.47 0.1608 1.19 PBS Alpha-adducin

Add1 12 1 239.88 0.3575 1.33 Flu Alpha-adducin (Fragment)

Add2 8 2 104.43 0.2036 1.30 Flu Beta-adducin

Add3 16 7 418.49 0.0658 1.21 PBS Gamma-adducin

Adgre5 11 7 543.39 0.3541 1.13 PBS Protein Adgre5

Adgrf5 16 13 417.94 0.0894 1.26 PBS Adhesion G protein-coupled receptor F5

Adgrl2 7 1 102.33 0.6830 1.07 Flu Adhesion G protein-coupled receptor L2

Adh1 17 8 459.46 0.5033 1.12 PBS Alcohol dehydrogenase 1

Adh5 9 5 259.5 0.2696 1.08 Flu Alcohol dehydrogenase class-3

Adipoq 4 2 112.96 0.0172 1.68 PBS Adiponectin

Adk 12 3 198.44 0.6962 1.04 PBS Adenosine kinase

Adnp 15 2 137.03 0.2911 1.54 Flu Activity-dependent neuroprotector homeobox protein

Adpgk 6 4 117.46 0.5792 1.07 Flu ADP-dependent glucokinase

Adprh 3 1 30.38 0.0378 2.29 Flu [Protein ADP-ribosylarginine] hydrolase

Adrbk1 9 2 133.42 0.0248 1.50 Flu Beta-adrenergic receptor kinase 1

Adrbk1 5 1 50.97 0.1669 1.78 Flu Beta-adrenergic receptor kinase 1

Adrbk2 5 1 51.59 0.2452 1.22 PBS Beta-adrenergic receptor kinase 2

Adsl 11 6 324.18 0.6655 1.03 Flu Adenylosuccinate lyase

Adss 7 3 167.59 0.0003 1.66 Flu Adenylosuccinate synthetase isozyme 2

Adssl1 5 0 94.04 --- Adenylosuccinate synthetase isozyme 1

Afap1l1 3 2 22.86 0.1818 1.22 Flu Actin filament-associated protein 1-like 1

Aff1 32 3 215.67 0.9470 1.95 PBS AF4/FMR2 family member 1

Afg3l1 13 0 75.34 --- AFG3-like protein 1

Afg3l2 24 2 231.45 0.2220 1.36 Flu AFG3-like protein 2

Aga 2 1 30.04 0.0027 1.81 Flu N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase

Agap1 7 1 96.31 0.6612 1.41 PBS Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 1

Agap3 12 3 111.35 0.6503 1.08 Flu Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 3

Agap3 10 3 189.05 0.9951 1.00 Flu Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 3

Ager 33 22 1243.72 0.0975 1.71 PBS Advanced glycosylation end product-specific receptor

Agfg1 5 2 66.53 0.2064 1.26 Flu Arf-GAP domain and FG repeat-containing protein 1

Agk 6 5 91.89 0.9126 1.00 PBS Acylglycerol kinase, mitochondrial

Ago1 15 3 322.39 0.7626 1.03 PBS Protein argonaute-1

Ago2 18 4 472.16 0.9303 1.03 Flu Protein argonaute-2

Ago3 11 1 162.91 0.1489 1.58 Flu Protein argonaute-3

Ago4 9 1 119.4 0.0762 1.98 PBS Protein argonaute-4

Agpat3 8 5 118.4 0.2353 1.42 Flu 1-acyl-sn-glycerol-3-phosphate acyltransferase gamma

Agpat4 6 5 166.68 0.3673 1.12 PBS 1-acyl-sn-glycerol-3-phosphate acyltransferase delta

Agps 11 5 215.92 0.0159 1.52 Flu Alkyldihydroxyacetonephosphate synthase, peroxisomal

Agps 2 0 17.97 --- Alkyldihydroxyacetonephosphate synthase, peroxisomal (Fragment)

Agrn 22 3 165.33 0.4733 1.19 Flu Agrin

Ahcy 19 8 770.11 0.2487 1.45 Flu Adenosylhomocysteinase

Ahcyl2 11 1 139.92 0.5603 1.06 PBS Adenosylhomocysteinase

Ahnak 440 197 15527.68 0.0373 1.37 PBS Protein Ahnak

Ahnak2 20 3 373.98 0.1545 1.25 PBS Protein Ahnak2 (Fragment)

Ahnak2 30 3 421.68 0.9599 1.02 Flu Protein Ahnak2 (Fragment)

Ahsa1 5 1 72.57 0.0020 1.41 Flu Activator of 90 kDa heat shock protein ATPase homolog 1

Ahsg 5 3 101.09 0.0490 2.12 Flu Alpha-2-HS-glycoprotein

AI314180 14 0 117.29 --- Protein AI314180

Aifm1 22 12 681.56 0.3553 1.07 PBS Apoptosis-inducing factor 1, mitochondrial

Aimp1 15 8 187.77 0.2835 1.22 PBS Aminoacyl tRNA synthase complex-interacting multifunctional protein 1

Aimp2 6 5 150.17 0.1751 1.18 PBS Aminoacyl tRNA synthase complex-interacting multifunctional protein 2

Aip 5 2 70.49 0.0209 1.45 Flu AH receptor-interacting protein

Ajuba 3 1 31.05 0.0409 3.37 Flu LIM domain-containing protein ajuba

Ak2 12 2 342.19 0.0725 1.14 Flu Adenylate kinase 2, mitochondrial

Ak2 7 0 184.58 --- Adenylate kinase 2, mitochondrial (Fragment)

Ak3 13 3 393.77 0.3478 1.22 PBS GTP:AMP phosphotransferase AK3, mitochondrial

Akap12 30 18 756.34 0.2498 1.20 PBS A-kinase anchor protein 12

Akap13 14 2 97.87 0.4594 1.15 Flu Protein Akap13 (Fragment)

Akap13 24 5 169.43 0.8635 1.07 PBS Protein Akap13

Akap14 21 1 136.08 0.1002 1.45 PBS A kinase (PRKA) anchor protein 14

Akap5 29 14 1140.06 0.1482 1.40 PBS A-kinase anchor protein 5

Akap6 18 1 122.18 0.0996 1.72 Flu Protein Akap6

Akr1a1 21 8 401.08 0.0565 1.26 Flu Alcohol dehydrogenase [NADP(+)]

Akr1b1 20 7 537.05 0.4395 1.08 Flu Aldose reductase

Akr1c13 3 0 50.95 --- Aldo-keto reductase family 1 member C13

Akr1e2 7 0 88.82 --- 1,5-anhydro-D-fructose reductase

Akr7a2 6 5 144.63 0.1931 1.14 Flu Aflatoxin B1 aldehyde reductase member 2

Akt2 10 1 66.18 0.0451 1.52 Flu RAC-beta serine/threonine-protein kinase

Alad 8 3 102.84 0.0953 1.52 Flu Delta-aminolevulinic acid dehydratase

Alb 74 44 4590.17 0.0355 2.01 Flu Serum albumin

Alcam 23 5 923.48 0.0776 1.35 PBS CD166 antigen

Alcam 9 0 391.13 --- CD166 antigen (Fragment)

Aldh16a1 6 2 144.27 0.3190 1.21 Flu Aldehyde dehydrogenase family 16 member A1

Aldh18a1 17 8 377.65 0.3690 1.14 PBS Delta-1-pyrroline-5-carboxylate synthase

Aldh1a1 41 11 2013.3 0.2372 1.33 PBS Retinal dehydrogenase 1

Aldh1a2 7 0 127.11 --- Retinal dehydrogenase 2

Aldh1a3 12 0 113.17 --- Aldehyde dehydrogenase family 1 member A3

Aldh1a7 27 4 843.56 0.2236 1.19 PBS Aldehyde dehydrogenase, cytosolic 1

Aldh1b1 13 4 225.73 0.7383 1.03 PBS Aldehyde dehydrogenase X, mitochondrial

Aldh1l1 11 6 78.8 0.1529 1.27 Flu Cytosolic 10-formyltetrahydrofolate dehydrogenase

Aldh2 48 14 2441.9 0.2158 1.30 PBS Aldehyde dehydrogenase, mitochondrial

Aldh2 21 0 1084.03 --- Aldehyde dehydrogenase, mitochondrial (Fragment)

Aldh3a1 9 2 64.39 0.9257 1.05 Flu Aldehyde dehydrogenase, dimeric NADP-preferring

Aldh3a2 21 10 867.79 0.4946 1.06 PBS Aldehyde dehydrogenase

Aldh3b1 15 3 474.67 0.3264 1.19 Flu Aldehyde dehydrogenase family 3 member B1

Aldh3b3 7 1 70.03 0.2027 1.19 Flu Protein Aldh3b3 (Fragment)

Aldh3b3 7 0 157.39 --- Aldehyde dehydrogenase

Aldh4a1 18 8 433.93 0.0962 1.39 PBS Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial

Aldh5a1 8 3 143.91 0.8748 1.03 Flu Succinate-semialdehyde dehydrogenase, mitochondrial

Aldh6a1 34 14 1028.19 0.1460 1.43 PBS Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial

Aldh7a1 13 4 400.44 0.4529 1.10 PBS Alpha-aminoadipic semialdehyde dehydrogenase

Aldh7a1 7 0 146.84 --- Alpha-aminoadipic semialdehyde dehydrogenase (Fragment)

Aldh9a1 15 6 462.57 0.3173 1.09 PBS 4-trimethylaminobutyraldehyde dehydrogenase

Aldoa 33 2 1564.44 0.0348 1.28 Flu Fructose-bisphosphate aldolase A

Aldoa 12 1 552 0.7998 1.07 Flu Fructose-bisphosphate aldolase A (Fragment)

Aldoart1 24 0 957.94 --- Fructose-bisphosphate aldolase

Aldoart2 10 0 517.37 --- Fructose-bisphosphate aldolase

Aldob 2 0 25.51 --- Fructose-bisphosphate aldolase B

Aldoc 9 1 138.88 0.0581 1.21 Flu Fructose-bisphosphate aldolase C

Alg10b 4 2 39.71 0.4312 1.20 PBS Putative Dol-P-Glc:Glc(2)Man(9)GlcNAc(2)-PP-Dol alpha-1,2-glucosyltransferase

Alg2 5 3 45.41 0.6386 1.06 Flu Alpha-1,3/1,6-mannosyltransferase ALG2

Alg5 5 1 34.45 0.1748 1.09 Flu Dolichyl-phosphate beta-glucosyltransferase

Alox12 9 3 44.35 0.8957 1.00 PBS Arachidonate 12-lipoxygenase

Alox15 5 1 48.95 0.4539 1.63 Flu Arachidonate 15-lipoxygenase

Alox5 5 3 66.36 0.2710 1.21 PBS Arachidonate 5-lipoxygenase

Alyref 9 2 227.54 0.2917 1.23 Flu THO complex subunit 4

Ampd3 8 2 126.85 0.6156 1.07 Flu AMP deaminase 3

Angpt2 2 1 21.88 0.0826 2.38 PBS Angiopoietin-2

Ank1 46 21 1086.21 0.0670 1.74 PBS Ankyrin-1

Ank2 46 5 268.99 0.9521 1.07 PBS Ankyrin-2

Ank3 43 1 465.04 0.1728 2.14 PBS Ankyrin-3 (Fragment)

Ank3 47 4 297.23 0.9368 1.14 PBS Ankyrin-3 (Fragment)

Ank3 3 0 53.65 --- Ankyrin-3 (Fragment)

Ank3 17 0 306.89 --- Ankyrin-3 (Fragment)

Ank3 7 0 61.49 --- Ankyrin-3 (Fragment)

Ank3 6 0 65.22 --- Ankyrin-3 (Fragment)

Ankfy1 14 6 393.89 0.1272 1.34 Flu Rabankyrin-5

Ankrd13a 8 3 98.88 0.0184 1.33 Flu Ankyrin repeat domain-containing protein 13A

Ankrd44 8 2 97.84 0.3804 1.31 Flu Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit B

Anks1b 23 3 91.79 0.4002 1.16 PBS Ankyrin repeat and sterile alpha motif domain-containing protein 1B

Ano6 17 8 481.86 0.0946 1.17 PBS Anoctamin-6

Anp32a 8 2 242.85 0.3212 1.14 Flu Acidic leucine-rich nuclear phosphoprotein 32 family member A

Anp32a 8 0 119.17 --- Acidic leucine-rich nuclear phosphoprotein 32 family member A (Fragment)

Anp32b 4 0 113.91 --- Acidic leucine-rich nuclear phosphoprotein 32 family member B

Anp32e 4 1 40.2 0.1338 1.53 Flu Acidic leucine-rich nuclear phosphoprotein 32 family member E (Fragment)

Anpep 19 12 688.95 0.0416 1.33 Flu Aminopeptidase N

Antxr2 7 0 43.06 --- Anthrax toxin receptor 2

Anxa1 28 16 1489.84 0.0393 1.32 Flu Annexin A1

Anxa11 16 2 717.03 0.2943 1.65 PBS Annexin A11

Anxa11 13 0 518.43 --- Annexin

Anxa2 48 25 2687.28 0.4971 1.05 PBS Annexin A2

Anxa3 24 14 1246.13 0.9460 1.01 Flu Annexin A3

Anxa4 26 10 1212.96 0.9963 1.05 PBS Annexin A4

Anxa5 33 10 1585.96 0.8675 1.02 Flu Annexin A5

Anxa6 58 1 3024.66 0.7435 1.76 Flu Annexin

Anxa6 58 1 3021.46 0.8462 1.00 Flu Annexin A6

Anxa7 18 4 713.4 0.1854 1.12 Flu Annexin A7

Anxa9 1 1 32.76 0.4822 1.23 PBS Annexin A9

Aoc2 6 1 69.16 0.2642 1.88 Flu Amine oxidase

Aoc3 13 7 566.29 0.0236 1.65 PBS Membrane primary amine oxidase

Aox3 18 7 353.98 0.6612 1.47 PBS Aldehyde oxidase 3

Ap1b1 32 10 917.71 0.0544 1.18 Flu AP-1 complex subunit beta-1

Ap1g1 14 7 362.29 0.0558 1.20 Flu AP-1 complex subunit gamma-1

Ap1g2 7 1 77.22 0.5598 1.10 Flu AP-1 complex subunit gamma-like 2

Ap1m1 14 2 250.77 0.0682 1.77 Flu AP-1 complex subunit mu-1

Ap1m1 5 0 59.92 --- AP-1 complex subunit mu-1 (Fragment)

Ap1m2 7 1 81.62 0.2017 3.33 Flu AP-1 complex subunit mu-2

Ap1s1 2 1 48.92 0.6203 1.06 PBS AP-1 complex subunit sigma-1A

Ap2a1 39 7 1561.55 0.0378 1.34 PBS AP-2 complex subunit alpha-1

Ap2a1 19 0 459.47 --- AP-2 complex subunit alpha-1 (Fragment)

Ap2a2 48 15 2274.67 0.2118 1.16 PBS AP-2 complex subunit alpha-2

Ap2b1 39 17 1408.9 0.2592 1.11 PBS AP-2 complex subunit beta

Ap2m1 21 8 551.17 0.0474 1.21 PBS AP-2 complex subunit mu

Ap2s1 4 0 46.52 --- AP-2 complex subunit sigma

Ap3b1 23 8 519.35 0.0746 1.47 Flu AP-3 complex subunit beta-1

Ap3d1 19 5 363.78 0.4100 1.34 Flu AP-3 complex subunit delta-1

Ap3m1 6 2 98.02 0.1912 1.37 Flu AP-3 complex subunit mu-1

Ap3m2 5 0 55.4 --- AP-3 complex subunit mu-2

Ap4e1 5 0 30.82 --- AP-4 complex subunit epsilon-1

Apbb1ip 15 7 175.19 0.0629 1.21 Flu Amyloid beta A4 precursor protein-binding family B member 1-interacting protein

Apc 31 2 119.43 0.2081 1.26 PBS Adenomatous polyposis coli protein

Apc2 42 7 190.18 0.3162 1.83 PBS Adenomatous polyposis coli protein 2

Apeh 12 5 318.67 0.9317 1.01 Flu Acylamino-acid-releasing enzyme

Apex1 11 5 353.2 0.0798 1.30 Flu DNA-(apurinic or apyrimidinic site) lyase

Api5 12 7 214.12 0.0522 1.28 Flu Apoptosis inhibitor 5

Aplp2 4 0 37.6 --- Amyloid-like protein 2

Apmap 15 8 484.45 0.8098 1.04 Flu Adipocyte plasma membrane-associated protein

Apoa1 13 4 286 0.0595 1.95 Flu Apolipoprotein A-I

Apoa1bp 9 4 250.31 0.8387 1.00 Flu NAD(P)H-hydrate epimerase

Apoa4 10 1 121.94 0.4336 1.11 Flu Apolipoprotein A-IV

Apoe 12 4 220.62 0.0703 2.14 Flu Apolipoprotein E

Apoh 9 4 175.1 0.9951 1.02 Flu Beta-2-glycoprotein 1

Apoh 2 0 37.02 --- Beta-2-glycoprotein 1 (Fragment)

Apoo 3 1 91.6 0.4873 1.17 PBS MICOS complex subunit Mic26

Apool 4 1 174.81 0.3989 1.24 Flu MICOS complex subunit Mic27

Apool 4 0 127.8 --- MICOS complex subunit Mic27

App 10 6 163.73 0.6049 1.05 Flu Amyloid beta A4 protein

Appl1 16 7 204.08 0.0168 1.94 Flu DCC-interacting protein 13-alpha

Aprt 6 1 49.47 0.0141 2.56 Flu Adenine phosphoribosyltransferase

Aqp1 3 2 189.27 0.0780 1.83 PBS Aquaporin-1

Aqp5 4 4 72.21 0.4889 1.26 PBS Aquaporin-5

Aqr 17 3 140.66 0.0693 1.39 Flu Intron-binding protein aquarius

Arap1 21 4 138.85 0.0857 1.14 PBS Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 1

Arap3 13 2 112.07 0.6144 1.06 PBS Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3

Arcn1 19 9 734.27 0.0420 1.63 Flu Coatomer subunit delta

Arf1 20 5 831.52 0.1447 1.16 Flu ADP-ribosylation factor 1

Arf4 11 2 420.52 0.0832 1.73 Flu ADP-ribosylation factor 4

Arf5 12 2 489.66 0.0005 1.65 Flu ADP-ribosylation factor 5

Arf6 7 5 143.52 0.6716 1.03 Flu ADP-ribosylation factor 6

Arfgap2 8 2 82.26 0.1102 1.28 PBS ADP-ribosylation factor GTPase-activating protein 2

Arfgap3 4 2 75.73 0.4699 1.01 PBS ADP-ribosylation factor GTPase-activating protein 3

Arfgef1 24 3 180.4 0.3120 1.10 Flu Brefeldin A-inhibited guanine nucleotide-exchange protein 1

Arfgef2 26 2 275.64 0.0811 1.36 Flu Brefeldin A-inhibited guanine nucleotide-exchange protein 2

Arfip1 10 1 70.36 0.3055 2.09 Flu Arfip1 protein

Arfip1 10 0 116.38 --- MCG18094

Arhgap1 16 11 495.98 0.0211 1.33 Flu Rho GTPase-activating protein 1

Arhgap17 14 4 98.72 0.3186 1.20 Flu Rho GTPase-activating protein 17

Arhgap25 15 1 187.99 0.0188 2.30 Flu Rho GTPase-activating protein 25

Arhgap27 9 1 61.08 0.5409 1.20 PBS Rho GTPase-activating protein 27

Arhgap28 9 0 55.37 --- Rho GTPase-activating protein 28

Arhgap29 21 0 135.56 --- Rho GTPase-activating protein 29

Arhgap31 16 2 91.14 0.0835 3.39 Flu CDC42 GTPase-activating protein

Arhgap5 11 1 67.75 0.5571 1.62 PBS Rho GTPase-activating protein 5

Arhgdia 10 8 672.09 0.0649 1.24 Flu Rho GDP-dissociation inhibitor 1

Arhgdib 13 5 227.55 0.0199 1.56 Flu Rho GDP-dissociation inhibitor 2

Arhgef1 26 9 424.63 0.0272 1.33 Flu Rho guanine nucleotide exchange factor 1

Arhgef12 20 5 259.65 0.1052 1.31 PBS Rho guanine nucleotide exchange factor 12

Arhgef2 23 9 487.91 0.0670 1.33 Flu Rho guanine nucleotide exchange factor 2

Arhgef26 11 2 88.62 0.6123 1.09 Flu Protein Arhgef26

Arhgef6 10 0 131.57 --- Rho guanine nucleotide exchange factor 6

Arhgef7 13 3 161.33 0.6550 1.07 Flu Rho guanine nucleotide exchange factor 7

Arid1a 21 4 195.03 0.0649 2.25 Flu AT-rich interactive domain-containing protein 1A

Arid5b 19 3 109.69 0.4126 1.10 Flu AT-rich interactive domain-containing protein 5B

Arl1 5 0 114.31 --- ADP-ribosylation factor-like protein 1

Arl3 2 0 37.79 --- ADP-ribosylation factor-like protein 3

Arl6ip1 2 0 65.33 --- ADP-ribosylation factor-like protein 6-interacting protein 1

Arl6ip5 8 5 118.52 0.1204 1.12 Flu PRA1 family protein 3

Arl8a 8 0 175.14 --- ADP-ribosylation factor-like protein 8A

Arl8b 12 1 266.39 0.9466 1.00 Flu ADP-ribosylation factor-like protein 8B

Armc10 5 2 208.95 0.9067 1.03 Flu Armadillo repeat-containing protein 10

Arpc1b 15 3 753.35 0.1861 1.49 Flu Actin-related protein 2/3 complex subunit 1B

Arpc1b 7 0 216.61 --- Actin-related protein 2/3 complex subunit 1B (Fragment)

Arpc2 17 10 501.89 0.0584 1.55 Flu Actin-related protein 2/3 complex subunit 2

Arpc3 7 4 222.64 0.0014 1.50 Flu Actin-related protein 2/3 complex subunit 3

Arpc3 5 0 152 --- Actin-related protein 2/3 complex subunit 3 (Fragment)

Arpc4 7 2 306.47 0.1282 1.57 Flu Actin-related protein 2/3 complex subunit 4

Arpc5 4 1 125.38 0.2960 2.31 Flu Actin-related protein 2/3 complex subunit 5

Arpc5l 4 1 82.79 0.3610 1.11 Flu Actin-related protein 2/3 complex subunit 5

Arrb1 11 7 315.81 0.6677 1.02 Flu Beta-arrestin-1

Arrb1 3 0 101.98 --- Beta-arrestin-1 (Fragment)

Arrb2 2 0 27.73 --- Beta-arrestin-2

Arvcf 13 4 100.83 0.1454 1.62 PBS Armadillo repeat protein deleted in velo-cardio-facial syndrome homolog

As3mt 5 2 98.3 0.0091 1.33 Flu Arsenite methyltransferase

Asah1 15 7 552.97 0.0558 1.31 Flu Acid ceramidase

Asap1 12 1 73.32 0.3079 1.33 Flu Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1

Asap2 8 3 91.54 0.8136 1.32 PBS Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2

Asb4 3 0 37.32 --- Ankyrin repeat and SOCS box protein 4

Ash2l 6 1 51.86 0.0654 1.76 Flu Set1/Ash2 histone methyltransferase complex subunit ASH2

Asna1 7 2 68.58 0.1177 1.42 Flu ATPase Asna1

Asph 21 11 634.55 0.0151 1.43 Flu Aspartyl/asparaginyl beta-hydroxylase

Asph 4 0 94.62 --- Aspartyl/asparaginyl beta-hydroxylase

Atad5 30 1 189.29 0.4055 5.37 PBS ATPase family AAA domain-containing protein 5

Atg5 1 1 62.35 0.6268 1.15 PBS Autophagy protein 5

Atic 25 11 957.06 0.2119 1.11 Flu Bifunctional purine biosynthesis protein PURH

Atl2 9 4 134.09 0.0575 1.14 Flu Atlastin-2

Atl3 18 5 666.9 0.8580 1.02 PBS Atlastin-3

Atox1 4 1 61.65 0.2576 1.55 Flu Copper transport protein ATOX1

Atp11a 12 3 144.7 0.1066 1.28 Flu Probable phospholipid-transporting ATPase IH

Atp11c 6 3 44.04 0.3402 1.57 Flu Phospholipid-transporting ATPase

Atp12a 9 1 207.87 0.9724 1.01 Flu Potassium-transporting ATPase alpha chain 2

Atp13a1 14 3 221.47 0.2419 1.28 Flu Manganese-transporting ATPase 13A1

Atp1a1 53 12 2239.9 0.6530 1.03 PBS Sodium/potassium-transporting ATPase subunit alpha-1

Atp1a2 30 4 924.91 0.1002 1.68 PBS Sodium/potassium-transporting ATPase subunit alpha-2

Atp1a3 23 1 731.69 0.6368 1.16 PBS Sodium/potassium-transporting ATPase subunit alpha

Atp1a4 20 1 419.2 0.8151 1.13 PBS Sodium/potassium-transporting ATPase subunit alpha-4

Atp1b1 13 4 248.61 0.3526 1.05 PBS Sodium/potassium-transporting ATPase subunit beta-1

Atp1b3 7 2 189.48 0.5699 1.08 PBS Sodium/potassium-transporting ATPase subunit beta-3

Atp2a1 26 1 1013.49 0.2560 1.87 PBS Sarcoplasmic/endoplasmic reticulum calcium ATPase 1

Atp2a2 55 12 2415.9 0.2246 1.18 PBS Sarcoplasmic/endoplasmic reticulum calcium ATPase 2

Atp2a3 40 12 1456.51 0.0320 1.35 PBS Sarcoplasmic/endoplasmic reticulum calcium ATPase 3

Atp2b1 47 14 1588.23 0.2228 1.15 PBS Plasma membrane calcium-transporting ATPase 1

Atp2b2 27 1 501.81 0.8622 1.04 PBS Plasma membrane calcium-transporting ATPase 2

Atp2b3 24 0 570.1 --- Calcium-transporting ATPase

Atp2b4 38 10 983.58 0.1596 1.34 PBS Calcium-transporting ATPase

Atp2c2 14 0 35.33 --- Calcium-transporting ATPase type 2C member 2

Atp4a 14 1 197.45 0.0950 27.91 Flu Potassium-transporting ATPase alpha chain 1

Atp5a1 47 16 2972.46 0.3568 1.06 Flu ATP synthase subunit alpha, mitochondrial

Atp5b 48 30 3376.66 0.9723 1.00 Flu ATP synthase subunit beta, mitochondrial

Atp5c1 16 0 719.4 --- ATP synthase subunit gamma

Atp5c1 17 0 756.31 --- ATP synthase subunit gamma

Atp5d 3 0 129.33 --- ATP synthase subunit delta, mitochondrial

Atp5e 2 0 31.9 --- ATP synthase subunit epsilon, mitochondrial

Atp5f1 15 2 582.24 0.0951 1.34 PBS ATP synthase F(0) complex subunit B1, mitochondrial (Fragment)

Atp5f1 19 5 830.55 0.2795 1.15 PBS ATP synthase F(0) complex subunit B1, mitochondrial

Atp5h 7 4 299.65 0.0074 1.23 Flu ATP synthase subunit d, mitochondrial (Fragment)

Atp5i 8 2 252.32 0.1405 1.25 Flu ATP synthase subunit e, mitochondrial

Atp5j2 3 2 128.18 0.9429 1.00 PBS ATP synthase subunit f, mitochondrial

Atp5l 6 1 112.47 0.5933 1.05 PBS ATP synthase subunit g, mitochondrial

Atp5o 22 6 919.53 0.7447 1.05 PBS ATP synthase subunit O, mitochondrial

Atp5o 8 0 555.54 --- ATP synthase subunit O, mitochondrial (Fragment)

Atp6v0c 5 1 48 0.0630 1.28 Flu V-type proton ATPase 16 kDa proteolipid subunit (Fragment)

Atp6v1a 20 9 949.07 0.0032 1.56 Flu V-type proton ATPase catalytic subunit A

Atp6v1b1 6 0 216.46 --- ATPase, H+ transporting, lysosomal V1 subunit B1

Atp6v1b2 15 6 437.44 0.0328 1.43 Flu V-type proton ATPase subunit B, brain isoform

Atp6v1d 8 1 115.12 0.0200 3.96 Flu V-type proton ATPase subunit D

Atp6v1e1 8 0 184.41 --- V-type proton ATPase subunit E 1

Atp6v1h 11 6 247.25 0.0018 1.43 Flu V-type proton ATPase subunit H

Atp8a1 24 8 365.07 0.3886 1.05 PBS Phospholipid-transporting ATPase IA

Atp8b1 10 1 73.71 0.2643 1.17 PBS Phospholipid-transporting ATPase IC

Atrx 23 3 173.83 0.6857 1.13 Flu Transcriptional regulator ATRX

Atxn10 5 3 142.37 0.0039 2.26 Flu Ataxin-10

Atxn2 16 1 103.63 0.5842 1.06 Flu Ataxin-2 (Fragment)

AW551984 3 0 44.09 --- Protein AW551984 (Fragment)

B2m 3 2 98.73 0.0502 1.67 Flu Beta-2-microglobulin

B4galnt1 6 1 46.31 0.0974 2.65 Flu Beta-1,4 N-acetylgalactosaminyltransferase 1

Bag5 5 1 16.85 0.1300 1.30 PBS BAG family molecular chaperone regulator 5

Bag6 7 2 111.49 0.3338 1.25 Flu Large proline-rich protein BAG6 (Fragment)

Bag6 2 0 26.95 --- Large proline-rich protein BAG6 (Fragment)

Baiap2 8 4 69.39 0.8877 1.01 PBS Brain-specific angiogenesis inhibitor 1-associated protein 2

Baiap2l1 15 2 132.96 0.6162 1.03 PBS Brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1

BC005561 17 1 80.89 0.2093 1.85 Flu Protein BC005561

BC021614 4 0 46.62 --- Protein BC021614

BC094916 6 0 171.97 --- Protein BC094916

Bcam 35 18 1533.49 0.1136 1.37 PBS Basal cell adhesion molecule

Bcap31 7 3 139.73 0.5937 1.10 Flu B-cell receptor-associated protein 31

Bcat2 14 5 524.37 0.6995 1.08 PBS Branched-chain-amino-acid aminotransferase, mitochondrial

Bccip 4 1 27.44 0.4646 1.50 Flu BRCA2 and CDKN1A-interacting protein

Bckdha 5 1 42.77 0.2910 1.99 PBS 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial

Bckdhb 8 2 46.79 0.2573 1.38 PBS 2-oxoisovalerate dehydrogenase subunit beta, mitochondrial

Bcl2l13 4 2 54.68 0.0472 1.46 Flu Bcl-2-like protein 13

Bclaf1 14 2 106.81 0.1801 1.67 Flu Bcl-2-associated transcription factor 1

Bend3 12 3 73.68 0.0630 1.40 Flu BEN domain-containing protein 3

Bgn 5 3 87.59 0.0103 2.22 Flu Biglycan

Bin1 13 3 168.83 0.0113 1.64 Flu Bin1 protein

Bin2 10 5 186.95 0.0709 1.19 Flu Bridging integrator 2

Birc6 25 4 117.31 0.1429 1.32 PBS Baculoviral IAP repeat-containing protein 6

Blk 8 2 97.62 0.3495 1.16 PBS Tyrosine-protein kinase Blk

Blmh 11 4 272.08 0.4731 1.09 Flu Bleomycin hydrolase

Blmh 6 0 113.12 --- Bleomycin hydrolase (Fragment)

Blvra 5 1 111.33 0.6419 1.10 Flu Biliverdin reductase A

Blvrb 9 4 315.36 0.1923 1.44 PBS Flavin reductase (NADPH)

Bnip2 6 1 70.29 0.2021 1.29 PBS BCL2/adenovirus E1B 19 kDa protein-interacting protein 2

Bpgm 13 8 266.3 0.1145 1.49 PBS Bisphosphoglycerate mutase

Bphl 8 4 269.84 0.5904 1.07 PBS Valacyclovir hydrolase

Bpifb1 16 5 202.21 0.1069 2.21 Flu BPI fold-containing family B member 1

Bpnt1 9 2 133.73 0.1274 2.69 Flu 3'(2'),5'-bisphosphate nucleotidase 1

Bpnt1 8 0 89.13 --- 3'(2'),5'-bisphosphate nucleotidase 1

Brca2 38 3 188.14 0.2917 1.22 PBS Breast cancer type 2 susceptibility protein homolog

Brd2 10 2 61.34 0.4076 1.17 Flu Bromodomain-containing protein 2

Bre 4 2 62.48 0.0061 1.29 Flu BRCA1-A complex subunit BRE

Brox 5 0 35.53 --- BRO1 domain-containing protein BROX

Bsg 4 2 116.43 0.8848 1.08 PBS Basigin

Btd 3 2 57.91 0.1811 1.39 Flu Biotinidase

Btf3 5 1 52.72 0.0024 2.13 Flu Transcription factor BTF3

Btn2a2 3 0 46.34 --- Butyrophilin subfamily 2 member A2

Bub3 10 4 253.35 0.4723 1.15 Flu Mitotic checkpoint protein BUB3

Bzw1 11 3 243.34 0.0778 1.49 Flu Basic leucine zipper and W2 domain-containing protein 1

C1qbp 5 2 93.13 0.7621 1.10 Flu Complement component 1 Q subcomponent-binding protein, mitochondrial

C1sa 4 0 55.1 --- Complement C1s-A subcomponent

C3 63 38 1758.59 0.0360 1.55 Flu Complement C3

C4b 15 6 247.4 0.0815 1.69 Flu Complement C4-B

C5 15 1 88.94 0.1583 2.61 Flu Complement C5

Ca1 14 4 743.59 0.0922 1.64 PBS Carbonic anhydrase 1

Ca14 2 0 32.94 --- Carbonic anhydrase 14

Ca2 18 9 858.34 0.1827 1.49 PBS Carbonic anhydrase 2

Ca3 6 2 59.8 0.0570 1.56 Flu Carbonic anhydrase 3

Ca4 8 2 205.75 0.0291 2.14 PBS Carbonic anhydrase 4

Cab39 15 2 172.3 0.8044 1.05 Flu Calcium-binding protein 39

Cabin1 17 2 103.22 0.8289 1.03 PBS Calcineurin binding protein 1, isoform CRA_a

Cacybp 7 2 184.39 0.0112 1.79 Flu Calcyclin-binding protein

Cad 30 6 288.09 0.0169 1.93 Flu CAD protein

Cadm1 11 6 279.89 0.1180 1.29 PBS Cell adhesion molecule 1

Calcrl 14 6 582.99 0.0181 1.81 PBS Calcitonin gene-related peptide type 1 receptor

Cald1 26 0 930.77 --- Protein Cald1

Cald1 28 0 1019.78 --- Caldesmon 1

Cald1 11 0 411.86 --- Protein Cald1 (Fragment)

Cald1 9 0 279.86 --- Protein Cald1 (Fragment)

Calm1 6 2 186.62 0.8575 1.02 PBS Calmodulin

Calr 31 21 1095.81 0.0209 1.43 Flu Calreticulin

Calu 5 3 107.03 0.0465 3.21 Flu Calumenin

Camk1 3 0 12.22 --- Calcium/calmodulin-dependent protein kinase type 1 (Fragment)

Camk2a 4 1 89.08 0.0396 1.42 PBS Calcium/calmodulin-dependent protein kinase type II subunit alpha (Fragment)

Camk2a 8 0 179.52 --- Calcium/calmodulin-dependent protein kinase type II subunit alpha

Camk2d 18 0 404.49 --- Calcium/calmodulin-dependent protein kinase type II subunit delta

Camk2d 7 0 153.41 --- Calcium/calmodulin-dependent protein kinase type II subunit delta

Camk2d 6 0 132.31 --- Calcium/calmodulin-dependent protein kinase type II subunit delta (Fragment)

Camk2g 9 3 242.93 0.0133 1.34 Flu Calcium/calmodulin-dependent protein kinase type II subunit gamma

Camp 5 3 133.88 0.0828 1.37 PBS Cathelin-related antimicrobial peptide

Cand1 32 14 985.2 0.0050 1.21 Flu Cullin-associated NEDD8-dissociated protein 1

Canx 31 10 1088.63 0.0836 1.24 Flu Calnexin

Cap1 34 17 1495.48 0.0397 1.26 Flu Adenylyl cyclase-associated protein 1

Cap2 7 0 72.34 --- Adenylyl cyclase-associated protein 2

Capg 15 6 592.09 0.0067 1.95 Flu Capping protein (Actin filament), gelsolin-like

Capn1 23 12 734.79 0.0195 1.18 Flu Calpain-1 catalytic subunit

Capn2 30 19 964.44 0.5706 1.07 PBS Calpain-2 catalytic subunit

Capns1 13 6 255.53 0.1721 1.18 Flu Calpain small subunit 1 (Fragment)

Capns2 6 0 83.48 --- Calpain small subunit 2

Caprin1 11 3 209.15 0.0532 1.73 Flu Caprin-1

Caprin1 11 0 96.54 --- Caprin-1 (Fragment)

Capza1 10 5 269.68 0.0090 1.45 Flu F-actin-capping protein subunit alpha-1

Capza2 11 6 423.44 0.0236 1.15 Flu F-actin-capping protein subunit alpha-2

Capzb 18 8 683.96 0.0135 1.35 Flu Capping protein (Actin filament) muscle Z-line, beta, isoform CRA_a

Car4 5 0 91.71 --- Carbonic anhydrase 4 (Fragment)

Carkd 12 6 486.37 0.2555 1.19 PBS ATP-dependent (S)-NAD(P)H-hydrate dehydratase

Cars 9 2 58.32 0.0277 1.52 Flu Cysteine--tRNA ligase, cytoplasmic

Cask 9 0 63.73 --- Peripheral plasma membrane protein CASK (Fragment)

Caskin2 13 3 158 0.2091 1.14 PBS Caskin-2

Casp6 6 0 47.57 --- Caspase 6

Casp8 5 2 39.24 0.0833 1.43 Flu Caspase-8

Casq2 4 1 34.75 0.2926 1.22 PBS Calsequestrin-2

Cast 31 8 256.21 0.1961 1.22 Flu Calpastatin

Cat 36 23 2003.1 0.2888 1.19 PBS Catalase

Cav1 16 7 830.64 0.1130 1.71 PBS Caveolin-1

Cav1 3 1 91.23 0.6901 1.37 PBS Caveolin (Fragment)

Cav2 6 2 261.45 0.0950 1.92 PBS Caveolin-2

Cbr1 16 7 466.67 0.8425 1.10 Flu Carbonyl reductase [NADPH] 1

Cbr2 51 13 3015.09 0.1376 1.76 PBS Carbonyl reductase [NADPH] 2

Cbr2 34 1 1982.61 0.2943 1.79 Flu Carbonyl reductase [NADPH] 2 (Fragment)

Cbr3 4 1 71.53 0.3670 1.46 Flu Carbonyl reductase [NADPH] 3

Cbr4 2 1 54.82 0.5038 1.09 PBS Carbonyl reductase family member 4

Cbx3 4 2 98.92 0.6144 1.08 Flu Chromobox protein homolog 3

Cc2d1b 8 3 64.56 0.1273 1.25 Flu Coiled-coil and C2 domain-containing protein 1B

Ccar1 20 7 392.81 0.1865 1.36 Flu Cell division cycle and apoptosis regulator protein 1

Ccar2 18 7 347.51 0.0662 1.32 Flu Cell cycle and apoptosis regulator protein 2

Ccbl2 6 2 88.32 0.0947 1.38 PBS Kynurenine--oxoglutarate transaminase 3

Ccdc127 2 0 42.51 --- Coiled-coil domain-containing protein 127

Ccdc22 9 3 110.83 0.9112 1.21 PBS Coiled-coil domain-containing protein 22

Ccdc47 12 2 365.41 0.8016 1.02 Flu Coiled-coil domain-containing protein 47

Ccdc47 10 0 173.18 --- Coiled-coil domain-containing protein 47 (Fragment)

Ccdc50 5 0 58.54 --- Coiled-coil domain-containing protein 50 (Fragment)

Ccnl1 5 1 42.39 0.5707 1.04 PBS Cyclin-L1

Ccny 6 3 65.67 0.5079 1.07 PBS Cyclin-Y

Cct2 28 14 1503.22 0.0116 1.26 Flu T-complex protein 1 subunit beta

Cct3 33 3 939.75 0.0767 1.20 Flu T-complex protein 1 subunit gamma

Cct3 21 1 496.55 0.8436 1.01 PBS T-complex protein 1 subunit gamma (Fragment)

Cct3 7 0 44.16 --- T-complex protein 1 subunit gamma (Fragment)

Cct4 16 0 281.94 --- T-complex protein 1 subunit delta

Cct4 37 0 1187.87 --- T-complex protein 1 subunit delta

Cct4 40 0 1349.47 --- T-complex protein 1 subunit delta

Cct4 8 0 94.8 --- T-complex protein 1 subunit delta

Cct5 30 14 906.1 0.0423 1.36 Flu T-complex protein 1 subunit epsilon

Cct6a 21 6 833.67 0.0449 1.19 Flu T-complex protein 1 subunit zeta

Cct6b 7 0 200.85 --- T-complex protein 1 subunit zeta-2

Cct7 25 12 915.51 0.0825 1.17 Flu T-complex protein 1 subunit eta

Cct8 34 8 1191.92 0.2236 1.51 Flu T-complex protein 1 subunit theta

Cct8 15 1 335.99 0.3357 1.11 PBS T-complex protein 1 subunit theta (Fragment)

Cd151 3 2 27.53 0.0486 1.91 PBS CD151 antigen

Cd200 7 4 242.19 0.0462 1.45 PBS OX-2 membrane glycoprotein

Cd209e 2 2 25.6 0.1402 1.40 Flu CD209 antigen-like protein E

Cd2ap 26 6 295 0.2638 1.09 Flu CD2-associated protein

Cd34 10 3 187.97 0.0359 1.42 PBS Hematopoietic progenitor cell antigen CD34

Cd36 21 13 1074.09 0.0511 1.61 PBS CD36 antigen, isoform CRA_a

Cd38 7 3 229.44 0.1280 1.37 PBS ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1

Cd44 5 3 156.12 0.0101 1.78 Flu CD44 antigen

Cd47 9 3 298.8 0.1754 1.25 PBS Leukocyte surface antigen CD47

Cd63 2 0 34.82 --- CD63 antigen

Cd74 14 1 258.41 0.6991 19.84 Flu H-2 class II histocompatibility antigen gamma chain

Cd81 3 3 272.32 0.0933 1.47 PBS CD81 antigen

Cd82 3 1 146.3 0.1798 1.55 PBS Tetraspanin

Cd9 5 2 163.04 0.0934 2.02 PBS CD9 antigen

Cd93 18 9 777.66 0.0590 1.52 PBS Complement component C1q receptor

Cdc23 7 1 53.29 0.7361 1.08 Flu Cell division cycle protein 23 homolog

Cdc37 9 3 166.7 0.0064 1.33 Flu Hsp90 co-chaperone Cdc37

Cdc40 6 0 37.12 --- Pre-mRNA-processing factor 17

Cdc42 12 8 432.93 0.9828 1.01 Flu Cell division control protein 42 homolog

Cdc42bpb 34 6 338.61 0.9337 1.00 Flu Serine/threonine-protein kinase MRCK beta

Cdc42bpg 24 6 283.09 0.1316 1.38 PBS Serine/threonine-protein kinase MRCK gamma

Cdc42ep1 12 5 128.78 0.3707 1.05 PBS Cdc42 effector protein 1

Cdc5l 27 10 455.93 0.0050 1.47 Flu Cell division cycle 5-like protein

Cdc73 4 1 43.08 0.5102 1.01 Flu Parafibromin

Cdh1 16 9 392.61 0.4024 1.14 PBS Cadherin-1

Cdh11 5 2 35.74 0.0178 1.37 Flu Cadherin-11

Cdh13 8 3 149.01 0.1127 1.35 PBS Cadherin-13

Cdh5 11 5 308.84 0.0942 1.62 PBS Cadherin-5

Cdipt 6 1 188.53 0.4142 1.15 PBS CDP-diacylglycerol--inositol 3-phosphatidyltransferase

Cdk11b 13 3 163.33 0.0037 1.37 Flu Cyclin-dependent kinase 11B

Cdk5 4 0 43.4 --- Cyclin-dependent-like kinase 5

Cdk6 6 1 74.46 0.0073 2.06 Flu Cyclin-dependent kinase 6

Cdkl5 7 1 58.34 0.0213 29.68 Flu Cyclin-dependent kinase-like 5

Cdo1 4 0 60.67 --- Cysteine dioxygenase type 1

Cds2 7 2 264.92 0.1549 1.22 PBS Phosphatidate cytidylyltransferase

Cds2 5 0 159.79 --- Phosphatidate cytidylyltransferase (Fragment)

Cdv3 2 1 59.76 0.2735 2.31 Flu Protein CDV3

Ceacam1 5 2 85.53 0.0602 1.78 PBS Carcinoembryonic antigen-related cell adhesion molecule 1

Celf1 6 1 96.62 0.2184 1.86 Flu CUGBP Elav-like family member 1

Celf2 5 0 205.19 --- CUGBP Elav-like family member 2

Celf2 5 0 168.94 --- CUGBP Elav-like family member 2 (Fragment)

Celf2 10 0 415.45 --- CUGBP Elav-like family member 2

Celf2 10 0 377.5 --- CUGBP Elav-like family member 2

Celsr2 19 1 93.56 0.9151 1.12 Flu Cadherin EGF LAG seven-pass G-type receptor 2

Cep192 16 2 81.25 0.0737 1.47 PBS Protein Cep192

Cers2 7 4 94.52 0.3375 1.12 Flu Ceramide synthase 2

Cers5 5 2 33.68 0.0645 1.30 Flu Ceramide synthase 5 (Fragment)

Ces1 5 0 145.11 --- Liver carboxylesterase 1

Ces1a 3 0 77.58 --- Carboxylic ester hydrolase

Ces1b 11 0 393 --- Carboxylic ester hydrolase

Ces1c 18 5 759.12 0.0214 2.59 Flu Carboxylesterase 1C

Ces1d 35 15 1531.5 0.1706 1.22 PBS Carboxylesterase 1D

Ces1e 4 0 162.3 --- Carboxylesterase 1E

Ces1f 10 2 172.43 0.0024 1.44 Flu Carboxylic ester hydrolase

Ces2b 9 2 77.68 0.3245 1.21 PBS Carboxylic ester hydrolase

Ces2g 9 4 228.02 0.2123 1.66 PBS Carboxylic ester hydrolase

Cfap45 8 0 109.75 --- Ccdc19 protein

Cfap52 3 1 37.39 0.0228 3.01 Flu Cilia- and flagella-associated protein 52

Cfh 15 3 102.96 0.0123 1.71 Flu Complement factor H

Cfi 3 1 35.22 0.0292 4.59 Flu Complement factor I

Cfl1 13 2 614.14 0.0086 1.64 Flu Cofilin-1

Cfl2 8 2 264.25 0.9866 1.03 Flu Cofilin-2

Cgn 27 0 496.26 --- Cingulin

Cgn 27 0 426.52 --- Cingulin

Chchd3 4 1 81.98 0.5361 1.55 PBS MICOS complex subunit Mic19

Chchd3 4 0 58.55 --- MICOS complex subunit Mic19 (Fragment)

Chd1 17 1 111.38 0.2432 1.84 Flu Chromodomain-helicase-DNA-binding protein 1

Chd3 27 1 198.16 0.2312 5.54 PBS Protein Chd3

Chd3 28 0 223.7 --- Protein Chd3 (Fragment)

Chd4 58 11 783.9 0.4073 1.10 PBS Chromodomain-helicase-DNA-binding protein 4

Chd5 31 2 397.95 0.3825 1.13 Flu Chromodomain-helicase-DNA-binding protein 5

Chd6 26 6 174.27 0.1724 1.12 Flu Chromodomain-helicase-DNA-binding protein 6

Cherp 7 2 94.85 0.0189 3.16 Flu Calcium homeostasis endoplasmic reticulum protein

Chi3l1 9 4 239.68 0.0935 1.46 Flu Chitinase-3-like protein 1

Chid1 3 1 37.53 0.1329 1.82 Flu Chitinase domain-containing protein 1

Chil3 20 12 938.81 0.9558 1.03 Flu Chitinase-like protein 3

Chil4 7 2 288.78 0.4888 1.19 PBS Chitinase-like protein 4

Chmp4b 3 1 8.59 0.2866 1.58 PBS Charged multivesicular body protein 4b

Chmp6 4 1 81.2 0.7036 1.07 PBS Charged multivesicular body protein 6

Chordc1 6 2 84.2 0.7296 1.04 PBS Cysteine and histidine-rich domain-containing protein 1

Chpt1 6 1 83.97 0.3933 1.05 Flu Cholinephosphotransferase 1

Chrnd 3 3 23.52 0.1552 1.19 Flu Acetylcholine receptor subunit delta

Chtop 7 2 74.6 0.2652 1.47 Flu Chromatin target of PRMT1 protein

Cisd1 4 1 89.79 0.3491 1.30 PBS CDGSH iron-sulfur domain-containing protein 1

CK137956 9 1 39.45 0.1753 1.27 Flu Protein CK137956

Ckap4 34 16 1154.59 0.0213 1.74 Flu Cytoskeleton-associated protein 4

Ckap5 55 16 561.95 0.1182 1.23 Flu Cytoskeleton-associated protein 5

Ckb 11 5 325.18 0.0043 1.47 Flu Creatine kinase B-type

Ckm 9 5 57.16 0.3864 1.15 PBS Creatine kinase M-type

Ckmt1 14 2 300.42 0.0356 1.90 Flu Creatine kinase U-type, mitochondrial

Ckmt2 14 7 349.16 0.1367 1.45 PBS Creatine kinase S-type, mitochondrial

Clasp1 19 1 264.48 0.2307 1.54 Flu CLIP-associating protein 1

Clasp1 7 0 55.79 --- CLIP-associating protein 1 (Fragment)

Clasp2 21 5 237.33 0.1251 1.13 Flu CLIP-associating protein 2

Clcc1 7 1 51.84 0.2868 1.38 PBS Chloride channel CLIC-like protein 1

Cldn18 3 2 85.36 0.4736 1.00 Flu Claudin-18

Cldn3 1 0 27.87 --- Claudin-3

Cldn5 1 0 46.43 --- Claudin-5

Clec10a 6 1 51.63 0.2693 1.20 PBS C-type lectin domain family 10 member A

Clec14a 10 4 296.03 0.0597 1.80 PBS C-type lectin domain family 14 member A

Clec2d 2 0 47.38 --- C-type lectin domain family 2 member D

Clhc1 12 0 73.62 --- Clathrin heavy chain linker domain-containing protein 1

Clic1 18 12 542.11 0.0079 1.45 Flu Chloride intracellular channel protein 1

Clic3 9 6 222.42 0.1907 1.16 Flu Chloride intracellular channel protein

Clic4 20 9 675.41 0.2320 1.25 PBS Chloride intracellular channel protein 4

Clic5 20 11 1070.37 0.0798 1.71 PBS Chloride intracellular channel protein 5

Clic6 5 1 103.31 0.2077 1.51 Flu Chloride intracellular channel protein 6 (Fragment)

Clic6 7 0 276.9 --- Chloride intracellular channel protein 6

Clint1 9 7 281.18 0.0439 1.48 Flu Clathrin interactor 1

Clip1 31 4 208.31 0.2962 1.51 Flu CAP-Gly domain-containing linker protein 1 (Fragment)

Clip1 35 0 335.83 --- CAP-Gly domain-containing linker protein 1

Clip1 27 0 231.3 --- CAP-Gly domain-containing linker protein 1 (Fragment)

Cln6 1 1 67.44 0.2413 1.12 Flu Protein Cln6

Clpp 2 1 62.46 0.8956 1.02 Flu ATP-dependent Clp protease proteolytic subunit, mitochondrial

Clptm1 9 3 63.39 0.0759 1.28 Flu Cleft lip and palate transmembrane protein 1 homolog

Clptm1l 4 0 57.3 --- Cleft lip and palate transmembrane protein 1-like protein

Clta 4 1 111.35 0.2565 1.24 Flu Clathrin light chain A

Cltc 107 64 5357.59 0.8083 1.01 PBS Clathrin heavy chain 1

Cltc 15 0 484.68 --- Clathrin heavy chain 1 (Fragment)

Clu 9 4 124.07 0.0425 2.94 Flu Clusterin

Clybl 7 1 40.15 0.2433 1.24 PBS Citrate lyase subunit beta-like protein, mitochondrial

Cmas 8 2 77.03 0.6449 1.04 PBS N-acylneuraminate cytidylyltransferase

Cmklr1 1 0 14.46 --- Chemokine-like receptor 1

Cmpk1 10 4 145.1 0.0104 1.50 Flu UMP-CMP kinase

Cmpk2 8 3 239.8 0.0421 1.36 Flu UMP-CMP kinase 2, mitochondrial

Cmtm4 1 1 25.88 0.5539 1.40 PBS CKLF-like MARVEL transmembrane domain-containing protein 4

Cmtr1 18 3 212.16 0.4479 1.07 Flu Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1

Cmya5 31 2 133.17 0.3114 1.27 PBS Cardiomyopathy-associated protein 5

Cndp2 19 11 657.69 0.0049 1.78 Flu Cytosolic non-specific dipeptidase

Cnn1 22 14 843.56 0.0431 1.56 PBS Calponin-1

Cnn2 13 5 608.11 0.1531 1.17 Flu Calponin-2

Cnn3 11 3 318.15 0.3115 1.48 Flu Calponin

Cnn3 8 0 84.2 --- Calponin-3 (Fragment)

Cnot1 26 6 265.17 0.0762 1.49 Flu CCR4-NOT transcription complex subunit 1

Cnot10 6 1 49.78 0.7203 1.07 Flu CCR4-NOT transcription complex subunit 10

Cnp 14 1 250.58 0.1251 1.21 PBS 2',3'-cyclic-nucleotide 3'-phosphodiesterase

Cnpy2 4 1 75.08 0.5686 1.09 Flu Protein canopy homolog 2

Cnpy3 4 2 37.58 0.5618 1.14 PBS Protein canopy homolog 3

Cnrip1 3 2 58.68 0.5800 1.06 PBS CB1 cannabinoid receptor-interacting protein 1

Cobll1 34 0 245.98 --- Cordon-bleu protein-like 1

Cobll1 34 0 228.82 --- Cordon-bleu protein-like 1

Cobll1 10 0 116.12 --- Cordon-bleu protein-like 1 (Fragment)

Col12a1 46 18 678.67 0.2202 1.39 Flu Collagen alpha-1(XII) chain

Col12a1 4 0 50.54 --- Collagen alpha-1(XII) chain (Fragment)

Col14a1 37 14 612.49 0.0412 1.38 Flu Collagen alpha-1(XIV) chain

Col18a1 25 6 186.21 0.0867 1.63 PBS Collagen alpha-1(XVIII) chain

Col1a1 38 13 259.2 0.2993 1.23 Flu Collagen alpha-1(I) chain

Col1a2 24 6 215.98 0.0022 1.61 Flu Collagen alpha-2(I) chain

Col3a1 30 5 161.36 0.1040 1.14 Flu Collagen alpha-1(III) chain (Fragment)

Col4a1 43 13 204.69 0.0744 1.50 PBS Collagen alpha-1(IV) chain

Col4a3bp 7 2 91.36 0.9119 1.04 Flu Collagen type IV alpha-3-binding protein

Col6a1 14 2 220.37 0.0493 2.40 Flu Collagen alpha-1(VI) chain

Col6a2 11 2 110.96 0.0242 2.89 Flu Collagen alpha-2(VI) chain

Col6a3 41 11 551.57 0.0593 1.69 Flu Protein Col6a3

Col6a6 19 4 132.53 0.0208 1.22 Flu Collagen alpha-6(VI) chain

Colec12 17 4 189.34 0.0137 1.40 Flu Collectin-12

Colgalt1 12 4 263.6 0.0755 1.84 Flu Procollagen galactosyltransferase 1

Commd5 3 1 48.55 0.5896 1.10 Flu COMM domain-containing protein 5

Comt 4 1 218.62 0.0411 1.25 Flu Catechol O-methyltransferase

Copa 48 18 1565.98 0.1282 1.79 Flu Coatomer subunit alpha

Copb1 30 17 926.94 0.0353 1.71 Flu Coatomer subunit beta

Copb2 30 15 549.08 0.0851 1.87 Flu Coatomer subunit beta'

Cope 9 8 261.61 0.0055 1.99 Flu Coatomer subunit epsilon

Copg1 27 11 673.35 0.0437 1.76 Flu Coatomer subunit gamma-1

Copg2 18 6 368.7 0.0084 1.54 Flu Coatomer subunit gamma-2 (Fragment)

Cops2 12 5 168.91 0.0709 1.16 Flu COP9 signalosome complex subunit 2

Cops3 6 4 306.1 0.0872 1.15 Flu COP9 signalosome complex subunit 3

Cops4 13 9 255.03 0.0471 1.23 Flu COP9 signalosome complex subunit 4

Cops5 12 1 121.88 0.6495 1.09 Flu COP9 signalosome complex subunit 5 (Fragment)

Cops6 4 2 50.05 0.0409 1.39 Flu COP9 signalosome complex subunit 6

Cops7a 1 0 72.3 --- COP9 signalosome complex subunit 7a (Fragment)

Copz1 2 1 82.67 0.0075 2.40 Flu Coatomer subunit zeta-1

Coq6 6 0 58.06 --- Ubiquinone biosynthesis monooxygenase COQ6, mitochondrial

Coq9 6 2 73.74 0.2117 1.60 Flu Ubiquinone biosynthesis protein COQ9, mitochondrial (Fragment)

Coro1a 29 3 1149.42 0.1642 1.91 Flu Coronin-1A

Coro1a 22 0 897.63 --- Coronin

Coro1b 15 6 420.01 0.0848 1.38 Flu Coronin-1B

Coro1c 24 10 883.74 0.4931 1.05 PBS Coronin-1C

Coro7 12 5 254.55 0.0060 1.90 Flu Coronin-7

Cotl1 6 4 176.15 0.0023 2.12 Flu Coactosin-like protein

Cox4i1 10 0 416.29 --- Cytochrome c oxidase subunit 4 isoform 1, mitochondrial

Cox4i1 7 0 237.27 --- Cytochrome c oxidase subunit 4 isoform 1, mitochondrial (Fragment)

Cox5a 8 2 121.99 0.7039 1.08 PBS Cytochrome c oxidase subunit 5A, mitochondrial

Cox6b1 1 1 67.6 0.1029 1.78 PBS Cytochrome c oxidase subunit 6B1

Cox6c 3 1 83.63 0.6840 1.05 PBS Cytochrome c oxidase subunit 6C

Cp 21 10 610.26 0.0641 1.85 Flu Ceruloplasmin

Cp 4 0 42.71 --- Ceruloplasmin (Fragment)

Cpne1 9 1 163.4 0.2993 2.47 Flu Copine-1 (Fragment)

Cpne1 12 2 297.22 0.9497 1.02 PBS Copine-1

Cpne3 11 3 253.78 0.8550 1.01 Flu Copine-3

Cpox 6 4 108.39 0.0029 1.58 Flu Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial

Cpq 5 3 163.26 0.0057 1.45 Flu Carboxypeptidase Q

Cpsf2 8 5 183.61 0.0616 1.63 Flu Cleavage and polyadenylation specificity factor subunit 2

Cpsf3 10 3 60.26 0.1137 1.40 Flu Cleavage and polyadenylation specificity factor subunit 3

Cpsf6 7 2 302.66 0.0197 1.24 Flu Cleavage and polyadenylation-specificity factor subunit 6

Cpsf6 2 0 49.64 --- Cleavage and polyadenylation-specificity factor subunit 6 (Fragment)

Cpt1a 16 6 480.51 0.9787 1.01 Flu Carnitine O-palmitoyltransferase 1, liver isoform

Cpt1b 3 1 7.25 0.1246 1.58 PBS Carnitine O-palmitoyltransferase 1, muscle isoform

Cpt2 14 8 369.06 0.3849 1.08 Flu Carnitine O-palmitoyltransferase 2, mitochondrial

Cr1l 8 1 258.5 0.3837 1.14 PBS Complement component receptor 1-like protein

Cr1l 8 0 150.22 --- Complement component receptor 1-like protein (Fragment)

Crat 25 7 389.59 0.7868 1.04 Flu Carnitine O-acetyltransferase

Creb3 4 1 34.58 0.1726 1.41 Flu Cyclic AMP-responsive element-binding protein 3

Creg1 6 1 56.15 0.0344 1.38 Flu Protein CREG1

Crip1 1 1 45.59 0.2859 1.76 Flu Cysteine-rich protein 1

Crip2 14 7 354.15 0.2780 1.26 PBS Cysteine-rich protein 2

Crk 4 1 125.38 0.9789 1.03 Flu Adapter molecule crk (Fragment)

Crk 8 2 203.25 0.9810 1.01 Flu Adapter molecule crk

Crkl 4 3 45.87 0.4484 1.21 Flu Crk-like protein

Crlf3 3 0 40.91 --- Cytokine receptor-like factor 3

Crmp1 12 1 344.64 0.8102 1.04 PBS Dihydropyrimidinase-related protein 1

Crmp1 3 0 56.89 --- Collapsin response mediator protein 1A (Fragment)

Crocc 27 3 180.69 0.6331 1.04 Flu Rootletin

Crtc3 3 1 53.6 0.2097 2.47 Flu CREB-regulated transcription coactivator 3

Cryab 7 1 117.27 0.6349 1.05 PBS Alpha-crystallin B chain

Crybb3 2 0 38.57 --- Beta-crystallin B3 (Fragment)

Cryl1 2 0 56.88 --- Lambda-crystallin homolog

Cryz 10 2 94.77 0.3661 1.16 Flu Quinone oxidoreductase (Fragment)

Cryzl1 4 1 39.63 0.0026 1.46 Flu Quinone oxidoreductase-like protein 1

Cs 23 9 812.11 0.9957 1.00 Flu Citrate synthase, mitochondrial

Csad 8 2 64.11 0.8721 1.08 Flu Cysteine sulfinic acid decarboxylase

Csde1 19 7 372.09 0.0583 1.39 Flu Cold shock domain-containing protein E1

Cse1l 26 16 793.78 0.0122 1.64 Flu Exportin-2

Csk 10 2 189.92 0.1350 1.16 Flu Tyrosine-protein kinase CSK

Csl 17 1 454.23 0.0053 1.51 Flu Citrate synthase

Csnk1a1 6 4 148.77 0.1729 1.13 Flu Casein kinase I isoform alpha

Csnk1a1 3 2 27.35 0.1988 2.05 Flu Casein kinase I isoform alpha (Fragment)

Csnk1d 9 2 128.75 0.3776 1.12 PBS Casein kinase I isoform delta

Csnk2a1 8 3 144.65 0.0500 1.41 Flu Casein kinase II subunit alpha

Csnk2a2 7 2 74.67 0.1717 1.55 Flu Casein kinase II subunit alpha'

Cspg4 24 12 788.93 0.1512 1.30 Flu Chondroitin sulfate proteoglycan 4

Csrp1 11 6 701.21 0.7293 1.05 PBS Cysteine and glycine-rich protein 1

Csrp2 3 3 65.22 0.2720 1.17 Flu Cysteine and glycine-rich protein 2

Cstb 3 2 89.42 0.0417 2.19 Flu Cystatin-B

Cstf1 2 1 34.42 0.4103 1.49 Flu Cleavage stimulation factor subunit 1

Cstf3 13 2 153.94 0.3211 1.40 Flu Cleavage stimulation factor subunit 3

Ctbp1 13 4 212.07 0.1367 1.33 Flu C-terminal-binding protein 1

Ctbp2 7 1 146.59 0.1921 1.18 PBS C-terminal-binding protein 2

Ctdp1 6 1 34.24 0.3997 1.18 PBS RNA polymerase II subunit A C-terminal domain phosphatase

Ctdsp1 6 1 57.97 0.0467 1.39 PBS Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1

Ctdsp2 2 0 31.73 --- Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2

Ctnna1 67 29 3075.85 0.1272 1.29 PBS Catenin alpha-1

Ctnna2 12 0 470.63 --- Catenin (Cadherin associated protein), alpha 2, isoform CRA_c

Ctnna2 24 0 789.86 --- Catenin alpha-2

Ctnna3 8 0 86.17 --- Catenin alpha-3

Ctnnb1 36 4 1533.91 0.1814 1.19 PBS Catenin beta-1

Ctnnb1 11 1 312.37 0.4431 1.28 Flu Catenin beta-1 (Fragment)

Ctnnb1 7 0 347.69 --- Catenin beta-1 (Fragment)

Ctnnb1 12 0 342.96 --- Catenin beta-1 (Fragment)

Ctnnbl1 9 4 145.61 0.1567 1.22 Flu Beta-catenin-like protein 1

Ctnnd1 48 2 1995.7 0.4267 1.16 PBS Catenin delta-1

Ctnnd1 45 1 1973.59 0.4500 1.02 Flu Catenin delta-1

Ctps1 5 1 64.24 0.0088 86.96 Flu CTP synthase 1

Ctps2 7 1 85.92 0.2017 1.15 Flu CTP synthase 2

Ctr9 13 1 90.43 0.0341 1.59 Flu RNA polymerase-associated protein CTR9 homolog

Ctsa 12 5 306.85 0.0065 2.12 Flu Lysosomal protective protein

Ctsb 10 8 582.06 0.0385 1.90 Flu Cathepsin B

Ctsc 4 3 163.95 0.0184 1.99 Flu Dipeptidyl peptidase 1

Ctsd 15 1 546.07 0.9025 1.25 Flu Cathepsin D (Fragment)

Ctsd 18 0 628.84 --- Cathepsin D

Ctsh 8 7 338.14 0.0309 1.87 Flu Pro-cathepsin H

Ctss 7 3 287.31 0.0070 5.31 Flu Cathepsin S

Ctsz 7 4 254.99 0.0261 3.28 Flu Cathepsin Z

Cttn 12 6 244.97 0.0400 1.57 Flu Src substrate cortactin

Cttnbp2nl 13 1 54.1 0.4173 1.16 Flu CTTNBP2 N-terminal-like protein

Cul1 10 3 141.04 0.7216 1.23 PBS Cullin-1 (Fragment)

Cul2 3 0 24.11 --- Cullin-2 (Fragment)

Cul3 16 5 294.44 0.2426 1.52 Flu Cullin-3

Cul4a 14 1 160.72 0.9053 1.01 PBS Cullin-4A

Cul4b 14 0 129.71 --- Cullin-4B

Cul5 17 5 193.61 0.0016 1.28 Flu Cullin 5

Cux1 25 2 123.18 0.1656 1.44 Flu Homeobox protein cut-like

Cxadr 14 4 200.58 0.5233 1.08 Flu Coxsackievirus and adenovirus receptor homolog

Cyb5a 4 0 253.84 --- Cytochrome b5

Cyb5a 6 0 389.76 --- Cytochrome b5

Cyb5b 3 2 136.34 0.9869 1.08 Flu Cytochrome b5 type B

Cyb5r1 12 2 272.23 0.5757 1.09 PBS NADH-cytochrome b5 reductase 1

Cyb5r1 8 0 184.45 --- Cytochrome b5 reductase 1, isoform CRA_a (Fragment)

Cyb5r1 5 0 60.49 --- NADH-cytochrome b5 reductase 1 (Fragment)

Cyb5r3 23 2 1109 0.9595 1.15 Flu NADH-cytochrome b5 reductase 3

Cyb5r3 22 0 1039.22 --- NADH-cytochrome b5 reductase

Cyba 7 2 89.23 0.0274 1.43 Flu Cytochrome b-245 light chain

Cybb 9 3 242.89 0.3985 1.28 Flu Cytochrome b-245 heavy chain

Cyc1 13 9 387.8 0.5128 1.08 PBS Cytochrome c1, heme protein, mitochondrial

Cycs 10 7 618.22 0.0637 1.20 Flu Cytochrome c, somatic

Cyfip1 35 8 1020.04 0.6410 1.03 PBS Cytoplasmic FMR1-interacting protein 1

Cyfip2 28 2 587.64 0.4937 1.25 Flu Cytoplasmic FMR1-interacting protein 2

Cyp1a1 6 2 45.52 0.1136 1.71 PBS Cytochrome P450 1A1

Cyp20a1 8 2 122.41 0.0133 2.18 Flu Cytochrome P450 20A1

Cyp2b10 30 9 1248.1 0.1294 1.50 PBS Cytochrome P450 2B10

Cyp2b13 9 1 297.93 0.3121 1.38 Flu Cytochrome P450, family 2, subfamily b, polypeptide 13

Cyp2b19 9 0 317.09 --- Cytochrome P450 2B19

Cyp2b23 7 0 144.78 --- Protein Cyp2b23

Cyp2c29 5 0 118.76 --- Cytochrome P450 2C29

Cyp2d10 4 0 34.25 --- Cytochrome P450 2D10

Cyp2d11 3 0 84.58 --- Cytochrome P450 2D11

Cyp2d12 3 1 75.28 0.0353 1.87 PBS Cytochrome P450, family 2, subfamily d, polypeptide 12

Cyp2d22 15 6 305.56 0.1486 1.51 PBS Cytochrome P450 CYP2D22

Cyp2f2 43 22 2134.08 0.4052 1.15 PBS Cytochrome P450 2F2

Cyp2g1 5 0 160.56 --- Cytochrome P450, family 2, subfamily g, polypeptide 1

Cyp2s1 13 7 320.1 0.2514 1.21 PBS Cytochrome P450 2S1

Cyp39a1 2 1 26.93 0.0905 1.52 PBS 24-hydroxycholesterol 7-alpha-hydroxylase

Cyp4b1 41 5 1805.24 0.0150 2.44 PBS Cytochrome P450 4B1

Cyp4b1 27 0 1125.43 --- Cytochrome P450 4B1 (Fragment)

Cyp4b1 19 0 803.22 --- Cytochrome P450 4B1 (Fragment)

Cyp4f3 10 0 122.26 --- Leukotriene-B(4) omega-hydroxylase 2

Cyp4v3 6 1 81.01 0.4084 1.16 Flu Cytochrome P450 4V2

Cyth3 5 1 31.71 0.0736 2.06 PBS Cytohesin-3

D10Jhu81e 10 5 381.77 0.1371 1.33 PBS ES1 protein homolog, mitochondrial

D1Pas1 22 0 799.06 --- DNA segment, Chr 1, Pasteur Institute 1

D8Ertd82e 21 1 108.03 0.1139 1.09 Flu Tyrosine-protein kinase SgK223

Daam1 25 8 298.35 0.5265 1.11 PBS Disheveled-associated activator of morphogenesis 1

Daam2 15 0 115.06 --- Disheveled-associated activator of morphogenesis 2

Dab2ip 34 5 170.8 0.3952 1.14 Flu Disabled homolog 2-interacting protein (Fragment)

Dad1 5 2 96.56 0.5758 1.05 Flu Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit DAD1

Dag1 22 7 248.61 0.2632 1.09 PBS Dystroglycan

Dapl1 4 0 50.75 --- Death-associated protein-like 1

Dars 22 9 757.08 0.1650 1.19 Flu Aspartate--tRNA ligase, cytoplasmic

Dazap1 7 5 264.09 0.0182 1.30 Flu DAZ-associated protein 1

Dbnl 14 9 516.84 0.0108 1.56 Flu Drebrin-like protein

Dbt 13 3 403.79 0.5928 1.12 PBS Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial

Dcaf8 5 2 42.58 0.0782 1.24 Flu DDB1- and CUL4-associated factor 8

Dclk1 7 1 75.8 0.1919 1.15 PBS Serine/threonine-protein kinase DCLK1

Dcn 10 1 95.68 0.6276 1.05 PBS Decorin

Dcps 9 4 248.56 0.0105 1.24 Flu m7GpppX diphosphatase

Dctn1 40 20 1391.73 0.8507 1.01 PBS Dynactin subunit 1

Dctn2 10 8 372.52 0.8374 1.01 PBS Dynactin subunit 2

Dctn3 5 1 62.76 0.0509 3.50 Flu Dynactin subunit 3

Dctn4 9 3 142.89 0.6292 1.04 PBS Dynactin subunit 4

Dctn5 2 1 31.69 0.1738 1.94 Flu Dynactin subunit 5

Dctn6 4 1 71.94 0.6136 1.06 PBS Dynactin 6, isoform CRA_b

Dcun1d1 3 1 55.44 0.2673 1.26 Flu DCN1-like protein (Fragment)

Dcxr 8 1 106.56 0.3537 1.37 Flu Dicarbonyl L-xylulose reductase, isoform CRA_a

Ddah1 11 1 196.96 0.3911 1.25 Flu N(G),N(G)-dimethylarginine dimethylaminohydrolase 1

Ddah1 9 0 141.9 --- Dimethylarginine dimethylaminohydrolase 1, isoform CRA_a

Ddah2 9 5 234.24 0.1184 1.49 PBS N(G),N(G)-dimethylarginine dimethylaminohydrolase 2

Ddb1 29 12 941.88 0.2393 1.18 Flu DNA damage-binding protein 1

Ddc 3 0 33.08 --- Aromatic-L-amino-acid decarboxylase

Ddi2 4 3 79.97 0.0022 1.53 Flu Protein DDI1 homolog 2

Ddost 12 6 443.33 0.4081 1.22 Flu Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit

Ddt 4 1 135.75 0.1456 1.20 PBS D-dopachrome decarboxylase

Ddt 4 0 56.44 --- D-dopachrome decarboxylase

Ddx1 14 6 412.4 0.0564 1.37 Flu ATP-dependent RNA helicase DDX1

Ddx10 11 1 95.4 0.4349 1.21 Flu Probable ATP-dependent RNA helicase DDX10

Ddx17 27 7 918.84 0.0156 1.37 Flu Probable ATP-dependent RNA helicase DDX17

Ddx18 6 3 84.65 0.3964 1.31 Flu ATP-dependent RNA helicase DDX18

Ddx19a 10 1 125.29 0.1127 1.45 Flu ATP-dependent RNA helicase DDX19A

Ddx21 21 13 547.73 0.1957 1.40 Flu Nucleolar RNA helicase 2

Ddx23 21 6 234.97 0.0391 1.60 Flu MCG18410, isoform CRA_a

Ddx39a 13 0 409.64 --- ATP-dependent RNA helicase DDX39A

Ddx39b 16 4 773.13 0.1475 1.15 Flu Spliceosome RNA helicase Ddx39b

Ddx3x 24 1 876.68 0.4427 1.58 Flu ATP-dependent RNA helicase DDX3X

Ddx3y 21 0 697.33 --- ATP-dependent RNA helicase DDX3Y

Ddx4 8 1 88.37 0.2899 1.37 PBS Probable ATP-dependent RNA helicase DDX4

Ddx42 11 2 76.46 0.3522 1.17 Flu ATP-dependent RNA helicase DDX42

Ddx46 20 1 207.34 0.0471 2.03 Flu Probable ATP-dependent RNA helicase DDX46

Ddx46 20 0 190.43 --- Probable ATP-dependent RNA helicase DDX46

Ddx47 6 1 73.61 0.4274 1.14 Flu DEAD (Asp-Glu-Ala-Asp) box polypeptide 47

Ddx5 30 10 1029.98 0.0409 1.33 Flu Probable ATP-dependent RNA helicase DDX5

Ddx58 21 9 440.99 0.0089 1.91 Flu Probable ATP-dependent RNA helicase DDX58

Ddx6 15 8 395.16 0.2005 1.15 Flu Probable ATP-dependent RNA helicase DDX6

Decr1 14 6 591.09 0.3558 1.14 PBS 2,4-dienoyl-CoA reductase, mitochondrial

Dek 9 4 307.02 0.4039 1.07 Flu Protein DEK

Depdc5 6 2 15.64 0.4399 1.17 Flu DEP domain-containing protein 5

Derl1 2 1 42.74 0.7809 1.05 Flu Derlin-1

Derl2 1 1 37.99 0.0063 2.02 Flu Derlin-2

Des 20 7 802.18 0.0859 1.53 PBS Desmin

Dfnb31 12 1 63.14 0.4010 1.25 Flu Whirlin

Dguok 8 5 160.23 0.4369 1.12 PBS Deoxyguanosine kinase, mitochondrial

Dhrs1 9 8 260.19 0.1980 1.29 Flu Dehydrogenase/reductase SDR family member 1

Dhrs11 1 1 25.36 0.2218 1.36 PBS Dehydrogenase/reductase SDR family member 11

Dhrs4 5 0 50.02 --- Dehydrogenase/reductase SDR family member 4

Dhrs7 5 3 82.6 0.4508 1.09 PBS Dehydrogenase/reductase SDR family member 7

Dhrs7b 6 3 118.07 0.4818 1.09 PBS Dehydrogenase/reductase SDR family member 7B

Dhx15 22 6 721.05 0.2215 1.36 Flu DEAH (Asp-Glu-Ala-His) box polypeptide 15, isoform CRA_a

Dhx15 8 0 216.82 --- Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 (Fragment)

Dhx29 21 6 135.54 0.0955 2.16 Flu ATP-dependent RNA helicase Dhx29

Dhx33 17 1 101.96 0.3054 1.42 Flu Putative ATP-dependent RNA helicase DHX33

Dhx35 7 1 44.99 0.0824 2.92 PBS Protein Dhx35

Dhx38 8 1 127.66 0.9365 1.21 Flu DEAH (Asp-Glu-Ala-His) box polypeptide 38

Dhx8 18 1 106.11 0.2818 1.52 PBS ATP-dependent RNA helicase DHX8 (Fragment)

Dhx9 47 20 1565.61 0.7277 1.10 Flu ATP-dependent RNA helicase A

Dhx9 5 0 94.21 --- ATP-dependent RNA helicase A (Fragment)

Diap1 24 10 350.04 0.4685 1.17 Flu Protein diaphanous homolog 1

Diaph2 16 4 98.33 0.2255 1.24 PBS Protein diaphanous homolog 2

Dicer1 24 3 135.9 0.3047 1.32 PBS Endoribonuclease Dicer

Dido1 35 5 193.4 0.7540 1.04 Flu Death-inducer obliterator 1

Dis3l2 9 1 67.93 0.3272 1.72 PBS DIS3-like exonuclease 2

Dkc1 16 4 200.32 0.8654 1.08 Flu H/ACA ribonucleoprotein complex subunit 4

Dkc1 9 0 67.56 --- H/ACA ribonucleoprotein complex subunit 4 (Fragment)

Dlat 24 15 811.81 0.4272 1.10 PBS Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial

Dld 17 12 1005.48 0.2627 1.13 PBS Dihydrolipoyl dehydrogenase, mitochondrial

Dlg1 12 2 279.52 0.2446 1.27 PBS Disks large homolog 1

Dlg1 4 2 9.02 0.7072 1.04 PBS Disks large homolog 1 (Fragment)

Dlg1 8 0 185.86 --- Disks large homolog 1 (Fragment)

Dlg1 10 0 73.01 --- Disks large homolog 1

Dlgap1 7 0 40.77 --- Disks large-associated protein 1

Dlst 19 8 545.86 0.5096 1.08 PBS Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial

Dmd 45 7 300.79 0.0405 1.19 Flu Dystrophin

Dnah5 54 7 289.57 0.0656 1.53 PBS Dynein heavy chain 5, axonemal

Dnaja1 9 3 172.74 0.0030 1.34 Flu DnaJ homolog subfamily A member 1

Dnaja2 8 4 187.35 0.0085 1.21 Flu DnaJ homolog subfamily A member 2

Dnaja3 8 2 77.39 0.8204 1.01 PBS DnaJ homolog subfamily A member 3, mitochondrial

Dnajb1 7 1 135.83 0.2453 1.17 Flu DnaJ homolog subfamily B member 1

Dnajb11 9 2 204.97 0.2140 1.48 Flu DnaJ homolog subfamily B member 11

Dnajb4 6 3 77.25 0.0758 1.43 PBS DnaJ homolog subfamily B member 4

Dnajc10 7 1 74.47 0.1803 1.45 Flu DnaJ homolog subfamily C member 10

Dnajc13 42 14 689.5 0.0421 1.17 Flu MCG115602

Dnajc14 6 1 39.31 0.7060 1.25 PBS DnaJ homolog subfamily C member 14

Dnajc24 4 1 39.89 0.7331 1.27 PBS DnaJ homolog subfamily C member 24

Dnajc3 16 7 322.39 0.0162 1.35 Flu DnaJ homolog subfamily C member 3

Dnajc9 6 1 93.11 0.0050 1.54 PBS DnaJ homolog subfamily C member 9

Dnm1 20 2 277.56 0.0275 1.50 Flu Dynamin-1

Dnm1l 20 5 355.43 0.1985 1.07 Flu Dynamin-1-like protein

Dnm2 33 0 923.67 --- Dynamin-2 (Fragment)

Dnm2 41 0 1011.88 --- Dynamin-2

Dnm2 41 0 1011.87 --- Dynamin-2

Dnm3 25 3 486.71 0.1503 1.56 Flu Dynamin-3

Dnmt1 18 3 137.88 0.5248 1.23 PBS DNA (cytosine-5)-methyltransferase 1

Dnpep 16 9 428.72 0.1387 1.13 Flu Aspartyl aminopeptidase

Dock1 31 10 342.8 0.0719 1.14 Flu Dedicator of cytokinesis protein 1

Dock11 10 0 70.24 --- Dedicator of cytokinesis protein 11

Dock2 32 6 381.26 0.5370 1.13 Flu Dedicator of cytokinesis protein 2

Dock2 6 0 66.58 --- Dedicator of cytokinesis protein 2

Dock4 19 3 99.86 0.8423 1.06 Flu Dedicator of cytokinesis protein 4

Dock6 24 3 170.56 0.6798 1.12 Flu Dedicator of cytokinesis protein 6

Dock7 22 1 189.91 0.6827 1.02 PBS Dedicator of cytokinesis protein 7

Dock8 19 0 157.55 --- Dedicator of cytokinesis protein 8

Dock9 27 6 343.26 0.0357 1.38 PBS Dedicator of cytokinesis protein 9

Dopey2 13 1 61.15 0.4299 1.20 Flu Protein dopey-2

Dpep1 9 2 244.86 0.2545 1.49 PBS Dipeptidase 1

Dpf2 2 0 44.68 --- Zinc finger protein ubi-d4 (Fragment)

Dpm1 9 2 204.66 0.0714 1.22 Flu Dolichol-phosphate mannosyltransferase subunit 1

Dpm1 4 1 72.17 0.7524 1.04 Flu Dolichol-phosphate mannosyltransferase subunit 1 (Fragment)

Dpp3 18 7 425.1 0.0024 1.71 Flu Dipeptidyl peptidase 3

Dpp4 23 9 921.72 0.0271 1.62 PBS Dipeptidyl peptidase 4

Dpp7 5 2 146.56 0.1794 3.02 Flu Dipeptidyl peptidase 2

Dpysl2 55 30 2867.3 0.1854 1.27 PBS Dihydropyrimidinase-related protein 2

Dpysl3 28 13 1196.5 0.0565 1.13 Flu Dihydropyrimidinase-related protein 3

Drg1 7 2 201.4 0.0680 1.59 Flu Developmentally-regulated GTP-binding protein 1

Drg1 3 0 53 --- Developmentally-regulated GTP-binding protein 1 (Fragment)

Drg2 11 2 58.94 0.3560 1.44 Flu Developmentally-regulated GTP-binding protein 2

Dscaml1 18 3 80.55 0.0398 1.98 Flu Down syndrome cell adhesion molecule-like protein 1 homolog

Dst 76 2 551.96 0.9985 1.04 Flu Dystonin

Dst 65 0 475.93 --- Dystonin

Dst 17 0 91.81 --- Dystonin (Fragment)

Dst 6 0 100.27 --- Dystonin (Fragment)

Dstn 11 6 337.01 0.9908 1.01 Flu Destrin

Dtd1 4 1 73.55 0.3510 1.40 Flu D-tyrosyl-tRNA(Tyr) deacylase 1

Dtna 8 2 73.6 0.2513 1.14 PBS Dystrobrevin alpha

Dtx3l 11 2 96.7 0.6227 1.10 Flu E3 ubiquitin-protein ligase DTX3L

Dusp3 2 0 66.22 --- Dual-specificity protein phosphatase 3

Dusp3 5 0 126.84 --- Dual-specificity protein phosphatase 3 (Fragment)

Dusp3 5 0 188.22 --- Dual-specificity protein phosphatase 3

Dync1h1 225 133 8484.26 0.6077 1.06 Flu Cytoplasmic dynein 1 heavy chain 1

Dync1i2 9 5 227.54 0.7961 1.02 Flu Cytoplasmic dynein 1 intermediate chain 2

Dync1li1 19 6 319.63 0.1811 1.18 Flu Cytoplasmic dynein 1 light intermediate chain 1

Dync1li2 14 5 245.46 0.9716 1.06 Flu Cytoplasmic dynein 1 light intermediate chain 2

Dynll1 5 2 237.56 0.4371 1.21 PBS Dynein light chain 1, cytoplasmic

Dynlrb1 1 1 39.9 0.4899 1.22 Flu Dynein light chain roadblock-type 1

Dysf 21 6 188.49 0.1591 1.32 Flu Dysferlin

Ear1 6 1 128.98 0.1411 1.55 PBS Eosinophil cationic protein 1

Ear2 8 1 232.04 0.3071 1.21 PBS Eosinophil cationic protein 2

Ear3 5 1 77.5 0.0327 2.22 Flu Eosinophil cationic-type ribonuclease 3

Ear6 4 3 122.33 0.8842 1.08 Flu Ear6 protein

Ebf1 6 0 58.99 --- Transcription factor COE1

Ebp 2 1 48.08 0.3410 1.40 Flu 3-beta-hydroxysteroid-Delta(8),Delta(7)-isomerase

Ecd 3 1 30.85 0.9523 1.01 Flu Protein ecdysoneless homolog

Ece1 18 10 618.32 0.1991 1.35 PBS Endothelin-converting enzyme 1

Ech1 4 3 196.54 0.7558 1.04 PBS Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial

Echs1 14 4 463.41 0.1960 1.20 Flu Enoyl-CoA hydratase, mitochondrial

Echs1 9 0 244.07 --- Enoyl-CoA hydratase, mitochondrial (Fragment)

Eci1 15 6 616.95 0.2728 1.20 PBS Enoyl-CoA delta isomerase 1, mitochondrial

Eci2 9 4 219.47 0.5104 1.07 PBS Enoyl-CoA delta isomerase 2, mitochondrial

Ecm29 24 1 198.06 0.0310 2.00 Flu Proteasome-associated protein ECM29 homolog

Ect2l 7 0 53.54 --- Protein Ect2l

Edc3 7 2 34.77 0.9953 1.06 Flu Enhancer of mRNA-decapping protein 3

Eea1 43 10 700.79 0.0546 1.34 Flu Early endosome antigen 1

Eef1a1 36 19 1547.79 0.0228 1.53 Flu Elongation factor 1-alpha 1

Eef1a2 12 1 463.88 0.5406 1.07 PBS Elongation factor 1-alpha 2

Eef1b2 5 2 143.19 0.0055 1.45 Flu Elongation factor 1-beta

Eef1d 13 1 443.6 0.4420 1.16 Flu Eef1d protein

Eef1d 15 0 484.52 --- Elongation factor 1-delta (Fragment)

Eef1d 12 0 474.82 --- Elongation factor 1-delta (Fragment)

Eef1g 18 11 872.67 0.0221 1.65 Flu Elongation factor 1-gamma

Eef2 65 25 3047.35 0.0117 1.90 Flu Elongation factor 2

Efemp1 5 2 186.1 0.5362 1.13 Flu EGF-containing fibulin-like extracellular matrix protein 1

Efemp2 4 4 66.83 0.4118 1.12 PBS EGF-containing fibulin-like extracellular matrix protein 2

Efnb1 8 2 234.69 0.8956 1.31 PBS Ephrin-B1

Efnb2 2 2 66.21 0.5931 1.11 PBS Ephrin-B2

Efr3a 11 2 172.85 0.5015 1.19 PBS Protein EFR3 homolog A

Eftud2 29 13 806.72 0.2169 1.30 Flu 116 kDa U5 small nuclear ribonucleoprotein component

Eftud2 6 0 154.98 --- 116 kDa U5 small nuclear ribonucleoprotein component (Fragment)

Egflam 6 2 62.07 0.8035 1.03 PBS Pikachurin

Egfr 13 2 151.6 0.6591 1.07 Flu Epidermal growth factor receptor

Ehd1 46 15 2190.77 0.2584 1.23 PBS EH domain-containing protein 1

Ehd2 68 30 3284.1 0.1559 1.33 PBS EH domain-containing protein 2

Ehd3 29 2 1145.85 0.6752 1.04 PBS EH domain-containing protein 3

Ehd4 56 24 2905.57 0.0822 1.56 PBS EH domain-containing protein 4

Ei24 3 0 68.16 --- Etoposide-induced protein 2.4 (Fragment)

Eif1ax 3 1 45.79 0.0894 1.71 Flu Eukaryotic translation initiation factor 1A, X-chromosomal

Eif2a 11 6 233.34 0.5082 1.08 PBS Eukaryotic translation initiation factor 2A

Eif2s1 15 6 384.01 0.0375 1.58 Flu Eukaryotic translation initiation factor 2 subunit 1

Eif2s2 9 3 184 0.1072 1.19 PBS Eukaryotic translation initiation factor 2 subunit 2

Eif2s2 4 0 76.56 --- Eukaryotic translation initiation factor 2 subunit 2 (Fragment)

Eif2s3x 10 1 312.35 0.2322 1.94 Flu Eukaryotic translation initiation factor 2 subunit 3, X-linked

Eif2s3x 7 1 223.61 0.4362 1.18 Flu Eukaryotic translation initiation factor 2 subunit 3, X-linked

Eif2s3y 9 0 199.99 --- Eukaryotic translation initiation factor 2 subunit 3, Y-linked

Eif3a 46 21 1064.39 0.0427 1.59 Flu Eukaryotic translation initiation factor 3 subunit A

Eif3b 24 17 783.95 0.1175 1.37 Flu Eukaryotic translation initiation factor 3 subunit B

Eif3c 23 9 853.03 0.0495 1.56 Flu Eukaryotic translation initiation factor 3 subunit C

Eif3d 13 6 416.69 0.0182 1.60 Flu Eukaryotic translation initiation factor 3 subunit D

Eif3e 16 4 437.33 0.0245 1.66 Flu Eukaryotic translation initiation factor 3 subunit E

Eif3f 8 6 435.27 0.0645 1.44 Flu Eukaryotic translation initiation factor 3 subunit F

Eif3g 9 4 62.53 0.0665 1.36 Flu Eukaryotic translation initiation factor 3 subunit G

Eif3h 10 5 281.53 0.0064 1.44 Flu Eukaryotic translation initiation factor 3 subunit H

Eif3i 9 4 259.95 0.0045 1.50 Flu Eukaryotic translation initiation factor 3 subunit I

Eif3k 2 1 45.68 0.3362 1.81 Flu Eukaryotic translation initiation factor 3 subunit K

Eif3l 20 10 893.27 0.0777 1.51 Flu Eukaryotic translation initiation factor 3 subunit L

Eif3m 11 5 283.32 0.0203 1.31 Flu Eukaryotic translation initiation factor 3 subunit M

Eif4a1 28 5 1171.99 0.0256 1.71 Flu Eukaryotic initiation factor 4A-I

Eif4a2 19 2 753.84 0.4445 1.13 Flu Eukaryotic initiation factor 4A-II

Eif4a3 16 1 702.84 0.1595 1.12 Flu Eukaryotic initiation factor 4A-III

Eif4b 17 4 124.68 0.1765 1.27 Flu Eukaryotic translation initiation factor 4B

Eif4e 2 1 48.38 0.1851 1.18 Flu Eukaryotic translation initiation factor 4E (Fragment)

Eif4g1 40 8 1083.25 0.1461 1.43 Flu Eukaryotic translation initiation factor 4 gamma 1

Eif4g2 24 6 474.43 0.0164 1.35 Flu Eukaryotic translation initiation factor 4 gamma 2

Eif4g3 27 0 374.9 --- Eukaryotic translation initiation factor 4 gamma 3

Eif4h 3 2 22.77 0.0214 1.41 Flu Eukaryotic translation initiation factor 4H

Eif5 15 5 155.62 0.1937 1.26 Flu Eukaryotic translation initiation factor 5

Eif5a 4 3 133.16 0.2154 1.27 Flu Eukaryotic translation initiation factor 5A (Fragment)

Eif5b 16 6 248.46 0.0480 1.63 Flu Eukaryotic translation initiation factor 5B

Eif6 3 1 39.04 0.2431 1.31 Flu Eukaryotic translation initiation factor 6

Elane 6 5 252.66 0.0166 1.89 PBS Neutrophil elastase

Elavl1 17 10 787.59 0.0884 1.33 Flu ELAV-like protein 1

Ell2 11 2 65.79 0.6451 1.09 PBS RNA polymerase II elongation factor ELL2

Elmo1 15 5 405.08 0.8391 1.01 PBS Engulfment and cell motility protein 1

Elovl1 6 2 161.73 0.1855 1.24 Flu Elongation of very long chain fatty acids protein 1

Emb 4 1 50.15 0.0920 1.39 PBS Embigin

Emc1 14 4 328.68 0.2558 1.28 Flu ER membrane protein complex subunit 1

Emc2 5 2 209.8 0.2816 1.18 Flu ER membrane protein complex subunit 2

Emc3 5 1 109.69 0.2206 1.25 Flu ER membrane protein complex subunit 3

Emd 3 2 63.78 0.3187 1.19 Flu Emerin

Eml1 14 3 263.05 0.9431 1.21 PBS Echinoderm microtubule-associated protein-like 1

Eml2 10 2 112.04 0.0820 1.68 Flu Echinoderm microtubule-associated protein-like 2

Eml4 15 3 189.32 0.1347 1.83 Flu Echinoderm microtubule-associated protein-like 4

Enah 7 1 50.05 0.3881 1.10 Flu Protein enabled homolog

Endod1 3 2 32.28 0.6506 1.05 PBS Endonuclease domain-containing 1 protein

Endog 3 1 24.54 0.1944 1.16 Flu Endonuclease G, mitochondrial

Eng 10 3 295.87 0.0871 1.47 PBS Endoglin

Eng 5 0 70.58 --- Endoglin (Fragment)

Eno1 26 0 1454.4 --- Alpha-enolase

Eno1 23 0 1201.32 --- Alpha-enolase

Eno2 6 0 275.55 --- Enolase

Eno3 12 0 456.67 --- Beta-enolase

Eno3 8 0 323.96 --- Enolase (Fragment)

Eno4 11 1 59.96 0.2950 1.49 Flu Enolase-like protein ENO4 (Fragment)

Enpep 38 19 1456.89 0.1419 1.30 PBS Glutamyl aminopeptidase

Enpp4 7 0 126.15 --- Bis(5'-adenosyl)-triphosphatase enpp4

Enpp7 5 0 49.14 --- Protein Enpp7

Entpd1 9 2 435.57 0.0828 1.57 PBS Ectonucleoside triphosphate diphosphohydrolase 1

Entpd1 5 0 214.93 --- Ectonucleoside triphosphate diphosphohydrolase 1 (Fragment)

Entpd1 6 0 294.36 --- Ectonucleoside triphosphate diphosphohydrolase 1

Entpd2 7 5 173.8 0.3851 1.15 PBS Ectonucleoside triphosphate diphosphohydrolase 2

Eogt 7 1 129.7 0.9685 1.00 Flu EGF domain-specific O-linked N-acetylglucosamine transferase

Epb41 27 6 485.76 0.0217 1.90 PBS Protein 4.1

Epb41 12 0 140.04 --- Protein 4.1 (Fragment)

Epb41l1 15 1 126.58 0.2718 1.20 PBS Band 4.1-like protein 1

Epb41l2 43 22 1573.66 0.3447 1.08 PBS Band 4.1-like protein 2

Epb41l3 14 4 200 0.8780 1.01 PBS Band 4.1-like protein 3

Epb41l4b 14 3 112.3 0.2436 1.21 PBS Band 4.1-like protein 4B

Epb41l5 12 7 420.75 0.2024 1.36 PBS Band 4.1-like protein 5

Epb42 14 7 196.58 0.8368 1.04 PBS Erythrocyte membrane protein band 4.2

Epcam 3 3 135.74 0.4294 1.14 PBS Epithelial cell adhesion molecule

Epha7 7 0 63.64 --- Eph receptor A7, isoform CRA_b

Ephb4 12 4 102.45 0.4194 1.21 Flu Receptor protein-tyrosine kinase

Ephx1 34 16 1192.83 0.0865 1.37 PBS Epoxide hydrolase 1

Epn2 10 3 212.06 0.2201 1.21 PBS Epsin-2

Epn3 5 1 72.16 0.1068 1.92 PBS Epsin-3

Eppk1 42 4 252.64 0.2380 1.32 PBS Epiplakin

Eprs 54 24 1826.94 0.0805 1.46 Flu Bifunctional glutamate/proline--tRNA ligase

Eps15 23 11 182.84 0.4834 1.05 PBS Epidermal growth factor receptor substrate 15

Eps15l1 20 5 289.37 0.8040 1.02 PBS Epidermal growth factor receptor substrate 15-like 1

Eps8l2 18 8 241.59 0.9531 1.01 Flu Epidermal growth factor receptor kinase substrate 8-like protein 2

Epx 13 4 158.48 0.2790 1.35 Flu Eosinophil peroxidase

Erap1 26 12 903.87 0.1170 1.63 Flu Endoplasmic reticulum aminopeptidase 1

Erbb2ip 15 2 77.33 0.6757 1.03 PBS Erbb2ip protein

Erbb4 2 0 52.89 --- Receptor tyrosine-protein kinase erbB-4 (Fragment)

Erc1 14 6 138.2 0.0053 1.26 Flu ELKS/Rab6-interacting/CAST family member 1

Ergic1 6 0 64.91 --- Endoplasmic reticulum-Golgi intermediate compartment protein 1 (Fragment)

Ergic1 5 0 78.43 --- Endoplasmic reticulum-Golgi intermediate compartment protein 1

Ergic2 4 2 44.16 0.1474 1.29 PBS Endoplasmic reticulum-Golgi intermediate compartment protein 2

Erh 2 1 120.54 0.1042 2.18 PBS Enhancer of rudimentary homolog

Erlin1 8 2 138.81 0.1260 1.52 PBS Erlin-1

Erlin2 13 4 235.23 0.7871 1.03 PBS Erlin-2

Ermp1 3 2 183.01 0.6437 1.05 PBS Endoplasmic reticulum metallopeptidase 1

Ero1a 14 11 438.52 0.0133 1.21 Flu ERO1-like protein alpha

Ero1b 2 0 40.04 --- ERO1-like protein beta

Erp29 9 3 211.84 0.0329 1.70 Flu Endoplasmic reticulum resident protein 29

Erp44 13 6 518.54 0.0109 1.36 Flu Endoplasmic reticulum resident protein 44

Esam 14 4 551.22 0.1842 1.31 PBS Endothelial cell-selective adhesion molecule

Esam 8 1 296.69 0.3785 1.17 PBS Endothelial cell-selective adhesion molecule (Fragment)

Esd 12 7 439.55 0.1683 1.10 Flu S-formylglutathione hydrolase

Esd 2 0 108.81 --- S-formylglutathione hydrolase (Fragment)

Esyt1 44 24 1837.63 0.0563 1.32 Flu Extended synaptotagmin-1

Esyt2 24 7 770.38 0.1784 1.15 PBS Extended synaptotagmin-2

Etf1 7 2 166.48 0.0701 1.58 Flu Eukaryotic peptide chain release factor subunit 1

Etfa 24 16 1168.47 0.7307 1.03 PBS Electron transfer flavoprotein subunit alpha, mitochondrial

Etfb 14 3 677.42 0.4127 1.10 PBS Electron transfer flavoprotein subunit beta

Etfdh 19 8 576.38 0.9127 1.01 PBS Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial

Eva1b 1 1 73.23 0.2535 1.36 PBS Protein eva-1 homolog B

Evl 8 4 127.69 0.3284 1.10 PBS Ena/VASP-like protein

Evpl 36 6 266.58 0.0723 1.47 PBS Envoplakin

Ewsr1 14 2 187.59 0.1437 1.60 Flu RNA-binding protein EWS

Exoc1 10 3 154.39 0.0424 2.37 Flu Exocyst complex component 1

Exoc2 9 1 74.36 0.4265 1.17 Flu Exocyst complex component 2

Exoc4 16 5 265.9 0.0110 1.23 Flu Exocyst complex component 4

Exoc6b 7 0 57.11 --- Exocyst complex component 6B

Exoc7 14 2 176.35 0.2353 1.15 PBS Exocyst complex component 7

Exoc8 12 3 88 0.0568 1.18 Flu Exocyst complex component 8

Exosc10 14 3 107.5 0.1480 1.75 Flu Exosome component 10

Exosc7 3 1 27.06 0.5429 1.08 Flu Exosome complex exonuclease RRP42

Ext1 11 0 104.22 --- Exostosin-1

Ezr 54 12 2398.51 0.3778 1.06 PBS Ezrin

F11r 9 6 396.93 0.1612 1.30 PBS Junctional adhesion molecule A

F13a1 18 7 367.56 0.5939 1.14 Flu Coagulation factor XIII A chain

F2 14 5 146.63 0.0460 1.37 Flu Prothrombin

Faah 7 2 99.18 0.8732 1.04 Flu Fatty-acid amide hydrolase 1

Fabp3 2 0 43.95 --- Fatty acid-binding protein, heart

Fabp4 2 1 17.39 0.0849 1.39 Flu Fatty acid-binding protein, adipocyte

Fabp5 5 5 180.2 0.0160 1.95 Flu Fatty acid-binding protein, epidermal

Fads1 6 3 32.53 0.0085 1.41 Flu Fatty acid desaturase 1

Fads3 6 1 32.36 0.6283 1.18 PBS Fatty acid desaturase 3

Faf2 7 4 140.2 0.0023 1.45 Flu FAS-associated factor 2

Fah 3 0 68.58 --- Fumarylacetoacetase

Fam114a2 5 4 37.77 0.3451 1.21 PBS Protein FAM114A2

FAM120A 21 7 422.11 0.0768 1.47 Flu Constitutive coactivator of PPAR-gamma-like protein 1

Fam129a 16 7 339.09 0.0562 1.17 Flu Protein Niban

Fam129b 29 12 1072.4 0.0028 1.21 Flu Niban-like protein 1

Fam134c 2 1 30.31 0.0469 1.48 Flu Protein FAM134C

Fam162a 2 1 19.12 0.4051 1.21 Flu Protein FAM162A

Fam162b 3 1 24.75 0.0961 1.46 Flu Family with sequence similarity 162, member B

Fam186a 27 1 165.51 0.7092 1.09 Flu Protein Fam186a

Fam193a 8 1 56.01 0.3955 1.17 Flu Protein FAM193A

Fam3c 6 1 70.74 0.0149 1.84 Flu Protein FAM3C

Fam49a 4 3 148.99 0.7873 1.06 Flu Protein FAM49A

Fam49b 13 6 591.34 0.0128 1.52 Flu Protein FAM49B

Fam63a 4 2 28.93 0.7100 1.05 Flu Protein FAM63A

Fam63b 5 1 95.26 0.2820 1.19 PBS Protein FAM63B

Fam65a 10 2 147.21 0.6690 1.06 PBS Protein FAM65A

Fam84b 4 2 23.07 0.6825 1.04 PBS Protein Fam84b

Fam98a 6 2 77.08 0.2060 1.37 PBS Protein FAM98A

Fam98b 7 2 85.08 0.0113 2.04 Flu Protein FAM98B

Far1 4 0 44.9 --- Fatty acyl-CoA reductase 1

Farp1 24 7 374.3 0.7388 1.03 PBS FERM, RhoGEF and pleckstrin domain-containing protein 1

Farsa 10 1 281.58 0.3203 1.81 Flu Phenylalanine--tRNA ligase alpha subunit

Farsa 3 0 130.91 --- Phenylalanine--tRNA ligase alpha subunit

Farsb 17 6 330.04 0.1080 1.40 Flu Phenylalanine--tRNA ligase beta subunit

Fasn 102 55 3846.68 0.0248 1.54 Flu Fatty acid synthase

Fastk 3 1 29.38 0.9400 1.23 Flu Fas-activated serine/threonine kinase

Fbl 11 3 186.72 0.5868 1.20 Flu rRNA 2'-O-methyltransferase fibrillarin

Fbll1 6 1 55.72 0.1972 1.54 Flu rRNA/tRNA 2'-O-methyltransferase fibrillarin-like protein 1

Fbln1 3 0 58.16 --- Fibulin-1

Fbln2 6 1 83.26 0.0386 2.96 PBS Fibulin-2

Fbln5 14 7 595.92 0.0168 1.86 PBS Fibulin-5

Fbxo22 3 1 31.99 0.5465 1.20 Flu F-box only protein 22

Fbxo6 3 1 51.85 0.4371 1.13 Flu F-box only protein 6 (Fragment)

Fcgrt 4 1 53.28 0.3473 1.12 Flu IgG receptor FcRn large subunit p51

Fcho2 10 1 160.79 0.5091 1.16 PBS F-BAR domain only protein 2

Fdxr 7 2 61.13 0.0437 1.27 Flu NADPH:adrenodoxin oxidoreductase, mitochondrial

Fen1 5 1 83.05 0.0165 2.64 Flu Flap endonuclease 1

Fermt2 43 17 1846.44 0.0654 1.37 PBS Fermitin family homolog 2

Fermt2 13 0 295.55 --- Fermitin family homolog 2 (Fragment)

Fermt3 24 12 669.74 0.4617 1.10 Flu Fermitin family homolog 3

Fga 20 7 588.46 0.4096 1.12 PBS Fibrinogen alpha chain

Fgb 24 12 712.88 0.1132 1.31 PBS Fibrinogen beta chain

Fgd5 18 3 103.75 0.1279 1.20 Flu FYVE, RhoGEF and PH domain-containing protein 5

Fgfr3 4 1 60.73 0.4676 1.10 PBS Fibroblast growth factor receptor 3 (Fragment)

Fgg 16 12 715.81 0.4530 1.10 PBS Fibrinogen gamma chain

Fh 20 8 820.05 0.4652 1.08 PBS Fumarate hydratase, mitochondrial

Fh1 11 0 265.69 --- Fumarate hydratase, mitochondrial (Fragment)

Fhl1 20 14 696.57 0.0938 1.59 PBS Four and a half LIM domains protein 1

Fhl4 2 0 18.74 --- Four and a half LIM domains 4

Fhod1 27 11 659.22 0.5513 1.05 Flu FH1/FH2 domain-containing protein 1

Fignl1 8 0 71.37 --- Fidgetin-like protein 1

Fip1l1 2 1 58.94 0.0238 2.47 Flu Pre-mRNA 3'-end-processing factor FIP1

Fis1 7 1 136.74 0.3850 1.22 Flu Mitochondrial fission 1 protein

Fis1 6 0 75.29 --- Mitochondrial fission 1 protein

Fkbp10 3 1 21.18 0.0144 2.71 Flu Peptidyl-prolyl cis-trans isomerase FKBP10

Fkbp11 4 1 45.2 0.0785 1.89 Flu Peptidyl-prolyl cis-trans isomerase FKBP11

Fkbp15 11 4 120.53 0.0654 1.33 Flu FK506-binding protein 15

Fkbp1a 2 1 95.17 0.2897 1.56 Flu Peptidyl-prolyl cis-trans isomerase FKBP1A

Fkbp1a 4 1 50.8 0.3900 1.32 Flu Peptidyl-prolyl cis-trans isomerase (Fragment)

Fkbp2 6 4 117.02 0.0554 1.34 Flu Peptidyl-prolyl cis-trans isomerase FKBP2

Fkbp3 2 0 5.07 --- Peptidyl-prolyl cis-trans isomerase FKBP3

Fkbp4 20 4 495.48 0.0315 1.33 Flu Peptidyl-prolyl cis-trans isomerase FKBP4

Fkbp4 11 0 228.84 --- Peptidyl-prolyl cis-trans isomerase

Fkbp5 8 3 132.45 0.1728 2.01 Flu FK506 binding protein 5

Fkbp8 9 5 263.89 0.0712 1.29 Flu Peptidyl-prolyl cis-trans isomerase FKBP8

Flii 20 8 445.82 0.0538 1.36 Flu Protein flightless-1 homolog

Flna 157 45 6076.56 0.7968 1.02 PBS Filamin-A

Flna 42 0 1373.59 --- Filamin-A (Fragment)

Flna 11 0 391.26 --- Filamin-A (Fragment)

Flnb 104 39 3285.38 0.0933 1.35 Flu Filamin-B

Flnc 36 4 689.7 0.1035 1.22 Flu Filamin-C

Flot1 11 5 191.96 0.1917 1.18 PBS Flotillin-1

Flot2 13 0 115.5 --- Flotillin 2, isoform CRA_a

Flot2 13 0 144.26 --- Flotillin-2

Flrt3 3 2 32.73 0.1439 1.20 Flu Leucine-rich repeat transmembrane protein FLRT3

Flt3 5 1 45.66 0.2679 1.68 Flu Receptor-type tyrosine-protein kinase FLT3

Fmnl1 21 7 335.52 0.0199 1.86 Flu Formin-like 1, isoform CRA_c

Fmnl2 4 0 76.49 --- Formin-like protein 2 (Fragment)

Fmnl3 12 3 209.32 0.1487 1.16 PBS Formin-like protein 3

Fmo1 37 15 1822.5 0.0250 2.02 PBS Dimethylaniline monooxygenase [N-oxide-forming] 1

Fmo2 49 29 2107.35 0.0297 1.84 PBS Dimethylaniline monooxygenase [N-oxide-forming] 2

Fmo3 10 5 255.93 0.0969 1.33 PBS Dimethylaniline monooxygenase [N-oxide-forming] 3

Fmo5 16 4 258.4 0.1045 1.29 PBS Dimethylaniline monooxygenase [N-oxide-forming] 5

Fmo9 4 0 45.79 --- Dimethylaniline monooxygenase [N-oxide-forming]

Fmr1 4 1 125.65 0.3319 1.50 Flu Fragile X mental retardation protein 1 homolog

Fn1 27 11 534.91 0.4970 1.50 Flu Fibronectin

Fnbp1l 9 2 98.11 0.6236 1.13 PBS Formin-binding protein 1-like (Fragment)

Focad 9 0 74.72 --- Focadhesin

Frg1 6 0 56.86 --- Protein FRG1

Frmd8 2 2 55.26 0.7134 1.06 Flu FERM domain-containing protein 8

Fscn1 5 3 173.75 0.0177 4.14 Flu Fascin

Fsip2 63 6 299.25 0.1567 1.48 PBS Fibrous sheath-interacting protein 2

Fth1 10 3 310.5 0.0201 1.91 Flu Ferritin heavy chain

Ftl1 7 4 372.99 0.0104 2.57 Flu Ferritin light chain 1

Fubp1 19 2 453.8 0.2754 1.25 Flu Far upstream element-binding protein 1

Fubp1 12 0 337.05 --- Far upstream element-binding protein 1 (Fragment)

Fubp3 11 5 149.32 0.1559 1.16 Flu MCG130458

Fuk 7 2 63.12 0.2261 1.23 Flu L-fucose kinase

Fus 6 2 232.25 0.3337 1.83 Flu RNA-binding protein FUS

Fus 3 0 66.44 --- RNA-binding protein FUS (Fragment)

Fxr1 9 1 242.44 0.8118 1.01 Flu Fragile X mental retardation syndrome-related protein 1

Fxr2 5 1 74.74 0.5489 1.27 Flu Fragile X mental retardation syndrome-related protein 2

Fxr2 5 0 137.21 --- Fragile X mental retardation syndrome-related protein 2

Fyco1 10 2 183.09 0.3675 1.29 Flu FYVE and coiled-coil domain-containing protein 1

Fyn 9 0 177.1 --- Tyrosine-protein kinase

Fzd2 2 1 30.25 0.1085 2.48 PBS Frizzled-2

G3bp1 22 9 455.64 0.0325 1.55 Flu Ras GTPase-activating protein-binding protein 1

G3bp2 4 0 44.09 --- Ras GTPase-activating protein-binding protein 2 (Fragment)

G6pd2 10 0 151.49 --- Glucose-6-phosphate 1-dehydrogenase

G6pdx 28 10 713.41 0.0006 1.40 Flu Glucose-6-phosphate 1-dehydrogenase X

Gaa 9 5 169.65 0.0015 1.60 Flu Lysosomal alpha-glucosidase

Galns 7 3 112.73 0.0158 1.70 Flu N-acetylgalactosamine-6-sulfatase

Galnt1 3 1 77.47 0.2589 3.20 Flu Polypeptide N-acetylgalactosaminyltransferase 1

Galnt2 9 3 94.88 0.0328 1.48 Flu Polypeptide N-acetylgalactosaminyltransferase 2

Ganab 39 18 1498.66 0.0204 1.47 Flu Neutral alpha-glucosidase AB

Gapdh 38 1 1752.42 0.1208 1.37 Flu Glyceraldehyde-3-phosphate dehydrogenase

Gapdhs 4 0 165.98 --- Glyceraldehyde-3-phosphate dehydrogenase, testis-specific

Gapvd1 14 4 158.51 0.1779 1.14 Flu GTPase-activating protein and VPS9 domain-containing protein 1

Gar1 5 2 40.24 0.6487 1.07 Flu H/ACA ribonucleoprotein complex subunit 1 (Fragment)

Gars 18 5 266.91 0.0137 1.67 Flu Glycine--tRNA ligase

Gart 22 9 340.65 0.0202 1.56 Flu Trifunctional purine biosynthetic protein adenosine-3

Gatad2a 12 1 81.63 0.2554 1.94 Flu Transcriptional repressor p66 alpha

Gatad2b 9 4 143.03 0.1259 1.62 Flu Gatad2b protein

Gatm 4 1 36.17 0.0643 6.44 Flu Glycine amidinotransferase, mitochondrial

Gba 3 1 38.05 0.0002 1.91 Flu Glucosylceramidase

Gbas 15 3 353.7 0.2671 1.28 PBS Protein NipSnap homolog 2

Gbe1 11 3 95.54 0.9240 1.00 PBS 1,4-alpha-glucan-branching enzyme

Gbf1 18 0 189.28 --- MKIAA0248 protein (Fragment)

Gbf1 2 0 24.42 --- Prostaglandin E synthase 2 (Fragment)

Gbp11 11 0 91.95 --- Protein Gbp11

Gbp2 13 4 296.53 0.0826 2.01 Flu Guanylate-binding protein 1

Gbp4 11 3 230.82 0.0082 3.15 Flu Guanylate-binding protein 4

Gbp4 6 0 102.77 --- Guanylate-binding protein 4 (Fragment)

Gbp6 7 1 156.09 0.0264 3.13 Flu Protein Gbp6

Gbp7 11 7 412.46 0.0347 1.75 Flu Gbp6 protein

Gbp9 11 2 210.19 0.8881 1.05 PBS Guanylate-binding protein 9

Gc 13 5 165.55 0.1023 2.18 Flu Vitamin D-binding protein

Gcdh 6 3 147.67 0.1526 1.32 PBS Glutaryl-CoA dehydrogenase, mitochondrial

Gclc 15 6 285.36 0.0655 1.17 Flu Glutamate--cysteine ligase catalytic subunit

Gclm 5 1 86.24 0.2530 1.32 PBS Glutamate--cysteine ligase regulatory subunit

Gcn1l1 46 5 456.26 0.0361 1.79 Flu Protein Gcn1l1

Gda 10 7 280.99 0.5659 1.08 PBS Guanine deaminase

Gde1 5 2 79.81 0.8092 1.03 Flu Glycerophosphodiester phosphodiesterase 1

Gdi1 27 10 1085.23 0.3784 1.14 PBS Rab GDP dissociation inhibitor alpha

Gdi2 45 18 1849.36 0.0592 1.22 Flu Rab GDP dissociation inhibitor beta

Gdpd1 1 1 33.89 0.0604 1.46 PBS Glycerophosphodiester phosphodiesterase domain-containing protein 1

Gfap 8 1 135.07 0.3295 5.10 PBS Glial fibrillary acidic protein

Gfpt1 8 1 130.64 0.3937 1.19 Flu Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1

Ggcx 9 1 106.36 0.1659 1.45 Flu Vitamin K-dependent gamma-carboxylase

Gigyf1 11 2 62.72 0.1123 1.59 PBS PERQ amino acid-rich with GYF domain-containing protein 1

Gimap4 19 3 892.99 0.0553 1.21 Flu GTPase IMAP family member 4

Gimap4 15 0 671.12 --- GTPase IMAP family member 4

Gimap8 6 2 33.55 0.0191 1.20 Flu GTPase IMAP family member 8

Gipc2 10 3 83.23 0.0038 1.39 Flu PDZ domain-containing protein GIPC2

Git1 18 4 194.83 0.0522 1.31 PBS ARF GTPase-activating protein GIT1

Git2 14 2 168.17 0.0859 1.34 Flu ARF GTPase-activating protein GIT2

Git2 6 1 77.67 0.7395 1.14 PBS ARF GTPase-activating protein GIT2 (Fragment)

Git2 7 0 89.77 --- ARF GTPase-activating protein GIT2 (Fragment)

Gla 6 1 77.05 0.0449 22.38 Flu Alpha-galactosidase A

Glb1 6 1 149.69 0.0244 2.04 Flu Beta-galactosidase

Glg1 34 10 920.53 0.2021 1.34 Flu Golgi apparatus protein 1 (Fragment)

Glg1 14 0 257.07 --- Golgi apparatus protein 1 (Fragment)

Glo1 8 3 178.09 0.8442 1.00 PBS Lactoylglutathione lyase

Glod4 13 7 430.06 0.1120 1.22 Flu Glyoxalase domain-containing protein 4

Glrx3 3 1 27.51 0.0448 1.51 Flu Glutaredoxin-3

Glrx5 1 1 24.24 0.7164 1.08 Flu Glutaredoxin-related protein 5, mitochondrial

Gls 16 5 381.83 0.4553 1.08 PBS Glutaminase kidney isoform, mitochondrial

Gls 5 0 164.1 --- Glutaminase kidney isoform, mitochondrial (Fragment)

Glud1 39 16 1802.7 0.3574 1.09 PBS Glutamate dehydrogenase 1, mitochondrial

Glud1 10 0 406.31 --- Glutamate dehydrogenase 1, mitochondrial (Fragment)

Glul 7 3 103.4 0.0186 1.50 Flu Glutamine synthetase

Glyr1 8 2 69.95 0.6918 1.09 PBS Putative oxidoreductase GLYR1

Gm10036 8 1 293.29 0.3303 1.51 Flu Protein Gm10036

Gm10260 17 8 633.31 0.0262 1.68 Flu Protein Gm10260

Gm10709 8 1 78.01 0.3331 1.74 Flu MCG9889

Gm10881 2 0 144.16 --- Ig kappa chain V-V region L7 (Fragment)

Gm11214 9 0 372.5 --- Protein Gm11214 (Fragment)

Gm11397 5 0 54.33 --- Protein Gm11397

Gm12728 6 0 150.88 --- Protein Gm12728

Gm15013 15 0 374.38 --- 40S ribosomal protein S4

Gm15294 2 0 61.81 --- Protein Gm15294

Gm16372 6 0 63.97 --- Actin-related protein 2/3 complex subunit 5

Gm16519 5 0 125.09 --- Protein Gm16519

Gm17087 3 0 190.29 --- Protein Gm17087

Gm17190 7 0 185.55 --- Protein Gm17190

Gm17541 3 0 44.25 --- 60S ribosomal protein L18a

Gm18025 13 0 219.65 --- Uncharacterized protein

Gm1840 20 0 682.68 --- Glucose-6-phosphate isomerase

Gm20390 13 2 427.47 0.0027 1.71 Flu Nucleoside diphosphate kinase

Gm20425 67 5 3210.53 0.1327 1.60 Flu Protein Gm20425

Gm20431 6 0 137.85 --- Protein Gm20431

Gm20441 8 0 99.58 --- Protein Gm20441 (Fragment)

Gm20537 2 0 51.9 --- Protein Gm20537 (Fragment)

Gm20547 10 1 153.97 0.0314 4.58 Flu Protein Gm20547

Gm20708 4 2 58.38 0.4005 1.12 Flu Protein Gm20708

Gm21972 3 0 52.9 --- Protein Gm21972 (Fragment)

Gm28036 4 1 64.87 0.3670 1.30 Flu Protein Gm28036 (Fragment)

Gm28036 12 0 84.92 --- Protein Gm28036 (Fragment)

Gm28043 12 0 147.87 --- Protein Gm28043

Gm3839 34 0 1651.53 --- Glyceraldehyde-3-phosphate dehydrogenase

Gm4788 10 1 50.64 0.3676 1.29 Flu Protein Gm4788

Gm4877 6 0 98.06 --- Protein Gm4877

Gm4950 2 0 51.56 --- Proteasome subunit beta type

Gm4951 5 2 56.17 0.7797 1.01 PBS Interferon-gamma-inducible GTPase Ifgga2 protein

Gm4978 9 0 198.5 --- MCG5732

Gm5239 5 0 147.18 --- MCG1031578

Gm5414 8 0 75.54 --- MCG1050941

Gm5422 14 1 436.97 0.5676 1.05 PBS Protein Gm5422

Gm5424 9 5 140.61 0.1773 1.48 Flu MCG15755

Gm5428 12 1 352.15 0.1566 1.17 PBS 60S ribosomal protein L6

Gm5431 6 2 51.58 0.3940 1.24 Flu Protein Gm5431

Gm5611 14 0 491.4 --- Uncharacterized protein

Gm5786 15 0 359.94 --- Protein Gm5786

Gm5862 7 1 47.08 0.0013 1.69 PBS Protein Gm5862

Gm6096 5 0 51.38 --- Protein Gm6096

Gm6576 14 0 267.71 --- Protein Gm6576

Gm7808 9 0 317.74 --- MCG67952

Gm8225 12 0 236.4 --- Protein Gm8225

Gm8909 6 0 199.33 --- MHC classIb T5

Gm8994 17 0 622.83 --- Protein Gm8994

Gm9774 5 2 88.04 0.0259 1.32 Flu MCG119397

Gmppa 4 4 84.13 0.0055 2.04 Flu Mannose-1-phosphate guanyltransferase alpha

Gmppb 2 2 33.33 0.0145 1.59 Flu Mannose-1-phosphate guanyltransferase beta

Gmps 13 7 161.4 0.0514 1.58 Flu GMP synthase [glutamine-hydrolyzing]

Gna11 12 3 368.42 0.1399 1.34 PBS Guanine nucleotide-binding protein subunit alpha-11

Gna12 4 0 105.91 --- Guanine nucleotide-binding protein subunit alpha-12 (Fragment)

Gna13 19 5 624.14 0.5218 1.08 PBS Guanine nucleotide-binding protein subunit alpha-13

Gna14 8 0 274.23 --- Guanine nucleotide-binding protein subunit alpha-14

Gnai1 9 0 416.08 --- Guanine nucleotide-binding protein G(i) subunit alpha-1

Gnai2 25 13 1333.78 0.4182 1.07 PBS Guanine nucleotide-binding protein G(i) subunit alpha-2

Gnai3 10 4 404.17 0.5478 1.04 PBS Guanine nucleotide-binding protein G(k) subunit alpha

Gnal 6 0 150.15 --- Guanine nucleotide-binding protein G(olf) subunit alpha

Gnao1 7 3 303.01 0.0541 2.19 PBS Guanine nucleotide-binding protein G(o) subunit alpha

Gnaq 23 10 849.3 0.1299 1.37 PBS Guanine nucleotide-binding protein G(q) subunit alpha

Gnas 22 1 500.72 0.0499 1.96 Flu Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas

Gnas 17 0 464.7 --- Guanine nucleotide-binding protein G(s) subunit alpha isoforms short

Gnas 4 0 107.04 --- Guanine nucleotide-binding protein G(s) subunit alpha isoforms short

Gnat2 4 0 95.52 --- Guanine nucleotide-binding protein G(t) subunit alpha-2 (Fragment)

Gnaz 4 0 54.4 --- Guanine nucleotide-binding protein G(z) subunit alpha

Gnb1 17 5 978.15 0.1010 1.31 PBS Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1

Gnb2 17 8 991.82 0.2170 1.25 PBS Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2

Gnb2l1 22 16 816.69 0.0522 1.39 Flu Guanine nucleotide-binding protein subunit beta-2-like 1

Gnb3 6 0 80.2 --- Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3

Gnb4 9 3 269.59 0.4809 1.10 PBS Guanine nucleotide-binding protein subunit beta-4

Gns 11 6 179.51 0.0016 1.75 Flu N-acetylglucosamine-6-sulfatase

Golga2 11 4 158.45 0.0293 1.44 Flu Golgin subfamily A member 2

Golga3 17 0 110.18 --- Golgin subfamily A member 3

Golgb1 43 3 229.52 0.9144 1.02 PBS Protein Golgb1

Golim4 4 0 102.65 --- Golgi integral membrane protein 4 (Fragment)

Golim4 8 0 233.64 --- Golgi integral membrane protein 4

Golm1 2 0 28.81 --- Golgi membrane protein 1

Golph3 5 1 32.04 0.0202 1.50 Flu Golgi phosphoprotein 3

Golt1b 1 1 43.81 0.0987 1.50 Flu Vesicle transport protein GOT1B

Gorasp2 9 3 115.47 0.0236 1.40 Flu Golgi reassembly stacking protein 2, isoform CRA_d

Got1 16 8 300.16 0.2688 1.22 PBS Aspartate aminotransferase, cytoplasmic

Got2 29 13 1476.76 0.2440 1.10 PBS Aspartate aminotransferase, mitochondrial

Gp1ba 5 3 45.57 0.9440 1.15 PBS Platelet glycoprotein Ib alpha chain

Gp1bb 4 1 98.94 0.1642 1.72 PBS Glycoprotein Ib, beta polypeptide

Gpaa1 3 1 102.76 0.4381 1.73 Flu Glycosylphosphatidylinositol anchor attachment 1 protein

Gpd1 5 0 96.59 --- Glycerol-3-phosphate dehydrogenase [NAD(+)]

Gpd1l 6 2 148.93 0.1506 1.19 Flu Glycerol-3-phosphate dehydrogenase 1-like protein

Gpd2 27 17 763.09 0.8164 1.01 PBS Glycerol-3-phosphate dehydrogenase, mitochondrial

Gpi 27 6 1132.39 0.0222 1.19 Flu Glucose-6-phosphate isomerase

Gpm6a 4 1 68.61 0.2238 1.44 Flu Neuronal membrane glycoprotein M6-a

Gpm6b 1 1 16.12 0.0553 1.71 PBS Glycoprotein m6b, isoform CRA_a

Gpnmb 2 1 24.56 0.0020 34.79 Flu Transmembrane glycoprotein NMB

Gpr179 38 5 172.41 0.1522 1.28 PBS Protein Gpr179

Gpr98 26 3 134.86 0.0719 2.13 PBS G-protein coupled receptor 98

Gprc5a 8 5 265.75 0.0765 1.50 Flu Retinoic acid-induced protein 3

Gps1 13 6 273.14 0.1784 1.08 Flu COP9 signalosome complex subunit 1

Gps1 4 0 40.63 --- COP9 signalosome complex subunit 1

Gpx1 10 5 408.86 0.7848 1.03 PBS Glutathione peroxidase 1

Gpx3 7 0 113.59 --- Glutathione peroxidase (Fragment)

Gpx3 9 0 216.32 --- Glutathione peroxidase 3

Grb2 8 7 175.32 0.2145 1.23 Flu Growth factor receptor-bound protein 2

Grhpr 5 1 100.44 0.8638 1.04 PBS Glyoxylate reductase/hydroxypyruvate reductase

Gripap1 15 2 89.83 0.0613 1.67 PBS GRIP1-associated protein 1

Gsdma2 6 0 41.38 --- Gasdermin-A2

Gsdma3 6 0 11.84 --- Gasdermin-A3

Gsdmdc1 6 3 76.34 0.3306 1.21 PBS Gasdermin-D

Gsk3b 6 2 46.37 0.2741 1.10 Flu Glycogen synthase kinase-3 beta

Gsn 6 1 218.02 0.3721 1.28 Flu Gelsolin (Fragment)

Gsn 31 11 1213.55 0.4339 1.08 Flu Gelsolin

Gspt1 14 3 151.89 0.0759 1.87 Flu Eukaryotic peptide chain release factor GTP-binding subunit ERF3A

Gspt2 9 1 98.15 0.7204 1.40 Flu Eukaryotic peptide chain release factor GTP-binding subunit ERF3B

Gsr 10 3 196.01 0.7825 1.03 Flu Glutathione reductase, mitochondrial

Gsta1 5 0 81.65 --- Glutathione S-transferase A1

Gsta3 8 2 202.26 0.3334 1.34 PBS Glutathione S-transferase A3

Gsta4 7 2 202.04 0.1193 1.36 Flu Glutathione S-transferase A4

Gstk1 19 6 623.33 0.4723 1.10 PBS Glutathione S-transferase kappa 1

Gstm1 33 8 1684.29 0.3096 1.29 PBS Glutathione S-transferase Mu 1

Gstm1 15 1 739.67 0.3604 1.31 PBS Glutathione S-transferase Mu 1 (Fragment)

Gstm2 23 7 960.55 0.5205 1.12 PBS Glutathione S-transferase Mu 2

Gstm3 9 0 324.67 --- Glutathione S-transferase Mu 3

Gstm5 6 1 93.69 0.5524 1.25 Flu Glutathione S-transferase Mu 5 (Fragment)

Gstm6 5 0 49.99 --- Glutathione S-transferase Mu 6

Gstm7 10 0 377.05 --- Glutathione S-transferase Mu 7

Gsto1 11 3 122.71 0.0071 2.15 Flu Glutathione S-transferase omega-1

Gstp1 13 4 629.14 0.5081 1.16 PBS Glutathione S-transferase P 1

Gstp2 6 0 301.81 --- Glutathione S-transferase P 2

Gstt1 8 0 98.21 --- Glutathione S-transferase theta-1

Gstt1 9 0 188.16 --- Glutathione S-transferase theta-1

Gstt2 4 2 46.04 0.9097 1.01 Flu Glutathione S-transferase theta-2

Gstt3 3 0 55.77 --- Protein Gstt3

Gstz1 3 0 34.3 --- Maleylacetoacetate isomerase

Gtf2i 16 5 145.78 0.3206 1.28 Flu General transcription factor II-I

Gtf2ird1 6 0 37.98 --- General transcription factor II-I repeat domain-containing protein 1 (Fragment)

Gucy1a2 13 7 196.32 0.1251 1.16 PBS Protein Gucy1a2

Gucy1a3 27 14 586.82 0.1573 1.22 PBS Guanylate cyclase soluble subunit alpha-3

Gucy1a3 4 0 88.61 --- Guanylate cyclase soluble subunit alpha-3 (Fragment)

Gucy1b2 6 1 48.54 0.0079 1.39 PBS Protein Gucy1b2

Gucy1b3 26 13 961.45 0.7673 1.02 Flu Guanylate cyclase soluble subunit beta-1

Gusb 15 5 360.33 0.0269 2.76 Flu Beta-glucuronidase

Gvin1 32 16 733.83 0.1336 1.42 PBS Interferon-induced very large GTPase 1

Gyg 12 3 406.92 0.0018 1.73 Flu Glycogenin-1

Gys1 5 1 36.63 0.1588 1.40 Flu Glycogen [starch] synthase, muscle

H13 7 1 117.6 0.5003 1.42 Flu Minor histocompatibility antigen H13 (Fragment)

H13 4 0 84.39 --- H13 protein

H1f0 10 2 186.72 0.2507 1.34 PBS Histone H1.0

H2-Aa 5 1 198.95 0.0026 2.65 Flu H-2 class II histocompatibility antigen, A-B alpha chain

H2-Aa 5 2 84.26 0.0211 1.31 PBS H-2 class II histocompatibility antigen, A-D alpha chain

H2-Ab1 11 1 452.09 0.1903 2.60 Flu H-2 class II histocompatibility antigen, A beta chain

H2-Ab1 9 1 320.12 0.2483 1.80 Flu H-2 class II histocompatibility antigen, A-F beta chain (Fragment)

H2-D1 22 3 994.84 0.1504 1.50 Flu H-2 class I histocompatibility antigen, D-B alpha chain

H2-D1 3 1 90.88 0.2814 1.61 Flu H-2 class I histocompatibility antigen, D-K alpha chain (Fragment)

H2-D1 5 1 169.32 0.4385 1.38 PBS H-2 class I histocompatibility antigen, D-P alpha chain

H2-D1 9 0 258.75 --- H-2 class I histocompatibility antigen, D-D alpha chain

H2-DMb1 3 1 74.34 0.1067 3.01 Flu Class II histocompatibility antigen, M beta 1 chain

H2-DMb2 2 1 69.05 0.0081 2.34 Flu H2-M beta 2

H2-Eb1 3 2 92.61 0.0059 3.36 Flu H-2 class II histocompatibility antigen, I-A beta chain

H2-K1 15 1 632.75 0.1865 1.20 PBS H-2 class I histocompatibility antigen, K-K alpha chain (Fragment)

H2-K1 9 1 208.12 0.6145 1.19 PBS Beta-2-microglobulin

H2-K1 13 0 347.12 --- H-2 class I histocompatibility antigen, K-K alpha chain

H2-K1 22 0 809.73 --- H-2 class I histocompatibility antigen, K-B alpha chain

H2-K1 6 0 183.04 --- H-2 class I histocompatibility antigen, K-D alpha chain

H2-Ke6 7 0 119.69 --- Estradiol 17-beta-dehydrogenase 8 (Fragment)

H2-Q1 8 1 189.37 0.7536 1.03 Flu Protein H2-Q1

H2-Q10 8 0 238.78 --- H-2 class I histocompatibility antigen, Q10 alpha chain

H2-Q2 5 0 129.64 --- Histocompatibility 2, Q region locus 2

H2-Q4 13 0 518.55 --- Protein H2-Q4

H2-Q7 7 0 269.28 --- H-2 class I histocompatibility antigen, Q7 alpha chain

H2-Q8 7 0 319.46 --- H-2 class I histocompatibility antigen, Q8 alpha chain

H2-T24 5 1 29.54 0.0817 1.83 Flu Protein H2-T24

H2-T3 2 0 36.34 --- H-2 class I histocompatibility antigen, TLA(B) alpha chain

H3f3a 4 1 80.53 0.0154 2.77 Flu Histone H3 (Fragment)

H6pd 30 17 1077.75 0.1183 1.10 Flu GDH/6PGL endoplasmic bifunctional protein

Hacd3 7 2 94.93 0.6058 1.06 PBS Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3

Hadh 24 17 807.22 0.3629 1.17 PBS Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial

Hadha 60 31 2411.59 0.9664 1.00 PBS Trifunctional enzyme subunit alpha, mitochondrial

Hadhb 35 20 1217.66 0.6049 1.04 Flu Trifunctional enzyme subunit beta, mitochondrial

haemaglobin alpha 2 32 26 1549.28 0.0835 1.65 PBS Alpha globin 1

Hagh 3 0 42.57 --- Hydroxyacylglutathione hydrolase, mitochondrial (Fragment)

Hars 14 4 221.4 0.2662 1.23 Flu Histidine--tRNA ligase, cytoplasmic

Has1 6 0 36.33 --- Hyaluronan synthase 1

Hba-x 4 0 62.19 --- Hemoglobin subunit zeta (Fragment)

Hbb-b1 35 1 2541.97 0.4625 1.19 Flu Hemoglobin subunit beta-1

Hbb-b2 15 2 757.69 0.4717 1.11 PBS Hemoglobin subunit beta-2

Hbbt1 46 11 3578.99 0.0662 1.68 PBS Beta-globin

Hcfc1 36 13 632.01 0.3375 1.16 Flu Host cell factor 1

Hck 18 5 276.59 0.0216 1.14 Flu Tyrosine-protein kinase

Hcls1 11 6 189.52 0.0689 2.70 Flu Hematopoietic lineage cell-specific protein

Hdac1 14 4 404.44 0.1499 1.11 Flu Histone deacetylase 1

Hdac2 7 1 304.93 0.3611 1.19 Flu Histone deacetylase 2

Hdgf 10 3 198.5 0.2259 1.17 Flu Hepatoma-derived growth factor (Fragment)

Hdhd2 2 1 40.88 0.0301 1.61 Flu Haloacid dehalogenase-like hydrolase domain-containing protein 2

Hdhd2 6 3 66.66 0.3214 1.28 PBS Haloacid dehalogenase-like hydrolase domain-containing protein 2

Hdlbp 36 12 921.55 0.0305 1.95 Flu Vigilin

Heatr5a 13 1 89.75 0.1457 1.53 Flu HEAT repeat-containing protein 5A

Hebp1 3 1 27.78 0.0009 3.32 Flu Heme-binding protein 1

Herc4 11 3 78.27 0.0333 1.58 Flu Probable E3 ubiquitin-protein ligase HERC4

Hexa 5 1 115.35 0.0522 1.57 Flu Beta-hexosaminidase subunit alpha

Hexb 10 4 263.51 0.0289 2.30 Flu Beta-hexosaminidase subunit beta

Hgs 11 2 95.74 0.5216 1.08 Flu Hepatocyte growth factor-regulated tyrosine kinase substrate

Hibadh 12 7 447.94 0.6886 1.02 PBS 3-hydroxyisobutyrate dehydrogenase, mitochondrial

Hibch 15 7 421.13 0.2373 1.16 PBS 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial

Hint1 3 3 68.32 0.7133 1.05 Flu Histidine triad nucleotide-binding protein 1

Hint2 6 3 149.09 0.6590 1.04 PBS Histidine triad nucleotide-binding protein 2, mitochondrial

Hint3 2 1 31.07 0.8305 1.07 Flu Histidine triad nucleotide-binding protein 3

Hip1 28 8 935.91 0.4174 1.04 PBS Huntingtin-interacting protein 1

Hip1r 3 1 35.2 0.0579 1.22 Flu Huntingtin-interacting protein 1-related protein (Fragment)

Hip1r 12 3 199.18 0.1060 1.18 Flu Huntingtin-interacting protein 1-related protein

Hist1h1a 20 2 454.54 0.9478 1.01 PBS Histone H1.1

Hist1h1b 15 2 214.85 0.2888 1.11 Flu Histone H1.5

Hist1h1c 17 0 513.81 --- Histone H1.2

Hist1h1e 14 0 398.14 --- Histone H1.4

Hist1h1t 9 0 237.43 --- Histone H1t

Hist1h2bm 8 0 268.25 --- Histone H2B

Hist2h2aa1 4 2 179.32 0.0427 1.98 Flu Histone H2A

Hist2h2ab 3 0 125.14 --- Histone H2A type 2-B

Hist2h2bb 12 2 290.39 0.1411 1.87 PBS Histone H2B type 2-B

Hist2h2be 9 0 228.59 --- Histone H2B type 2-E

Hist2h4 4 2 126.42 0.5458 1.12 Flu Histone H4

Hk1 42 15 1336.48 0.1553 1.11 Flu Hexokinase-1

Hk2 14 1 260.17 0.2579 1.28 PBS Hexokinase

Hk3 2 0 16.65 --- Hexokinase-3

Hk3 10 0 126.1 --- Hexokinase

Hkdc1 7 0 159.04 --- Putative hexokinase HKDC1

Hmgb1 20 4 695.77 0.6955 1.05 PBS High mobility group protein B1 (Fragment)

Hmgb2 18 3 510.65 0.2346 1.27 Flu High mobility group protein B2

Hmgcl 8 1 59.19 0.3466 1.12 Flu Hydroxymethylglutaryl-CoA lyase, mitochondrial

Hmha1 11 2 92.49 0.2031 1.27 Flu Minor histocompatibility protein HA-1

Hmox2 7 5 174.05 0.1524 1.28 Flu Heme oxygenase 2

Hnrnpa0 10 6 426.1 0.0630 1.22 Flu Heterogeneous nuclear ribonucleoprotein A0

Hnrnpa1 15 6 713.06 0.0167 1.59 Flu Heterogeneous nuclear ribonucleoprotein A1

Hnrnpa2b1 31 18 1558.88 0.5859 1.06 Flu Heterogeneous nuclear ribonucleoproteins A2/B1

Hnrnpa3 24 10 1208.72 0.0138 1.21 Flu Heterogeneous nuclear ribonucleoprotein A3

Hnrnpab 10 4 449.91 0.0064 1.44 Flu Heterogeneous nuclear ribonucleoprotein A/B

Hnrnpc 15 7 356.12 0.0722 1.28 Flu Heterogeneous nuclear ribonucleoproteins C1/C2

Hnrnpd 13 5 526.81 0.3391 1.10 Flu Heterogeneous nuclear ribonucleoprotein D0

Hnrnpdl 13 2 191.13 0.0343 1.34 Flu Heterogeneous nuclear ribonucleoprotein D-like

Hnrnpf 16 5 644.49 0.1188 1.95 Flu Heterogeneous nuclear ribonucleoprotein F

Hnrnph1 12 4 649.76 0.0064 1.24 Flu Heterogeneous nuclear ribonucleoprotein H

Hnrnph2 7 2 454.41 0.0071 1.47 Flu Heterogeneous nuclear ribonucleoprotein H2

Hnrnph3 4 2 130.84 0.6483 1.09 Flu MCG11326, isoform CRA_b

Hnrnpk 17 1 370.02 0.0386 2.06 Flu Heterogeneous nuclear ribonucleoprotein K (Fragment)

Hnrnpk 36 2 1410 0.0966 1.49 Flu Heterogeneous nuclear ribonucleoprotein K

Hnrnpk 30 0 1198.17 --- Heterogeneous nuclear ribonucleoprotein K (Fragment)

Hnrnpl 24 1 902.19 0.3122 1.49 Flu Heterogeneous nuclear ribonucleoprotein L (Fragment)

Hnrnpl 23 0 890.24 --- Heterogeneous nuclear ribonucleoprotein L

Hnrnpll 7 2 293.11 0.8845 1.02 Flu Heterogeneous nuclear ribonucleoprotein L-like

Hnrnpll 5 0 219.37 --- Heterogeneous nuclear ribonucleoprotein L-like

Hnrnpm 8 2 341.21 0.1441 1.37 PBS Heterogeneous nuclear ribonucleoprotein M (Fragment)

Hnrnpm 54 13 1742.02 0.2788 1.12 Flu Heterogeneous nuclear ribonucleoprotein M

Hnrnpr 23 3 760.01 0.0240 1.10 Flu Heterogeneous nuclear ribonucleoprotein R

Hnrnpu 45 21 1821.16 0.3384 1.19 Flu Heterogeneous nuclear ribonucleoprotein U

Hnrnpul1 13 5 362.25 0.1209 1.38 Flu Heterogeneous nuclear ribonucleoprotein U-like protein 1

Hnrnpul2 35 20 1295.09 0.1036 1.20 Flu Heterogeneous nuclear ribonucleoprotein U-like protein 2

Homer3 6 2 173.28 0.1321 1.28 PBS Homer protein homolog 3

Homer3 4 0 57.62 --- Homer protein homolog 3 (Fragment)

Hook3 14 2 161.63 0.4138 1.19 Flu Protein Hook homolog 3

Hook3 9 0 84.37 --- Protein Hook homolog 3 (Fragment)

Hp 8 1 183.97 0.4827 1.12 PBS Haptoglobin

Hp1bp3 36 2 803.05 0.1394 1.17 Flu Heterochromatin protein 1-binding protein 3

Hp1bp3 26 0 657.98 --- Heterochromatin protein 1-binding protein 3 (Fragment)

Hpca 3 0 64.55 --- Neuron-specific calcium-binding protein hippocalcin (Fragment)

Hpcal1 4 0 140.19 --- Hippocalcin-like protein 1

Hpgd 9 4 344.13 0.5687 1.08 PBS 15-hydroxyprostaglandin dehydrogenase [NAD(+)]

Hprt1 5 3 124.03 0.0309 1.72 Flu Hypoxanthine-guanine phosphoribosyltransferase

Hpx 22 10 615.54 0.0292 2.36 Flu Hemopexin

Hras 6 1 205.18 0.7123 1.03 PBS GTPase HRas

Hrg 5 0 43.73 --- Histidine-rich glycoprotein

Hsd11b1 19 13 607.81 0.2004 1.28 PBS Corticosteroid 11-beta-dehydrogenase isozyme 1

Hsd17b10 17 2 906.29 0.2220 1.29 PBS 17beta-hydroxysteroid dehydrogenase type 10/short chain L-3-hydroxyacyl-CoA dehydrogenase

Hsd17b10 12 0 511.24 --- 3-hydroxyacyl-CoA dehydrogenase type-2

Hsd17b11 9 4 364.73 0.3721 1.44 PBS Estradiol 17-beta-dehydrogenase 11

Hsd17b12 12 8 556.14 0.1366 1.16 Flu Very-long-chain 3-oxoacyl-CoA reductase

Hsd17b4 21 9 861.68 0.8532 1.02 Flu Peroxisomal multifunctional enzyme type 2

Hsd17b8 7 0 188.51 --- Estradiol 17-beta-dehydrogenase 8

Hsdl1 5 4 65.77 0.7463 1.04 PBS Inactive hydroxysteroid dehydrogenase-like protein 1

Hsdl2 12 4 103.92 0.0310 1.14 Flu Hydroxysteroid dehydrogenase-like protein 2

Hsp90aa1 50 16 2268.05 0.0079 1.46 Flu Heat shock protein HSP 90-alpha

Hsp90ab1 66 28 3351.27 0.0227 1.38 Flu Heat shock protein 84b

Hsp90b1 64 30 3346.24 0.0636 1.63 Flu Endoplasmin

Hspa12a 17 4 360.16 0.1031 1.37 PBS Heat shock 70 kDa protein 12A

Hspa12b 37 20 1101.7 0.0430 1.57 PBS Heat shock 70 kDa protein 12B

Hspa1a 21 6 747.07 0.0033 1.19 PBS Heat shock 70 kDa protein 1A

Hspa1l 12 0 562.81 --- Heat shock 70 kDa protein 1-like

Hspa2 26 2 1002.69 0.6747 1.03 PBS Heat shock-related 70 kDa protein 2

Hspa4 44 21 1546.26 0.0997 1.23 Flu Heat shock 70 kDa protein 4

Hspa4l 29 5 620.27 0.5872 1.07 Flu Heat shock 70 kDa protein 4L

Hspa4l 3 0 47.6 --- Heat shock 70 kDa protein 4L (Fragment)

Hspa4l 9 0 160.28 --- Heat shock 70 kDa protein 4L (Fragment)

Hspa5 51 18 2902.45 0.0150 1.49 Flu 78 kDa glucose-regulated protein

Hspa8 56 12 3240.84 0.0285 1.23 Flu Heat shock cognate 71 kDa protein

Hspa8 16 0 819.38 --- Heat shock cognate 71 kDa protein

Hspa9 32 21 1456.67 0.0958 1.13 Flu Stress-70 protein, mitochondrial

Hspb1 7 3 301.75 0.3422 1.18 PBS Heat shock protein beta-1

Hspd1 46 22 1980.55 0.1402 1.15 Flu 60 kDa heat shock protein, mitochondrial

Hspe1 9 2 136.72 0.0774 1.27 Flu 10 kDa heat shock protein, mitochondrial

Hspg2 27 4 306.6 0.1552 1.28 PBS Basement membrane-specific heparan sulfate proteoglycan core protein

Hspg2 21 1 190.96 0.1789 1.81 PBS Basement membrane-specific heparan sulfate proteoglycan core protein

Hsph1 22 8 617.13 0.0128 1.64 Flu Heat shock protein 105 kDa

Hsph1 2 0 59.39 --- Heat shock protein 105 kDa (Fragment)

Htra2 7 0 88.78 --- Serine protease HTRA2, mitochondrial

Htra2 4 0 25.71 --- Serine protease HTRA2, mitochondrial (Fragment)

Htra2 8 0 102.82 --- Serine protease HTRA2, mitochondrial

Huwe1 41 2 393.34 0.0158 1.44 Flu E3 ubiquitin-protein ligase HUWE1

Huwe1 22 0 254.86 --- E3 ubiquitin-protein ligase HUWE1 (Fragment)

Hyou1 39 21 1248.26 0.0283 1.58 Flu Hypoxia up-regulated protein 1

Iah1 4 2 40.31 0.7530 1.04 Flu Isoamyl acetate-hydrolyzing esterase 1 homolog

Iars 13 3 158.44 0.0679 1.30 Flu Isoleucine--tRNA ligase, cytoplasmic

Iars2 26 11 776.31 0.4982 1.05 PBS Isoleucine--tRNA ligase, mitochondrial

Icam1 19 11 885.76 0.0862 1.19 PBS Intercellular adhesion molecule 1

Icam2 11 1 188.47 0.3074 1.54 Flu Intercellular adhesion molecule 2 (Fragment)

Icam2 5 0 215.51 --- Intercellular adhesion molecule 2

Ice2 2 0 38.46 --- Little elongation complex subunit 2 (Fragment)

Ide 18 6 165.05 0.4732 1.06 PBS Insulin-degrading enzyme (Fragment)

Idh1 22 9 1106.49 0.0087 1.40 Flu Isocitrate dehydrogenase [NADP] cytoplasmic

Idh2 37 16 2105.14 0.2236 1.21 PBS Isocitrate dehydrogenase [NADP], mitochondrial

Idh3a 21 12 831.53 0.8686 1.00 PBS Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial

Idh3b 15 9 540.13 0.8372 1.01 PBS Isocitrate dehydrogenase [NAD] subunit, mitochondrial

Idh3g 10 5 355.29 0.3609 1.10 PBS Isocitrate dehydrogenase [NAD] subunit gamma 1, mitochondrial

Idi1 2 1 61.53 0.2194 1.31 PBS Isopentenyl-diphosphate Delta-isomerase 1 (Fragment)

Idi1 5 1 110.17 0.9541 1.03 Flu Isopentenyl-diphosphate Delta-isomerase 1 (Fragment)

Ido1 7 1 95.89 0.0604 2206.48 Flu Indoleamine 2,3-dioxygenase 1

Ifi204 9 0 54.22 --- Interferon-activable protein 204

Ifi204 8 0 76.04 --- Interferon-activable protein 204

Ifi205a 7 0 184.69 --- Interferon-activable protein 205-A

Ifi205b 6 0 203.16 --- Interferon-activable protein 205-B

Ifi30 1 1 38.75 0.0595 1.79 Flu Gamma-interferon-inducible lysosomal thiol reductase

Ifi47 15 6 497.25 0.1098 1.42 Flu GTP-binding protein

Ifit2 9 1 81.23 0.2184 11.64 Flu Ifit2 protein

Ifit3 5 1 61.05 0.0161 4.63 Flu Interferon-induced protein with tetratricopeptide repeats 3

Ifitm2 2 0 61.95 --- Interferon-induced transmembrane protein 2

Ifitm3 3 2 143.98 0.3410 1.46 Flu Interferon-induced transmembrane protein 3

Ifngr1 6 1 33.89 0.1514 1.64 PBS Interferon gamma receptor 1

Igf1r 5 1 47.59 0.0507 1.46 PBS Insulin-like growth factor 1 receptor

Igf2bp3 8 1 39.16 0.0154 1.32 Flu Insulin-like growth factor 2 mRNA-binding protein 3

Igf2r 24 5 298.13 0.0833 2.21 Flu Cation-independent mannose-6-phosphate receptor

Igfbp7 3 3 57.4 0.7006 1.16 Flu Insulin-like growth factor-binding protein 7

Igha 16 6 475.42 0.0097 23.80 Flu Protein Igha (Fragment)

Ighg 9 0 158.03 --- Ig gamma-2A chain C region, A allele

Ighg1 12 5 287.63 0.0356 17.20 Flu Ig gamma-1 chain C region secreted form (Fragment)

Ighg2b 8 0 232.63 --- Protein Ighg2b (Fragment)

Ighg2b 4 0 82.43 --- Protein Ighg2b (Fragment)

Ighg2c 23 9 573.12 0.0293 7.99 Flu Protein Ighg2c

Ighm 15 8 569.54 0.3967 1.48 Flu Ig mu chain C region (Fragment)

Ighv1-15 5 3 153.39 0.0665 23.56 Flu MCG114298 (Fragment)

Ighv1-18 4 1 204.17 0.0867 21.59 Flu Protein Ighv1-18

Ighv1-26 6 0 348.07 --- MCG114299 (Fragment)

Ighv1-31 5 0 325.39 --- Protein Ighv1-31

Ighv1-39 1 1 42.49 0.1328 48.15 Flu Protein Ighv1-39 (Fragment)

Ighv1-69 2 1 118.47 0.0243 42.60 Flu Protein Ighv1-69

Ighv1-7 2 0 87.33 --- Protein Ighv1-7 (Fragment)

Ighv1-72 2 0 116.4 --- Ig heavy chain V region B1-8/186-2 (Fragment)

Ighv1-75 2 0 74.56 --- Protein Ighv1-75 (Fragment)

Ighv1-78 1 1 20.4 0.2781 3.98 Flu Protein Ighv1-78

Ighv1-81 2 1 73.69 0.0822 3.14 Flu Protein Ighv1-81 (Fragment)

Ighv1-82 3 1 81.64 0.0440 10.48 Flu Protein Ighv1-82

Ighv1-84 2 1 81.79 0.1528 7.62 Flu Protein Ighv1-84 (Fragment)

Ighv3-6 2 1 91.81 0.0270 Infinity Flu Ig heavy chain V region 3-6

Ighv5-15 3 2 75.66 0.1922 2.30 Flu Protein Ighv5-15

Ighv8-12 1 1 79.44 0.1179 65.74 Flu MCG116913 (Fragment)

Ighv9-3 2 2 86.2 0.0566 17.84 Flu Protein Ighv9-3 (Fragment)

Ighv9-4 1 1 69.62 0.0185 31.83 Flu Protein Ighv9-4

Igkc 5 2 137.53 0.0473 5.59 Flu Protein Igkc (Fragment)

Igkv14-126 2 0 45.98 --- Protein Igkv14-126 (Fragment)

Igk-V19-17 3 1 39.37 0.0823 5.68 Flu Ig kappa chain V19-17

Igkv4-53 3 2 70.1 0.2710 28.17 Flu Protein Igkv4-53

Igkv4-57 1 1 70.18 0.3918 5.80 Flu Protein Igkv4-57 (Fragment)

Igkv5-39 1 1 40.87 0.3041 29.14 Flu Protein Igkv5-39

Igkv5-43 1 1 71.48 0.0022 32.12 Flu Protein Igkv5-43 (Fragment)

Igkv8-27 3 2 78.37 0.0912 4.50 Flu Protein Igkv8-27

Igtp 11 4 430.95 0.0129 2.72 Flu Protein Igtp

Iigp1 15 8 588.94 0.0165 3.39 Flu Interferon-inducible GTPase 1

Ikbip 5 0 69.07 --- Inhibitor of nuclear factor kappa-B kinase-interacting protein

Ikbkb 5 0 91.68 --- Inhibitor of nuclear factor kappa-B kinase subunit beta

Ikzf2 7 0 72.07 --- Zinc finger protein Helios

Il16 20 11 303 0.2104 1.43 PBS Pro-interleukin-16

Il6st 6 2 99.61 0.4123 1.11 PBS Interleukin-6 receptor subunit beta

Ilf2 10 3 364.26 0.0305 1.18 Flu Interleukin enhancer-binding factor 2

Ilf3 19 6 315.47 0.1838 1.23 Flu Interleukin enhancer-binding factor 3

Ilk 42 24 1336.43 0.0833 1.37 PBS Integrin-linked protein kinase

Ilvbl 8 2 125.15 0.9898 1.02 Flu Acetolactate synthase-like protein

Immt 23 1 601.54 0.2839 1.22 PBS MICOS complex subunit Mic60

Immt 24 0 495.03 --- MICOS complex subunit Mic60

Impa1 8 4 293.31 0.5400 1.09 Flu Inositol (Myo)-1(Or 4)-monophosphatase 1

Impdh1 13 6 318.55 0.2330 1.22 PBS Inosine-5'-monophosphate dehydrogenase 1

Impdh1 4 0 124.25 --- Inosine-5'-monophosphate dehydrogenase 1 (Fragment)

Impdh2 13 2 217.14 0.0311 1.72 PBS Inosine-5'-monophosphate dehydrogenase 2

Impdh2 7 0 95.14 --- Inosine-5'-monophosphate dehydrogenase 2 (Fragment)

Ina 7 0 144.79 --- Alpha-internexin

Inadl 22 2 301.18 0.1143 1.71 PBS InaD-like protein

Inadl 20 1 272.41 0.3152 1.51 Flu InaD-like protein

Inf2 11 1 54.15 0.0051 1.62 Flu Inverted formin-2

Inmt 19 6 1044.85 0.1197 1.76 PBS Indolethylamine N-methyltransferase

Inpp1 5 2 97.61 0.5376 2.90 PBS Inositol polyphosphate 1-phosphatase

Inpp5a 8 3 205.26 0.2710 1.27 PBS Protein Inpp5a

Inpp5b 14 4 181.29 0.1794 1.39 Flu Type II inositol 1,4,5-trisphosphate 5-phosphatase

Inpp5d 26 5 184.39 0.0901 2.40 Flu Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1

Inpp5k 2 1 29.57 0.0890 2.26 Flu Inositol polyphosphate 5-phosphatase K

Inppl1 15 3 124.77 0.2882 1.56 Flu Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 2 (Fragment)

Ints3 6 1 94.75 0.9839 4.11 Flu Integrator complex subunit 3

Ints9 5 2 41.62 0.0309 1.86 Flu Integrator complex subunit 9

Ipo5 22 14 733.22 0.0101 1.67 Flu Importin-5

Ipo7 15 7 414.66 0.0085 1.36 Flu Importin-7

Ipo8 6 0 91.96 --- Importin-8

Ipo9 12 4 94.06 0.5435 1.05 Flu Importin-9

Iqgap1 96 42 4621.96 0.0180 1.30 Flu Ras GTPase-activating-like protein IQGAP1

Iqgap2 24 5 308.72 0.5945 1.14 Flu Ras GTPase-activating-like protein IQGAP2

Iqgap3 11 0 167.96 --- Protein Iqgap3

Iqsec1 17 2 125.88 0.4051 1.20 Flu IQ motif and SEC7 domain-containing protein 1

Iqsec2 10 0 67.04 --- ARF6 guanine nucleotide exchange factor IQArfGEF

Irf2bp2 8 1 49.18 0.2505 1.74 Flu Interferon regulatory factor 2-binding protein 2

Irgm1 10 8 245.01 0.0231 2.71 Flu Immunity-related GTPase family M protein 1

Irgm2 12 2 333.9 0.0340 1.79 Flu Interferon-g induced GTPase

Isg15 5 2 226.47 0.0019 1.86 Flu G1p2 protein

Isoc1 6 3 42.78 0.0112 1.34 Flu Isochorismatase domain-containing protein 1

Isoc2a 3 3 106.71 0.8599 1.01 PBS Isochorismatase domain-containing protein 2A, mitochondrial

Ist1 4 2 93.45 0.3324 1.22 PBS IST1 homolog

Isyna1 9 4 151.17 0.0121 1.76 Flu Inositol-3-phosphate synthase 1

Itfg3 4 1 71.44 0.3258 1.47 Flu Protein ITFG3

Itga1 33 12 1336.55 0.2999 1.18 PBS Integrin alpha-1

Itga2 13 9 504.34 0.5145 1.10 Flu Integrin alpha-2

Itga2b 8 5 281.91 0.0750 1.67 PBS Integrin alpha-IIb

Itga3 24 8 1063.23 0.0455 1.42 PBS Integrin alpha-3

Itga3 7 0 248.28 --- Integrin alpha-3 (Fragment)

Itga5 8 4 129.9 0.7030 1.04 Flu Integrin alpha-5

Itga6 30 4 751.54 0.7321 1.06 Flu Integrin alpha-6

Itga6 21 0 451.58 --- Integrin alpha-6 (Fragment)

Itga8 22 11 614.01 0.0392 1.57 PBS Integrin alpha-8

Itgal 19 3 229.94 0.8797 1.10 Flu Integrin alpha-L

Itgam 19 8 414.09 0.2911 1.32 Flu Integrin alpha-M

Itgav 14 5 324.47 0.2263 1.06 Flu Integrin alpha-V

Itgax 12 3 165.73 0.0198 3.24 Flu Integrin alpha-X

Itgb1 40 14 1642.35 0.0674 1.28 PBS Integrin beta-1

Itgb2 22 8 943.66 0.0256 1.88 Flu Integrin beta-2

Itgb3 9 4 213.96 0.4719 1.42 PBS Integrin beta-3

Itgb4 13 2 132.89 0.4899 1.28 Flu Integrin beta-4

Itgb5 9 4 227.9 0.0660 1.15 Flu Integrin beta

Itgb7 4 0 47.5 --- Integrin beta-7

Itih1 14 3 138.97 0.1653 1.76 Flu Inter-alpha-trypsin inhibitor heavy chain H1

Itih2 5 1 47.37 0.0160 3.24 Flu Inter-alpha-trypsin inhibitor heavy chain H2

Itpr1 23 2 189.16 0.9429 1.00 Flu Inositol 1,4,5-trisphosphate receptor type 1

Itpr2 16 2 104.06 0.0666 1.87 PBS Inositol 1,4,5-trisphosphate receptor type 2

Itsn1 19 2 135.95 0.6944 1.06 PBS Intersectin-1

Itsn2 23 3 163.79 0.2130 1.18 PBS Intersectin-2

Ivd 15 8 538.48 0.2315 1.26 PBS Isovaleryl-CoA dehydrogenase, mitochondrial

Jak1 17 1 203.44 0.7197 1.14 Flu Tyrosine-protein kinase

Jmjd8 2 1 18.57 0.2656 1.55 Flu JmjC domain-containing protein 8 (Fragment)

Jup 47 22 1879.36 0.0336 1.63 PBS Junction plakoglobin

Kank1 15 4 141.53 0.0530 1.24 Flu Protein Kank1

Kank2 15 8 410 0.1196 1.34 PBS KN motif and ankyrin repeat domain-containing protein 2

Kank3 17 4 277.94 0.0817 1.43 PBS KN motif and ankyrin repeat domain-containing protein 3

Kank4 9 5 61.96 0.2646 1.18 Flu KN motif and ankyrin repeat domain-containing protein 4

Kars 21 6 466.66 0.0107 1.30 Flu Lysine--tRNA ligase

Kbtbd3 7 0 47.75 --- Kelch repeat and BTB domain-containing protein 3

Kcnab2 6 1 101.6 0.0082 3.89 Flu Voltage-gated potassium channel subunit beta-2

Kcnab2 5 0 78.62 --- Voltage-gated potassium channel subunit beta-2

Kctd12 14 7 360.91 0.1318 1.29 Flu BTB/POZ domain-containing protein KCTD12

Kctd16 3 0 76.39 --- BTB/POZ domain-containing protein KCTD16

Kctd8 5 0 58.74 --- BTB/POZ domain-containing protein KCTD8

Kdelc2 13 7 479.09 0.4201 1.06 Flu KDEL (Lys-Asp-Glu-Leu) containing 2, isoform CRA_b

Kdm4a 18 3 122.28 0.1622 1.28 Flu Lysine-specific demethylase 4A

Kdm6b 28 3 105.22 0.6981 1.11 Flu Lysine-specific demethylase 6B

Kdm7a 14 3 70.2 0.1080 1.27 Flu Lysine-specific demethylase 7A

Kdsr 6 2 54.41 0.9695 1.12 PBS 3-ketodihydrosphingosine reductase

Khdrbs1 9 0 115.9 --- KH domain-containing, RNA-binding, signal transduction-associated protein 1

Khsrp 26 11 981.28 0.2447 1.17 Flu Far upstream element-binding protein 2

Kiaa0196 21 7 331.17 0.7324 1.01 Flu WASH complex subunit strumpellin

Kiaa1033 9 5 236.4 0.1480 1.47 Flu WASH complex subunit 7

Kiaa1671 9 4 27.73 0.0667 1.30 PBS Uncharacterized protein KIAA1671

Kif13a 25 2 149.54 0.4629 1.10 PBS Kinesin-like protein

Kif13b 16 1 200.04 0.3358 1.40 Flu Kinesin-like protein

Kif1a 18 2 184.08 0.7678 1.02 PBS Kinesin-like protein

Kif2a 7 2 82.28 0.4206 1.16 PBS Kinesin-like protein

Kif5a 17 1 404.78 0.0379 2.39 PBS Kinesin heavy chain isoform 5A

Kif5b 33 10 1123.9 0.0392 1.16 Flu Kinesin-1 heavy chain

Kif5c 3 0 48.79 --- Kinesin heavy chain isoform 5C (Fragment)

Kit 13 2 201.18 0.3563 1.17 PBS Mast/stem cell growth factor receptor Kit

Klc1 15 2 182.74 0.9307 1.04 Flu Kinesin light chain 1

Klc2 14 2 126.68 0.9896 1.03 Flu Kinesin light chain 2

Klc4 8 1 38.81 0.0706 1.65 PBS Kinesin light chain 4

Klf8 4 0 18.39 --- Krueppel-like factor 8

Kmt2a 51 2 254.02 0.0568 1.26 PBS Histone-lysine N-methyltransferase 2A

Kng1 8 3 119.61 0.0519 2.39 Flu Kininogen-1

Kpna2 3 0 56.62 --- Importin subunit alpha-1

Kpna4 7 4 260.78 0.1099 1.56 PBS Importin subunit alpha-3

Kpna6 7 1 165.23 0.0628 1.16 Flu Importin subunit alpha

Kpnb1 21 8 1058.5 0.0857 1.29 Flu Importin subunit beta-1

Krt1 10 0 413.95 --- Keratin, type II cytoskeletal 1

Krt10 6 1 186.74 0.3976 23.02 PBS Keratin, type I cytoskeletal 10

Krt13 11 0 392.82 --- Keratin, type I cytoskeletal 13

Krt14 8 0 153.21 --- Keratin, type I cytoskeletal 14

Krt15 9 0 339.25 --- Keratin 15, isoform CRA_a

Krt17 11 1 284.19 0.1564 1.44 Flu Keratin, type I cytoskeletal 17

Krt18 31 15 1354.08 0.0053 1.58 Flu Keratin, type I cytoskeletal 18

Krt19 39 9 1919.1 0.7020 1.03 PBS Keratin 19

Krt2 6 2 246.19 0.5010 1.22 Flu Keratin, type II cytoskeletal 2 epidermal

Krt32 3 0 57.14 --- Keratin, type I cuticular Ha2

Krt4 6 1 164.48 0.5284 1.23 PBS Keratin, type II cytoskeletal 4

Krt5 10 1 288.69 0.8274 1.21 PBS Keratin, type II cytoskeletal 5

Krt6a 10 0 266.96 --- Keratin, type II cytoskeletal 6A

Krt7 33 12 1948.63 0.0931 1.24 Flu Keratin, type II cytoskeletal 7

Krt71 10 0 345.59 --- Keratin, type II cytoskeletal 71

Krt72 7 0 130.89 --- Keratin, type II cytoskeletal 72

Krt73 11 2 312.24 0.9609 1.01 PBS Keratin, type II cytoskeletal 73

Krt75 11 0 309 --- Keratin, type II cytoskeletal 75

Krt76 14 0 231.13 --- Keratin, type II cytoskeletal 2 oral

Krt77 11 0 280.81 --- Keratin, type II cytoskeletal 1b

Krt78 11 5 265.2 0.5540 1.13 PBS Protein Krt78

Krt8 46 17 1815.82 0.3434 1.12 Flu Keratin, type II cytoskeletal 8

Krt84 9 0 241.17 --- Keratin, type II cuticular Hb4

Krt86 9 0 89.91 --- Keratin 86

Krtcap2 1 1 39.93 0.0253 1.88 Flu Keratinocyte associated protein 2, isoform CRA_c

Ktn1 33 7 341.49 0.0342 1.18 Flu Kinectin

L3hypdh 3 0 44.3 --- Trans-L-3-hydroxyproline dehydratase

Lactb 8 2 65.5 0.1068 1.23 Flu Serine beta-lactamase-like protein LACTB, mitochondrial

Lama2 23 2 169.73 0.1801 1.61 Flu Laminin subunit alpha-2

Lama3 24 1 155.55 0.1412 1.71 Flu Laminin subunit alpha-3

Lama4 28 12 864.73 0.0382 1.17 PBS Laminin subunit alpha-4

Lamb1 40 12 1042.68 0.7044 1.03 PBS Laminin subunit beta-1

Lamb2 16 4 232.52 0.0968 1.72 Flu Laminin subunit beta-2

Lamb3 10 2 179.83 0.1648 2.75 Flu Laminin subunit beta-3

Lamc1 28 13 1098.08 0.6728 1.03 PBS Laminin subunit gamma-1

Lamc1 6 0 153.54 --- Laminin subunit gamma-1 (Fragment)

Lamc1 6 0 315.09 --- Laminin subunit gamma-1 (Fragment)

Lamc2 11 3 68.65 0.2051 1.70 Flu Laminin subunit gamma-2

Lamc3 7 0 82.85 --- Laminin subunit gamma-3 (Fragment)

Lamp1 4 2 204.54 0.3450 1.27 Flu Lysosome-associated membrane glycoprotein 1

Lamp2 10 2 331.69 0.2372 1.25 Flu Lysosome-associated membrane glycoprotein 2

Lamp3 4 3 161.17 0.8682 1.03 Flu Lysosome-associated membrane glycoprotein 3

Lamtor1 2 1 90.69 0.0282 1.38 Flu Ragulator complex protein LAMTOR1

Lancl1 7 2 88.03 0.6546 1.07 Flu LanC-like protein 1

Lancl2 2 2 126.33 0.7407 1.05 Flu LanC-like protein 2

Lap3 19 11 570.93 0.0151 1.87 Flu Cytosol aminopeptidase

Larp1 16 3 81.95 0.1799 1.60 PBS La-related protein 1

Larp7 10 0 103.72 --- La-related protein 7

Lars 19 4 406.97 0.0752 1.49 Flu Leucine--tRNA ligase, cytoplasmic

Lasp1 12 2 428.82 0.0367 1.91 Flu LIM and SH3 domain protein 1

Lasp1 3 0 132.32 --- LIM and SH3 domain protein 1 (Fragment)

Lasp1 5 0 137.12 --- LIM and SH3 domain protein 1 (Fragment)

Lbr 19 4 806.8 0.8349 1.01 PBS Lamin-B receptor

Lclat1 4 2 56.53 0.4742 1.15 Flu Lclat1 protein

Lcn2 5 0 73.88 --- Neutrophil gelatinase-associated lipocalin (Fragment)

Lcn2 5 0 108.21 --- Neutrophil gelatinase-associated lipocalin

Lcp1 50 22 2130.75 0.0151 1.94 Flu Plastin-2

Lcp2 13 4 62.18 0.0022 1.69 Flu Lymphocyte cytosolic protein 2

Ldb3 7 2 78.05 0.1452 1.34 PBS LIM domain-binding protein 3

Ldha 24 3 948.86 0.2125 1.63 Flu L-lactate dehydrogenase

Ldha 17 0 665.45 --- L-lactate dehydrogenase (Fragment)

Ldhb 12 3 352.69 0.8484 1.02 PBS L-lactate dehydrogenase B chain

Ldhc 4 1 66.4 0.3632 1.24 PBS L-lactate dehydrogenase (Fragment)

Lemd3 9 4 68.23 0.8615 1.14 PBS Inner nuclear membrane protein Man1

Leo1 1 1 48.86 0.0436 1.75 Flu RNA polymerase-associated protein LEO1

Letm1 19 7 557.96 0.0932 1.11 Flu LETM1 and EF-hand domain-containing protein 1, mitochondrial

Lgals1 4 1 163.26 0.2460 2.02 Flu Galectin-1

Lgals3 9 2 418 0.2463 1.94 Flu Galectin-3

Lgals3bp 13 8 342.9 0.0032 2.40 Flu Galectin-3-binding protein

Lgals9 4 2 166.92 0.3339 1.25 Flu Galectin

Lgmn 4 3 90.85 0.0014 3.70 Flu Legumain

Lifr 6 2 44.22 0.9483 1.06 PBS Leukemia inhibitory factor receptor

Limch1 26 2 547.45 0.2131 1.44 PBS LIM and calponin homology domains-containing protein 1

Limch1 27 2 472.52 0.3184 1.21 Flu LIM and calponin homology domains-containing protein 1 (Fragment)

Limd1 4 3 27.24 0.4421 1.08 Flu LIM domain-containing protein 1

Lims1 17 5 674.27 0.0774 1.44 PBS LIM and senescent cell antigen-like-containing domain protein 1

Lims2 6 0 141.41 --- LIM and senescent cell antigen-like-containing domain protein 2

Lin7a 6 0 90.59 --- Protein lin-7 homolog A

Lin7c 11 2 158.86 0.1263 1.69 PBS Protein lin-7 homolog C

Llgl1 8 2 80.22 0.5734 1.06 Flu Lethal(2) giant larvae protein homolog 1

Llgl2 7 1 65.79 0.4146 1.14 PBS Lethal(2) giant larvae protein homolog 2

Lman1 21 8 619.12 0.0432 1.44 Flu Protein ERGIC-53

Lman2 14 8 497.76 0.0252 1.41 Flu Vesicular integral-membrane protein VIP36

Lmbrd1 6 3 124.73 0.7151 1.04 Flu Probable lysosomal cobalamin transporter

Lmf2 12 4 194.12 0.3021 1.27 Flu Lipase maturation factor 2

Lmna 62 18 3613.13 0.0313 1.24 PBS Prelamin-A/C

Lmnb1 66 22 3259.36 0.3343 1.11 Flu Lamin-B1

Lmnb2 36 9 1220.76 0.0483 1.31 PBS Lamin-B2

Lmo7 62 26 1379.24 0.1129 1.50 PBS Protein Lmo7 (Fragment)

Lmod1 13 2 266.49 0.4882 1.10 Flu Leiomodin-1

Lnpep 19 11 369.32 0.1818 1.28 Flu Leucyl-cystinyl aminopeptidase

Lonp1 36 14 623.4 0.0456 1.15 Flu Lon protease homolog, mitochondrial

Loxhd1 10 1 64.08 0.2982 1.47 Flu Lipoxygenase homology domain-containing protein 1

Lpcat1 13 8 629.05 0.1120 1.32 Flu Lysophosphatidylcholine acyltransferase 1

Lpcat2 5 2 37.56 0.0740 2.48 Flu Lysophosphatidylcholine acyltransferase 2

Lpcat3 2 0 31.87 --- Lysophospholipid acyltransferase 5

Lpgat1 7 3 116.29 0.2446 1.34 Flu Acyl-CoA:lysophosphatidylglycerol acyltransferase 1

Lphn3 8 1 51.28 0.1269 1.71 PBS Latrophilin-3

Lpl 3 1 53.83 0.4754 1.35 Flu Lipoprotein lipase

Lpp 19 13 531.99 0.1262 1.16 Flu Lipoma-preferred partner homolog

Lrba 22 2 185.96 0.5657 1.04 PBS Lipopolysaccharide-responsive and beige-like anchor protein

Lrp1 68 36 1854.96 0.8153 1.03 Flu Prolow-density lipoprotein receptor-related protein 1

Lrp2 25 4 182.74 0.0118 1.55 Flu Low-density lipoprotein receptor-related protein 2

Lrpprc 36 11 761.15 0.1786 1.18 Flu Leucine-rich PPR motif-containing protein, mitochondrial

Lrrc1 7 0 127.16 --- Leucine-rich repeat-containing protein 1

Lrrc16a 24 8 342.72 0.0529 1.27 PBS Leucine-rich repeat-containing protein 16A

Lrrc47 13 4 198.3 0.0959 1.21 Flu Leucine-rich repeat-containing protein 47

Lrrc4c 4 3 19.41 0.5892 1.11 PBS Leucine-rich repeat-containing protein 4C

Lrrc59 13 6 404.82 0.0627 1.57 Flu Leucine-rich repeat-containing protein 59

Lrrc8a 8 2 201.14 0.9896 1.01 Flu Volume-regulated anion channel subunit LRRC8A

Lrrc8c 10 5 142.77 0.0473 1.36 PBS Volume-regulated anion channel subunit LRRC8C

Lrrc8e 3 1 49.86 0.7707 1.03 Flu Volume-regulated anion channel subunit LRRC8E

Lrrfip1 10 2 211.18 0.6841 1.05 Flu Leucine-rich repeat flightless-interacting protein 1

Lsm12 2 0 22.55 --- Protein LSM12 homolog

Lsm8 2 1 17.56 0.1783 1.24 Flu U6 snRNA-associated Sm-like protein LSm8

Lsp1 8 2 230.38 0.0754 1.79 Flu Lymphocyte-specific protein 1

Lta4h 32 19 1503.45 0.3106 1.32 PBS Leukotriene A-4 hydrolase

Ltbp2 7 2 45.42 0.1775 1.46 Flu Latent-transforming growth factor beta-binding protein 2

Ltbp4 3 2 39.71 0.0149 1.73 Flu Latent-transforming growth factor beta-binding protein 4

Ltf 39 15 1768.37 0.1089 1.34 PBS Lactotransferrin

Luc7l2 8 3 138.25 0.2166 1.42 Flu Putative RNA-binding protein Luc7-like 2

Luc7l3 7 2 246.95 0.2379 1.59 Flu Luc7-like protein 3

Lum 10 6 446.11 0.0433 1.27 PBS Lumican

Lxn 4 2 279.69 0.0838 1.28 Flu Latexin

Ly75 10 3 56.24 0.5923 1.37 PBS Lymphocyte antigen 75

Ly9 2 1 20.27 0.0082 7.13 Flu T-lymphocyte surface antigen Ly-9

Lyn 24 7 618.7 0.1645 1.23 PBS Tyrosine-protein kinase Lyn

Lypla1 3 2 116.11 0.0392 1.35 Flu Acyl-protein thioesterase 1

Lypla2 8 5 74.18 0.0015 1.50 Flu Acyl-protein thioesterase 2

Lyve1 4 1 151.69 0.1312 1.60 PBS Lymphatic vessel endothelial hyaluronic acid receptor 1

Lyz2 9 5 403.66 0.0245 1.55 Flu Lysozyme C-2

M6pr 6 2 256.84 0.2391 1.10 Flu Cation-dependent mannose-6-phosphate receptor

Macf1 15 0 296.56 --- Microtubule-actin cross-linking factor 1 (Fragment)

Macf1 15 0 316.21 --- Microtubule-actin cross-linking factor 1 (Fragment)

Macf1 189 0 5833.61 --- Microtubule-actin cross-linking factor 1

Macf1 186 0 5685.51 --- Microtubule-actin cross-linking factor 1

Macf1 193 0 5984.19 --- Microtubule-actin cross-linking factor 1 (Fragment)

Macf1 202 0 6114.13 --- Microtubule-actin cross-linking factor 1

Macf1 248 0 7617.6 --- Microtubule-actin cross-linking factor 1

Macf1 246 0 7524.2 --- Microtubule-actin cross-linking factor 1

Macf1 62 0 1906.15 --- Microtubule-actin cross-linking factor 1 (Fragment)

Macf1 20 0 391.14 --- Microtubule-actin cross-linking factor 1 (Fragment)

Macrod1 2 2 83.51 0.1935 1.40 PBS O-acetyl-ADP-ribose deacetylase MACROD1

Mad1l1 10 2 69.7 0.1017 1.41 Flu Mitotic spindle assembly checkpoint protein MAD1

Maged1 5 0 32.31 --- Melanoma-associated antigen D1

Magee2 6 0 59.92 --- Melanoma antigen, family E, 2

Magi1 18 4 162.13 0.2730 1.21 Flu Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1

Magi3 24 6 133.2 0.4788 1.21 PBS Membrane associated guanylate kinase, WW and PDZ domain containing 3, isoform CRA_a

Magohb 6 2 93.69 0.0394 1.35 Flu Protein mago nashi homolog 2 (Fragment)

Magt1 5 1 51.75 0.5379 1.05 PBS Magnesium transporter protein 1 (Fragment)

Mal2 3 2 70.09 0.0433 1.66 PBS Protein MAL2

Man2a1 17 8 533.64 0.0948 2.15 Flu Alpha-mannosidase 2

Man2b1 6 3 201.55 0.0107 1.97 Flu Lysosomal alpha-mannosidase

Man2b2 11 1 75 0.1644 1.47 PBS Epididymis-specific alpha-mannosidase

Man2c1 7 2 99.47 0.9810 1.02 Flu Alpha-mannosidase

Manba 17 6 230.76 0.1746 1.08 Flu Beta-mannosidase

Manba 5 1 83.72 0.7118 1.10 Flu Beta-mannosidase

Maoa 23 6 638.45 0.9192 1.34 PBS Amine oxidase [flavin-containing] A

Maob 23 13 924.11 0.0652 1.47 PBS Amine oxidase [flavin-containing] B

Map1s 20 3 173.16 0.0236 1.23 Flu Microtubule-associated protein 1S

Map3k15 10 1 79.53 0.3356 2.10 Flu Mitogen-activated protein kinase kinase kinase 15

Map3k3 15 1 140.89 0.5213 1.06 PBS Mitogen-activated protein kinase kinase kinase 3

Map4 53 10 977.14 0.0356 1.42 Flu Microtubule-associated protein

Map4 49 3 652.47 0.7540 1.04 PBS Microtubule-associated protein (Fragment)

Map4 33 0 496.69 --- Microtubule-associated protein

Map4 6 0 123.15 --- Microtubule-associated protein (Fragment)

Map4 8 0 178.17 --- Microtubule-associated protein (Fragment)

Map4k2 11 2 132.44 0.1593 1.53 Flu Mitogen-activated protein kinase kinase kinase kinase 2

Map4k4 19 1 160.71 0.9829 1.36 Flu Mitogen-activated protein kinase kinase kinase kinase 4

Map7d3 10 0 57.43 --- MAP7 domain-containing protein 3

Mapk1 18 3 531.92 0.3563 1.13 Flu Mitogen-activated protein kinase 1

Mapk1 11 0 122.16 --- Mitogen-activated protein kinase 1 (Fragment)

Mapk10 2 0 62.67 --- Mitogen-activated protein kinase

Mapk14 4 1 94.69 0.0062 1.72 Flu Mitogen-activated protein kinase 14

Mapk3 19 9 687.23 0.7226 1.03 Flu Mitogen-activated protein kinase 3

Mapk4 5 0 49.85 --- Mitogen-activated protein kinase 4

Mapk8ip3 11 1 78.31 0.9028 1.02 Flu C-Jun-amino-terminal kinase-interacting protein 3

Mapre1 8 5 458.67 0.1166 1.52 Flu Microtubule-associated protein RP/EB family member 1

Mapre2 13 4 183.61 0.1561 1.64 PBS Microtubule-associated protein RP/EB family member 2 (Fragment)

Mapt 24 8 131.06 0.9460 1.45 PBS Microtubule-associated protein

Marc2 10 1 292.39 0.0271 1.23 Flu Mitochondrial amidoxime reducing component 2

Marc2 3 0 100.98 --- Mitochondrial amidoxime reducing component 2 (Fragment)

Marcks 5 4 139.26 0.3624 1.29 Flu Myristoylated alanine-rich C-kinase substrate

Mark2 11 2 140.68 0.7328 1.06 Flu Serine/threonine-protein kinase MARK2

Mars 18 7 339.01 0.0585 1.75 Flu Methionine--tRNA ligase, cytoplasmic

Mat2a 6 4 125.42 0.0180 1.56 Flu S-adenosylmethionine synthase isoform type-2

Matr3 23 6 584.65 0.0338 1.33 Flu Matrin-3

Mavs 5 1 39.24 0.1219 2.09 PBS Mitochondrial antiviral-signaling protein

Mbnl1 7 1 102.57 0.3195 1.63 Flu Muscleblind-like protein 1

Mboat7 7 3 81.69 0.4297 1.24 Flu Lysophospholipid acyltransferase 7

Mcam 22 12 826.04 0.6427 1.03 PBS Cell surface glycoprotein MUC18

Mcam 2 0 107.76 --- Cell surface glycoprotein MUC18 (Fragment)

Mccc1 21 9 403.97 0.1498 1.23 PBS Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial

Mccc2 15 8 438.25 0.2515 1.21 PBS Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial

Mcf2l 11 2 53.48 0.7793 1.10 PBS Guanine nucleotide exchange factor DBS

Mcm2 13 5 159.53 0.0048 5.07 Flu DNA replication licensing factor MCM2

Mcm3 11 4 162.61 0.0730 2.58 Flu DNA replication licensing factor MCM3

Mcm4 14 3 238.87 0.0320 2.42 Flu DNA replication licensing factor MCM4

Mcm5 16 3 114.14 0.1696 1.23 PBS DNA replication licensing factor MCM5

Mcm6 13 5 195.17 0.0564 3.03 Flu DNA replication licensing factor MCM6

Mcm7 11 4 212.28 0.1389 2.42 Flu DNA helicase

Mcu 4 1 72.79 0.5855 1.11 PBS Calcium uniporter protein, mitochondrial

Mcur1 4 0 15.9 --- Mitochondrial calcium uniporter regulator 1

Mdh1 17 9 503.53 0.5931 1.06 Flu Malate dehydrogenase, cytoplasmic

Mdh2 31 18 1721.19 0.3861 1.10 PBS Malate dehydrogenase, mitochondrial

Me1 14 8 314.16 0.0556 1.40 Flu NADP-dependent malic enzyme

Me2 13 8 159.41 0.5325 1.05 Flu NAD-dependent malic enzyme, mitochondrial

Mecp2 13 4 318.52 0.2899 1.22 PBS Methyl-CpG-binding protein 2

Mecp2 4 0 82.4 --- Methyl-CpG-binding protein 2

Mecr 7 3 45.94 0.6661 1.08 Flu Trans-2-enoyl-CoA reductase, mitochondrial

Mei1 5 0 27.83 --- Meiosis inhibitor protein 1

Mesdc2 5 3 36.14 0.3078 1.18 PBS LDLR chaperone MESD (Fragment)

Mesdc2 7 1 133.91 0.7690 1.06 PBS LDLR chaperone MESD

Metap1 3 1 45.97 0.7116 1.03 Flu Methionine aminopeptidase 1

Metap2 7 3 63.04 0.2250 1.38 Flu Methionine aminopeptidase 2

Mettl15 5 0 38.48 --- Probable methyltransferase-like protein 15

Mettl7a1 22 12 907.24 0.1012 1.51 PBS MCG20149, isoform CRA_a

Mfap4 6 5 272.47 0.0337 1.54 PBS Microfibril-associated glycoprotein 4

Mfge8 14 7 425.78 0.5530 1.04 Flu Lactadherin

Mfn1 8 1 113.45 0.6368 1.05 Flu Mitofusin-1

Mfn2 6 0 35.78 --- Mitofusin-2

Mfsd10 5 1 85.8 0.5715 1.11 PBS Major facilitator superfamily domain-containing protein 10

Mfsd6 1 0 52.3 --- Major facilitator superfamily domain-containing protein 6

Mgea5 6 2 50.81 0.0391 2.31 Flu Protein O-GlcNAcase

Mgll 7 4 207.12 0.1189 1.34 PBS Monoglyceride lipase

Mgst1 8 7 393.72 0.2123 1.30 PBS Microsomal glutathione S-transferase 1

Mia3 39 6 205.34 0.0423 1.75 PBS Melanoma inhibitory activity protein 3

Mical1 13 5 184.43 0.1821 1.57 PBS Protein-methionine sulfoxide oxidase MICAL1

Micu2 4 2 78.69 0.0691 2.33 Flu Calcium uptake protein 2, mitochondrial

Mif 3 0 64.2 --- Macrophage migration inhibitory factor

Mink1 17 0 220 --- Misshapen-like kinase 1

Mkl2 15 1 79.16 0.0793 1.77 PBS MKIAA1243 protein (Fragment)

Mlec 4 0 102.88 --- Malectin

Mllt4 44 2 867.02 0.5053 1.13 PBS Afadin

Mllt4 43 0 813.6 --- Afadin

Mllt4 7 0 90.5 --- Afadin (Fragment)

Mlycd 10 0 114.81 --- Malonyl-CoA decarboxylase, mitochondrial

Mme 22 6 428.25 0.1642 1.35 PBS Neprilysin

Mmp2 2 1 51.76 0.0317 15.60 Flu 72 kDa type IV collagenase

Mmp21 3 0 30.96 --- Matrix metallopeptidase 21

Mmrn2 5 2 25.47 0.4439 1.17 Flu Multimerin-2

Mms22l 12 1 78.51 0.0221 1.48 PBS Protein MMS22-like

Mndal 10 3 171.61 0.1575 1.38 Flu Myeloid cell nuclear differentiation antigen-like protein

Mob1b 4 2 42.63 0.0735 1.56 Flu MOB kinase activator 1B

Mocos 6 1 59.57 0.6279 1.04 PBS Molybdenum cofactor sulfurase

Mocs3 6 0 34.47 --- Adenylyltransferase and sulfurtransferase MOCS3

Mogs 15 6 218.4 0.0241 1.38 Flu Mannosyl-oligosaccharide glucosidase

Mospd2 12 4 277.2 0.2700 1.22 Flu Motile sperm domain-containing protein 2

Mov10 17 3 192.99 0.9162 1.15 PBS Putative helicase MOV10

Mpc2 6 2 236.5 0.7295 1.03 PBS Mitochondrial pyruvate carrier 2

Mpdu1 3 2 71.49 0.2750 1.31 Flu Mannose-P-dolichol utilization defect 1

Mpeg1 2 1 24.75 0.0309 6.32 Flu Macrophage-expressed gene 1 protein

Mpi 6 1 42.04 0.1152 1.46 Flu Mannose-6-phosphate isomerase

Mpo 21 13 828.29 0.1906 1.40 PBS Myeloperoxidase

Mpp1 14 8 307.6 0.1927 1.19 Flu 55 kDa erythrocyte membrane protein

Mpp2 9 3 234.12 0.1004 1.71 PBS MAGUK p55 subfamily member 2

Mpp5 9 2 97.17 0.0359 2.42 PBS MAGUK p55 subfamily member 5

Mpp6 7 0 93.52 --- MAGUK p55 subfamily member 6

Mpp7 11 2 73.29 0.2416 1.21 PBS MAGUK p55 subfamily member 7

Mprip 19 1 328.7 0.3220 1.15 Flu Myosin phosphatase Rho-interacting protein

Mprip 27 1 353.62 0.7015 1.28 PBS Myosin phosphatase Rho-interacting protein

Mpst 8 3 147.62 0.0009 1.34 Flu 3-mercaptopyruvate sulfurtransferase

Mrc1 20 7 335.84 0.1347 1.36 Flu Macrophage mannose receptor 1

Mrc2 13 5 210.1 0.0536 1.91 Flu C-type mannose receptor 2

Mro 9 3 23.24 0.9564 1.01 Flu Protein maestro

Mroh1 9 3 53.6 0.1634 1.36 PBS Protein Mroh1

Mrpl45 9 1 65.43 0.0158 1.93 Flu 39S ribosomal protein L45, mitochondrial

Msn 88 21 5338.54 0.0822 1.27 PBS Moesin

Mta1 20 4 152.31 0.2086 1.17 Flu Metastasis-associated protein MTA1

Mta2 15 4 318.68 0.0655 1.25 Flu Metastasis-associated protein MTA2

Mtap 5 2 188.49 0.0118 1.51 Flu S-methyl-5'-thioadenosine phosphorylase

mt-Atp8 3 0 46.09 --- ATP synthase protein 8

Mtch1 6 2 118.82 0.0688 1.54 PBS Mitochondrial carrier homolog 1

Mtch1 5 0 95.29 --- Mitochondrial carrier homolog 1 (Fragment)

Mtch2 3 2 67.54 0.0078 2.71 PBS Mitochondrial carrier homolog 2

Mtco1 1 1 40.69 0.4397 1.22 PBS Cytochrome c oxidase subunit 1

Mtco2 9 6 405.43 0.8064 1.03 PBS Cytochrome c oxidase subunit 2

Mtdh 22 2 223.94 0.3095 1.37 Flu Protein LYRIC (Fragment)

Mtdh 22 1 259.82 0.5864 1.06 Flu Protein LYRIC (Fragment)

Mtdh 15 4 488.33 0.9960 1.02 PBS Protein LYRIC

Mtdh 9 0 99.57 --- Protein LYRIC (Fragment)

Mthfd1 34 11 846.12 0.0793 1.35 Flu C-1-tetrahydrofolate synthase, cytoplasmic

Mthfd1l 22 8 309.82 0.0947 1.64 Flu Monofunctional C1-tetrahydrofolate synthase, mitochondrial

Mtm1 5 0 18.02 --- Myotubularin

Mtmr12 6 0 34.92 --- Myotubularin-related protein 12

Mtnd3 1 1 35.22 0.3013 1.40 Flu NADH-ubiquinone oxidoreductase chain 3

Mtnd4 1 0 18.78 --- NADH-ubiquinone oxidoreductase chain 4

Mtnd5 3 1 116.99 0.3973 1.26 Flu NADH-ubiquinone oxidoreductase chain 5

Mtor 17 5 172.78 0.0070 1.42 Flu Serine/threonine-protein kinase mTOR

Mtpn 1 1 46.56 0.0076 1.57 Flu Myotrophin

Mtx1 12 4 172.53 0.1936 1.16 Flu Metaxin-1

Mtx1 7 0 113.01 --- Metaxin-1 (Fragment)

Muc5b 4 2 85.56 0.3124 1.48 Flu Protein Muc5b

Mug1 18 4 284.92 0.8596 1.04 Flu Murinoglobulin-1

Mug2 14 1 189.6 0.1719 1.33 PBS Murinoglobulin-2

Mut 14 8 202.7 0.4026 1.13 PBS Methylmalonyl-CoA mutase, mitochondrial

Mvp 37 16 813.74 0.0303 1.30 Flu Major vault protein

Mxra8 4 2 68.64 0.2213 1.21 PBS Matrix-remodeling-associated protein 8

Myadm 2 2 43.72 0.1545 1.32 PBS Myeloid-associated differentiation marker

Mybbp1a 39 14 997.05 0.1523 1.47 Flu Myb-binding protein 1A

Mybpc3 29 7 260.4 0.1139 1.34 Flu Myosin-binding protein C, cardiac-type

Mybphl 6 2 161.05 0.1919 1.32 PBS Myosin-binding protein H-like

Mycbpap 10 1 57.56 0.1166 2.25 PBS MYCBP-associated protein

Myct1 3 2 88.83 0.1110 1.47 PBS Myc target protein 1

Mydgf 2 0 55.73 --- Myeloid-derived growth factor

Myef2 15 1 216.46 0.1192 1.27 Flu Myelin expression factor 2 (Fragment)

Myef2 14 0 151.44 --- Myelin expression factor 2

Myg1 6 2 80.87 0.0042 1.95 Flu UPF0160 protein MYG1, mitochondrial

Myh1 43 0 1359.68 --- Myosin-1

Myh10 60 15 1836.13 0.4109 1.16 PBS Myosin-10

Myh11 81 3 2921.94 0.7088 1.09 PBS Myosin-11

Myh11 78 0 2827.84 --- Myosin-11

Myh13 11 1 211.75 0.1375 1.80 PBS Protein Myh13 (Fragment)

Myh13 33 1 1002.85 0.6250 1.18 PBS Protein Myh13

Myh14 43 11 1102.42 0.2452 1.31 PBS Myosin-14

Myh15 34 3 214.12 0.0506 2.92 Flu Protein Myh15

Myh2 39 0 1324.96 --- MCG140437, isoform CRA_d

Myh3 34 1 1052.92 0.0123 1.54 PBS Myosin-3

Myh4 41 0 1624.73 --- Myosin-4

Myh6 154 33 8883.04 0.1242 1.48 PBS MCG133649, isoform CRA_a

Myh7 112 2 5541.34 0.7056 1.09 Flu Myosin, heavy polypeptide 7, cardiac muscle, beta

Myh7b 29 2 312.37 0.6349 1.25 PBS Myosin-7B

Myh8 42 1 1571.61 0.0912 1.96 PBS Myosin-8

Myh9 126 45 6697.82 0.8699 1.04 Flu Myosin-9

Myl1 2 0 159.37 --- Myosin light chain 1/3, skeletal muscle isoform

Myl12b 7 5 213.22 0.4893 1.11 PBS Myosin regulatory light chain 12B

Myl3 3 1 244.33 0.8150 1.32 PBS Myosin light chain 3

Myl4 14 3 529.12 0.1373 1.09 PBS Myosin light chain 4 (Fragment)

Myl6 8 4 482.13 0.2395 1.16 Flu Myosin light polypeptide 6

Myl6b 8 1 72.97 0.8249 1.05 PBS Myosin light chain 6B

Myl7 7 4 267.84 0.1840 1.41 PBS Myosin regulatory light chain 2, atrial isoform

Mylk 57 25 1561.98 0.6608 1.04 Flu Myosin light chain kinase, smooth muscle

Myo18a 25 5 167.95 0.3107 1.26 Flu Myo18a protein

Myo1a 18 5 96.43 0.2647 1.12 Flu Unconventional myosin-Ia

Myo1b 36 14 1009.61 0.1329 1.41 PBS Unconventional myosin-Ib

Myo1c 48 24 1678.07 0.1489 1.34 PBS Unconventional myosin-Ic

Myo1c 4 0 66.81 --- Unconventional myosin-Ic (Fragment)

Myo1d 14 4 108.29 0.1871 1.26 PBS Unconventional myosin-Id

Myo3b 13 2 129.38 0.9730 1.04 Flu Myosin-IIIb

Myo9b 27 5 188.9 0.8453 1.04 Flu Unconventional myosin-IXb

Myof 93 43 3424.38 0.1747 1.16 PBS Myoferlin

Myom1 15 5 123.26 0.1561 1.26 PBS Myomesin-1

Myom2 17 8 268.16 0.0961 1.45 PBS Myomesin 2

Mypn 12 1 87.97 0.1927 1.72 Flu Myopalladin

N4bp2l1 2 0 7.72 --- NEDD4-binding protein 2-like 1

Naa15 29 7 327.16 0.0720 1.66 Flu N-alpha-acetyltransferase 15, NatA auxiliary subunit

Naa16 7 0 93.82 --- N-alpha-acetyltransferase 16, NatA auxiliary subunit

Naa25 5 1 25.59 0.2797 1.97 Flu N-alpha-acetyltransferase 25, NatB auxiliary subunit

Naalad2 8 2 170.03 0.0038 1.81 Flu N-acetylated-alpha-linked acidic dipeptidase 2

Naca 68 9 573.24 0.4259 1.08 PBS Nascent polypeptide-associated complex subunit alpha, muscle-specific form

Nae1 3 2 43.67 0.0330 1.28 Flu NEDD8-activating enzyme E1 regulatory subunit

Naga 17 3 387.7 0.0043 1.53 Flu Alpha-N-acetylgalactosaminidase

Naglu 7 3 118.32 0.0025 2.34 Flu Alpha-N-acetylglucosaminidase

Nampt 12 7 412.71 0.0570 1.51 Flu Nicotinamide phosphoribosyltransferase

Nans 9 3 253.12 0.0073 1.59 Flu N-acetylneuraminic acid synthase (Sialic acid synthase)

Nap1l1 7 2 213.72 0.1377 1.23 Flu Nucleosome assembly protein 1-like 1

Nap1l4 10 4 250.31 0.0313 1.23 Flu Nucleosome assembly protein 1-like 4

Napa 12 5 448.08 0.5979 1.07 Flu Alpha-soluble NSF attachment protein

Napb 7 0 139.05 --- Beta-soluble NSF attachment protein

Napg 12 3 76.51 0.8080 1.03 Flu Gamma-soluble NSF attachment protein (Fragment)

Napsa 4 2 109.94 0.0532 1.35 Flu Napsin-A

Nars 11 5 258.83 0.0727 1.36 Flu Asparagine--tRNA ligase, cytoplasmic

Nasp 9 1 64.48 0.0726 2.89 Flu Nuclear autoantigenic sperm protein

Nbea 23 3 96.24 0.0796 1.53 PBS Neurobeachin

Nbeal2 20 2 112.09 0.3423 1.50 Flu Neurobeachin-like protein 2

Ncapg 10 1 90.36 0.0275 2.88 Flu Protein Ncapg

Ncbp1 14 4 264.4 0.0144 1.20 Flu Nuclear cap-binding protein subunit 1

Nceh1 14 7 353.42 0.3318 1.23 PBS Neutral cholesterol ester hydrolase 1

Nceh1 6 0 164.39 --- Arylacetamide deacetylase-like 1, isoform CRA_c

Ncf2 5 0 44.32 --- Neutrophil cytosol factor 2 (Fragment)

Ncf2 10 0 90.42 --- Neutrophil cytosol factor 2

Nckap1 29 17 720.32 0.2675 1.17 PBS Nck-associated protein 1

Nckap1l 12 3 148.47 0.9628 1.01 Flu NCK associated protein 1 like

Nckap5 21 4 122.96 0.2453 1.18 PBS Peripheral clock protein 2

Ncl 39 16 1458.19 0.0415 1.59 Flu Nucleolin

Ncln 8 1 147.57 0.4979 1.09 PBS Nicalin

Ncstn 10 1 196.32 0.1966 1.27 Flu Nicastrin

Ndrg1 4 2 197.09 0.0320 1.78 Flu Protein NDRG1

Ndrg2 6 1 98.21 0.2661 1.21 PBS Protein NDRG2

Ndufa10 10 5 404.61 0.1913 1.15 Flu NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial

Ndufa12 2 0 35.19 --- NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12

Ndufa13 7 4 116.96 0.2422 1.16 Flu NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13

Ndufa4 8 4 183.22 0.8696 1.03 Flu Cytochrome c oxidase subunit NDUFA4

Ndufa6 1 1 53.24 0.8710 1.03 Flu NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6

Ndufa7 4 0 35.81 --- NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7

Ndufa8 3 2 39.9 0.2442 1.17 PBS NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8

Ndufa9 16 7 539 0.1163 1.14 Flu NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial

Ndufb10 6 4 239.79 0.4740 1.09 Flu NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10

Ndufb4 3 2 65.22 0.2793 1.14 Flu NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4

Ndufb5 3 0 26.89 --- NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial

Ndufb6 4 1 27.51 0.8202 1.02 Flu MCG9810

Ndufb7 3 2 46.82 0.3964 1.18 PBS NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7

Ndufs1 28 16 938.17 0.4091 1.07 Flu NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial

Ndufs2 19 7 374.81 0.6585 1.04 Flu NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial

Ndufs3 11 3 271.22 0.6289 1.07 Flu NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial

Ndufs5 6 1 127.53 0.1047 1.85 Flu NADH dehydrogenase [ubiquinone] iron-sulfur protein 5

Ndufs7 5 2 195.16 0.9087 1.01 Flu NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial

Ndufs8 6 1 108.1 0.3034 1.29 Flu NADH dehydrogenase (Ubiquinone) Fe-S protein 8

Ndufv1 15 0 406.71 --- NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial

Ndufv1 17 0 433.34 --- NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial

Nebl 18 2 176.32 0.0205 1.36 PBS Nebulette

Nebl 5 1 231.52 0.2757 1.32 Flu LIM zinc-binding domain-containing Nebulette

Necap2 3 1 45.41 0.0696 1.29 Flu Adaptin ear-binding coat-associated protein 2

Nedd4 17 8 506.66 0.0167 1.57 Flu E3 ubiquitin-protein ligase NEDD4

Nedd4 3 0 70.56 --- E3 ubiquitin-protein ligase NEDD4 (Fragment)

Nedd4l 18 0 114.92 --- E3 ubiquitin-protein ligase NEDD4-like

Nefh 54 2 282.79 0.1460 1.30 Flu Neurofilament heavy polypeptide

Nefl 6 0 71.24 --- Neurofilament light polypeptide

Nek7 4 0 14.95 --- Serine/threonine-protein kinase Nek7

Nek9 8 2 109.01 0.4464 1.10 Flu Serine/threonine-protein kinase Nek9

Nelfcd 2 1 39.23 0.1392 1.60 Flu Negative elongation factor D

Nes 23 8 217.36 0.9816 1.02 Flu Nestin

Nfib 10 1 104.85 0.2957 1.52 Flu Nuclear factor 1

Nfib 6 0 58.99 --- Nuclear factor 1 B-type (Fragment)

Nfic 6 1 75.7 0.6118 1.04 PBS Nuclear factor 1 C-type

Nfix 8 2 111.54 0.4549 1.15 Flu Nuclear factor 1 X-type

Nfkb1 11 6 110.61 0.0016 1.55 Flu Nuclear factor NF-kappa-B p105 subunit

Nfkb2 13 1 111.41 0.0161 2.60 Flu Nuclear factor NF-kappa-B p100 subunit

Nfs1 6 2 114.66 0.2415 1.17 Flu Cysteine desulfurase, mitochondrial

Nfyc 3 0 27.42 --- Nuclear transcription factor Y subunit gamma

Ngp 5 3 215.85 0.2414 1.22 PBS Neutrophilic granule protein

Nhp2 3 1 90.35 0.0976 3.79 Flu H/ACA ribonucleoprotein complex subunit 2

Nid1 24 10 748.83 0.2296 1.11 PBS Nidogen-1

Nif3l1 5 1 43.1 0.7084 1.04 Flu NIF3-like protein 1

Nipbl 39 5 182.72 0.5067 1.95 PBS Nipped-B-like protein

Nipsnap1 3 1 26.37 0.3819 1.34 PBS Protein NipSnap homolog 1

Nipsnap3b 4 3 188.24 0.0422 1.50 PBS Protein NipSnap homolog 3B

Nisch 7 1 41.16 0.2317 1.85 Flu Nischarin (Fragment)

Nisch 7 1 66.82 0.5162 1.65 Flu Nischarin (Fragment)

Nisch 5 0 42.63 --- Nischarin (Fragment)

Nisch 8 0 90.36 --- Nischarin

Nit1 7 4 68.82 0.6503 1.06 Flu Nitrilase homolog 1

Nit2 4 3 86.31 0.3195 1.18 Flu Omega-amidase NIT2

Nkiras2 4 1 35.31 0.0557 1.91 PBS NF-kappa-B inhibitor-interacting Ras-like protein 2

Nln 5 2 33.83 0.0882 2.15 Flu Neurolysin, mitochondrial

Nlrx1 14 3 118.79 0.0271 1.24 PBS NLR family member X1

Nme1 10 1 452.03 0.0646 1.30 Flu Nucleoside diphosphate kinase A

Nme3 4 2 66.3 0.0976 1.68 Flu Nucleoside diphosphate kinase 3

Nmes1 2 1 26.78 0.0123 14.92 Flu Normal mucosa of esophagus-specific gene 1 protein

Nmi 8 1 93.17 0.0233 1.55 Flu N-myc-interactor

Nmt1 11 4 202.87 0.6310 1.07 Flu Glycylpeptide N-tetradecanoyltransferase 1

Nnt 32 10 859.34 0.4824 1.10 PBS NAD(P) transhydrogenase, mitochondrial

Nomo1 15 6 265.74 0.7558 1.14 Flu Nodal modulator 1

Nono 33 17 1508.57 0.1751 1.19 Flu Non-POU domain-containing octamer-binding protein

Nop56 17 3 379.12 0.4152 1.17 Flu Nucleolar protein 56

Nop56 5 1 188.53 0.4247 1.17 Flu Nucleolar protein 56 (Fragment)

Nop58 15 3 267.88 0.4058 1.25 Flu Nucleolar protein 58

Nop58 8 0 208.73 --- Nucleolar protein 58 (Fragment)

Nova2 4 0 48.23 --- Protein Nova2

Npc1 6 2 114.84 0.4986 1.06 PBS Niemann-Pick C1 protein

Npc2 8 3 159.29 0.0522 2.41 Flu Epididymal secretory protein E1

Npepl1 9 3 100.96 0.0940 1.39 PBS Probable aminopeptidase NPEPL1 (Fragment)

Npepps 23 4 575.56 0.0227 1.28 Flu Puromycin-sensitive aminopeptidase

Npepps 6 1 129.23 0.2690 1.42 PBS Puromycin-sensitive aminopeptidase (Fragment)

Nploc4 6 2 125.52 0.0614 1.39 Flu Nuclear protein localization protein 4 homolog

Npm1 14 0 598.87 --- Nucleophosmin

Npnt 4 0 15.12 --- Nephronectin

Npr1 10 2 135.35 0.2595 1.27 PBS Atrial natriuretic peptide receptor 1

Npr2 7 0 62.98 --- Guanylate cyclase

Npr2 13 0 124.3 --- Guanylate cyclase (Fragment)

Npr3 9 2 92.25 0.3014 1.20 PBS Atrial natriuretic peptide receptor 3

Nptn 8 4 254.05 0.0059 1.40 PBS Neuroplastin

Nqo2 1 0 35.6 --- Ribosyldihydronicotinamide dehydrogenase [quinone]

Nr1d2 3 0 39.91 --- Nuclear receptor subfamily 1 group D member 2

Nr3c1 15 4 238.67 0.0977 1.36 Flu Glucocorticoid receptor

Nras 6 2 154.25 0.1848 1.30 PBS GTPase NRas (Fragment)

Nrbp1 4 2 37.58 0.0112 1.42 Flu Nuclear receptor-binding protein

Nrd1 13 2 213.37 0.0570 2.20 Flu Nardilysin

Nrd1 9 0 68.69 --- Nardilysin (Fragment)

Nrp1 22 14 618.24 0.0236 1.36 PBS Neuropilin-1

Nsdhl 2 2 38.81 0.0411 1.26 Flu Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating

Nsf 24 10 705.93 0.1492 1.17 Flu Vesicle-fusing ATPase

Nsfl1c 11 1 325.49 0.5027 1.13 Flu NSFL1 cofactor p47

Nsfl1c 12 0 292.56 --- NSFL1 cofactor p47

Nsun2 18 4 154.57 0.3889 1.14 Flu tRNA (cytosine(34)-C(5))-methyltransferase

Nt5c 3 1 29.27 0.1042 1.21 Flu 5'(3')-deoxyribonucleotidase, cytosolic type

Nt5dc2 7 3 86.13 0.0221 1.23 Flu 5'-nucleotidase domain containing 2

Nt5e 8 3 46.89 0.1923 1.25 PBS 5' nucleotidase, ecto

Nub1 5 2 43.57 0.8580 1.06 Flu NEDD8 ultimate buster 1

Nucb1 4 2 24.04 0.0265 2.20 Flu Nucleobindin-1

Nucb2 6 1 61.83 0.2605 1.53 Flu Nucleobindin-2

Nudc 8 2 121.32 0.1743 1.54 Flu Nuclear migration protein nudC

Nudt21 7 1 143.58 0.8576 1.07 Flu Cleavage and polyadenylation specificity factor subunit 5

Numa1 65 24 1656.54 0.9947 1.00 Flu Protein Numa1

Numb 13 6 189.68 0.8952 1.01 PBS Protein numb homolog

Nup153 11 3 214.35 0.1812 1.47 PBS Protein Nup153

Nup155 13 4 132.21 0.4852 1.20 PBS Nuclear pore complex protein Nup155

Nup188 13 3 106 0.2600 1.64 Flu Nucleoporin NUP188 homolog

Nup205 22 6 350.38 0.1477 1.27 PBS MCG21756, isoform CRA_b

Nup205 8 0 75.34 --- Protein Nup205

Nup210 13 7 205.91 0.2107 1.22 Flu Nuclear pore membrane glycoprotein 210

Nup214 9 1 55.88 0.1811 1.38 Flu Nuclear pore complex protein Nup214

Nup35 10 3 109.09 0.2409 1.41 Flu Nucleoporin NUP53

Nup54 8 1 66.84 0.0359 1.21 Flu Nuclear pore complex protein Nup54

Nup88 7 0 47.03 --- Nuclear pore complex protein Nup88

Nup93 19 9 315.47 0.4538 1.09 Flu Nuclear pore complex protein Nup93

Nup98 14 4 116.24 0.0843 1.78 PBS Nuclear pore complex protein Nup98-Nup96

Nutf2 2 1 60.34 0.4459 1.19 Flu Nuclear transport factor 2

Nxf1 9 0 118.2 --- Nuclear RNA export factor 1

Oas1a 5 0 39.05 --- 2'-5'-oligoadenylate synthase 1A

Oat 26 11 1343.62 0.5455 1.05 PBS Ornithine aminotransferase, mitochondrial

Ociad1 5 1 67.34 0.1936 1.20 Flu OCIA domain-containing protein 1

Ociad1 6 0 57.59 --- OCIA domain-containing protein 1 (Fragment)

Ocln 3 1 64.52 0.4032 1.13 PBS Occludin

Odr4 10 4 112.99 0.1048 1.52 Flu Protein odr-4 homolog

Ogdh 56 27 2360.92 0.6261 1.04 PBS 2-oxoglutarate dehydrogenase, mitochondrial

Ogdhl 17 1 331.47 0.5063 1.23 Flu Protein Ogdhl

Ogn 9 5 203.87 0.1679 1.44 PBS Mimecan

Ogt 3 0 45.19 --- UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit

Ola1 12 2 174.04 0.0735 1.36 Flu Obg-like ATPase 1

Olfr1102 3 1 33.46 0.3429 1.43 Flu Olfactory receptor 1102

Olfr430 1 0 20.99 --- Olfactory receptor

Olfr828 1 1 0.3 0.3028 1.41 Flu Olfactory receptor

Opa1 22 3 348.19 0.4914 1.06 PBS Dynamin-like 120 kDa protein, mitochondrial

Opa1 13 0 140.4 --- Dynamin-like 120 kDa protein, mitochondrial

Opa1 4 0 36.24 --- Dynamin-like 120 kDa protein, mitochondrial (Fragment)

Opa3 1 0 83.22 --- Optic atrophy 3 protein homolog

Oplah 10 3 168.57 0.6395 1.04 PBS 5-oxoprolinase

Osbp 15 6 423.77 0.3084 1.26 Flu Oxysterol-binding protein 1

Osbp2 11 4 85.1 0.0107 1.37 PBS Oxysterol-binding protein 2

Osbpl5 3 0 30.66 --- Oxysterol-binding protein-related protein 5 (Fragment)

Osbpl8 6 1 71.37 0.3705 1.14 Flu Oxysterol-binding protein-related protein 8

Ostc 1 1 53.76 0.4147 1.14 Flu Oligosaccharyltransferase complex subunit

Ostf1 9 4 191.78 0.0257 1.57 Flu Osteoclast-stimulating factor 1

Otub1 6 4 244.4 0.4349 1.22 Flu Ubiquitin thioesterase OTUB1

Otud7b 16 3 62.75 0.1587 1.57 PBS OTU domain-containing protein 7B

Oxct1 15 7 433.12 0.0043 1.25 Flu Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial

Oxsm 6 3 58.41 0.8025 1.02 Flu 3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial

Oxsr1 8 0 161.8 --- Serine/threonine-protein kinase OSR1

P2rx4 2 2 37.14 0.3536 1.25 Flu P2X purinoceptor 4

P3h2 10 1 73.68 0.2122 1.29 Flu Prolyl 3-hydroxylase 2

P4ha1 7 2 128.28 0.1267 1.89 Flu Prolyl 4-hydroxylase subunit alpha-1

P4hb 42 20 1790.85 0.0548 1.40 Flu Protein disulfide-isomerase

Pa2g4 20 5 638.77 0.0262 1.28 Flu Proliferation-associated protein 2G4

Pa2g4 12 0 330.22 --- Proliferation-associated protein 2G4 (Fragment)

Pabpc1 30 2 1488.36 0.2591 1.40 Flu Polyadenylate-binding protein 1

Pabpc1l 8 1 74.83 0.3709 1.23 PBS Polyadenylate-binding protein

Pabpc2 15 0 681.81 --- Polyadenylate-binding protein

Pabpc4 16 1 670.28 0.0087 1.91 Flu Polyadenylate-binding protein

Pabpc4l 2 0 35.77 --- Protein Pabpc4l (Fragment)

Pabpc5 5 1 86.94 0.0671 1.51 Flu Poly A binding protein, cytoplasmic 5

Pabpc6 15 0 660.09 --- Polyadenylate-binding protein

Pacs1 6 3 104.31 0.3070 1.20 PBS Phosphofurin acidic cluster sorting protein 1

Pacsin2 22 9 778.91 0.4922 1.08 Flu Protein kinase C and casein kinase substrate in neurons protein 2

Pacsin3 3 2 27.18 0.2786 1.19 PBS Protein kinase C and casein kinase II substrate protein 3

Paf1 2 1 32.74 0.0041 1.86 Flu RNA polymerase II-associated factor 1 homolog

Pafah1b1 15 5 491.22 0.8177 1.05 Flu Platelet-activating factor acetylhydrolase IB subunit alpha

Pafah1b2 3 2 140.55 0.1002 1.26 Flu Platelet-activating factor acetylhydrolase IB subunit beta

Paics 10 4 347.93 0.0221 1.27 Flu Multifunctional protein ADE2

Pak1 14 1 202.31 0.2427 1.33 Flu Non-specific serine/threonine protein kinase

Pak2 21 6 511.41 0.0051 1.40 Flu Serine/threonine-protein kinase PAK 2

Pak3 15 1 159.41 0.8355 1.11 Flu Serine/threonine-protein kinase PAK 3

Pak4 11 3 81.72 0.5528 1.05 PBS Serine/threonine-protein kinase PAK 4

Pakap 27 13 1107.55 0.1776 1.25 PBS Protein Pakap (Fragment)

Pald1 23 8 400.69 0.4184 1.10 PBS Paladin

Palld 23 6 262.7 0.3103 1.20 Flu Palladin

Pard6b 5 3 121.66 0.2292 1.33 PBS Partitioning defective 6 homolog beta

Park7 14 9 480.45 0.7876 1.03 PBS Protein deglycase DJ-1

Parp1 27 1 520.26 0.0377 2.44 PBS Poly [ADP-ribose] polymerase 1

Parp1 32 2 697.68 0.1376 1.25 Flu Poly [ADP-ribose] polymerase

Parp10 3 1 41.98 0.2081 5.02 Flu Poly [ADP-ribose] polymerase

Parp3 6 2 77.14 0.0200 2.30 Flu Poly [ADP-ribose] polymerase

Parp4 12 2 79.73 0.7337 1.09 Flu Poly [ADP-ribose] polymerase

Parp9 4 0 73.18 --- Poly [ADP-ribose] polymerase 9

Parva 19 5 799.85 0.0533 1.61 PBS Alpha-parvin

Parvb 8 6 207.6 0.5736 1.09 PBS Beta-parvin

Pbrm1 24 4 161.28 0.2701 1.26 Flu Protein polybromo-1

Pc 65 30 2412.6 0.5917 1.05 PBS Pyruvate carboxylase, mitochondrial

Pcbp1 18 6 692.72 0.0525 1.34 Flu Poly(rC)-binding protein 1

Pcbp2 14 5 450.95 0.0169 1.38 Flu Poly(rC)-binding protein 2

Pcbp3 11 2 51.36 0.7745 1.04 Flu Poly(rC)-binding protein 3 (Fragment)

Pcbp3 8 0 305.91 --- Poly(rC)-binding protein 3

Pcca 23 8 762.18 0.6344 1.06 PBS Propionyl-CoA carboxylase alpha chain, mitochondrial

Pcca 3 0 54.93 --- Propionyl-CoA carboxylase alpha chain, mitochondrial (Fragment)

Pcca 19 0 331.72 --- Propionyl-CoA carboxylase alpha chain, mitochondrial (Fragment)

Pccb 17 11 787.58 0.4295 1.14 PBS Propionyl-CoA carboxylase beta chain, mitochondrial

Pcdh1 17 5 249.73 0.8851 1.02 Flu Protein Pcdh1 (Fragment)

Pcdh15 9 1 91.78 0.2643 1.61 Flu Protocadherin-15

Pcdh15 10 1 54.32 0.3772 1.19 Flu Protocadherin-15

Pcdhga1 5 0 52.52 --- MCG133388, isoform CRA_t

Pcdhgc3 8 2 53.99 0.4656 1.15 PBS Protein Pcdhgc3

Pcid2 2 0 42.21 --- PCI domain-containing protein 2

Pck1 3 0 58.07 --- Phosphoenolpyruvate carboxykinase, cytosolic [GTP]

Pck2 19 10 501.14 0.0023 1.52 Flu Phosphoenolpyruvate carboxykinase [GTP], mitochondrial

Pcmt1 10 5 170.14 0.1244 1.19 Flu Protein-L-isoaspartate O-methyltransferase

Pcmt1 5 0 98.12 --- Protein-L-isoaspartate O-methyltransferase (Fragment)

Pcna 10 5 288.84 0.0483 2.36 Flu Proliferating cell nuclear antigen

Pcyox1 16 10 574.77 0.8690 1.02 Flu Prenylcysteine oxidase

Pcyt1a 6 1 129.96 0.2192 1.19 Flu Choline-phosphate cytidylyltransferase A

Pcyt1a 4 0 86.8 --- Choline-phosphate cytidylyltransferase A

Pdcd10 4 1 134.99 0.6580 1.11 Flu Programmed cell death protein 10

Pdcd4 7 1 76.5 0.7868 1.02 Flu Programmed cell death protein 4

Pdcd6 4 1 140.07 0.9250 1.00 Flu Programmed cell death protein 6

Pdcd6ip 31 14 1021.23 0.0382 1.24 Flu Programmed cell death 6-interacting protein

Pddc1 5 3 80.74 0.4059 1.13 PBS Parkinson disease 7 domain-containing protein 1

Pde12 5 2 59.31 0.1056 1.36 Flu 2',5'-phosphodiesterase 12

Pde1a 4 1 9.93 0.3914 1.19 Flu Calcium/calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1A

Pde3a 10 3 153.1 0.2623 1.23 PBS Phosphodiesterase 3A, cGMP inhibited

Pde5a 22 14 707.06 0.2129 1.15 PBS cGMP-specific 3',5'-cyclic phosphodiesterase

Pdgfrb 15 6 232 0.0070 1.66 Flu Platelet-derived growth factor receptor beta

Pdha1 21 11 851.22 0.2780 1.13 PBS Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial

Pdhb 24 12 848.32 0.4616 1.06 PBS Pyruvate dehydrogenase E1 component subunit beta, mitochondrial

Pdhx 8 3 116.05 0.2974 1.83 PBS Pyruvate dehydrogenase protein X component, mitochondrial

Pdia3 50 22 2434.72 0.0069 1.49 Flu Protein disulfide-isomerase A3

Pdia4 42 18 1635.9 0.0267 1.83 Flu Protein disulfide-isomerase A4

Pdia5 3 1 67.8 0.0234 1.28 Flu Protein disulfide-isomerase A5

Pdia6 20 7 1271.39 0.0469 1.50 Flu Protein disulfide-isomerase A6

Pdlim1 12 4 368 0.0863 1.55 Flu PDZ and LIM domain protein 1

Pdlim2 10 6 309.53 0.8381 1.05 Flu PDZ and LIM domain protein 2

Pdlim5 13 2 488.67 0.2850 1.76 Flu PDZ and LIM domain protein 5

Pdlim5 14 1 484.68 0.4519 7.75 Flu ENH isoform 1d

Pdlim5 7 0 283.37 --- PDZ and LIM domain protein 5 (Fragment)

Pdlim5 10 0 232.57 --- PDZ and LIM domain protein 5

Pdlim7 11 3 115.41 0.9658 1.01 Flu PDZ and LIM domain protein 7

Pdp1 6 1 41.64 0.0061 1.92 Flu [Pyruvate dehydrogenase [acetyl-transferring]]-phosphatase 1, mitochondrial

Pdpk1 10 1 68.39 0.7655 1.04 PBS 3-phosphoinositide-dependent protein kinase 1

Pdpr 9 3 84.86 0.0242 1.54 Flu Pyruvate dehydrogenase phosphatase regulatory subunit, mitochondrial

Pds5a 30 5 389.15 0.0679 1.29 Flu Sister chromatid cohesion protein PDS5 homolog A

Pds5b 45 15 743.72 0.1351 1.21 Flu Sister chromatid cohesion protein PDS5 homolog B

Pdxdc1 15 4 188.27 0.0072 2.07 Flu Pyridoxal-dependent decarboxylase domain-containing protein 1

Pdxk 5 3 55.83 0.1163 1.47 Flu Pyridoxal kinase

Pdzd2 32 1 178.38 0.1382 1.86 PBS Protein Pdzd2

Pdzd8 15 3 111.67 0.9196 1.18 PBS PDZ domain containing 8

Pebp1 3 2 93.22 0.8325 1.07 Flu Phosphatidylethanolamine-binding protein 1

Pecam1 24 17 812.76 0.0188 1.23 PBS Platelet endothelial cell adhesion molecule

Pelp1 7 1 65.97 0.0341 1.93 PBS Proline-, glutamic acid- and leucine-rich protein 1

Pepd 7 1 97 0.1721 1.40 Flu Xaa-Pro dipeptidase

Pf4 3 2 87.6 0.0328 1.85 PBS C-X-C motif chemokine

Pfas 18 6 259.45 0.0891 1.62 Flu Phosphoribosylformylglycinamidine synthase

Pfas 5 0 61.1 --- Phosphoribosylformylglycinamidine synthase (Fragment)

Pfkl 22 12 616.15 0.3790 1.07 PBS ATP-dependent 6-phosphofructokinase, liver type

Pfkm 6 2 57.8 0.6868 1.03 PBS ATP-dependent 6-phosphofructokinase, muscle type

Pfkp 13 4 550.9 0.0156 1.56 Flu ATP-dependent 6-phosphofructokinase, platelet type

Pfkp 4 0 42.64 --- ATP-dependent 6-phosphofructokinase, platelet type (Fragment)

Pfn1 13 6 653.43 0.0162 1.45 Flu Profilin-1

Pga5 1 0 31.65 --- Pepsinogen 5, group I

Pgam1 17 9 666.21 0.0219 1.31 Flu Phosphoglycerate mutase 1

Pgam2 8 1 197.96 0.6522 1.03 PBS Phosphoglycerate mutase 2

Pgd 20 9 771.86 0.0386 1.24 Flu 6-phosphogluconate dehydrogenase, decarboxylating

Pgk1 26 9 1023.84 0.0319 1.35 Flu Phosphoglycerate kinase 1

Pgk2 10 1 297.14 0.5738 1.09 PBS Phosphoglycerate kinase 2

Pgls 5 3 76.05 0.0212 1.39 Flu 6-phosphogluconolactonase

Pglyrp1 1 1 47.69 0.0490 1.25 PBS Peptidoglycan recognition protein 1

Pgm1 11 1 249.61 0.2993 2.27 Flu Phosphoglucomutase-1

Pgm1 4 0 88.56 --- Phosphoglucomutase-1 (Fragment)

Pgm2 17 6 306.09 0.6023 1.06 Flu Phosphoglucomutase-2

Pgm2 9 0 208.61 --- Phosphoglucomutase-2

Pgm3 7 2 88.85 0.2410 2.10 Flu Phosphoacetylglucosamine mutase

Pgm5 12 3 163.1 0.1002 1.46 PBS Phosphoglucomutase-like protein 5

Pgp 4 1 65.39 0.2382 1.41 PBS Phosphoglycolate phosphatase

Pgrmc1 5 3 131.45 0.9809 1.01 Flu Membrane-associated progesterone receptor component 1

Pgrmc2 5 2 255.02 0.1052 1.44 Flu Membrane-associated progesterone receptor component 2

Pgs1 2 2 59.43 0.7558 1.17 Flu CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase, mitochondrial

Phb 19 12 704.09 0.4904 1.09 Flu Prohibitin

Phb2 17 2 531.67 0.4102 1.48 Flu Prohibitin-2 (Fragment)

Phb2 22 3 909.93 0.9879 1.03 Flu Prohibitin-2

Phf2 31 2 248.37 0.3625 1.20 PBS Lysine-specific demethylase PHF2

Phf3 32 1 154.12 0.6436 1.23 PBS PHD finger protein 3

Phgdh 9 5 216.31 0.3282 1.37 Flu D-3-phosphoglycerate dehydrogenase

Phgdh 3 0 98.4 --- D-3-phosphoglycerate dehydrogenase (Fragment)

Phldb1 22 4 177.36 0.5214 1.08 Flu Pleckstrin homology-like domain family B member 1

Phldb2 15 2 186.5 0.8945 1.00 Flu Pleckstrin homology-like domain family B member 2

Pi4k2a 11 3 142.94 0.0431 1.37 Flu Phosphatidylinositol 4-kinase type 2-alpha

Pi4ka 8 1 70.14 0.3153 1.74 Flu Protein Pi4ka (Fragment)

Pi4ka 24 9 411 0.8063 1.06 PBS Protein Pi4ka

Picalm 16 5 645.82 0.2421 1.10 Flu Phosphatidylinositol-binding clathrin assembly protein

Pigk 3 2 31.08 0.1551 1.24 Flu GPI-anchor transamidase

Pigs 9 6 171.63 0.0159 1.68 Flu GPI transamidase component PIG-S

Pik3c3 15 1 115.16 0.0849 2.30 PBS Phosphatidylinositol 3-kinase catalytic subunit type 3

Pik3r1 16 3 132.23 0.6775 1.04 Flu Phosphatidylinositol 3-kinase regulatory subunit alpha

Pik3r4 12 3 150.83 0.0201 1.31 Flu Phosphoinositide 3-kinase regulatory subunit 4

Pip4k2a 6 1 77.82 0.1972 1.50 Flu Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha

Pip4k2b 6 1 145.45 0.9855 1.01 Flu Phosphatidylinositol 5-phosphate 4-kinase type-2 beta

Pip4k2c 4 1 73.05 0.0003 1.63 Flu Phosphatidylinositol 5-phosphate 4-kinase type-2 gamma

Pip5k1b 8 1 84.67 0.0322 1.64 PBS Phosphatidylinositol 4-phosphate 5-kinase type-1 beta

Pitpna 5 3 163.76 0.0833 1.31 Flu Phosphatidylinositol transfer protein alpha isoform

Pitpnc1 6 1 37.89 0.3863 1.33 Flu Cytoplasmic phosphatidylinositol transfer protein 1

Pitpnm2 18 5 112.21 0.3106 1.21 Flu Membrane-associated phosphatidylinositol transfer protein 2

Pitrm1 20 8 372.95 0.0361 1.37 Flu Presequence protease, mitochondrial

Pkd2 7 1 50.05 0.5371 1.12 Flu Polycystin-2

Pklr 6 0 126.44 --- Pyruvate kinase

Pkm 55 29 2908.75 0.0645 1.40 Flu Pyruvate kinase PKM

Pkn1 6 1 88.83 0.2399 1.22 Flu Serine/threonine-protein kinase N1

Pkn2 11 3 88.24 0.0766 1.37 Flu Serine/threonine-protein kinase N2

Plaa 7 2 170.73 0.1505 1.71 Flu Phospholipase A-2-activating protein

Plbd1 9 5 159.34 0.0065 2.39 Flu Phospholipase B-like 1

Plbd2 8 2 125.38 0.1987 1.34 Flu Putative phospholipase B-like 2

Plcb1 18 5 234.23 0.7664 1.04 Flu Phosphoinositide phospholipase C

Plcb3 19 8 256.48 0.9274 1.03 PBS 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3

Plcb4 21 7 209.36 0.1074 1.32 PBS Phosphoinositide phospholipase C

Plcb4 8 2 87.85 0.8957 1.06 PBS Protein Plcb4 (Fragment)

Plcd1 10 6 102.77 0.0102 1.27 Flu 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-1

Plcg1 7 1 115.02 0.2965 1.29 Flu 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1

Plcg2 11 3 100.9 0.0258 1.58 Flu 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2

Plch2 7 0 48 --- 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-2

Pld3 6 1 31.02 0.0303 3.45 Flu Phospholipase D3

Pld4 11 5 374.59 0.0239 2.82 Flu Phospholipase D4

Plec 172 63 4962.99 0.6087 1.06 PBS Plectin

Plek 6 4 195.01 0.6914 1.06 Flu Pleckstrin

Plekho2 18 3 193.97 0.0480 2.03 Flu Pleckstrin homology domain-containing family O member 2

Plg 11 5 287.21 0.1039 2.03 Flu Plasminogen

Plin1 2 1 37.31 0.1167 3.19 PBS Perilipin-1

Plin3 8 5 250.2 0.0012 1.40 Flu Perilipin-3

Plin4 14 1 120.22 0.0031 5.49 Flu Perilipin-4

Pllp 1 1 15.8 0.0736 2.56 PBS Plasmolipin

Plod1 6 1 96.24 0.0317 2.00 Flu Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1

Plod2 6 1 41.32 0.0386 2.59 Flu Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2

Plod3 9 4 196.61 0.0147 1.87 Flu Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3

Plp2 2 1 79.44 0.4222 1.04 Flu Protein Gm6169

Plrg1 7 3 83.91 0.5165 1.20 Flu Pleiotropic regulator 1

Pls1 13 1 392.14 0.8191 1.02 PBS Plastin-1

Pls3 34 1 1258.18 0.4962 1.10 Flu Plastin-3

Pls3 35 0 1184.64 --- Plastin-3

Plscr1 6 2 123.61 0.0688 1.58 PBS Phospholipid scramblase 1

Plscr3 5 2 247.23 0.1441 1.31 PBS Phospholipid scramblase 3

Pltp 4 2 57.33 0.0940 1.22 PBS Phospholipid transfer protein

Plvap 33 13 1082.09 0.1795 1.39 PBS Plasmalemma vesicle associated protein

Plxdc2 7 3 166.17 0.0972 1.25 PBS Plexin domain-containing protein 2

Plxna1 25 7 210.33 0.2318 1.25 Flu Plexin-A1

Plxna4 12 1 95.57 0.1711 1.23 PBS Plexin-A4

Plxnb2 20 9 526.88 0.0263 1.23 Flu Plexin-B2

Pml 6 2 61.22 0.0558 1.47 Flu Protein PML

Pmpca 7 2 115.03 0.0020 1.39 Flu Mitochondrial-processing peptidase subunit alpha

Pmpcb 2 0 27.89 --- Mitochondrial-processing peptidase subunit beta

Pnkp 10 1 141.68 0.5665 1.09 Flu Bifunctional polynucleotide phosphatase/kinase

Pnkp 8 0 122.66 --- Bifunctional polynucleotide phosphatase/kinase

Pnn 8 2 80.27 0.0830 1.41 Flu Pinin

Pnp 18 6 832.43 0.0705 1.26 Flu Purine nucleoside phosphorylase

Pnp2 14 0 483.52 --- Purine nucleoside phosphorylase

Pnpla6 13 2 104.56 0.5525 1.08 PBS Neuropathy target esterase

Pnpla8 8 1 67.34 0.0496 2.83 PBS Calcium-independent phospholipase A2-gamma

Podxl 4 3 153.75 0.1189 1.29 PBS Podocalyxin

Pofut1 5 2 131.49 0.4593 1.09 Flu GDP-fucose protein O-fucosyltransferase 1

Pofut2 3 1 23.61 0.7290 1.04 PBS GDP-fucose protein O-fucosyltransferase 2

Poglut1 7 2 94.11 0.0075 1.39 Flu Protein O-glucosyltransferase 1

Pold2 3 2 61.39 0.1108 1.43 Flu DNA polymerase delta subunit 2

Poldip3 10 2 72.6 0.5635 1.08 Flu Polymerase delta-interacting protein 3

Polr2a 24 4 116.44 0.5010 1.18 Flu DNA-directed RNA polymerase II subunit RPB1

Polr2b 11 2 78.17 0.1564 1.37 Flu DNA-directed RNA polymerase II subunit RPB2

Pon1 10 4 231.26 0.1782 1.50 PBS Serum paraoxonase/arylesterase 1

Pon2 9 4 101.35 0.1310 1.18 Flu Serum paraoxonase/arylesterase 2

Pon3 14 8 325.38 0.9718 1.01 Flu Serum paraoxonase/lactonase 3

Popdc3 3 0 44.84 --- Popeye domain-containing protein 3

Por 36 23 1454.08 0.3315 1.13 PBS NADPH--cytochrome P450 reductase

Postn 17 5 297.46 0.6791 1.04 PBS Periostin

Ppa1 8 3 74.75 0.0028 1.35 Flu Inorganic pyrophosphatase

Ppa2 13 2 79.13 0.3983 1.16 PBS Inorganic pyrophosphatase 2, mitochondrial

Ppap2a 3 2 139.14 0.0838 1.74 PBS Lipid phosphate phosphohydrolase 1

Ppap2b 5 1 87.03 0.0117 2.27 PBS Lipid phosphate phosphohydrolase 3

Ppat 10 1 104.6 0.3836 1.21 PBS Amidophosphoribosyltransferase

Ppbp 2 1 62.78 0.6409 1.05 Flu Chemokine (C-X-C motif) ligand 7, isoform CRA_b

Ppfibp1 19 4 183.97 0.0870 1.22 PBS Liprin-beta-1

Ppfibp2 17 1 81.88 0.4280 1.12 PBS Liprin-beta-2

Ppia 22 9 1095.47 0.0133 1.33 Flu Peptidyl-prolyl cis-trans isomerase A

Ppib 15 7 727.54 0.0873 1.36 Flu Peptidyl-prolyl cis-trans isomerase B

Ppic 8 4 317.35 0.0066 2.39 Flu Peptidyl-prolyl cis-trans isomerase C

Ppid 6 1 154.16 0.7307 1.16 Flu Peptidyl-prolyl cis-trans isomerase D

Ppif 2 0 8.96 --- Peptidyl-prolyl cis-trans isomerase F, mitochondrial

Ppig 8 1 54.24 0.0958 1.48 Flu Peptidyl-prolyl cis-trans isomerase G

Ppil1 4 2 51.3 0.1857 1.58 Flu Peptidyl-prolyl cis-trans isomerase-like 1

Ppil4 6 2 53.53 0.0191 1.53 Flu Peptidyl-prolyl cis-trans isomerase-like 4

Ppip5k1 10 0 86.02 --- Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 1 (Fragment)

Ppl 57 1 1166.51 0.2575 1.28 PBS Periplakin

Ppl 55 0 1107.18 --- Periplakin

Ppm1a 8 0 109.45 --- Protein phosphatase 1A

Ppm1f 8 5 299.48 0.5771 1.07 PBS Protein phosphatase 1F

Ppm1g 5 1 148.91 0.0024 1.52 Flu Protein phosphatase 1G

Ppm1n 1 0 21.11 --- Probable protein phosphatase 1N

Ppme1 5 3 75.62 0.0020 1.77 Flu Protein phosphatase methylesterase 1

Ppp1ca 16 2 686.63 0.3291 1.67 PBS Serine/threonine-protein phosphatase PP1-alpha catalytic subunit

Ppp1cb 16 1 740.18 0.0237 1.31 PBS Serine/threonine-protein phosphatase PP1-beta catalytic subunit

Ppp1cc 15 1 723.09 0.3391 1.45 Flu Serine/threonine-protein phosphatase PP1-gamma catalytic subunit

Ppp1r12a 23 5 356.53 0.2196 1.29 Flu Protein phosphatase 1 regulatory subunit 12A

Ppp1r12b 9 0 150.47 --- Protein phosphatase 1 regulatory subunit

Ppp1r12c 10 1 56.54 0.1850 1.41 PBS Protein phosphatase 1 regulatory subunit 12C

Ppp1r13b 13 1 66.3 0.2923 1.56 PBS Apoptosis-stimulating of p53 protein 1

Ppp1r14a 4 2 59.21 0.1946 1.53 PBS Protein phosphatase 1 regulatory subunit 14A

Ppp1r21 5 3 140.1 0.0039 1.60 Flu Protein phosphatase 1 regulatory subunit 21

Ppp1r7 13 6 293.05 0.0475 1.36 Flu Protein phosphatase 1 regulatory subunit 7

Ppp1r9b 12 1 74.85 0.8670 1.01 Flu Neurabin-2

Ppp2ca 16 9 496.46 0.8163 1.04 Flu Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform

Ppp2r1a 30 10 1113.22 0.2033 1.11 Flu Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform

Ppp2r1b 11 0 347.76 --- Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform

Ppp2r2a 11 2 186.81 0.0173 1.31 Flu Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform

Ppp2r2d 3 0 88.22 --- Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B delta isoform

Ppp2r4 3 3 32.36 0.7325 1.08 PBS Serine/threonine-protein phosphatase 2A activator

Ppp2r5a 9 5 245.54 0.3283 1.10 PBS Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform

Ppp2r5c 7 1 77.41 0.1718 1.14 Flu Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit gamma isoform

Ppp2r5d 10 1 101.44 0.1127 1.16 Flu Protein Ppp2r5d

Ppp2r5e 4 2 56.36 0.3335 1.29 PBS Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit epsilon isoform

Ppp3ca 18 5 444.28 0.4767 1.15 PBS Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform

Ppp3cb 11 2 188.12 0.5711 1.10 Flu Serine/threonine-protein phosphatase

Ppp3cc 9 0 118.35 --- Serine/threonine-protein phosphatase 2B catalytic subunit gamma isoform

Ppp4c 6 1 116.05 0.0359 3.74 PBS Serine/threonine-protein phosphatase 4 catalytic subunit

Ppp6c 7 2 180.71 0.1240 1.37 PBS Serine/threonine-protein phosphatase 6 catalytic subunit

Ppt1 6 4 202.15 0.0139 1.93 Flu Palmitoyl-protein thioesterase 1

Pqlc3 1 0 36.48 --- PQ-loop repeat-containing protein 3

Praf2 3 0 46.15 --- PRA1 family protein 2

Prcp 4 1 35.06 0.0221 2.76 Flu Lysosomal Pro-X carboxypeptidase

Prdx1 22 9 836.93 0.0027 1.42 Flu Peroxiredoxin-1

Prdx2 13 7 696.9 0.1959 1.28 PBS Peroxiredoxin-2

Prdx3 10 7 321.11 0.4593 1.13 PBS Thioredoxin-dependent peroxide reductase, mitochondrial

Prdx4 9 5 329.34 0.0451 1.65 Flu Peroxiredoxin-4

Prdx5 12 2 320.01 0.5752 1.18 Flu Peroxiredoxin-5, mitochondrial

Prdx5 10 0 267.47 --- Peroxiredoxin-5, mitochondrial

Prdx6 29 2 1486.67 0.4707 1.15 PBS Peroxiredoxin 6

Prdx6 27 0 1234.5 --- Peroxiredoxin-6

Prdx6b 9 0 241.5 --- MCG48959

Preb 9 3 120.18 0.9138 1.05 PBS Prolactin regulatory element binding, isoform CRA_b

Prelp 11 2 288.72 0.4563 1.12 PBS Prolargin

Prep 15 9 502.96 0.0813 1.42 Flu Prolyl endopeptidase

Prg2 2 1 48.24 0.6207 1.23 Flu Bone marrow proteoglycan

Prg4 25 2 149.15 0.0981 1.49 Flu Proteoglycan 4

Prkaa1 13 1 371.4 0.7938 1.03 Flu 5'-AMP-activated protein kinase catalytic subunit alpha-1

Prkaa2 8 2 130.98 0.0673 1.86 PBS 5'-AMP-activated protein kinase catalytic subunit alpha-2

Prkab1 1 1 23.19 0.5075 1.19 Flu 5'-AMP-activated protein kinase subunit beta-1

Prkaca 15 3 668.85 0.2347 1.27 PBS cAMP-dependent protein kinase catalytic subunit alpha

Prkacb 17 2 517.8 0.6401 1.09 PBS cAMP-dependent protein kinase catalytic subunit beta

Prkag1 3 1 79.63 0.6362 1.11 PBS 5'-AMP-activated protein kinase subunit gamma-1

Prkag2 7 1 70.81 0.1980 1.14 Flu 5'-AMP-activated protein kinase subunit gamma-2

Prkar1a 18 4 356.7 0.1892 1.25 Flu cAMP-dependent protein kinase type I-alpha regulatory subunit

Prkar2a 22 1 1160.55 0.5479 1.06 Flu cAMP-dependent protein kinase type II-alpha regulatory subunit

Prkar2a 14 0 768.7 --- cAMP-dependent protein kinase type II-alpha regulatory subunit (Fragment)

Prkar2a 22 0 1102.09 --- cAMP-dependent protein kinase type II-alpha regulatory subunit

Prkar2b 4 1 292.04 0.3379 2.01 Flu cAMP-dependent protein kinase type II-beta regulatory subunit

Prkca 21 1 382.51 0.0796 1.26 PBS Protein kinase C

Prkca 22 0 330.13 --- Protein kinase C alpha type

Prkcb 14 0 233.54 --- Protein kinase C beta type

Prkcd 13 5 151.71 0.3517 1.47 Flu Protein kinase C

Prkcdbp 10 4 70.21 0.1264 1.31 PBS Protein kinase C delta-binding protein

Prkcg 9 0 113 --- Protein kinase C gamma type

Prkch 6 1 96.61 0.2138 1.18 PBS Protein kinase C eta type

Prkci 4 1 56.19 0.7632 1.07 Flu Protein kinase C iota type

Prkci 3 0 32.38 --- Protein kinase C iota type (Fragment)

Prkcsh 19 2 533.1 0.1126 1.72 Flu Glucosidase 2 subunit beta

Prkcz 3 1 110.12 0.1574 1.42 PBS Protein kinase C zeta type

Prkd2 10 2 161.29 0.1962 1.42 Flu Serine/threonine-protein kinase D2

Prkg1 10 4 175.97 0.0831 1.32 PBS cGMP-dependent protein kinase 1

Prmt1 10 3 279.94 0.2173 1.65 Flu Protein arginine N-methyltransferase 1

Prodh 4 2 65.53 0.0453 1.92 Flu Proline dehydrogenase 1, mitochondrial

Prodh 3 0 33.96 --- Proline dehydrogenase 1, mitochondrial (Fragment)

Prosc 7 4 115.5 0.8067 1.06 Flu Proline synthase co-transcribed bacterial homolog protein

Prpf19 17 12 590.11 0.1211 1.26 Flu Pre-mRNA-processing factor 19

Prpf31 13 7 192.22 0.1470 1.24 Flu U4/U6 small nuclear ribonucleoprotein Prp31

Prpf38a 2 0 39.6 --- Pre-mRNA-splicing factor 38A

Prpf38b 3 0 38.42 --- Pre-mRNA-splicing factor 38B

Prpf4 7 4 165.67 0.2775 1.22 Flu U4/U6 small nuclear ribonucleoprotein Prp4

Prpf40a 14 3 226.49 0.8655 1.08 PBS Pre-mRNA-processing factor 40 homolog A

Prpf4b 10 3 119.06 0.3939 1.22 Flu Serine/threonine-protein kinase PRP4 homolog

Prpf6 14 5 249.94 0.1644 1.36 Flu Pre-mRNA-processing factor 6

Prpf8 63 27 1471.25 0.3633 1.21 Flu Pre-mRNA-processing-splicing factor 8

Prph 19 1 254.95 0.0785 2.07 PBS Peripherin

Prps1 9 0 286.88 --- Ribose-phosphate pyrophosphokinase 1

Prps1l1 8 0 221.99 --- Protein Prps1l1

Prps2 9 1 276.76 0.5719 1.10 PBS Ribose-phosphate pyrophosphokinase 2

Prpsap1 4 1 72.78 0.8717 1.01 PBS MCG6846, isoform CRA_c

Prpsap2 10 5 86.44 0.0548 1.22 Flu Phosphoribosyl pyrophosphate synthase-associated protein 2

Prrc1 10 2 153.32 0.2085 1.37 Flu Protein PRRC1

Prrc2b 31 4 169.15 0.4649 1.11 PBS Protein PRRC2B

Prrc2c 40 6 212.49 0.6716 1.06 Flu Protein PRRC2C

Prrc2c 14 0 89.75 --- Protein PRRC2C (Fragment)

Prss1 4 1 55 0.4775 1.07 Flu MCG124046

Prss34 4 0 34.88 --- Mast cell protease-11

Prtn3 5 1 62.57 0.0815 1.63 PBS Myeloblastin

Prx 112 3 3194.13 0.0941 1.48 PBS Periaxin

Prx 114 0 3083.64 --- Periaxin

Psap 8 1 68.1 0.8639 1.05 PBS Prosaposin

Psat1 5 1 42.75 0.0085 4.16 Flu Phosphoserine aminotransferase

Psip1 16 7 447.75 0.0941 1.22 Flu PC4 and SFRS1-interacting protein

Psma1 12 5 329.06 0.0287 1.67 Flu Proteasome subunit alpha type-1

Psma2 11 8 342.22 0.0314 1.38 Flu Proteasome subunit alpha type-2

Psma3 7 3 246.01 0.0481 1.32 Flu Proteasome subunit alpha type-3

Psma4 13 7 591.37 0.0963 1.17 Flu Proteasome subunit alpha type-4

Psma5 6 3 230.95 0.1400 1.25 Flu Proteasome subunit alpha type

Psma6 11 3 548.03 0.2959 1.15 Flu Proteasome subunit alpha type-6

Psma7 13 5 651.05 0.0916 1.22 Flu Proteasome subunit alpha type-7

Psma8 5 0 294.15 --- Proteasome subunit alpha type-7-like

Psmb1 11 5 326.04 0.0188 1.38 Flu Proteasome subunit beta type-1

Psmb10 3 1 57.67 0.0207 2.01 Flu Proteasome subunit beta type-10

Psmb2 8 1 161.25 0.0214 1.48 Flu Proteasome subunit beta type-2

Psmb3 8 3 299.75 0.0467 1.33 Flu Proteasome subunit beta type-3

Psmb4 6 2 283.27 0.0222 1.34 Flu Proteasome subunit beta type-4

Psmb5 4 2 51.83 0.1288 1.45 PBS Proteasome subunit beta type-5

Psmb6 6 3 194.48 0.4266 1.19 Flu Proteasome subunit beta type-6

Psmb7 9 5 156.1 0.0928 1.56 PBS Proteasome subunit beta type-7

Psmb8 5 1 240.92 0.9261 1.42 Flu Proteasome subunit beta type-8

Psmc1 23 6 480.59 0.0060 1.43 Flu 26S protease regulatory subunit 4

Psmc2 17 3 549.16 0.0486 1.55 Flu 26S protease regulatory subunit 7

Psmc3 26 8 598.21 0.0008 1.39 Flu 26S protease regulatory subunit 6A

Psmc4 14 6 275.48 0.1000 1.29 Flu 26S protease regulatory subunit 6B

Psmc5 21 9 635.09 0.0293 1.45 Flu 26S protease regulatory subunit 8

Psmc6 21 11 582.74 0.0087 1.36 Flu 26S protease regulatory subunit 10B

Psmd1 20 8 600.15 0.2318 1.22 Flu 26S proteasome non-ATPase regulatory subunit 1

Psmd11 12 1 357.94 0.5043 1.06 Flu 26S proteasome non-ATPase regulatory subunit 11

Psmd11 11 1 99.82 0.6519 1.08 PBS 26S proteasome non-ATPase regulatory subunit 11 (Fragment)

Psmd11 3 0 29.35 --- 26S proteasome non-ATPase regulatory subunit 11 (Fragment)

Psmd11 6 0 135.8 --- 26S proteasome non-ATPase regulatory subunit 11 (Fragment)

Psmd11 6 0 142.7 --- 26S proteasome non-ATPase regulatory subunit 11 (Fragment)

Psmd12 16 0 426.96 --- 26S proteasome non-ATPase regulatory subunit 12

Psmd12 16 0 347.95 --- 26S proteasome non-ATPase regulatory subunit 12

Psmd12 15 0 381.29 --- 26S proteasome non-ATPase regulatory subunit 12

Psmd13 14 4 501.47 0.0046 1.34 Flu 26S proteasome non-ATPase regulatory subunit 13

Psmd13 5 0 157.6 --- 26S proteasome non-ATPase regulatory subunit 13 (Fragment)

Psmd13 8 0 288.12 --- 26S proteasome non-ATPase regulatory subunit 13 (Fragment)

Psmd14 6 1 49.32 0.0162 1.32 Flu 26S proteasome non-ATPase regulatory subunit 14

Psmd2 23 10 869.14 0.0197 1.46 Flu 26S proteasome non-ATPase regulatory subunit 2

Psmd3 17 1 299.96 0.2909 1.82 Flu 26S proteasome non-ATPase regulatory subunit 3 (Fragment)

Psmd3 20 3 537.22 0.4510 1.23 Flu 26S proteasome non-ATPase regulatory subunit 3

Psmd4 5 1 67.7 0.0208 2.17 Flu 26S proteasome non-ATPase regulatory subunit 4 (Fragment)

Psmd4 6 1 168.89 0.4666 1.08 Flu 26S proteasome non-ATPase regulatory subunit 4

Psmd5 13 3 454.89 0.3201 1.10 Flu 26S proteasome non-ATPase regulatory subunit 5

Psmd5 7 0 174.66 --- 26S proteasome non-ATPase regulatory subunit 5 (Fragment)

Psmd6 15 7 440.94 0.1597 1.25 Flu 26S proteasome non-ATPase regulatory subunit 6

Psmd7 8 4 267.65 0.1640 1.19 Flu 26S proteasome non-ATPase regulatory subunit 7

Psmd8 8 5 154.39 0.0363 1.44 Flu 26S proteasome non-ATPase regulatory subunit 8

Psmd9 3 1 38.72 0.1253 1.20 Flu 26S proteasome non-ATPase regulatory subunit 9

Psme1 10 3 394.04 0.1625 1.46 Flu Proteasome activator complex subunit 1

Psme1 8 0 104.27 --- Proteasome activator complex subunit 1 (Fragment)

Psme2 12 7 491.72 0.0086 1.64 Flu Proteasome activator complex subunit 2

Psme3 5 1 68.06 0.0239 1.64 Flu Proteasome activator complex subunit 3

Pspc1 14 4 236.09 0.1051 1.18 Flu Paraspeckle component 1

Pspc1 4 0 73.76 --- Paraspeckle component 1 (Fragment)

Ptbp1 6 1 195.6 0.0409 1.33 PBS Polypyrimidine tract-binding protein 1 (Fragment)

Ptbp1 20 8 1198.04 0.0553 1.23 Flu MCG13402, isoform CRA_c

Ptbp2 6 1 81.41 0.2461 1.38 PBS Polypyrimidine tract-binding protein 2

Ptbp3 19 5 471.44 0.4856 1.13 PBS Polypyrimidine tract-binding protein 3

Ptbp3 4 0 49.05 --- Polypyrimidine tract-binding protein 3 (Fragment)

Ptdss1 2 2 51.79 0.5276 1.05 PBS Phosphatidylserine synthase 1

Ptdss2 2 0 66.9 --- Phosphatidylserine synthase 2

Ptges2 3 2 64.95 0.0437 1.22 Flu Prostaglandin E synthase 2

Ptges3 6 2 151.06 0.7365 1.04 Flu Prostaglandin E synthase 3

Ptgfrn 24 12 837.54 0.1324 1.18 PBS Prostaglandin F2 receptor negative regulator

Ptgis 23 14 942.75 0.4108 1.08 PBS Prostacyclin synthase

Ptgr1 11 2 192.31 0.0526 1.60 Flu Prostaglandin reductase 1

Ptgs1 18 14 510.93 0.9565 1.01 Flu Prostaglandin G/H synthase 1

Ptgs2 2 1 32.79 0.1110 1.25 Flu Prostaglandin G/H synthase 2

Ptk2 20 7 338.97 0.5410 1.07 PBS Focal adhesion kinase 1

Ptk7 21 10 527.36 0.4447 1.07 PBS Inactive tyrosine-protein kinase 7

Ptpn1 14 5 312.91 0.0049 1.54 Flu Tyrosine-protein phosphatase non-receptor type 1

Ptpn11 17 4 235.68 0.3818 1.16 Flu Tyrosine-protein phosphatase non-receptor type 11

Ptpn12 17 6 228.42 0.0808 1.29 PBS Tyrosine-protein phosphatase non-receptor type 12

Ptpn2 6 0 49.53 --- Tyrosine-protein phosphatase non-receptor type 2

Ptpn6 19 10 692.23 0.0109 1.97 Flu Tyrosine-protein phosphatase non-receptor type 6

Ptpn9 5 4 128.65 0.9711 1.01 Flu Protein tyrosine phosphatase, non-receptor type 9

Ptpra 13 2 225.93 0.3243 1.29 PBS Receptor-type tyrosine-protein phosphatase alpha

Ptprc 24 14 660.83 0.1193 2.31 Flu Receptor-type tyrosine-protein phosphatase C

Ptpre 10 0 63.89 --- Receptor-type tyrosine-protein phosphatase epsilon

Ptprm 11 3 45.2 0.6876 1.13 PBS Receptor-type tyrosine-protein phosphatase mu

Ptprs 16 2 54.91 0.0638 1.47 PBS Receptor-type tyrosine-protein phosphatase S

Ptrf 31 11 1746.39 0.1801 1.36 PBS Polymerase I and transcript release factor

Puf60 7 6 179.62 0.0031 1.27 Flu Poly(U)-binding-splicing factor PUF60

Pum2 11 0 105 --- Pumilio homolog 2

Pura 14 7 440.9 0.3301 1.14 PBS Transcriptional activator protein Pur-alpha

Purb 13 7 359.91 0.2508 1.16 Flu Transcriptional activator protein Pur-beta

Pvr 2 0 31.12 --- Nectin-2

Pvrl2 5 2 21.36 0.0934 1.30 Flu Nectin-2

Pxdn 11 1 97.74 0.4341 1.16 PBS Peroxidasin homolog

Pxn 13 1 283.64 0.6027 1.09 PBS Paxillin

Pxn 17 3 456.82 0.8814 1.00 Flu Paxillin

Pycard 2 0 107.23 --- Apoptosis-associated speck-like protein containing a CARD

Pycr2 8 3 80.42 0.0257 1.30 PBS Pyrroline-5-carboxylate reductase

Pycrl 3 1 57.08 0.2166 1.49 Flu Pyrroline-5-carboxylate reductase 3

Pygb 39 17 1317.33 0.1671 1.14 Flu Glycogen phosphorylase, brain form

Pygl 22 5 311.21 0.0032 1.43 Flu Glycogen phosphorylase, liver form

Pygm 24 7 649.91 0.6366 1.03 PBS Alpha-1,4 glucan phosphorylase

Pyhin1 12 3 354.08 0.0176 1.63 Flu Pyrin and HIN domain-containing protein 1

Qars 25 9 515.36 0.0387 1.51 Flu Glutaminyl-tRNA synthetase

Qars 5 0 68.55 --- Protein Qars (Fragment)

Qdpr 7 0 240.95 --- Dihydropteridine reductase

Qdpr 5 0 83.15 --- Dihydropteridine reductase (Fragment)

Qki 5 3 66.78 0.0234 1.26 Flu Protein quaking

Qsox1 7 0 77.75 --- Sulfhydryl oxidase 1

Qsox2 18 2 77.98 0.4002 1.18 Flu Sulfhydryl oxidase 2

Rab1 16 2 879.03 0.1920 1.29 Flu RAB1, member RAS oncogene family, isoform CRA_a

Rab10 13 1 500.83 0.3729 1.26 Flu RAB10, member RAS oncogene family

Rab11b 12 6 487 0.7923 1.02 PBS Ras-related protein Rab-11B

Rab11fip1 16 2 129.6 0.0772 1.95 Flu Rab11 family-interacting protein 1

Rab12 15 5 319.16 0.9173 1.08 PBS Ras-related protein Rab-12

Rab13 6 0 156.55 --- Ras-related protein Rab-13

Rab14 20 9 815.22 0.9753 1.00 Flu RAB14 protein

Rab15 4 1 128.75 0.4897 1.05 PBS Ras-related protein Rab-15

Rab18 7 3 232.96 0.9249 1.01 Flu RAB18, member RAS oncogene family, isoform CRA_a

Rab1b 17 4 877.03 0.0109 1.24 Flu RAB1B, member RAS oncogene family, isoform CRA_c

Rab21 6 4 203.59 0.0717 1.21 PBS RAB21, member RAS oncogene family

Rab22a 3 0 60.61 --- RAB22A, member RAS oncogene family, isoform CRA_a

Rab27a 3 1 94.33 0.3006 1.56 Flu Ras-related protein Rab-27A

Rab29 3 0 56.76 --- Ras-related protein Rab-7L1

Rab2a 11 0 566.11 --- RAB2, member RAS oncogene family

Rab2b 7 0 309.7 --- RAB2B, member RAS oncogene family, isoform CRA_a

Rab32 3 1 77.08 0.0790 4.12 Flu RAB32, member RAS oncogene family

Rab35 8 3 285.7 0.2681 1.12 PBS RAB35, member RAS oncogene family

Rab39b 3 0 128.66 --- RAB39B, member RAS oncogene family

Rab3a 6 0 177.44 --- RAB3A, member RAS oncogene family, isoform CRA_a

Rab3b 4 0 103.02 --- Ras-related protein Rab-3B

Rab3d 6 1 237.87 0.4175 1.16 PBS RAB3D, member RAS oncogene family, isoform CRA_b

Rab3gap1 13 1 61.75 0.0290 1.32 Flu Rab3 GTPase-activating protein catalytic subunit

Rab3gap2 18 3 125.76 0.9493 1.39 PBS Rab3 GTPase-activating protein non-catalytic subunit

Rab4b 2 0 99.86 --- Ras-related protein Rab-4B

Rab5a 12 1 327.3 0.5334 1.09 PBS Ras-related protein Rab-5A

Rab5b 7 1 252.56 0.1127 1.26 PBS RAB5B, member RAS oncogene family

Rab5c 13 3 453.17 0.0972 1.36 Flu RAB5C, member RAS oncogene family, isoform CRA_a

Rab6a 12 1 253.53 0.5644 1.10 PBS Ras-related protein Rab-6A

Rab6b 9 0 124.94 --- RAB6B, member RAS oncogene family

Rab7 17 9 683.07 0.8284 1.03 Flu MCG130610

Rab8a 9 1 433.13 0.3254 1.04 PBS RAB8A, member RAS oncogene family, isoform CRA_a

Rab8b 15 2 509.26 0.9259 1.02 PBS RAB8B, member RAS oncogene family

Rabep2 6 1 50.01 0.2289 2.07 Flu Rab GTPase-binding effector protein 2

Rabgap1 15 3 117.8 0.0038 1.82 Flu Rab GTPase-activating protein 1

Rabgef1 6 2 42.44 0.3521 13.80 PBS Rab5 GDP/GTP exchange factor

Rac1 13 1 529.52 0.0363 1.38 PBS RAS-related C3 botulinum substrate 1

Rac2 11 1 349.45 0.1779 1.96 Flu Ras-related C3 botulinum toxin substrate 2

Rac3 12 1 308.2 0.1193 1.33 PBS RAS-related C3 botulinum substrate 3

Rad21 8 2 166.97 0.0362 1.24 Flu Double-strand-break repair protein rad21 homolog

Rad23b 6 3 188.6 0.0312 1.63 Flu UV excision repair protein RAD23 homolog B

Rae1 3 3 73.07 0.5039 1.06 Flu mRNA export factor

Rai14 17 2 245.62 0.2243 1.37 PBS Ankycorbin

Rala 10 1 479.73 0.2087 1.29 PBS Ras-related protein Ral-A

Ralb 12 1 537.14 0.9958 1.01 Flu Ras-related protein Ral-B

Ralb 6 0 260.5 --- Ras-related protein Ral-B (Fragment)

Ralgapb 15 1 94.97 0.2236 1.95 Flu Ral GTPase-activating protein subunit beta (Fragment)

Ralgapb 21 3 166.71 0.9647 1.02 Flu Ral GTPase-activating protein subunit beta

Raly 12 3 293.95 0.2001 1.38 Flu RNA-binding protein Raly

Ramp2 3 3 183.8 0.0473 2.23 PBS Receptor activity-modifying protein 2

Ran 12 4 439.27 0.3149 1.14 Flu GTP-binding nuclear protein Ran

Ranbp1 4 1 75.74 0.3198 1.48 Flu Ran-specific GTPase-activating protein

Ranbp2 40 11 491.79 0.3486 1.18 Flu E3 SUMO-protein ligase RanBP2

Ranbp3 9 2 150.78 0.1126 2.20 Flu Ran-binding protein 3

Rangap1 14 4 247.95 0.0297 1.24 Flu Ran GTPase-activating protein 1

Rap1a 16 3 733.9 0.1426 1.67 PBS Ras-related protein Rap-1A

Rap1b 17 2 754.19 0.1192 1.41 PBS Ras-related protein Rap-1b

Rap1gds1 10 5 63.17 0.2715 1.20 PBS Protein Rap1gds1

Rap2a 4 1 121.89 0.2236 1.54 PBS Ras-related protein Rap-2a

Rap2b 4 1 55.46 0.1036 1.30 PBS MCG5466

Rap2c 5 1 94.36 0.6313 1.17 Flu Ras-related protein Rap-2c

Raph1 14 2 80.25 0.1276 1.17 Flu Protein Raph1

Rars 30 18 741.47 0.4876 1.08 Flu Arginine--tRNA ligase, cytoplasmic

Rars2 5 1 42.54 0.1387 1.83 Flu Probable arginine--tRNA ligase, mitochondrial

Rasa3 10 4 89.73 0.9911 1.00 PBS Ras GTPase-activating protein 3

Rasal2 18 1 128.34 0.1421 1.67 PBS Protein Rasal2

Rasip1 21 10 817.61 0.1320 1.26 PBS Ras-interacting protein 1

Rasl2-9 6 0 217.14 --- GTP-binding nuclear protein Ran, testis-specific isoform

Rassf10 5 1 40.73 0.2079 1.25 PBS Ras association domain-containing protein 10

Rassf2 8 2 115.47 0.1209 1.63 Flu Ras association domain-containing protein 2

Rassf4 7 0 80.95 --- Ras association domain-containing protein 4

Raver1 16 6 233.84 0.0092 1.46 Flu Ribonucleoprotein PTB-binding 1

Rb1cc1 22 2 150.88 0.0161 2.42 Flu RB1-inducible coiled-coil protein 1 (Fragment)

Rbbp4 12 0 281.15 --- Histone-binding protein RBBP4

Rbbp7 14 3 284.04 0.0886 1.21 Flu Histone-binding protein RBBP7

Rbbp7 5 0 59.76 --- Histone-binding protein RBBP7 (Fragment)

Rbm10 14 3 76.58 0.3778 1.26 Flu RNA-binding protein 10

Rbm14 11 3 255.45 0.1245 2.26 Flu RNA-binding protein 14

Rbm15 17 3 136.46 0.2072 1.52 Flu Protein Rbm15

Rbm17 11 2 58.1 0.1359 1.11 PBS Splicing factor 45

Rbm22 5 2 78.43 0.2839 1.81 Flu Pre-mRNA-splicing factor RBM22

Rbm25 9 1 112.03 0.3245 1.71 Flu RNA-binding protein 25

Rbm26 9 1 100.24 0.1783 1.40 PBS RNA-binding protein 26

Rbm3 2 1 40.6 0.1717 1.42 Flu RNA-binding protein 3

Rbm31y 5 0 58.8 --- MCG53108

Rbm39 12 2 264.5 0.0054 1.61 Flu RNA-binding protein 39

Rbm39 9 0 230.02 --- RNA-binding protein 39 (Fragment)

Rbm45 9 1 55.97 0.1708 1.55 Flu RNA-binding protein 45

Rbm7 3 2 64.02 0.0449 1.40 Flu RNA-binding protein 7

Rbms1 4 1 83.24 0.2188 1.96 Flu RNA-binding motif, single-stranded-interacting protein 1

Rbms3 3 0 45.03 --- RNA-binding motif, single-stranded-interacting protein 3 (Fragment)

Rbmx 17 1 559.5 0.4588 1.07 PBS RNA binding motif protein, X chromosome, isoform CRA_b

Rbmxl1 13 2 521 0.3377 1.50 Flu RNA binding motif protein, X-linked-like-1

Rbp1 2 1 81.98 0.9283 1.10 Flu Retinol-binding protein 1

Rbsn 8 1 52.72 0.9107 1.06 PBS Rabenosyn-5

Rcc1 5 2 102.32 0.1920 1.26 Flu Regulator of chromosome condensation

Rcc2 12 2 353.08 0.1710 1.67 Flu Protein RCC2

Rcn1 2 2 42.7 0.0249 1.85 Flu Reticulocalbin-1

Rdh11 7 2 173.3 0.1754 1.21 PBS Retinol dehydrogenase 11

Rdh14 3 1 43.67 0.2599 1.23 PBS Retinol dehydrogenase 14

Rdx 52 10 2715.02 0.0902 1.21 PBS Radixin

Reep5 10 3 316 0.7702 1.02 PBS Receptor expression-enhancing protein

Reep6 3 1 36.94 0.4368 1.13 Flu Receptor expression-enhancing protein 6

Rela 3 2 50.94 0.1689 1.24 Flu Transcription factor p65

Reps1 6 2 57.84 0.0471 1.80 PBS RalBP1-associated Eps domain-containing protein 1 (Fragment)

Reps1 5 1 87.04 0.3358 1.20 Flu RalBP1-associated Eps domain-containing protein 1

Reps2 8 1 42.93 0.3572 1.21 PBS RalBP1-associated Eps domain-containing protein 2

Rer1 2 0 56.21 --- Protein RER1

Retnla 2 1 57.6 0.0099 17.75 Flu Resistin-like alpha

Rfc1 13 1 86.72 0.1364 2.03 Flu Replication factor C subunit 1

Rhbdf2 6 2 46.14 0.0977 1.41 PBS Inactive rhomboid protein 2

Rheb 4 1 91.57 0.2830 1.40 PBS GTP-binding protein Rheb

Rhoa 13 3 723.3 0.2040 1.32 PBS Transforming protein RhoA

Rhob 5 0 206.98 --- Ras homolog gene family, member B

Rhog 11 7 504.59 0.4534 1.09 Flu Rho-related GTP-binding protein RhoG

Rhoj 4 0 66.7 --- Rho-related GTP-binding protein RhoJ

Rhot1 12 2 191.24 0.3861 1.18 PBS Mitochondrial Rho GTPase 1

Rhot1 9 0 116.41 --- Mitochondrial Rho GTPase 1 (Fragment)

Rilp 6 0 63.11 --- Rab interacting lysosomal protein

Rnaset2 4 0 61.52 --- Ribonuclease T2

Rnf213 65 12 650.91 0.7841 1.03 PBS E3 ubiquitin-protein ligase RNF213

Rnh1 17 10 979.61 0.0609 1.40 Flu Ribonuclease inhibitor

Rnmt 5 0 24.2 --- mRNA cap guanine-N7 methyltransferase

Rnmtl1 5 0 46.91 --- rRNA methyltransferase 3, mitochondrial

Rnpep 15 7 465.03 0.0074 1.48 Flu Aminopeptidase B

Rnps1 8 2 84.48 0.5414 1.04 Flu RNA-binding protein with serine-rich domain 1

Rock1 24 7 477.74 0.6964 1.04 Flu Rho-associated protein kinase 1

Rock2 35 8 607.95 0.0773 1.52 PBS Rho-associated protein kinase

Rp2 3 1 68.02 0.1836 1.34 PBS Protein XRP2

Rpa1 9 4 109.12 0.0746 1.71 Flu Replication protein A 70 kDa DNA-binding subunit

Rpe 1 1 26.11 0.8588 1.02 Flu Ribulose-phosphate 3-epimerase

Rpl10 7 2 269.42 0.0001 1.99 Flu 60S ribosomal protein L10

Rpl10 4 0 62.44 --- 60S ribosomal protein L10 (Fragment)

Rpl10a 16 1 430.68 0.7890 1.02 Flu Ribosomal protein

Rpl10a 17 0 380.26 --- 60S ribosomal protein L10a

Rpl12 12 6 610.12 0.0309 1.28 Flu 60S ribosomal protein L12

Rpl13 12 4 291.47 0.0147 1.90 Flu 60S ribosomal protein L13

Rpl13a 11 1 133.01 0.4723 1.25 Flu 60S ribosomal protein L13a

Rpl14 10 2 278.13 0.0488 1.64 Flu 60S ribosomal protein L14

Rpl15 7 1 217.11 0.1704 2.89 Flu Ribosomal protein L15

Rpl15 5 0 133.48 --- Ribosomal protein L15 (Fragment)

Rpl17 4 2 168.12 0.2970 2.06 Flu 60S ribosomal protein L17

Rpl18 7 1 134.01 0.0267 1.57 Flu 60S ribosomal protein L18 (Fragment)

Rpl18 11 0 394.33 --- 60S ribosomal protein L18

Rpl18 7 0 84.95 --- 60S ribosomal protein L18 (Fragment)

Rpl18 10 0 264.14 --- 60S ribosomal protein L18

Rpl18a 6 1 71.41 0.2808 1.82 Flu 60S ribosomal protein L18a

Rpl19 8 2 208.75 0.0128 1.75 Flu Ribosomal protein L19

Rpl21 6 3 184.29 0.0158 1.78 Flu 60S ribosomal protein L21

Rpl22 10 5 320.61 0.0498 2.17 Flu 60S ribosomal protein L22

Rpl23 7 2 153.15 0.0508 1.75 Flu 60S ribosomal protein L23

Rpl23 2 0 83.31 --- 60S ribosomal protein L23 (Fragment)

Rpl23a 9 2 132.65 0.0199 2.60 Flu 60S ribosomal protein L23a

Rpl24 11 2 141.57 0.0249 1.56 Flu 60S ribosomal protein L24

Rpl26 10 2 181.5 0.0585 2.43 Flu 60S ribosomal protein L26 (Fragment)

Rpl27 9 4 128.91 0.2436 1.39 Flu 60S ribosomal protein L27

Rpl27a 6 1 202.74 0.0158 1.80 Flu 60S ribosomal protein L27a

Rpl28 6 0 103.09 --- 60S ribosomal protein L28

Rpl3 14 3 501.42 0.0873 1.84 Flu 60S ribosomal protein L3

Rpl3 6 1 120.74 0.1846 1.23 PBS 60S ribosomal protein L3

Rpl30 4 2 274.91 0.5811 1.20 Flu 60S ribosomal protein L30

Rpl32 9 3 171.31 0.1989 1.85 Flu 60S ribosomal protein L32

Rpl32-ps 5 1 80.11 0.4267 1.19 Flu Putative 60S ribosomal protein L32'

Rpl34 3 2 56.58 0.0459 1.56 Flu 60S ribosomal protein L34

Rpl35 2 1 100.6 0.0835 2.33 Flu 60S ribosomal protein L35

Rpl35a 4 2 36.79 0.2244 1.18 Flu 60S ribosomal protein L35a

Rpl36a 1 1 25.59 0.2080 2.37 Flu 60S ribosomal protein L36a

Rpl38 2 1 26.83 0.1565 1.52 Flu 60S ribosomal protein L38

Rpl3l 4 0 69.04 --- Protein Rpl3l

Rpl4 24 11 575.74 0.0271 1.88 Flu 60S ribosomal protein L4

Rpl5 22 12 911.56 0.1220 1.47 Flu 60S ribosomal protein L5

Rpl6 12 0 445.12 --- 60S ribosomal protein L6

Rpl6 3 0 108.91 --- 60S ribosomal protein L6 (Fragment)

Rpl7 18 5 362.37 0.1184 2.08 Flu 60S ribosomal protein L7

Rpl7a 10 2 358.53 0.0200 2.10 Flu 60S ribosomal protein L7a

Rpl8 10 5 251.34 0.0894 2.15 Flu 60S ribosomal protein L8

Rpl9 9 1 181.39 0.0272 4.31 Flu 60S ribosomal protein L9 (Fragment)

Rpl9 9 1 347.4 0.0572 1.50 Flu 60S ribosomal protein L9

Rpl9 10 0 307.84 --- 60S ribosomal protein L9 (Fragment)

Rpl9-ps1 5 1 89.48 0.0836 1.64 Flu MCG50795

Rplp0 13 3 450.8 0.0201 1.19 Flu 60S acidic ribosomal protein P0

Rplp0 8 0 304.16 --- 60S acidic ribosomal protein P0 (Fragment)

Rplp1 2 2 49.69 0.0031 1.47 Flu 60S acidic ribosomal protein P1

Rplp2 3 2 89.27 0.0009 1.56 Flu 60S acidic ribosomal protein P2

Rpn1 32 18 1540.01 0.1879 1.25 Flu Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1

Rpn2 16 10 912.22 0.1302 1.38 Flu Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 2

Rprd1a 4 0 54.72 --- Regulation of nuclear pre-mRNA domain-containing protein 1A

Rprd1b 8 1 234.02 0.6596 1.11 PBS Regulation of nuclear pre-mRNA domain-containing protein 1B

Rprd1b 3 0 97.69 --- Regulation of nuclear pre-mRNA domain-containing protein 1B (Fragment)

Rprd1b 10 0 220.55 --- Regulation of nuclear pre-mRNA domain-containing protein 1B (Fragment)

Rps10 12 6 228.09 0.0009 1.76 Flu 40S ribosomal protein S10

Rps11 12 1 321.98 0.8181 1.02 PBS 40S ribosomal protein S11

Rps12 9 3 342.03 0.2832 1.23 Flu 40S ribosomal protein S12

Rps13 6 4 177.73 0.0434 1.64 Flu 40S ribosomal protein S13

Rps14 7 4 316.16 0.0237 1.83 Flu 40S ribosomal protein S14

Rps15a 11 2 284.6 0.0257 1.49 Flu 40S ribosomal protein S15a

Rps16 13 7 431.35 0.0241 1.44 Flu 40S ribosomal protein S16

Rps17 6 3 307.13 0.0032 1.47 Flu 40S ribosomal protein S17

Rps19 13 4 280.98 0.0053 2.19 Flu 40S ribosomal protein S19

Rps2 14 0 310.21 --- 40S ribosomal protein S2 (Fragment)

Rps20 9 0 191 --- 40S ribosomal protein S20

Rps21 4 0 53.99 --- 40S ribosomal protein S21

Rps23 5 3 88.08 0.2127 1.09 Flu 40S ribosomal protein S23

Rps24 9 2 172.23 0.0014 1.89 Flu 40S ribosomal protein S24

Rps25 2 1 88.61 0.2255 1.31 Flu 40S ribosomal protein S25

Rps26 5 2 77.48 0.5433 1.16 PBS 40S ribosomal protein S26

Rps27 4 2 108.31 0.3128 1.13 Flu 40S ribosomal protein S27

Rps27a 13 1 499.52 0.7057 1.01 PBS Ubiquitin-40S ribosomal protein S27a

Rps29 1 1 28.99 0.1560 2.53 Flu 40S ribosomal protein S29

Rps3 27 9 971.49 0.1335 1.37 Flu 40S ribosomal protein S3

Rps3a 28 8 833.98 0.0656 1.31 Flu 40S ribosomal protein S3a

Rps4l 11 0 408.2 --- 40S ribosomal protein S4

Rps4x 19 3 632.74 0.0075 1.53 Flu 40S ribosomal protein S4, X isoform

Rps5 8 0 295.71 --- 40S ribosomal protein S5 (Fragment)

Rps6 11 2 327.18 0.0144 2.00 Flu 40S ribosomal protein S6

Rps6ka1 15 4 194.75 0.0922 1.16 Flu Ribosomal protein S6 kinase

Rps6ka2 11 2 102.83 0.9989 1.03 PBS Ribosomal protein S6 kinase alpha-2

Rps6ka3 19 6 301.06 0.0115 1.71 Flu Ribosomal protein S6 kinase alpha-3

Rps6ka6 10 1 133.73 0.2558 1.74 Flu Ribosomal protein S6 kinase

Rps7 13 7 508.97 0.0032 1.76 Flu 40S ribosomal protein S7

Rps8 12 8 365.32 0.0748 1.72 Flu 40S ribosomal protein S8

Rps9 14 6 231.15 0.0733 1.85 Flu 40S ribosomal protein S9

Rpsa 15 6 676.37 0.0119 1.60 Flu 40S ribosomal protein SA

Rragc 7 2 89.21 0.1344 1.50 PBS Ras-related GTP-binding protein C

Rras 13 4 414.69 0.2608 1.20 PBS Harvey rat sarcoma oncogene, subgroup R

Rras2 10 3 357.68 0.7153 1.02 Flu Ras-related protein R-Ras2

Rrbp1 72 30 2221.44 0.0510 1.85 Flu Ribosome-binding protein 1

Rsl1d1 4 1 35.05 0.3577 1.31 Flu Ribosomal L1 domain-containing protein 1

Rsu1 15 8 554.8 0.1805 1.32 PBS Ras suppressor protein 1

Rsu1 3 1 34.84 0.2989 1.53 Flu Ras suppressor protein 1 (Fragment)

RtcA 2 1 31.54 0.2522 1.35 PBS RNA 3'-terminal phosphate cyclase

Rtcb 12 5 320.42 0.0456 1.48 Flu tRNA-splicing ligase RtcB homolog

Rtkn2 8 2 103.16 0.2583 1.29 PBS Rhotekin-2

Rtn1 2 0 46.71 --- Reticulon (Fragment)

Rtn2 2 1 21.96 0.3417 1.30 PBS Reticulon-2

Rtn3 18 2 311 0.4344 1.21 Flu Reticulon-3

Rtn4 18 6 491.1 0.0144 1.26 Flu Reticulon-4

Rttn 9 2 68.24 0.0808 1.41 Flu Rotatin

Ruvbl1 14 10 393.36 0.0152 1.26 Flu RuvB-like 1

Ruvbl2 14 7 415.97 0.0228 1.23 Flu RuvB-like 2

S100a10 6 2 146.59 0.2981 1.31 PBS Protein S100-A10

S100a11 7 2 220.12 0.1240 1.59 Flu Protein S100-A11

S100a4 2 1 32.8 0.1655 2.77 Flu Protein S100-A4 (Fragment)

S100a6 1 0 28.37 --- Protein S100-A6

S100a8 4 4 298.94 0.2004 1.31 PBS Protein S100-A8

S100a9 10 2 251.71 0.0322 1.51 PBS Protein S100-A9

Sacm1l 23 13 572.87 0.5359 1.05 PBS Phosphatidylinositide phosphatase SAC1

Sae1 7 3 118.09 0.0398 1.62 Flu SUMO-activating enzyme subunit 1

Safb 16 1 155.16 0.5085 2.00 Flu Scaffold attachment factor B1

Safb2 11 1 89.27 0.2939 1.50 Flu Scaffold attachment factor B2

Samhd1 38 2 1369.99 0.0126 2.74 Flu Deoxynucleoside triphosphate triphosphohydrolase SAMHD1

Samhd1 37 2 1389.62 0.0853 1.35 Flu Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 (Fragment)

Samhd1 32 0 1186.18 --- Deoxynucleoside triphosphate triphosphohydrolase SAMHD1

Samhd1 4 0 99.39 --- Deoxynucleoside triphosphate triphosphohydrolase SAMHD1

Samm50 9 2 71.05 0.2783 1.30 PBS Sorting and assembly machinery component 50 homolog

Sar1a 7 1 136.41 0.1901 1.20 Flu GTP-binding protein SAR1a

Sar1b 4 0 112.22 --- GTP-binding protein SAR1b

Sardh 6 3 87.69 0.1487 1.28 PBS Sarcosine dehydrogenase, mitochondrial

Sarg 13 3 110.28 0.8255 1.02 PBS Specifically androgen-regulated gene protein

Sarnp 4 1 57.66 0.3494 1.29 Flu SAP domain-containing ribonucleoprotein

Sars 15 5 304.69 0.0156 1.34 Flu Serine--tRNA ligase, cytoplasmic

Sars2 5 0 27.26 --- Serine--tRNA ligase, mitochondrial

Sart1 12 5 180.06 0.0665 1.66 Flu U4/U6.U5 tri-snRNP-associated protein 1

Sart3 20 4 242.71 0.3983 1.21 Flu Squamous cell carcinoma antigen recognized by T-cells 3

Sbds 8 1 133.41 0.9040 1.00 PBS Ribosome maturation protein SBDS

Scaf4 10 2 108.01 0.6888 1.07 Flu Protein Scaf4

Scamp1 2 2 145.73 0.8288 1.04 Flu Secretory carrier-associated membrane protein 1

Scamp2 2 1 164.7 0.0657 1.36 Flu Secretory carrier-associated membrane protein 2

Scamp3 8 5 333.04 0.1557 1.27 Flu Secretory carrier-associated membrane protein 3

Scarb2 8 4 211.38 0.1362 1.43 Flu Lysosome membrane protein 2

Scfd1 16 8 432.62 0.0658 1.45 Flu Sec1 family domain-containing protein 1

Scfd2 5 3 73.92 0.0139 1.54 Flu Sec1 family domain-containing protein 2

Scgb1a1 5 1 109.21 0.5779 1.09 PBS Uteroglobin

Scly 6 2 40.56 0.6084 1.08 PBS Selenocysteine lyase

Scn2a1 2 0 33.97 --- Protein Scn2a1 (Fragment)

Scn7a 21 11 493.42 0.0249 1.41 PBS Sodium channel protein

Scp2 11 5 358.24 0.2080 1.28 Flu Non-specific lipid-transfer protein

Scrib 15 0 144.09 --- Protein scribble homolog (Fragment)

Scrib 24 0 286.67 --- Protein scribble homolog

Scrn1 7 1 47.86 0.2186 1.44 PBS Secernin-1

Scrn2 6 5 63.06 0.5125 1.08 PBS Secernin-2

Sdf2l1 3 2 80.37 0.0410 1.87 Flu Stromal cell-derived factor 2-like protein 1

Sdha 32 19 1358.69 0.5555 1.08 Flu Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial

Sdhb 13 4 321.94 0.9413 1.01 Flu Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial

Sdhc 6 2 113.08 0.4690 1.16 Flu Succinate dehydrogenase cytochrome b560 subunit, mitochondrial

Sdpr 23 12 1206.71 0.3324 1.21 PBS Serum deprivation-response protein

Sdr39u1 5 3 58.28 0.0282 1.42 PBS Epimerase family protein SDR39U1

Sec11a 7 1 141.08 0.2020 1.23 Flu Signal peptidase complex catalytic subunit SEC11

Sec13 5 2 95.46 0.0446 1.17 Flu Protein SEC13 homolog

Sec14l2 6 2 154.04 0.3052 1.21 PBS SEC14-like protein 2

Sec14l3 35 14 1658.12 0.4397 1.16 PBS MCG140354

Sec14l4 6 2 67.58 0.3543 1.24 PBS SEC14-like protein 4

Sec16a 14 3 73.5 0.1077 1.51 Flu Protein Sec16a

Sec22b 5 2 191.91 0.0003 1.43 Flu Vesicle-trafficking protein SEC22b

Sec23a 19 12 375.69 0.5715 1.06 Flu Protein transport protein Sec23A

Sec23b 17 9 344.69 0.0531 1.89 Flu Protein transport protein Sec23B

Sec23ip 15 3 152.54 0.0085 1.61 Flu SEC23-interacting protein

Sec24b 13 3 85.95 0.0154 1.72 Flu Protein Sec24b

Sec24c 17 7 320.35 0.1204 1.38 Flu Protein Sec24c

Sec24d 8 1 83.5 0.1678 1.85 Flu Protein Sec24d

Sec31a 24 1 642.24 0.4162 1.16 PBS Protein transport protein Sec31A (Fragment)

Sec31a 29 0 829.75 --- Protein transport protein Sec31A

Sec31a 6 0 172.85 --- Protein transport protein Sec31A (Fragment)

Sec31a 5 0 79.51 --- Protein transport protein Sec31A (Fragment)

Sec31b 15 2 165.07 0.1770 1.78 Flu Protein transport protein Sec31B

Sec61a1 10 3 247.82 0.3654 1.29 Flu Protein transport protein Sec61 subunit alpha isoform 1

Sec61a2 6 0 99.84 --- Protein transport protein Sec61 subunit alpha isoform 2

Sec61b 7 2 118.95 0.1866 2.16 Flu Protein transport protein Sec61 subunit beta

Sec62 7 1 165.83 0.3304 1.77 Flu Translocation protein SEC62

Sec63 7 2 51.85 0.5368 1.13 Flu Translocation protein SEC63 homolog

Secisbp2 10 4 49.81 0.8521 1.18 PBS MCG1271

Secisbp2l 8 2 39.62 0.0771 1.53 Flu Selenocysteine insertion sequence-binding protein 2-like

Sel1l 5 2 97.21 0.0244 1.85 Flu Protein sel-1 homolog 1

Selenbp1 52 23 2685.55 0.2754 1.27 PBS Selenium-binding protein 1

Selenbp2 12 0 575.92 --- Selenium-binding protein 2 (Fragment)

Selo 5 0 26.81 --- RIKEN cDNA 1300018J18, isoform CRA_b

Sephs1 2 2 94.11 0.0031 1.42 Flu Selenide, water dikinase 1

Sept10 5 2 158.62 0.4076 1.18 PBS Septin-10

Sept11 19 5 886.67 0.0676 1.06 PBS Septin-11

Sept11 7 0 240.28 --- Septin-11 (Fragment)

Sept14 5 1 118.08 0.2931 1.56 Flu Septin-14

Sept2 17 2 678.66 0.1702 1.12 Flu Septin-2

Sept2 4 0 46.24 --- Septin-2 (Fragment)

Sept2 16 0 610.06 --- Septin-2

Sept4 15 2 433.16 0.5976 1.12 PBS Septin-4

Sept4 11 1 268.22 0.6763 1.14 PBS Septin-4 (Fragment)

Sept5 4 0 42.75 --- Septin-5

Sept6 8 1 272.81 0.1620 2.30 Flu Septin-6

Sept7 23 12 1261.65 0.9454 1.01 Flu Septin-7

Sept8 12 4 572.54 0.0939 1.11 PBS Septin-8

Sept9 35 15 704.74 0.7553 1.04 PBS Septin-9

Serbp1 10 4 237.82 0.0063 1.68 Flu Plasminogen activator inhibitor 1 RNA-binding protein

Serinc3 2 1 39.66 0.3969 1.42 Flu Serine incorporator 3

Serpina1a 14 1 735.59 0.0081 3.67 Flu Alpha-1-antitrypsin 1-1

Serpina1b 16 4 746.2 0.0799 2.31 Flu Alpha-1-antitrypsin 1-2

Serpina1c 14 0 713.89 --- Alpha-1-antitrypsin 1-3

Serpina1d 13 3 753.26 0.0297 2.32 Flu Alpha-1-antitrypsin 1-4

Serpina3f 8 1 92.47 0.2621 1.29 Flu Serine protease inhibitor A3F

Serpina3g 4 0 101.21 --- Serine protease inhibitor A3G (Fragment)

Serpina3k 10 2 297.85 0.1093 1.60 Flu Serine protease inhibitor A3K

Serpina3m 10 1 243.02 0.4775 1.07 PBS Serine protease inhibitor A3M

Serpinb1a 16 6 551.23 0.0721 1.14 Flu Leukocyte elastase inhibitor A

Serpinb1b 7 0 131.96 --- Leukocyte elastase inhibitor B

Serpinb1c 4 0 68.08 --- Leukocyte elastase inhibitor C

Serpinb3c 7 0 91.09 --- Protein Serpinb3c

Serpinb6a 25 11 907.9 0.6346 1.05 Flu Serine (Or cysteine) peptidase inhibitor, clade B, member 6a, isoform CRA_a

Serpinb6b 15 6 536.75 0.0703 1.25 Flu NK13

Serpinb6c 4 0 121.67 --- Protein Serpinb6c

Serpinb6e 4 0 47.85 --- Protein Serpinb6e

Serpinb9 13 4 643.49 0.0071 1.73 Flu Protein Serpinb9

Serpinb9b 5 0 108.2 --- Protein Serpinb9b

Serpinb9c 2 0 43.04 --- Protein Serpinb9c

Serpinc1 20 10 679.12 0.0104 1.22 Flu Antithrombin-III

Serpinc1 5 0 116.93 --- Antithrombin-III

Serpine2 6 1 45.46 0.0191 2.26 Flu Glia-derived nexin (Fragment)

Serpine2 6 2 125.29 0.4192 1.13 Flu Glia-derived nexin (Fragment)

Serpinf1 2 1 49.08 0.0028 3.23 Flu Pigment epithelium-derived factor (Fragment)

Serpinf2 8 3 113.17 0.0283 2.20 Flu Alpha-2-antiplasmin

Serping1 8 3 147.16 0.0470 1.33 Flu Plasma protease C1 inhibitor

Serpinh1 21 8 997.7 0.0996 1.58 Flu Serpin H1

Set 5 2 96.7 0.2150 1.52 Flu Protein SET

Sf1 8 2 101.97 0.0038 1.35 Flu Splicing factor 1

Sf3a1 29 13 579.4 0.0325 1.52 Flu Splicing factor 3A subunit 1

Sf3a2 9 3 172.03 0.1577 1.31 Flu Splicing factor 3A subunit 2

Sf3a3 10 3 237.85 0.0054 1.41 Flu Splicing factor 3A subunit 3

Sf3b1 40 22 956.2 0.0218 1.28 Flu Splicing factor 3B subunit 1

Sf3b2 31 12 577.23 0.0402 1.46 Flu Protein Sf3b2

Sf3b3 30 18 901.48 0.2260 1.23 Flu Splicing factor 3B subunit 3

Sf3b4 4 2 74.89 0.0262 2.01 PBS Splicing factor 3B subunit 4

Sf3b6 3 1 90.5 0.2415 1.16 Flu Splicing factor 3B subunit 6

Sfn 6 1 291.33 0.1086 19.04 Flu 14-3-3 protein sigma

Sfpq 30 18 1105.97 0.1665 1.35 Flu Splicing factor, proline- and glutamine-rich

Sftpa1 5 3 224.74 0.9619 1.01 Flu Pulmonary surfactant-associated protein A

Sftpb 9 8 308.1 0.9310 1.03 PBS Pulmonary surfactant-associated protein B

Sftpc 12 9 402.28 0.1615 1.27 Flu Pulmonary surfactant-associated protein C

Sftpd 15 4 415.77 0.0216 3.08 Flu Pulmonary surfactant-associated protein D

Sfxn1 7 2 223.58 0.0173 1.29 Flu Sideroflexin-1

Sfxn3 11 6 435.18 0.2688 1.11 PBS Sideroflexin-3

Sgcb 3 2 40.93 0.1832 1.34 PBS Beta-sarcoglycan

Sgcd 11 1 181.9 0.0892 1.61 PBS Delta-sarcoglycan

Sgce 2 1 7.79 0.7585 1.13 Flu Epsilon-sarcoglycan

Sgpl1 21 4 303.63 0.1367 1.68 Flu Sphingosine-1-phosphate lyase 1

Sgsh 2 0 54.39 --- Heparan N-sulfatase

Sgta 2 1 40.4 0.6390 1.24 PBS Small glutamine-rich tetratricopeptide repeat-containing protein alpha

Sh3bgrl 3 2 103.97 0.1466 1.46 Flu SH3 domain-binding glutamic acid-rich-like protein

Sh3bgrl3 4 1 134.22 0.0064 1.54 Flu SH3 domain-binding glutamic acid-rich-like protein 3

Sh3bp1 13 4 220.6 0.0352 1.73 Flu SH3 domain-binding protein 1

Sh3gl1 11 4 84.6 0.3862 1.16 Flu Endophilin-A2

Sh3glb1 6 2 182.26 0.4892 1.17 Flu Endophilin-B1

Sh3glb2 8 4 114.26 0.0034 1.53 Flu Endophilin-B2

Sh3kbp1 12 3 83.64 0.1026 1.59 PBS SH3 domain-containing kinase-binding protein 1

Shank3 39 14 595.71 0.1554 1.31 PBS SH3 and multiple ankyrin repeat domains protein 3

Shc2 6 2 39.69 0.6955 1.12 Flu SHC-transforming protein 2

Shmt1 3 0 71.59 --- Serine hydroxymethyltransferase (Fragment)

Shmt2 18 6 338.82 0.1295 1.37 Flu Serine hydroxymethyltransferase

Sin3a 10 2 53.46 0.8024 1.04 Flu Paired amphipathic helix protein Sin3a

Sirpa 7 1 47.83 0.0045 1.38 Flu Tyrosine-protein phosphatase non-receptor type substrate 1

Sirt2 7 4 150.41 0.0568 1.42 Flu NAD-dependent protein deacetylase sirtuin-2

Skiv2l 15 4 103.38 0.1779 1.24 Flu Protein Skiv2l

Skiv2l2 18 6 200.61 0.0622 1.29 Flu Superkiller viralicidic activity 2-like 2

Skt 35 3 205.66 0.0891 1.34 PBS Sickle tail protein

Slc12a2 20 8 266.81 0.6782 1.07 Flu Solute carrier family 12 member 2

Slc12a4 10 4 62.82 0.0683 1.61 PBS Solute carrier family 12 member 4

Slc12a9 7 4 42.98 0.0614 1.14 Flu Solute carrier family 12 member 9

Slc16a1 9 3 165.82 0.5276 1.11 Flu Monocarboxylate transporter 1

Slc1a4 1 1 66.04 0.1855 1.21 PBS Neutral amino acid transporter A

Slc1a5 5 1 56.47 0.3302 1.54 Flu Neutral amino acid transporter B(0)

Slc1a5 7 2 282.7 0.4635 1.10 PBS Amino acid transporter

Slc23a2 4 2 45.84 0.6339 1.10 PBS Solute carrier family 23 member 2

Slc25a1 13 3 273.73 0.5264 1.12 Flu Tricarboxylate transport protein, mitochondrial

Slc25a1 11 0 126.95 --- Tricarboxylate transport protein, mitochondrial (Fragment)

Slc25a10 11 4 462.86 0.9462 1.00 PBS Mitochondrial dicarboxylate carrier

Slc25a11 18 1 525.29 0.2067 1.50 Flu Mitochondrial 2-oxoglutarate/malate carrier protein

Slc25a11 13 0 419.69 --- Mitochondrial 2-oxoglutarate/malate carrier protein (Fragment)

Slc25a12 28 12 1098.97 0.8378 1.01 Flu Calcium-binding mitochondrial carrier protein Aralar1

Slc25a13 13 5 322.86 0.1746 1.42 Flu Calcium-binding mitochondrial carrier protein Aralar2

Slc25a20 16 5 144.56 0.2983 1.21 PBS Mitochondrial carnitine/acylcarnitine carrier protein

Slc25a22 7 1 92.74 0.2340 1.22 Flu Mitochondrial glutamate carrier 1 (Fragment)

Slc25a24 16 8 467.68 0.7154 1.03 PBS Calcium-binding mitochondrial carrier protein SCaMC-1

Slc25a3 20 11 830.06 0.5936 1.04 PBS Phosphate carrier protein, mitochondrial

Slc25a31 9 0 236.69 --- ADP/ATP translocase 4

Slc25a35 4 1 125.91 0.4040 1.09 PBS Solute carrier family 25 member 35

Slc25a4 27 7 1303.57 0.1070 1.38 PBS ADP/ATP translocase 1

Slc25a5 27 5 1443.42 0.6219 1.05 PBS ADP/ATP translocase 2

Slc25a51 6 2 61.35 0.0227 2.21 Flu Solute carrier family 25 member 51

Slc27a3 8 1 57.93 0.4253 1.14 PBS Long-chain fatty acid transport protein 3 (Fragment)

Slc27a4 10 4 139.83 0.4618 1.13 PBS Long-chain fatty acid transport protein 4

Slc29a1 5 2 150.17 0.0011 1.34 PBS Equilibrative nucleoside transporter 1

Slc2a1 4 0 56.21 --- Solute carrier family 2, facilitated glucose transporter member 1

Slc30a7 7 2 91.89 0.6556 1.03 PBS Zinc transporter 7

Slc34a2 9 3 185.37 0.3037 1.65 Flu Sodium-dependent phosphate transport protein 2B

Slc35a1 2 0 32.14 --- CMP-sialic acid transporter (Fragment)

Slc35f3 3 1 24.48 0.0442 1.34 Flu Putative thiamine transporter SLC35F3

Slc35f6 1 1 14.06 0.0182 1.55 Flu Solute carrier family 35 member F6

Slc38a9 1 0 23.54 --- Sodium-coupled neutral amino acid transporter 9

Slc39a4 2 2 122.97 0.0491 1.32 PBS Zinc transporter ZIP4

Slc39a7 4 2 44.98 0.4828 1.09 Flu Solute carrier family 39

Slc3a2 13 5 379.4 0.1054 1.23 Flu 4F2 cell-surface antigen heavy chain

Slc44a1 6 5 90.32 0.0220 1.44 PBS Choline transporter-like protein 1

Slc44a2 24 14 848.35 0.0281 1.56 PBS Choline transporter-like protein 2

Slc44a3 12 3 87.37 0.2683 1.32 Flu Choline transporter-like protein 3

Slc4a1 24 11 1049.06 0.0281 2.02 PBS Band 3 anion transport protein

Slc51a 3 2 32.19 0.4581 1.14 Flu Organic solute transporter subunit alpha

Slc6a14 4 2 138.38 0.6715 1.38 PBS Transporter

Slc9a1 11 3 79.91 0.7867 1.04 Flu Sodium/hydrogen exchanger

Slc9a3r1 6 2 111.86 0.1992 1.89 Flu Na(+)/H(+) exchange regulatory cofactor NHE-RF1

Slc9a3r2 23 9 775.61 0.3500 1.32 PBS Na(+)/H(+) exchange regulatory cofactor NHE-RF2

Slco2a1 12 6 326.91 0.0045 1.55 PBS Solute carrier organic anion transporter family member 2A1

Slfn5 11 3 111.57 0.1748 1.32 Flu Schlafen family member 5

Slit2 7 0 74.15 --- Slit homolog 2 protein

Slk 16 7 323.43 0.1910 1.09 Flu STE20-like serine/threonine-protein kinase

Slmap 14 2 180.19 0.5750 1.25 PBS Sarcolemmal membrane-associated protein

Slmap 10 0 80.29 --- Sarcolemmal membrane-associated protein (Fragment)

Slx4 15 2 99.97 0.4567 1.14 Flu Structure-specific endonuclease subunit SLX4

Smad5 7 1 51.14 0.6464 1.01 PBS Mothers against decapentaplegic homolog 5

Smap1 2 1 34.78 0.0482 1.33 Flu Stromal membrane-associated protein 1

Smarca1 14 0 146.44 --- Probable global transcription activator SNF2L1 (Fragment)

Smarca2 17 0 122.66 --- Probable global transcription activator SNF2L2

Smarca2 19 0 139.01 --- Probable global transcription activator SNF2L2

Smarca4 21 3 250.33 0.5215 1.06 Flu Transcription activator BRG1

Smarca5 21 7 378.9 0.2206 1.42 Flu SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5

Smarcb1 3 1 116.51 0.5139 1.14 Flu SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1

Smarcc1 19 2 265.37 0.9679 1.39 PBS SWI/SNF complex subunit SMARCC1

Smarcc2 21 5 651.36 0.4391 1.14 Flu SWI/SNF complex subunit SMARCC2

Smarcd1 8 0 66.68 --- SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1

Smarcd3 7 1 95.41 0.7026 1.11 Flu SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 3, isoform CRA_a

Smc1a 57 16 1099.09 0.4898 1.33 Flu Structural maintenance of chromosomes protein 1A

Smc2 19 1 155.48 0.9978 3.08 Flu Structural maintenance of chromosomes protein 2

Smc3 35 14 1065.09 0.5303 1.09 Flu Structural maintenance of chromosomes protein

Smc4 9 1 37.31 0.6073 9.14 Flu Structural maintenance of chromosomes protein 4

Smchd1 41 6 352.14 0.4811 1.15 Flu Structural maintenance of chromosomes flexible hinge domain-containing protein 1

Smpd2 3 1 27.02 0.1514 1.93 PBS Sphingomyelin phosphodiesterase 2

Smpdl3a 4 2 111.42 0.2581 1.20 Flu Acid sphingomyelinase-like phosphodiesterase 3a

Smtn 15 4 84.93 0.0489 2.06 Flu Smoothelin

Smu1 6 2 58.96 0.5016 1.19 Flu WD40 repeat-containing protein SMU1

Snap23 6 1 139.86 0.1306 1.30 Flu Synaptosomal-associated protein

Snap23 7 0 137.19 --- Synaptosomal-associated protein (Fragment)

Snap29 6 2 70.78 0.8455 1.03 Flu Synaptosomal-associated protein 29

Snap91 7 0 115.58 --- Clathrin coat assembly protein AP180

Snd1 41 24 1503.85 0.0286 1.65 Flu Staphylococcal nuclease domain-containing protein 1

Snd1 7 0 178.35 --- Staphylococcal nuclease domain-containing protein 1

Snrnp200 49 30 1485.17 0.3198 1.25 Flu U5 small nuclear ribonucleoprotein 200 kDa helicase

Snrnp40 10 4 105.71 0.0025 1.32 Flu U5 small nuclear ribonucleoprotein 40 kDa protein

Snrnp70 7 2 103.11 0.0259 1.38 Flu U1 small nuclear ribonucleoprotein 70 kDa

Snrpa 9 2 138.77 0.0076 1.54 Flu U1 small nuclear ribonucleoprotein A

Snrpa1 8 6 123.64 0.1465 1.13 Flu U2 small nuclear ribonucleoprotein A'

Snrpb 16 8 163.63 0.3931 1.13 Flu Small nuclear ribonucleoprotein-associated protein B

Snrpb2 2 0 40.54 --- U2 small nuclear ribonucleoprotein B'' (Fragment)

Snrpc 1 0 19.23 --- U1 small nuclear ribonucleoprotein C

Snrpd1 4 3 155.13 0.8915 1.08 Flu Small nuclear ribonucleoprotein Sm D1

Snrpd2 4 3 88.48 0.1430 1.17 Flu Small nuclear ribonucleoprotein Sm D2

Snrpd3 9 2 172.44 0.2478 1.27 Flu Small nuclear ribonucleoprotein Sm D3

Snrpe 4 2 86.71 0.0131 1.30 Flu Small nuclear ribonucleoprotein E

Snrpf 6 4 79.79 0.0166 1.73 PBS Small nuclear ribonucleoprotein F

Snrpg 3 1 74.93 0.0011 1.48 Flu Small nuclear ribonucleoprotein G

Sntb1 12 5 216.57 0.6702 1.07 PBS Beta-1-syntrophin

Sntb2 17 6 549.56 0.0231 1.56 PBS Beta-2-syntrophin

Snu13 2 1 61.24 0.3419 1.19 Flu NHP2-like protein 1

Snw1 15 6 102.33 0.1996 1.18 Flu SNW domain-containing protein 1

Snx1 16 5 497.44 0.0390 1.34 Flu Sorting nexin 1

Snx12 6 0 49.45 --- Sorting nexin-12

Snx18 6 2 57.27 0.1347 2.99 Flu Sorting nexin

Snx2 22 6 774.53 0.9102 1.17 PBS Sorting nexin-2

Snx27 8 3 125.67 0.5301 1.11 Flu Sorting nexin-27

Snx4 4 3 124.63 0.1866 1.65 Flu Sorting nexin-4

Snx5 13 5 235.97 0.0506 1.50 Flu Sorting nexin-5

Snx6 12 7 334.76 0.0174 1.23 Flu Sorting nexin-6

Snx7 5 1 62.49 0.8844 1.02 PBS Sorting nexin-7

Snx9 14 6 214.23 0.1183 1.24 PBS Sorting nexin-9

Soat1 7 4 201.95 0.0928 1.48 Flu Sterol O-acyltransferase 1

Sod1 10 4 464.91 0.6672 1.05 PBS Superoxide dismutase [Cu-Zn]

Sod2 8 4 473.97 0.4806 1.10 PBS Superoxide dismutase [Mn], mitochondrial

Sod3 9 6 473.67 0.3384 1.17 PBS Extracellular superoxide dismutase [Cu-Zn]

Soga3 22 1 122.77 0.0335 1.61 PBS Protein SOGA3

Son 13 1 57.12 0.4565 1.03 Flu Protein SON

Sorbs1 16 3 188.8 0.3730 1.15 PBS Sorbin and SH3 domain-containing protein 1

Sorbs1 11 0 147.13 --- Sorbin and SH3 domain-containing protein 1

Sorbs3 20 8 572.84 0.0774 1.50 PBS Vinexin

Sord 3 2 117.98 0.2707 1.24 PBS Sorbitol dehydrogenase

Sort1 15 4 310.51 0.5500 1.04 PBS Sortilin

Spag9 17 4 167.63 0.9262 1.03 Flu C-Jun-amino-terminal kinase-interacting protein 4

Sparc 5 5 130.3 0.0602 1.25 Flu SPARC

Sparcl1 5 4 158.02 0.0907 1.23 Flu SPARC-like protein 1

Spata5 14 0 84.78 --- Spermatogenesis-associated protein 5

Spcs1 1 0 29.72 --- Signal peptidase complex subunit 1

Spcs1 1 0 27.2 --- Signal peptidase complex subunit 1

Spcs2 10 3 345.55 0.1983 1.42 Flu Signal peptidase complex subunit 2

Spcs3 5 0 49.59 --- Signal peptidase complex subunit 3

Spon1 7 2 153.61 0.2847 1.35 Flu Spondin-1

Spr 11 3 353.46 0.6599 1.05 PBS Sepiapterin reductase

Spta1 17 3 127.99 0.2027 2.42 PBS Spectrin alpha chain, erythrocytic 1

Sptan1 204 0 11222.04 --- Spectrin alpha chain, non-erythrocytic 1

Sptan1 210 0 11277.7 --- Spectrin alpha chain, non-erythrocytic 1

Sptan1 210 0 11246.69 --- Spectrin alpha chain, non-erythrocytic 1

Sptb 28 2 577.29 0.4568 1.29 PBS Spectrin beta chain, erythrocytic

Sptbn1 183 83 9600.97 0.0963 1.29 PBS Spectrin beta chain, non-erythrocytic 1

Sptbn2 37 1 836.57 0.7529 1.16 PBS Protein Sptbn2

Sptbn4 31 2 348.13 0.4259 1.36 PBS Protein Sptbn4

Sptlc1 8 2 60.42 0.4147 1.20 Flu Serine palmitoyltransferase 1

Sptlc2 10 5 150.42 0.0087 1.79 Flu Serine palmitoyltransferase 2

Sqrdl 18 5 679.9 0.3234 1.15 PBS Sulfide:quinone oxidoreductase, mitochondrial

Sqrdl 7 0 213.15 --- Sulfide:quinone oxidoreductase, mitochondrial (Fragment)

Src 12 5 243.18 0.1216 1.29 PBS Tyrosine-protein kinase

Srd5a3 3 1 89.91 0.1732 1.56 Flu Polyprenol reductase

Sri 8 4 209.12 0.5476 1.09 PBS Sorcin

Srl 4 4 134.49 0.2506 1.29 PBS Sarcalumenin

Srm 3 1 52.82 0.0145 2.36 Flu Spermidine synthase

Srp19 1 1 42.84 0.2372 2.65 Flu Signal recognition particle 19 kDa protein

Srp54 9 3 111.1 0.0068 1.46 Flu Signal recognition particle 54 kDa protein

Srp68 16 6 447.98 0.0196 1.63 Flu Signal recognition particle subunit SRP68

Srp72 8 2 132 0.0733 1.26 Flu Signal recognition particle subunit SRP72

Srpr 10 3 238.91 0.0743 1.50 Flu Signal recognition particle receptor subunit alpha

Srrm1 44 9 379.26 0.5675 1.09 PBS Serine/arginine repetitive matrix protein 1

Srrm1 11 0 68.77 --- Serine/arginine repetitive matrix protein 1 (Fragment)

Srrm2 60 13 638.74 0.2223 1.52 Flu Serine/arginine repetitive matrix protein 2

Srrt 27 5 472.02 0.2120 1.36 Flu Serrate RNA effector molecule homolog

Srrt 10 1 66.41 0.2265 1.23 PBS Serrate RNA effector molecule homolog (Fragment)

Srrt 19 0 325.73 --- Serrate RNA effector molecule homolog (Fragment)

Srsf1 11 3 323.9 0.0549 1.20 Flu Serine/arginine-rich splicing factor 1

Srsf1 5 0 145.32 --- Serine/arginine-rich-splicing factor 1 (Fragment)

Srsf11 6 3 57.39 0.0445 1.55 Flu Protein Srsf11

Srsf2 8 2 157.89 0.0340 1.50 Flu Serine/arginine-rich splicing factor 2

Srsf3 4 2 200.42 0.0309 1.34 Flu Serine/arginine-rich splicing factor 3

Srsf4 7 1 92.69 0.4525 1.18 Flu Serine/arginine-rich-splicing factor 4

Srsf5 3 1 100.2 0.0697 1.62 Flu MCG7614, isoform CRA_c

Srsf6 8 2 198.63 0.1565 1.35 PBS Serine/arginine-rich splicing factor 6

Srsf7 5 1 191.36 0.1171 1.28 Flu Serine/arginine-rich splicing factor 7

Ssb 19 7 432.28 0.0484 1.21 Flu Lupus La protein homolog

Ssbp1 2 2 63.55 0.2693 1.15 Flu Single-stranded DNA-binding protein, mitochondrial

Ssr1 2 1 38.61 0.1344 1.31 Flu Translocon-associated protein subunit alpha

Ssr3 3 2 99.9 0.0300 1.48 Flu Translocon-associated protein subunit gamma

Ssr4 5 1 177.26 0.0841 1.27 Flu Translocon-associated protein subunit delta

Ssrp1 15 4 132.25 0.2261 1.31 Flu FACT complex subunit SSRP1

St13 13 4 228.54 0.0713 1.29 Flu Hsc70-interacting protein

St13 9 0 169.16 --- Hsc70-interacting protein (Fragment)

Stag1 11 1 181.89 0.1866 1.49 PBS Cohesin subunit SA-1

Stag1 5 0 70.59 --- Cohesin subunit SA-1 (Fragment)

Stag2 14 4 207.65 0.0248 1.22 Flu Cohesin subunit SA-2

Stam 3 1 31.1 0.5467 1.14 PBS Signal transducing adapter molecule 1 (Fragment)

Stam2 3 0 71.21 --- Signal transducing adapter molecule 2

Stard3nl 4 1 36.91 0.2539 1.23 Flu MLN64 N-terminal domain homolog

Stat1 39 19 1146.64 0.0164 2.93 Flu Signal transducer and activator of transcription

Stat3 22 11 732.93 0.0134 1.57 Flu Signal transducer and activator of transcription 3

Stat5b 12 4 220.94 0.1190 1.24 Flu Signal transducer and activator of transcription 5B

Stat6 11 5 103.42 0.0562 1.40 Flu Signal transducer and transcription activator 6

Stau1 6 2 88.21 0.1650 1.13 Flu Double-stranded RNA-binding protein Staufen homolog 1

Stim1 12 3 180.02 0.4727 1.05 Flu Stromal interaction molecule 1

Stip1 26 8 694.4 0.0279 1.31 Flu Stress-induced-phosphoprotein 1

Stk10 11 2 154.69 0.1248 1.56 PBS Serine/threonine-protein kinase 10

Stk24 9 6 112.21 0.8670 1.02 Flu Mammalian sterile twenty 3 kinase

Stk3 7 1 168.18 0.2156 1.36 Flu Serine/threonine-protein kinase 3

Stk4 12 1 209.42 0.6976 1.00 PBS Serine/threonine-protein kinase 4

Stk4 10 0 83.84 --- Serine/threonine-protein kinase 4 (Fragment)

Stom 7 2 322.1 0.1507 1.48 PBS Erythrocyte band 7 integral membrane protein

Strap 12 4 271.75 0.0250 1.26 Flu Serine-threonine kinase receptor-associated protein

Strip1 12 8 123.08 0.0029 1.45 Flu Striatin-interacting protein 1

Strn 3 0 83.67 --- Striatin

Strn3 7 3 196.41 0.1906 1.20 PBS Striatin-3

Strn4 6 1 60.71 0.3610 1.11 PBS Striatin-4

Strn4 3 0 31.48 --- Striatin-4 (Fragment)

Sts 10 3 146.76 0.0865 1.31 Flu Steryl-sulfatase

Stt3a 14 7 410.21 0.0224 1.77 Flu Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit STT3A

Stt3b 10 5 239.08 0.5994 1.10 Flu Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit STT3B

Stx12 5 3 300.1 0.5933 1.06 PBS Syntaxin-12

Stx18 4 1 42.23 0.2622 1.28 Flu Syntaxin-18

Stx3 4 2 116.75 0.2193 1.28 PBS Syntaxin-3

Stx4 8 3 164.49 0.9947 1.02 Flu Syntaxin-4

Stx7 4 1 105.71 0.6825 1.03 PBS Syntaxin-7

Stx8 4 2 36.69 0.2572 1.21 PBS Syntaxin-8

Stxbp1 12 6 331.99 0.0965 1.24 PBS Syntaxin-binding protein 1

Stxbp2 26 12 500.77 0.7696 1.03 PBS Syntaxin-binding protein 2 (Fragment)

Stxbp3 18 7 397.27 0.1345 1.10 PBS Syntaxin-binding protein 3

Stxbp5l 10 2 85.04 0.5266 1.21 Flu Syntaxin-binding protein 5-like

Sub1 10 2 166.14 0.1198 2.31 Flu Activated RNA polymerase II transcriptional coactivator p15

Sucla2 24 9 779.77 0.4171 1.11 PBS Succinyl-CoA ligase [ADP-forming] subunit beta, mitochondrial

Suclg1 9 4 362.77 0.1659 1.24 PBS Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial

Suclg2 13 9 399.9 0.3878 1.15 PBS Succinyl-CoA ligase [GDP-forming] subunit beta, mitochondrial

Sugt1 7 3 114.08 0.0046 1.74 Flu Protein SGT1 homolog

Sumo1 2 0 25.45 --- Small ubiquitin-related modifier 1

Sun2 14 7 298.49 0.7558 1.02 PBS SUN domain-containing protein 2

Suox 5 3 72.93 0.1553 1.26 Flu Sulfite oxidase, mitochondrial

Supt16 19 5 155.06 0.0842 1.48 Flu FACT complex subunit SPT16

Supt5h 16 5 214.93 0.0036 1.43 Flu Transcription elongation factor SPT5

Supt6h 19 4 197.6 0.5167 1.08 PBS Transcription elongation factor SPT6

Supv3l1 3 1 69.9 0.9988 1.01 PBS ATP-dependent RNA helicase SUPV3L1, mitochondrial (Fragment)

Surf4 10 2 166.1 0.0566 1.72 PBS Surfeit locus protein 4 (Fragment)

Surf4 8 4 359.71 0.0956 1.46 Flu Surfeit locus protein 4

Svil 36 2 305.71 0.0871 1.79 PBS Archvillin

Svil 15 0 126.64 --- Supervillin (Fragment)

Swap70 14 7 227.51 0.0062 1.26 Flu Switch-associated protein 70

Syk 15 4 162.35 0.0535 1.69 Flu Tyrosine-protein kinase SYK

Sympk 13 3 178.99 0.0261 1.47 Flu Symplekin

Syncrip 22 0 640 --- Heterogeneous nuclear ribonucleoprotein Q

Syncrip 23 0 823.7 --- Heterogeneous nuclear ribonucleoprotein Q

Syncrip 23 0 797.52 --- Heterogeneous nuclear ribonucleoprotein Q

Syne1 89 11 458.06 0.0961 1.18 PBS Nesprin-1

Syne2 73 13 484 0.0082 1.22 Flu Nesprin-2

Synj1 3 1 25.05 0.0584 1.37 Flu Synaptojanin-1 (Fragment)

Synj1 6 1 63.02 0.0877 1.36 Flu Synaptojanin-1 (Fragment)

Synj1 23 4 122 0.7129 1.01 Flu Synaptojanin-1

Synj2 10 2 93.61 0.5946 1.03 PBS Synaptojanin-2

Synm 25 3 171.28 0.8289 1.50 PBS Synemin

Sypl1 6 3 157.89 0.4793 1.09 PBS Synaptophysin-like protein 1

Syt11 6 0 53.49 --- Synaptotagmin-11 (Fragment)

Tab2 7 0 59.75 --- TGF-beta-activated kinase 1 and MAP3K7-binding protein 2

Tacstd2 5 2 59.66 0.2001 1.43 PBS Tumor-associated calcium signal transducer 2

Taf15 3 2 16.53 0.8065 1.04 Flu Protein Taf15 (Fragment)

Tagln 18 9 621.67 0.6194 1.05 PBS Transgelin

Tagln2 27 12 1433.35 0.0500 1.21 Flu Transgelin-2

Tagln3 8 1 156.15 0.1700 1.56 PBS Transgelin-3

Taldo1 19 4 871.45 0.1533 1.28 Flu Transaldolase

Tanc2 19 3 119.3 0.7815 1.01 Flu Protein TANC2

Taok2 9 1 41.19 0.0143 1.62 Flu Serine/threonine-protein kinase TAO2

Taok3 19 2 282.78 0.4729 1.13 Flu Serine/threonine-protein kinase TAO3

Tap1 24 6 636.2 0.0257 2.83 Flu Antigen peptide transporter 1

Tap1 10 0 291.74 --- Antigen peptide transporter 1 (Fragment)

Tap2 18 11 967.85 0.0419 2.76 Flu Antigen peptide transporter 2

Tapbp 20 6 687.7 0.0815 2.36 Flu Tapasin

Tapbpl 3 0 32.33 --- Tapasin-related protein

Tardbp 16 3 718.24 0.0200 1.21 Flu TAR DNA-binding protein 43

Tardbp 5 1 186.58 0.1604 1.51 PBS TAR DNA-binding protein 43 (Fragment)

Tardbp 18 1 505.74 0.9517 1.13 Flu TAR DNA-binding protein 43 (Fragment)

Tardbp 3 0 67.77 --- TAR DNA-binding protein 43 (Fragment)

Tars 24 5 328.25 0.0396 1.47 Flu Threonine--tRNA ligase, cytoplasmic

Tars2 7 1 49.41 0.0221 2.85 Flu Threonine--tRNA ligase, mitochondrial

Tax1bp3 2 1 41.97 0.3716 1.16 Flu Tax1-binding protein 3

Tbc1d15 9 3 131.42 0.0141 1.77 Flu TBC1 domain family member 15

Tbc1d17 7 2 95.66 0.0878 1.29 Flu TBC1 domain family member 17

Tbc1d9b 12 2 100.42 0.0403 1.36 Flu TBC1 domain family member 9B

Tbcb 3 2 34.42 0.2589 1.19 Flu Tubulin-folding cofactor B

Tbcd 10 3 88.76 0.8855 1.13 PBS Tubulin-specific chaperone D

Tbl1x 3 1 38.84 0.9336 1.23 Flu F-box-like/WD repeat-containing protein TBL1X

Tbl1xr1 2 0 16.29 --- F-box-like/WD repeat-containing protein TBL1XR1

Tbl2 6 1 76.72 0.3253 3.34 Flu Transducin beta-like protein 2

Tbl2 2 0 36.84 --- Transducin beta-like protein 2 (Fragment)

Tcaf2 4 1 30.62 0.1503 1.35 Flu TRPM8 channel-associated factor 2

Tcea1 11 2 158.36 0.0203 1.41 Flu Transcription elongation factor A protein 1

Tcea2 8 0 68.83 --- Transcription elongation factor A protein 2 (Fragment)

Tceb2 3 3 44.39 0.5538 1.10 Flu Transcription elongation factor B polypeptide 2

Tceb3 18 2 92.81 0.9231 1.00 Flu Transcription elongation factor B polypeptide 3

Tcerg1 21 4 256.1 0.1952 1.35 Flu Transcription elongation regulator 1

Tcof1 36 4 354.39 0.1166 1.82 Flu Treacle protein

Tcp1 25 15 1126.25 0.6484 1.02 Flu T-complex protein 1 subunit alpha

Tdp1 7 0 46.94 --- Tyrosyl-DNA phosphodiesterase 1

Tecr 11 4 175.94 0.3439 1.10 PBS Gpsn2 protein

Tek 9 0 146.31 --- Angiopoietin-1 receptor

Tep1 13 0 65.29 --- Telomerase protein component 1

Tex264 3 0 62.53 --- Protein Tex264

Tf 58 1 2935.48 0.0674 2.12 Flu Serotransferrin

Tfg 1 1 20 0.1151 2.66 Flu Protein Tfg

Tfrc 18 10 303.35 0.7535 1.04 Flu Transferrin receptor protein 1

Tgfb1i1 6 3 172.01 0.0544 1.34 PBS Transforming growth factor beta-1-induced transcript 1 protein

Tgfbi 6 2 78.42 0.1353 1.76 PBS Transforming growth factor, beta induced

Tgm2 17 9 608.95 0.0630 1.47 Flu Protein-glutamine gamma-glutamyltransferase 2

Thbd 8 5 281.69 0.0635 1.99 PBS Thrombomodulin

Thbs1 26 14 762.31 0.0390 1.29 PBS Thrombospondin 1

Thbs3 7 0 48.89 --- Thrombospondin-3

Thoc2 17 1 138.2 0.3634 1.25 PBS THO complex subunit 2

Thop1 10 6 289.25 0.0018 1.39 Flu Thimet oligopeptidase

Thrap3 14 2 217.42 0.0154 1.54 Flu Thyroid hormone receptor-associated protein 3

Thrap3 3 0 26.18 --- Thyroid hormone receptor-associated protein 3 (Fragment)

Thrap3 6 0 59.53 --- Thyroid hormone receptor-associated protein 3 (Fragment)

Thrb 6 1 56.41 0.3035 1.53 Flu Thyroid hormone receptor beta

Thy1 3 0 33.77 --- Thy-1 membrane glycoprotein

Tia1 3 0 54.94 --- Nucleolysin TIA-1

Tial1 10 2 133.42 0.1203 1.24 Flu Nucleolysin TIAR

Timm23 2 1 26.67 0.2311 1.69 Flu Mitochondrial import inner membrane translocase subunit Tim23

Timm44 4 1 63.21 0.5945 1.16 PBS Mitochondrial import inner membrane translocase subunit TIM44 (Fragment)

Timm44 7 3 265.57 0.8367 1.03 PBS Mitochondrial import inner membrane translocase subunit TIM44

Timm50 6 3 181.66 0.0290 1.27 Flu Mitochondrial import inner membrane translocase subunit TIM50

Tjp1 61 1 2143.57 0.4290 1.02 Flu Tight junction protein ZO-1

Tjp1 62 0 2094.05 --- Tight junction protein ZO-1

Tjp2 57 25 1550.81 0.1725 1.23 PBS Tight junction protein ZO-2

Tkt 45 20 2111.4 0.0248 1.33 Flu Transketolase

Tktl2 7 0 52.92 --- Transketolase-like protein 2

Tle1 6 0 74.06 --- Transducin-like enhancer protein 1

Tle3 13 2 131.58 0.7018 1.03 PBS Transducin-like enhancer protein 3

Tln1 192 102 10073.8 0.0994 1.21 PBS Talin-1

Tln2 54 2 1579.47 0.6131 1.05 PBS Talin-2

Tln2 50 0 1491.8 --- Talin-2

Tlr3 7 3 99.84 0.5193 1.08 Flu Toll-like receptor 3

Tm9sf1 3 1 26.47 0.0944 1.89 Flu Transmembrane 9 superfamily member 1 (Fragment)

Tm9sf2 8 3 124.54 0.4116 1.04 Flu Transmembrane 9 superfamily member 2

Tm9sf3 9 4 176.85 0.1275 1.39 Flu Transmembrane 9 superfamily member 3

Tm9sf4 7 2 174.44 0.3930 1.55 Flu Transmembrane 9 superfamily member 4

Tmbim1 1 1 15.45 0.2710 1.41 PBS Protein lifeguard 3 (Fragment)

Tmbim6 1 0 52.64 --- Bax inhibitor 1 (Fragment)

Tmcc2 13 4 356.28 0.2017 1.36 PBS Transmembrane and coiled-coil domains protein 2

Tmco1 6 0 58.08 --- Transmembrane and coiled-coil domain-containing protein 1 (Fragment)

Tmed10 10 4 486.57 0.0154 1.33 Flu Transmembrane emp24 domain-containing protein 10

Tmed2 1 1 49.18 0.1974 2.01 Flu Transmembrane emp24 domain-containing protein 2 (Fragment)

Tmed3 3 2 75.97 0.0836 1.56 Flu Transmembrane emp24 domain-containing protein 3

Tmed4 6 1 209.77 0.1208 1.20 Flu Transmembrane emp24 domain-containing protein 4

Tmed7 2 1 74.47 0.8438 1.00 PBS Protein Tmed7

Tmed9 9 2 448.19 0.1390 1.52 Flu Tmed9 protein

Tmem100 4 2 100.76 0.5825 1.06 PBS Transmembrane protein 100

Tmem109 4 2 92.16 0.8872 1.02 Flu Transmembrane protein 109

Tmem119 2 0 0.94 --- Transmembrane protein 119

Tmem165 3 1 78.74 0.1560 1.48 Flu Transmembrane protein 165

Tmem168 3 0 33.75 --- Transmembrane protein 168

Tmem173 7 2 181.56 0.0151 4.85 Flu Stimulator of interferon genes protein

Tmem176b 4 1 60.3 0.3215 1.68 Flu Transmembrane protein 176B

Tmem19 1 0 42.55 --- Transmembrane protein 19

Tmem2 39 17 1010.36 0.1714 1.19 PBS Transmembrane protein 2

Tmem205 3 2 65.16 0.2645 1.15 PBS Transmembrane protein 205

Tmem214 12 1 119.64 0.0161 1.99 Flu Transmembrane protein 214

Tmem256 1 1 19.86 0.2093 1.24 Flu Transmembrane protein 256

Tmem259 3 1 31.97 0.0371 1.93 PBS Membralin

Tmem30a 9 2 114.06 0.9014 1.09 PBS Cell cycle control protein 50A

Tmem33 7 3 227.06 0.3749 1.15 Flu Transmembrane protein 33

Tmem43 9 4 111.94 0.1870 1.24 PBS Transmembrane protein 43

Tmem55b 2 1 63.98 0.2857 1.42 PBS Type 1 phosphatidylinositol 4,5-bisphosphate 4-phosphatase

Tmem55b 2 0 35.98 --- Type 1 phosphatidylinositol 4,5-bisphosphate 4-phosphatase (Fragment)

Tmem65 4 2 66.71 0.7140 1.07 Flu Transmembrane protein 65

Tmf1 13 0 76.75 --- TATA element modulatory factor

Tmod1 4 1 94.18 0.1857 1.73 PBS Tropomodulin-1

Tmpo 25 3 1055.2 0.3637 1.09 Flu Lamina-associated polypeptide 2, isoforms beta/delta/epsilon/gamma

Tmpo 23 4 809.17 0.7414 1.02 Flu Lamina-associated polypeptide 2, isoforms alpha/zeta

Tmtc3 10 2 127.29 0.1960 1.51 Flu Transmembrane and TPR repeat-containing protein 3

Tmx1 5 1 142.17 0.3275 1.36 Flu Thioredoxin-related transmembrane protein 1

Tmx3 11 6 284.26 0.4227 1.11 Flu Protein disulfide-isomerase TMX3

Tmx4 5 2 107.24 0.7022 1.07 Flu MCG129075

Tnik 5 0 61.53 --- Traf2 and NCK-interacting protein kinase

Tnks 8 1 65.94 0.7009 1.25 PBS Tankyrase-1

Tnks1bp1 35 17 812.79 0.0070 1.48 Flu 182 kDa tankyrase-1-binding protein

Tnpo1 12 3 271.46 0.2316 1.37 Flu Transportin-1

Tnpo2 2 0 62.05 --- Transportin-2

Tnr 9 1 104.3 0.4148 1.03 Flu Tenascin-R (Fragment)

Tns1 87 3 2928.26 0.6887 1.10 PBS Protein Tns1

Tns1 83 0 2782.79 --- Protein Tns1 (Fragment)

Tns1 7 0 337.16 --- Protein Tns1 (Fragment)

Tns2 28 7 620.45 0.0946 1.50 PBS Tensin-2

Tns3 29 11 517.75 0.4256 1.11 PBS Tensin-3

Tnxb 21 5 228.61 0.8277 1.11 PBS Protein Tnxb

Tollip 4 1 99.54 0.2932 1.28 Flu Toll-interacting protein

Tom1 6 0 12.74 --- Target of Myb protein 1

Tomm22 2 0 48.11 --- Mitochondrial import receptor subunit TOM22 homolog

Tomm34 6 2 119.88 0.1376 1.56 Flu Mitochondrial import receptor subunit TOM34

Tomm70a 16 8 349.2 0.0659 1.25 Flu Mitochondrial import receptor subunit TOM70

Top1 22 7 331.9 0.9759 1.00 Flu DNA topoisomerase 1

Top1mt 11 1 126.92 0.3002 1.20 PBS DNA topoisomerase I, mitochondrial

Top2a 30 1 306.26 0.7188 1.08 PBS DNA topoisomerase 2-alpha

Top2b 48 9 774.22 0.8672 1.05 Flu DNA topoisomerase 2-beta

Top2b 6 0 59.03 --- DNA topoisomerase 2-beta (Fragment)

Tor1aip1 11 2 261.43 0.1278 1.44 Flu Torsin-1A-interacting protein 1

Tor1aip1 9 0 140.45 --- Torsin-1A-interacting protein 1 (Fragment)

Tor1aip1 8 0 124.79 --- Torsin-1A-interacting protein 1

Tor1b 5 1 48.89 0.0525 1.23 Flu Torsin-1B

Tor3a 4 2 36.1 0.0390 1.36 Flu Torsin-3A

Tpd52l2 4 1 22.16 0.9751 1.05 PBS Tumor protein D54

Tpi1 19 10 545.38 0.0121 1.33 Flu Triosephosphate isomerase

Tpm1 10 1 258.65 0.3708 1.26 Flu Tropomyosin alpha-1 chain

Tpm2 10 1 201.97 0.4738 1.04 Flu Tropomyosin beta chain

Tpm3 11 0 283.45 --- Tropomyosin alpha-3 chain

Tpm3 9 0 232.7 --- Tropomyosin alpha-3 chain

Tpm3-rs7 10 0 310.96 --- Protein Tpm3-rs7

Tpp1 7 3 324.27 0.6432 1.05 Flu Tripeptidyl-peptidase 1

Tpp2 27 7 342.3 0.0951 1.41 Flu Tripeptidyl-peptidase 2

Tppp3 8 2 349.13 0.1299 1.48 PBS Tubulin polymerization-promoting protein family member 3

Tpr 43 10 928.59 0.3334 1.09 Flu Nucleoprotein TPR

Tpr 12 0 201.01 --- Nucleoprotein TPR (Fragment)

Tprg1l 2 2 22.83 0.6926 1.14 PBS Tumor protein p63-regulated gene 1-like protein

Tpt1 7 2 246.14 0.2751 1.64 Flu Translationally-controlled tumor protein

Tra2a 8 2 83.54 0.0137 1.48 Flu Transformer-2 protein homolog alpha

Tra2b 5 2 150.83 0.3136 1.08 Flu Transformer-2 protein homolog beta

Trabd 5 0 70.31 --- TraB domain-containing protein

Tram1 4 1 41.69 0.5004 1.27 Flu Translocating chain-associated membrane protein 1

Trap1 26 12 831.99 0.4492 1.11 PBS Heat shock protein 75 kDa, mitochondrial

Trappc11 10 4 87.93 0.3141 1.26 Flu Trafficking protein particle complex subunit 11

Trappc12 12 3 149.86 0.6955 1.04 PBS Trafficking protein particle complex subunit 12

Trappc3 4 0 80.15 --- Trafficking protein particle complex 3

Trappc5 8 0 101.8 --- Trafficking protein particle complex subunit 5

Trappc8 12 1 84.33 0.5072 1.00 PBS Protein Trappc8

Trf 15 0 586.2 --- Serotransferrin (Fragment)

Trim16 4 2 43.45 0.2386 1.18 Flu Tripartite motif-containing protein 16

Trim25 18 8 252.04 0.4105 1.17 Flu E3 ubiquitin/ISG15 ligase TRIM25

Trim28 26 9 836.5 0.0402 1.58 Flu Transcription intermediary factor 1-beta

Trim3 9 2 157.63 0.0225 1.15 PBS Tripartite motif-containing protein 3

Trim50 4 0 48.28 --- E3 ubiquitin-protein ligase TRIM50

Triobp 21 1 178.65 0.2825 1.86 Flu TRIO and F-actin-binding protein

Triobp 42 1 301.56 0.3865 1.22 Flu TRIO and F-actin-binding protein

Triobp 10 0 61.38 --- TRIO and F-actin-binding protein

Trip10 6 1 79.24 0.3509 1.36 Flu Cdc42-interacting protein 4

Trip11 24 2 210.89 0.1734 1.72 Flu Protein Trip11

Trip12 29 7 217.49 0.1168 1.23 PBS E3 ubiquitin-protein ligase TRIP12

Trnt1 11 3 130.36 0.0696 1.43 Flu CCA tRNA nucleotidyltransferase 1, mitochondrial

Tsfm 4 0 38.57 --- Elongation factor Ts, mitochondrial

Tsg101 7 0 95.45 --- MCG123182

Tsg101 5 0 43.4 --- Tumor susceptibility gene 101 protein (Fragment)

Tsn 6 2 114.07 0.0045 1.48 Flu Translin

Tspan14 1 1 106 0.0779 1.28 Flu Tetraspanin-14

Tspan15 2 2 59.42 0.4534 1.12 PBS Tetraspanin-15

Tspan18 2 0 41.79 --- Tetraspanin-18

Tspan2 1 1 43.34 0.0276 2.27 PBS Tetraspanin

Tspan31 3 1 63.47 0.3443 1.44 Flu Tetraspanin-31

Tspan4 1 1 15.4 0.1590 1.21 PBS Tetraspanin (Fragment)

Tspan7 5 4 246.5 0.0604 1.81 PBS Tetraspanin-7

Tspan8 6 4 312.74 0.2182 1.34 PBS Tetraspanin-8

Tspan9 4 2 119.13 0.0523 1.43 PBS Tetraspanin-9

Tspo 3 1 73.61 0.3864 1.02 Flu Translocator protein

Tsr1 13 1 111.65 0.2057 4.67 Flu Pre-rRNA-processing protein TSR1 homolog

Tst 15 4 730.08 0.8900 1.01 Flu Thiosulfate sulfurtransferase

Tsta3 4 0 14.75 --- GDP-L-fucose synthase

Ttc38 4 2 51.95 0.1496 1.61 PBS Tetratricopeptide repeat protein 38

Ttc7b 3 1 60.46 0.3145 1.13 PBS Protein Ttc7b

Ttll12 13 1 117.67 0.0004 1.83 Flu Tubulin--tyrosine ligase-like protein 12

Ttll12 6 0 59.01 --- Tubulin--tyrosine ligase-like protein 12

Ttn 519 42 2554.09 0.1452 1.15 PBS Titin

Ttn 72 4 353.72 0.2688 1.26 PBS Titin (Fragment)

Ttn 14 0 65.6 --- Titin (Fragment)

Tuba1a 38 1 2280.44 0.6861 1.03 PBS Tubulin alpha-1A chain

Tuba1b 38 0 2265.93 --- Tubulin alpha-1B chain

Tuba1c 36 0 2234.5 --- Tubulin alpha-1C chain

Tuba4a 32 1 1769.61 0.7267 1.15 PBS Tubulin alpha-4A chain (Fragment)

Tuba4a 6 0 258.16 --- Tubulin alpha-4A chain (Fragment)

Tuba8 16 1 1184.44 0.0506 2.82 Flu Tubulin alpha-8 chain

Tubal3 7 0 299.37 --- Tubulin alpha chain-like 3

Tubb1 16 5 576.07 0.1135 1.59 PBS Tubulin beta-1 chain

Tubb2a 54 0 3284.84 --- Tubulin beta-2A chain

Tubb2b 53 1 3175.45 0.6951 1.20 Flu MCG1395

Tubb3 32 0 1943.18 --- Tubulin beta-3 chain

Tubb4a 46 4 2632.26 0.9680 1.04 Flu Tubulin beta-4A chain

Tubb4b 59 1 3587.95 0.6900 1.04 PBS Tubulin beta-4B chain

Tubb5 56 3 3492.64 0.0054 1.44 Flu Tubulin beta-5 chain

Tubb6 28 3 1613.78 0.0132 2.75 Flu Tubulin beta-6 chain

Tufm 27 14 669.52 0.0301 1.18 Flu Elongation factor Tu, mitochondrial

Twf1 15 6 310.62 0.1792 1.09 Flu Twinfilin-1

Twf2 13 7 366.84 0.0135 1.41 Flu Twinfilin-2

Txlna 5 1 78.6 0.2499 1.89 Flu Alpha-taxilin

Txn 4 2 86.95 0.0274 1.59 Flu Thioredoxin

Txndc5 15 6 539.63 0.0285 1.65 Flu Thioredoxin domain-containing protein 5

Txnl1 4 1 60.04 0.0104 1.87 Flu Thioredoxin-like protein 1

Txnrd1 9 5 96.85 0.0071 1.46 Flu Thioredoxin reductase 1, cytoplasmic

Txnrd2 10 2 172.89 0.1583 1.19 PBS Thioredoxin reductase 2, mitochondrial

U2af1 6 4 178.49 0.0360 1.26 Flu Splicing factor U2AF 35 kDa subunit

U2af2 7 4 249.12 0.0294 1.24 Flu Splicing factor U2AF 65 kDa subunit

U2surp 26 6 300.05 0.6298 1.05 PBS U2 snRNP-associated SURP motif-containing protein

Uap1l1 7 2 136.29 0.0065 2.14 Flu UDP-N-acetylhexosamine pyrophosphorylase-like protein 1

Uba1 46 17 1978.04 0.0166 1.36 Flu Ubiquitin-like modifier-activating enzyme 1

Uba1y 16 0 320.87 --- Ubiquitin-like modifier-activating enzyme 1 Y

Uba2 11 4 162.82 0.0781 1.74 Flu SUMO-activating enzyme subunit 2

Uba5 4 1 44.89 0.9023 1.03 Flu Ubiquitin-like modifier-activating enzyme 5

Uba6 9 2 93.54 0.5478 1.08 Flu Ubiquitin-like modifier-activating enzyme 6

Uba7 12 7 226.95 0.0054 1.42 Flu MCG18845, isoform CRA_d

Ubap2l 7 2 112.52 0.0929 1.63 Flu Ubiquitin associated protein 2-like, isoform CRA_b

Ube2d3 2 1 31.96 0.9319 1.05 PBS Ubiquitin-conjugating enzyme E2 D3 (Fragment)

Ube2i 5 3 66.02 0.0802 1.26 Flu SUMO-conjugating enzyme (Fragment)

Ube2l3 2 1 2.07 0.1055 1.56 Flu Ubiquitin-conjugating enzyme E2 L3

Ube2n 7 2 178.09 0.3923 1.42 Flu MCG4297

Ube2o 19 4 106.57 0.5753 1.29 Flu (E3-independent) E2 ubiquitin-conjugating enzyme UBE2

Ube2v2 5 1 82.34 0.7737 1.42 PBS Ubiquitin-conjugating enzyme E2 variant 2

Ube3a 8 1 119.4 0.0976 1.21 Flu Ubiquitin-protein ligase E3A

Ube3a 3 0 26.32 --- Ubiquitin-protein ligase E3A (Fragment)

Ube4a 7 2 43.05 0.1958 1.26 Flu Ubiquitin conjugation factor E4 A

Ublcp1 3 1 38.01 0.0097 1.91 Flu Ubiquitin-like domain-containing CTD phosphatase 1

Ubp1 6 1 51.15 0.9407 1.01 PBS Upstream-binding protein 1

Ubqln1 5 2 144.96 0.0055 1.90 Flu Ubiquilin-1

Ubqln2 6 2 109.94 0.8046 1.03 Flu Ubiquilin-2

Ubqln4 4 0 55.65 --- Ubiquilin-4

Ubr4 46 19 662.02 0.4614 1.13 Flu E3 ubiquitin-protein ligase UBR4

Ubtf 18 2 142.24 0.6687 1.12 Flu Nucleolar transcription factor 1

Ubxn4 5 2 109.66 0.0419 1.42 Flu UBX domain-containing protein 4

Ubxn6 7 1 88.43 0.1107 1.29 PBS UBX domain-containing protein 6

Uchl3 5 0 104.16 --- Ubiquitin carboxyl-terminal hydrolase isozyme L3

Uchl4 4 0 62.87 --- Ubiquitin carboxyl-terminal hydrolase

Ufd1l 6 3 57.54 0.5764 1.10 Flu Ubiquitin fusion degradation protein 1 homolog

Ufl1 12 7 300.98 0.0171 1.26 Flu E3 UFM1-protein ligase 1

Ufsp2 3 1 82.16 0.1599 1.36 Flu Ufm1-specific protease 2

Ugdh 11 1 105.21 0.7829 1.11 PBS UDP-glucose 6-dehydrogenase

Uggt1 47 24 1700.7 0.0292 1.51 Flu UDP-glucose:glycoprotein glucosyltransferase 1

Uggt1 5 1 48.01 0.9516 1.03 Flu UDP-glucose:glycoprotein glucosyltransferase 1 (Fragment)

Uggt1 2 0 25.42 --- UDP-glucose:glycoprotein glucosyltransferase 1 (Fragment)

Uggt2 12 2 53.87 0.8596 1.18 Flu Protein Uggt2

Ugp2 20 7 359.96 0.1273 1.16 Flu UTP--glucose-1-phosphate uridylyltransferase

Ugt1a6 15 3 346.63 0.7750 1.02 Flu UDP-glucuronosyltransferase 1-6

Ugt1a7c 10 3 264.98 0.1341 1.41 Flu UDP-glucuronosyltransferase 1-7C

Ugt2b36 5 0 98.53 --- Protein Ugt2b36 (Fragment)

Umps 3 2 20 0.8613 1.01 PBS Uridine 5'-monophosphate synthase

Unc13d 13 4 115.81 0.0321 1.27 PBS Protein unc-13 homolog D

Unc45a 13 4 206.09 0.1027 1.17 Flu Protein unc-45 homolog A

Unc93b1 4 2 118.68 0.1379 1.93 Flu Protein unc-93 homolog B1

Upf1 26 13 532.34 0.2007 1.39 Flu Regulator of nonsense transcripts 1

Upk1b 2 1 25.01 0.1873 1.23 PBS Uroplakin-1b

Upp1 6 0 40.61 --- Uridine phosphorylase 1 (Fragment)

Uqcc1 3 0 25.21 --- Ubiquinol-cytochrome-c reductase complex assembly factor 1 (Fragment)

Uqcr10 5 1 66.63 0.9496 1.01 Flu Cytochrome b-c1 complex subunit 9

Uqcr11 2 1 40.92 0.9928 1.01 Flu Cytochrome b-c1 complex subunit 10

Uqcrb 2 0 38.38 --- Cytochrome b-c1 complex subunit 7

Uqcrc1 23 10 1142.03 0.5101 1.06 PBS Cytochrome b-c1 complex subunit 1, mitochondrial

Uqcrc1 4 0 219.23 --- Cytochrome b-c1 complex subunit 1, mitochondrial (Fragment)

Uqcrc2 24 13 1313.16 0.5249 1.05 PBS Cytochrome b-c1 complex subunit 2, mitochondrial

Uqcrfs1 5 1 112.94 0.3821 1.12 Flu Cytochrome b-c1 complex subunit Rieske, mitochondrial

Uqcrq 4 1 57.93 0.9253 1.01 Flu Cytochrome b-c1 complex subunit 8

Use1 5 1 62.3 0.4243 1.11 Flu Vesicle transport protein USE1

Usmg5 1 1 55.4 0.3513 1.08 Flu Up-regulated during skeletal muscle growth protein 5

Uso1 21 12 682.14 0.0124 1.56 Flu General vesicular transport factor p115

Usp14 8 3 175.57 0.0705 1.31 Flu Ubiquitin carboxyl-terminal hydrolase 14

Usp15 9 1 104.39 0.1217 1.58 Flu Ubiquitin carboxyl-terminal hydrolase 15

Usp19 9 1 93.61 0.0200 1.68 Flu Ubiquitin carboxyl-terminal hydrolase 19

Usp30 4 0 14.1 --- Ubiquitin carboxyl-terminal hydrolase 30

Usp36 18 1 145.34 0.4625 1.07 Flu Ubiquitin carboxyl-terminal hydrolase 36

Usp39 7 3 88.66 0.0312 1.19 Flu U4/U6.U5 tri-snRNP-associated protein 2

Usp4 13 4 159.03 0.1163 1.69 PBS Ubiquitin carboxyl-terminal hydrolase 4

Usp47 14 0 89.06 --- Ubiquitin carboxyl-terminal hydrolase 47

Usp5 18 10 569.1 0.0007 1.39 Flu Ubiquitin carboxyl-terminal hydrolase 5

Usp7 19 3 290.77 0.0082 1.32 Flu Ubiquitin carboxyl-terminal hydrolase

Usp7 6 0 76.68 --- Ubiquitin carboxyl-terminal hydrolase 7 (Fragment)

Usp9x 2 1 56.89 0.3531 1.25 Flu Probable ubiquitin carboxyl-terminal hydrolase FAF-X (Fragment)

Usp9x 30 13 476.86 0.6297 1.03 Flu Probable ubiquitin carboxyl-terminal hydrolase FAF-X

Usp9y 18 1 109.35 0.1726 2.49 PBS Protein Usp9y

Utrn 105 52 3321.92 0.0947 1.40 PBS Protein Utrn

Vac14 8 3 30.68 0.9952 1.09 PBS Protein VAC14 homolog

Vamp1 2 1 45.87 0.1438 1.64 PBS Vesicle-associated membrane protein 1

Vamp2 4 1 261.32 0.4471 1.18 PBS Vesicle-associated membrane protein 2

Vamp3 6 3 387.6 0.8832 1.05 Flu Vesicle-associated membrane protein 3

Vamp5 3 1 55.49 0.8835 1.08 Flu Vesicle-associated membrane protein 5

Vamp8 4 2 210.19 0.5765 1.07 Flu Vesicle-associated membrane protein 8

Vapa 15 7 337.61 0.5089 1.15 Flu Vesicle-associated membrane protein-associated protein A

Vapb 12 4 180.94 0.8803 1.05 Flu Vesicle-associated membrane protein, associated protein B and C

Vars 34 18 915.05 0.0324 1.91 Flu Valine--tRNA ligase

Vars 7 0 98.17 --- Valine--tRNA ligase (Fragment)

Vasp 11 5 507.44 0.0113 1.56 Flu Vasodilator-stimulated phosphoprotein

Vat1 27 18 1219.52 0.1651 1.22 PBS Synaptic vesicle membrane protein VAT-1 homolog

Vav1 8 3 48.13 0.0403 1.90 Flu Proto-oncogene vav

Vcam1 8 3 123.03 0.4166 1.08 Flu Vascular cell adhesion protein 1

Vcl 105 50 4760.91 0.2426 1.19 PBS Vinculin

Vcp 55 29 2804.96 0.0204 1.11 Flu Transitional endoplasmic reticulum ATPase

Vdac1 15 8 713.21 0.1351 1.25 PBS Voltage-dependent anion-selective channel protein 1

Vdac2 10 5 381.75 0.1286 1.25 PBS Voltage-dependent anion-selective channel protein 2

Vdac3 6 2 197.57 0.1163 1.45 PBS Voltage-dependent anion-selective channel protein 3

Vezf1 5 1 48.75 0.1584 1.76 PBS Protein Vezf1

Vim 47 20 2184.9 0.1006 1.29 PBS Vimentin

Vipas39 7 2 42.01 0.0446 1.28 Flu Spermatogenesis-defective protein 39 homolog

Vkorc1 3 0 77.35 --- Vitamin K epoxide reductase complex subunit 1

Vkorc1l1 2 1 80.16 0.5453 1.11 Flu Vitamin K epoxide reductase complex subunit 1-like protein 1

Vkorc1l1 4 0 58.57 --- Vitamin K epoxide reductase complex subunit 1-like protein 1 (Fragment)

Vmn2r26 5 1 9.66 0.0928 1.96 Flu Vomeronasal type-2 receptor 26

Vmp1 2 1 30.39 0.1764 1.51 Flu Vacuole membrane protein 1

Vps11 6 1 43.76 0.3140 1.83 Flu Vacuolar protein sorting-associated protein 11 homolog

Vps13c 42 14 497.73 0.7554 1.12 Flu Vacuolar protein sorting-associated protein 13C

Vps16 7 1 124.9 0.2165 1.32 Flu Vacuolar protein sorting 16 (Yeast)

Vps25 6 1 28.63 0.0023 1.58 Flu Vacuolar protein-sorting-associated protein 25

Vps26a 11 5 213.47 0.1310 1.17 Flu Vacuolar protein sorting-associated protein 26A

Vps26b 9 1 141.86 0.0567 1.69 PBS Vacuolar protein sorting-associated protein 26B

Vps29 8 5 184.36 0.0398 1.41 Flu Vacuolar protein sorting-associated protein 29

Vps33a 4 1 37.84 0.0154 1.54 Flu Vacuolar protein sorting-associated protein 33A

Vps35 28 15 1131.59 0.0533 1.15 Flu Vacuolar protein sorting 35, isoform CRA_a

Vps41 15 4 56.52 0.7559 1.04 Flu Vacuolar protein sorting-associated protein 41 homolog

Vps45 13 1 118.24 0.0695 1.22 Flu Vacuolar protein sorting-associated protein 45

Vps4b 17 4 238.79 0.0145 1.36 Flu Vacuolar protein sorting 4b (Yeast)

Vps50 17 2 100.44 0.4829 1.17 Flu Syndetin

Vps51 9 2 130.07 0.2608 1.25 Flu Vacuolar protein sorting-associated protein 51 homolog

Vps53 15 2 111.6 0.0187 1.67 Flu Vacuolar protein sorting-associated protein 53 homolog

Vrk1 8 2 63.6 0.1505 1.65 Flu Serine/threonine-protein kinase VRK1

Vta1 4 1 146.13 0.1438 1.41 Flu Vacuolar protein sorting-associated protein VTA1 homolog

Vta1 7 2 47.08 0.9874 1.01 Flu Vacuolar protein sorting-associated protein VTA1 homolog (Fragment)

Vti1a 4 3 48 0.0749 1.48 PBS Vesicle transport through interaction with t-SNAREs homolog 1A

Vti1b 3 1 68.63 0.3192 1.12 Flu Vesicle transport through interaction with t-SNAREs homolog 1B

Vtn 1 1 51.31 0.0522 2.09 Flu Vitronectin

Vwa5a 23 10 778.19 0.0243 1.48 Flu von Willebrand factor A domain-containing protein 5A

Vwa5a 6 0 92.63 --- von Willebrand factor A domain-containing protein 5A (Fragment)

Vwa8 18 3 194.48 0.5489 1.09 Flu von Willebrand factor A domain-containing protein 8

Vwf 22 10 431.54 0.1416 1.54 PBS von Willebrand factor

Wars 22 14 894.71 0.0250 1.52 Flu Tryptophan--tRNA ligase, cytoplasmic

Was 12 4 45.51 0.7844 1.02 PBS Wiskott-Aldrich syndrome protein homolog

Wasf2 10 3 285.64 0.3086 1.08 Flu Wiskott-Aldrich syndrome protein family member 2

Wasl 13 4 69.58 0.7559 1.05 PBS Neural Wiskott-Aldrich syndrome protein

Wdfy1 4 1 68.6 0.8705 1.30 PBS WD repeat and FYVE domain-containing protein 1

Wdfy3 21 2 95.48 0.2785 1.18 Flu WD repeat and FYVE domain-containing protein 3

Wdfy4 21 6 231.77 0.0244 2.62 Flu Protein Wdfy4

Wdr1 27 11 1235.31 0.2161 1.24 Flu WD repeat-containing protein 1

Wdr11 10 3 75.97 0.3253 1.30 Flu Bromodomain and WD repeat domain containing 2, isoform CRA_a

Wdr13 5 0 59.65 --- WD repeat-containing protein 13

Wdr26 5 2 67.62 0.0014 1.35 Flu WD repeat-containing protein 26

Wdr37 5 1 44.57 0.4358 1.14 Flu WD repeat-containing protein 37

Wdr48 10 2 51.97 0.0263 1.24 PBS WD repeat-containing protein 48

Wdr61 2 1 31.65 0.0169 1.44 Flu CDW13/WDR61

Wdr77 3 1 20.19 0.3347 1.45 Flu Methylosome protein 50

Wdr82 3 1 78.39 0.0008 1.32 Flu MCG19514, isoform CRA_a

Wnk1 24 5 170 0.4301 1.16 PBS Serine/threonine-protein kinase WNK1

Xdh 41 28 1452.76 0.8011 1.04 PBS Xanthine dehydrogenase/oxidase

Xirp2 44 4 160.41 0.7168 1.02 PBS Xin actin-binding repeat-containing protein 2

Xpnpep1 11 0 186.72 --- Xaa-Pro aminopeptidase 1

Xpnpep1 11 0 229.88 --- X-prolyl aminopeptidase (Aminopeptidase P) 1, soluble, isoform CRA_b

Xpo1 19 10 612.55 0.0254 1.42 Flu Exportin-1

Xpo1 5 1 173.37 0.8449 2.25 PBS Exportin-1 (Fragment)

Xpo5 7 2 65.6 0.0369 1.88 Flu Exportin-5

Xpo7 8 4 207.98 0.0084 1.32 Flu Exportin-7

Xrn2 15 6 147.73 0.2371 1.26 Flu 5'-3' exoribonuclease 2

Yars 26 8 271.9 0.7012 1.03 PBS Tyrosine--tRNA ligase

Ybx1 6 5 191.87 0.1063 2.29 Flu Nuclease-sensitive element-binding protein 1

Yes1 15 3 281.77 0.0406 2.23 PBS Tyrosine-protein kinase

Yipf3 5 1 30.81 0.0475 1.76 Flu Protein YIPF (Fragment)

Yipf5 2 1 69.58 0.2986 2.17 Flu Protein YIPF5

Ykt6 3 2 48.6 0.0560 1.47 Flu Synaptobrevin homolog YKT6

Ylpm1 22 6 104.98 0.9621 1.15 PBS YLP motif-containing protein 1

Yme1l1 11 3 91.19 0.0073 1.34 Flu ATP-dependent zinc metalloprotease YME1L1

Ythdf1 5 1 44.7 0.0623 1.64 Flu YTH domain family 1, isoform CRA_a

Ythdf2 12 2 96 0.0222 1.76 PBS YTH domain-containing family protein 2

Ywhab 21 4 955.29 0.2100 1.09 Flu 14-3-3 protein beta/alpha

Ywhae 23 6 928.87 0.8279 1.01 PBS 14-3-3 protein epsilon

Ywhae 13 0 402.11 --- 14-3-3 protein epsilon (Fragment)

Ywhag 19 4 791.59 0.2728 1.17 Flu 14-3-3 protein gamma

Ywhah 14 2 555.67 0.0516 1.42 Flu 14-3-3 protein eta

Ywhaq 23 9 777.6 0.8943 1.02 PBS 14-3-3 protein theta

Ywhaz 25 8 1345.83 0.3923 1.05 Flu 14-3-3 protein zeta/delta

Zadh2 8 5 226.77 0.4205 1.11 PBS Zinc-binding alcohol dehydrogenase domain-containing protein 2

Zbed5 10 1 55.36 0.2680 2.05 Flu MCG130675

Zc3h11a 19 2 111.54 0.7157 1.04 PBS Zinc finger CCCH domain-containing protein 11A

Zc3h3 13 5 57.12 0.9961 1.02 Flu Zinc finger CCCH domain-containing protein 3

Zc3h4 7 2 61.15 0.0956 1.53 PBS Zinc finger CCCH domain-containing protein 4

Zc3hav1 8 2 182.85 0.0186 1.61 Flu Zinc finger CCCH-type antiviral protein 1

Zcchc8 4 0 20.44 --- Zinc finger CCHC domain-containing protein 8

Zfp318 32 5 161.66 0.3707 1.11 PBS Zinc finger protein 318

Zfp790 8 1 56.31 0.5753 1.13 PBS Protein Zfp790

Zfr 19 6 240.97 0.7361 1.03 PBS Zinc finger RNA-binding protein

Zfyve19 10 0 72.18 --- Abscission/NoCut checkpoint regulator

Zmpste24 9 4 164.35 0.0879 1.16 Flu CAAX prenyl protease 1 homolog

Znf326 7 2 74.85 0.0260 1.58 Flu DBIRD complex subunit ZNF326

Zyx 19 10 383.17 0.2973 1.23 Flu Zyxin

2 1 56.29 0.0336 1.20 Flu Protein Njmu-R1

8 3 208.69 0.0526 3.04 Flu Ig gamma-3 chain C region

3 1 70.62 0.0649 43.15 Flu Ig kappa chain V-III region PC 2413

1 1 43.15 0.0725 3.43 Flu Ig kappa chain V-II region 26-10

8 3 93.27 0.0768 1.72 Flu Uncharacterized protein FLJ45252 homolog

2 1 75.26 0.1285 4.08 Flu Ig kappa chain V-V region MOPC 149

5 1 65.35 0.1325 4.75 PBS RUS1 family protein C16orf58 homolog

2 1 41.14 0.3050 1.38 Flu Uncharacterized protein C17orf62 homolog

4 1 95.92 0.4207 1.15 PBS Quinone oxidoreductase-like protein 2

7 1 114.84 0.7775 1.04 PBS Ester hydrolase C11orf54 homolog

2 1 42.42 0.7936 1.03 Flu UPF0600 protein C5orf51 homolog

4 1 38.69 0.7985 1.03 Flu UPF0705 protein C11orf49 homolog

1 0 5.55 --- Uncharacterized protein C6orf203 homolog

7 0 405.05 --- Ig heavy chain V region AC38 205.12

5 0 171.95 --- H-2 class I histocompatibility antigen, alpha chain (Fragment)

2 1 65.43 0.0288 32.43 Flu Ig heavy chain V region MOPC 141

8 2 77.38 0.1175 1.34 Flu Uncharacterized protein

3 2 153.74 0.0027 12.17 Flu Ig kappa chain V-V region L6 (Fragment)

1 0 21.12 --- T-cell receptor beta chain V region 3H.25

2 0 76.66 --- Ig heavy chain V region 6.96

Fraction 2

Gene symbol Peptide count Unique peptides Confidence score Anova (p) Max fold change Highest mean condition Description

1700003H04Rik 2 0 26.62 --- Protein 1700003H04Rik

1700009N14Rik 7 1 298.2 0.0091 8.78 PBS MCG49183

2 SV 5 0 145.09 --- H-2 class I histocompatibility antigen, alpha chain (Fragment)

2010300C02Rik 32 8 224.64 0.4884 1.22 Flu Protein 2010300C02Rik

2210010C04Rik 3 1 57.85 0.5341 1.22 PBS Protein 2210010C04Rik

2210011C24Rik 9 2 278.07 0.2867 1.26 PBS MCG5930

2210011C24Rik 5 1 98.98 0.6217 1.05 Flu Protein 2210011C24Rik (Fragment)

2700060E02Rik 9 2 213.81 0.0280 3.48 Flu MCG140066

3 SV 2 0 39.08 --- Ig heavy chain V region MOPC 141

4 SV 1 0 16.83 --- T-cell receptor beta chain V region 3H.25

4732456N10Rik 11 0 426.59 --- Protein 4732456N10Rik

A2m 19 9 375.82 0.0135 1.69 PBS Alpha-2-macroglobulin

Aaas 4 0 86.33 --- Aladin

Aak1 12 3 83.74 0.0046 1.95 Flu AP2-associated protein kinase 1

Abca17 12 0 77.29 --- Protein Abca17

Abcb1b 12 4 133.62 0.7491 1.57 Flu Multidrug resistance protein 1B

Abcd3 14 2 353.54 0.8084 1.01 PBS ATP-binding cassette sub-family D member 3

Abcd3 12 0 299.63 --- ATP-binding cassette sub-family D member 3

Abce1 8 2 100.35 0.2748 2.05 PBS ATP-binding cassette sub-family E member 1

Abcf1 15 5 142.54 0.0036 1.79 PBS ATP-binding cassette sub-family F member 1

Abhd14b 2 0 68.77 --- Alpha/beta hydrolase domain-containing protein 14B (Fragment)

Abhd8 2 0 12.92 --- Abhydrolase domain-containing protein 8

Abi1 3 1 61.15 0.1754 1.25 Flu Abl interactor 1

Ablim1 30 14 426.84 0.5413 1.16 Flu Actin-binding LIM protein 1

Ablim3 8 4 78 0.3071 1.63 PBS Actin-binding LIM protein 3

Abr 9 2 58.85 0.3191 2.37 Flu Active breakpoint cluster region-related protein

Abracl 1 1 43.21 0.0960 1.77 Flu Costars family protein ABRACL

Acaa1a 12 2 233.77 0.5950 1.12 Flu 3-ketoacyl-CoA thiolase A, peroxisomal

Acaa1b 10 0 148.45 --- 3-ketoacyl-CoA thiolase B, peroxisomal

Acaa2 27 20 1049.1 0.0607 2.12 PBS 3-ketoacyl-CoA thiolase, mitochondrial

Acad8 8 3 99.25 0.1491 1.75 PBS Isobutyryl-CoA dehydrogenase, mitochondrial

Acad9 10 3 184.08 0.1989 1.45 PBS Acyl-CoA dehydrogenase family member 9, mitochondrial

Acadl 16 9 546.74 0.1366 1.65 PBS Long-chain specific acyl-CoA dehydrogenase, mitochondrial

Acadm 10 5 229 0.0507 1.92 PBS Medium-chain specific acyl-CoA dehydrogenase, mitochondrial

Acads 10 1 264 0.0210 5.83 PBS Short-chain specific acyl-CoA dehydrogenase, mitochondrial

Acads 14 0 186.74 --- Short-chain-specific acyl-CoA dehydrogenase, mitochondrial (Fragment)

Acadsb 7 3 290.55 0.3704 1.35 PBS Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial

Acadvl 20 9 652 0.0313 1.50 PBS Very long-chain specific acyl-CoA dehydrogenase, mitochondrial

Acat1 15 10 633.19 0.2591 1.29 PBS Acetyl-CoA acetyltransferase, mitochondrial

Acbd3 2 2 44.49 0.5419 1.13 Flu Golgi resident protein GCP60

Acbd5 2 0 59.02 --- Acyl-CoA-binding domain-containing protein 5

Ace 35 21 1064.88 0.0115 1.79 PBS Angiotensin-converting enzyme

Acin1 33 5 636.7 0.0067 2.48 PBS Apoptotic chromatin condensation inducer in the nucleus

Acin1 3 0 35.41 --- Apoptotic chromatin condensation inducer in the nucleus (Fragment)

Acin1 15 0 451.36 --- Apoptotic chromatin condensation inducer in the nucleus

Acin1 4 0 30.39 --- Apoptotic chromatin condensation inducer in the nucleus (Fragment)

Acly 21 9 662.8 0.1239 1.23 PBS ATP-citrate synthase

Acly 7 0 245.07 --- ATP-citrate synthase

Aco1 6 3 95.72 0.1783 2.29 PBS Cytoplasmic aconitate hydratase

Aco2 38 17 1429.11 0.0852 1.61 PBS Aconitate hydratase, mitochondrial

Acot13 3 2 29.67 0.5612 1.94 PBS Acyl-coenzyme A thioesterase 13

Acot2 12 6 311.8 0.2283 1.24 PBS Acyl-coenzyme A thioesterase 2, mitochondrial

Acot3 2 0 32.48 --- Acyl-coenzyme A thioesterase 3

Acot4 6 2 101.75 0.7552 1.02 Flu Acyl-coenzyme A thioesterase 4

Acot7 8 3 73.81 0.8871 1.03 Flu Cytosolic acyl coenzyme A thioester hydrolase

Acot9 8 4 169.61 0.3116 1.18 Flu Acyl-coenzyme A thioesterase 9, mitochondrial

Acox1 9 4 121.99 0.5449 1.34 Flu Peroxisomal acyl-coenzyme A oxidase 1

Acsf2 14 5 224.51 0.9431 1.12 PBS Acyl-CoA synthetase family member 2, mitochondrial

Acsl1 10 1 77.27 0.0651 1.84 PBS Long-chain-fatty-acid--CoA ligase 1 (Fragment)

Acsl1 21 6 370.55 0.1502 1.55 PBS Long-chain-fatty-acid--CoA ligase 1

Acsl4 6 3 127.41 0.1718 1.57 PBS Long-chain-fatty-acid--CoA ligase 4

Acsl5 22 10 548.57 0.1366 1.17 Flu Acyl-CoA synthetase long-chain family member 5, isoform CRA_b

Acss1 12 8 299.92 0.2696 1.22 Flu Acetyl-coenzyme A synthetase 2-like, mitochondrial

Acta2 101 0 5197.79 --- Actin, aortic smooth muscle

Actb 115 20 5748.39 0.8756 1.02 PBS Actin, cytoplasmic 1

Actbl2 45 1 2161.8 0.2388 1.48 PBS Beta-actin-like protein 2

Actc1 108 6 5333.88 0.1806 2.31 Flu Actin, alpha cardiac muscle 1

Actg1 40 0 2259.46 --- Actin, cytoplasmic 2

Actg1 58 0 2742.46 --- Actin, cytoplasmic 2 (Fragment)

Actg1 34 0 1744.46 --- Actin, cytoplasmic 2

Actl6a 7 3 136.2 0.5721 1.26 Flu Actin-like protein 6A

Actn1 85 2 5495.28 0.0872 2.74 Flu Alpha-actinin-1

Actn1 85 3 5484.55 0.6592 1.14 Flu Alpha actinin 1a

Actn2 66 29 3160.27 0.1729 1.40 PBS Alpha-actinin-2

Actn3 24 1 1027.34 0.1898 2.57 PBS Alpha-actinin-3

Actn4 96 37 5723.93 0.0253 1.21 Flu Alpha-actinin-4

Actr1a 12 2 375.79 0.2509 1.28 Flu Alpha-centractin

Actr1b 11 1 337.13 0.8858 1.12 Flu Beta-centractin

Actr2 26 15 976.76 0.2121 1.13 Flu Actin-related protein 2

Actr3 28 11 1086.14 0.0452 1.18 Flu Actin-related protein 3

Actr3b 10 2 238.37 0.4095 2.02 PBS Actin-related protein 3B

Acvrl1 6 3 83.27 0.4661 1.12 PBS Serine/threonine-protein kinase receptor R3

Adam17 10 2 55.79 0.8711 1.04 PBS Disintegrin and metalloproteinase domain-containing protein 17

Adamts12 9 2 55 0.5249 1.16 Flu A disintegrin and metalloproteinase with thrombospondin motifs 12

Adamts18 9 1 34.48 0.1449 3.61 PBS A disintegrin and metalloproteinase with thrombospondin motifs 18

Add1 23 11 608.65 0.6269 1.06 PBS Alpha-adducin

Add2 7 3 159.35 0.2090 1.13 Flu Beta-adducin

Add3 15 10 355.99 0.8555 1.04 PBS Gamma-adducin

Adgre5 6 4 154.4 0.4865 1.11 PBS Protein Adgre5

Adh1 12 6 254.76 0.0147 2.42 PBS Alcohol dehydrogenase 1

Adh5 7 4 82.65 0.0166 3.48 PBS Alcohol dehydrogenase class-3

Adipoq 7 5 301.12 0.1643 1.50 PBS Adiponectin

Adk 5 2 32.01 0.0603 1.63 PBS Adenosine kinase

Adpgk 4 2 32.44 0.8493 1.00 Flu ADP-dependent glucokinase

Adsl 10 6 135.95 0.0755 1.38 PBS Adenylosuccinate lyase

Afg3l2 16 2 109.31 0.0805 2.03 PBS AFG3-like protein 2

Aga 1 1 25.23 0.0053 4.10 Flu N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase

Ager 21 13 827.52 0.0394 1.82 PBS Advanced glycosylation end product-specific receptor

Agfg1 5 1 51.69 0.0712 2.94 Flu Arf-GAP domain and FG repeat-containing protein 1

Agk 5 3 45.09 0.1523 1.25 Flu Acylglycerol kinase, mitochondrial

Ago1 9 2 92.85 0.4143 1.13 PBS Protein argonaute-1

Ago2 17 2 181.1 0.1453 2.11 Flu Protein argonaute-2

Ago4 6 0 47.13 --- Protein argonaute-4

Agpat5 3 0 19.25 --- 1-acyl-sn-glycerol-3-phosphate acyltransferase epsilon

Agps 3 2 19.88 0.3123 1.27 PBS Alkyldihydroxyacetonephosphate synthase, peroxisomal

Agrn 19 8 391.54 0.4662 1.50 PBS Agrin

Agtpbp1 9 1 52.49 0.4476 1.70 PBS Cytosolic carboxypeptidase 1

Ahcy 13 7 379.09 0.4588 1.24 Flu Adenosylhomocysteinase

Ahnak 371 202 10374.27 0.0580 1.72 PBS Protein Ahnak

Ahnak2 12 2 61.84 0.1314 3.08 PBS Protein Ahnak2 (Fragment)

Ahsg 6 4 87.95 0.1338 1.30 Flu Alpha-2-HS-glycoprotein

Aif1 7 3 251.35 0.0122 7.04 Flu Allograft inflammatory factor 1

Aif1 6 0 140.17 --- Allograft inflammatory factor 1 (Fragment)

Aifm1 11 4 321.36 0.3296 1.15 PBS Apoptosis-inducing factor 1, mitochondrial

Aimp2 5 3 69.2 0.0606 2.23 Flu Aminoacyl tRNA synthase complex-interacting multifunctional protein 2

Ajuba 4 0 42.41 --- LIM domain-containing protein ajuba

Ak2 6 2 82.9 0.0093 2.06 Flu Adenylate kinase 2, mitochondrial

Ak2 5 1 41.38 0.1417 2.17 PBS Adenylate kinase 2, mitochondrial (Fragment)

Ak3 10 5 224.4 0.2094 1.17 Flu GTP:AMP phosphotransferase AK3, mitochondrial

Ak3 3 1 51.17 0.8757 5.62 Flu GTP:AMP phosphotransferase AK3, mitochondrial (Fragment)

Akap12 20 8 371.16 0.5138 1.20 PBS A-kinase anchor protein 12

Akap2 36 20 1461.13 0.1759 1.27 PBS A-kinase anchor protein 2

Akap2 6 2 57.52 0.8080 1.05 PBS A-kinase anchor protein 2 (Fragment)

Akap5 21 11 542.63 0.0197 1.77 PBS A-kinase anchor protein 5

Akr1a1 12 4 137.08 0.5330 1.09 PBS Alcohol dehydrogenase [NADP(+)]

Akr1b1 16 5 300.45 0.2044 1.32 Flu Aldose reductase

Akr1b7 5 0 68.35 --- Aldose reductase-related protein 1

Akr1c14 3 2 31.77 0.2245 1.09 PBS 3-alpha-hydroxysteroid dehydrogenase type 1

Akr7a2 4 2 92.4 0.1300 1.36 Flu Aflatoxin B1 aldehyde reductase member 2

Akt1 7 1 52.26 0.0071 1.80 Flu RAC-alpha serine/threonine-protein kinase

Alad 4 1 75.82 0.6837 12.72 Flu Delta-aminolevulinic acid dehydratase

Alb 57 45 3144.31 0.4508 1.41 Flu Serum albumin

Alcam 16 4 441.52 0.3171 1.22 PBS CD166 antigen

Alcam 7 0 167.16 --- CD166 antigen (Fragment)

Aldh1a1 31 5 1491.99 0.3515 1.19 PBS Retinal dehydrogenase 1

Aldh1a2 9 2 108.84 0.9013 1.02 Flu Retinal dehydrogenase 2

Aldh1a7 20 2 561.08 0.6798 1.04 PBS Aldehyde dehydrogenase, cytosolic 1

Aldh1b1 7 4 119.78 0.8490 1.01 PBS Aldehyde dehydrogenase X, mitochondrial

Aldh1l1 12 3 73.31 0.3619 1.17 Flu Cytosolic 10-formyltetrahydrofolate dehydrogenase

Aldh2 36 6 1670.4 0.1786 1.48 PBS Aldehyde dehydrogenase, mitochondrial

Aldh2 17 0 745.46 --- Aldehyde dehydrogenase, mitochondrial (Fragment)

Aldh2 16 0 719.43 --- Aldehyde dehydrogenase, mitochondrial (Fragment)

Aldh3a2 9 6 249.77 0.5335 1.04 Flu Aldehyde dehydrogenase

Aldh3b1 12 4 201.87 0.1159 1.45 PBS Aldehyde dehydrogenase family 3 member B1

Aldh3b3 5 0 107.38 --- Aldehyde dehydrogenase

Aldh4a1 13 4 335.52 0.0266 2.03 PBS Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial

Aldh6a1 22 13 500.85 0.0534 1.50 PBS Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial

Aldh7a1 8 5 173.34 0.9966 1.01 PBS Alpha-aminoadipic semialdehyde dehydrogenase

Aldh9a1 6 3 130.74 0.2922 1.48 PBS 4-trimethylaminobutyraldehyde dehydrogenase

Aldoa 16 3 714.74 0.7550 1.04 Flu Fructose-bisphosphate aldolase A

Aldoart1 11 1 386.12 0.8601 1.20 PBS Fructose-bisphosphate aldolase

Aldoart2 7 0 330.82 --- Fructose-bisphosphate aldolase

Aldob 3 1 37.18 0.3466 1.76 PBS Fructose-bisphosphate aldolase B

Aldoc 8 1 62.89 0.2523 2.50 PBS Fructose-bisphosphate aldolase C

Alg10b 4 1 41.5 0.5858 1.16 Flu Putative Dol-P-Glc:Glc(2)Man(9)GlcNAc(2)-PP-Dol alpha-1,2-glucosyltransferase

Alyref 11 7 300.15 0.1448 1.31 PBS THO complex subunit 4

Angptl1 12 2 96.18 0.0783 1.54 Flu Angiopoietin-related protein 1

Ank1 55 27 1838.81 0.0990 1.53 PBS Ank1 protein

Ank2 33 3 226.42 0.2105 1.21 PBS Ankyrin-2

Ank2 11 0 117.13 --- Ankyrin-2 (Fragment)

Ank3 16 2 276.69 0.3317 1.19 PBS Ankyrin-3

Ank3 57 8 335.37 0.9841 1.02 Flu Ankyrin-3 (Fragment)

Ank3 7 0 74.77 --- Ankyrin-3 (Fragment)

Ank3 5 0 80.06 --- Ankyrin-3 (Fragment)

Ankfy1 13 4 165.8 0.4407 1.20 Flu Rabankyrin-5

Ano10 5 4 128.7 0.0598 1.49 Flu Anoctamin-10

Ano6 13 6 231.29 0.6286 1.07 Flu Anoctamin-6

Anp32a 7 1 161.88 0.0395 1.50 PBS Acidic leucine-rich nuclear phosphoprotein 32 family member A (Fragment)

Anp32a 5 0 178.69 --- Acidic leucine-rich nuclear phosphoprotein 32 family member A

Anp32b 4 1 83.39 0.5379 2.22 Flu Acidic leucine-rich nuclear phosphoprotein 32 family member B

Anp32e 4 2 139.78 0.0234 2.12 Flu Acidic leucine-rich nuclear phosphoprotein 32 family member E (Fragment)

Anpep 17 10 657.1 0.7225 1.06 PBS Aminopeptidase N

Antxr1 6 3 67.68 0.1023 1.38 Flu Anthrax toxin receptor 1

Antxr2 6 2 38.41 0.0642 2.38 Flu Anthrax toxin receptor 2

Anxa1 17 7 993.07 0.1426 1.43 Flu Annexin A1

Anxa11 14 7 511.82 0.2364 1.20 PBS Annexin A11

Anxa2 34 20 1783.05 0.6912 1.07 PBS Annexin A2

Anxa3 19 11 809.36 0.5403 1.07 Flu Annexin A3

Anxa4 20 10 955.25 0.3799 1.54 PBS Annexin A4

Anxa5 28 9 1367.65 0.0297 2.66 PBS Annexin A5

Anxa6 51 26 1869.1 0.4951 1.14 PBS Annexin A6

Anxa7 14 6 424.26 0.2837 1.17 Flu Annexin A7

Anxa9 3 3 148.4 0.4305 1.18 PBS Annexin A9

Aoc3 6 2 60.91 0.1119 1.46 PBS Amine oxidase (Fragment)

Ap1b1 30 1 878.08 0.5100 1.32 PBS AP-1 complex subunit beta-1

Ap1g1 8 4 105.92 0.3655 1.23 Flu AP-1 complex subunit gamma-1

Ap1g2 4 1 31.98 0.8822 1.06 PBS AP-1 complex subunit gamma-like 2

Ap1m1 11 3 96.7 0.8448 1.04 PBS AP-1 complex subunit mu-1

Ap1m2 5 0 65.86 --- AP-1 complex subunit mu-2

Ap1s1 5 1 44.82 0.1228 1.53 Flu AP-1 complex subunit sigma-1A

Ap2a1 45 9 1916.82 0.0515 1.34 PBS AP-2 complex subunit alpha-1

Ap2a1 15 0 567.74 --- AP-2 complex subunit alpha-1 (Fragment)

Ap2a2 42 14 2347.84 0.6609 1.06 Flu AP-2 complex subunit alpha-2

Ap2b1 46 18 1802.49 0.0403 1.44 Flu AP-2 complex subunit beta

Ap2m1 26 10 969.16 0.0247 1.26 Flu AP-2 complex subunit mu

Ap2s1 5 1 70.84 0.6710 1.91 Flu AP-2 complex subunit sigma

Ap3b1 20 3 120.36 0.0932 2.13 PBS AP-3 complex subunit beta-1

Ap3d1 16 5 138.2 0.9583 1.09 Flu AP-3 complex subunit delta-1

Ap3m1 5 2 33.75 0.9210 1.32 PBS AP-3 complex subunit mu-1

Ap4e1 3 0 21.37 --- AP-4 complex subunit epsilon-1

Ap4s1 1 0 24.22 --- AP-4 complex subunit sigma-1

Apbb1ip 10 2 59.45 0.4675 1.23 PBS Amyloid beta A4 precursor protein-binding family B member 1-interacting protein

Apc2 36 9 216.19 0.9364 1.01 Flu Adenomatous polyposis coli protein 2

Apex1 9 6 107.2 0.3338 1.45 Flu DNA-(apurinic or apyrimidinic site) lyase

Api5 9 3 110.34 0.0277 17.53 PBS Apoptosis inhibitor 5

Apmap 4 2 51.82 0.8504 1.28 PBS Adipocyte plasma membrane-associated protein

Apoa1 8 4 170.27 0.0350 2.21 Flu Apolipoprotein A-I

Apoa1bp 3 2 96.32 0.1432 1.32 Flu NAD(P)H-hydrate epimerase

Apoa4 10 2 164.09 0.1893 1.58 Flu Apolipoprotein A-IV

Apoe 7 3 54.24 0.0522 2.78 Flu Apolipoprotein E

Apoh 5 2 58.74 0.9314 1.08 Flu Beta-2-glycoprotein 1

Apoo 1 1 26.09 0.0147 1.47 Flu MICOS complex subunit Mic26

Apool 6 4 212.51 0.1396 1.90 Flu MICOS complex subunit Mic27

App 3 2 84.9 0.6867 1.12 PBS Amyloid beta A4 protein

Aprt 2 1 23.2 0.0294 4.81 Flu Adenine phosphoribosyltransferase

Aqp1 7 5 376.47 0.3278 1.25 PBS Aquaporin-1

Aqp5 6 4 217.18 0.0728 1.66 PBS Aquaporin-5

Aqr 15 4 145.24 0.2281 1.40 Flu Intron-binding protein aquarius

Araf 8 0 28.41 --- Serine/threonine-protein kinase A-Raf

Arap1 11 2 59.47 0.2624 1.71 PBS Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 1

Arcn1 6 1 58.94 0.0649 1.76 Flu Coatomer subunit delta

Arf3 14 5 468.75 0.7940 1.01 Flu ADP-ribosylation factor 3

Arf4 10 2 424.05 0.3224 1.45 PBS ADP-ribosylation factor 4

Arf5 7 1 262.78 0.3004 1.72 PBS ADP-ribosylation factor 5

Arf6 6 5 77.59 0.3718 1.13 Flu ADP-ribosylation factor 6

Arfgap2 11 2 116.05 0.7530 1.56 PBS ADP-ribosylation factor GTPase-activating protein 2

Arg1 3 1 35.07 0.4103 1.33 PBS Arginase-1

Arglu1 3 0 46.71 --- Arginine and glutamate-rich protein 1

Arhgap1 7 3 186.16 0.1057 1.39 Flu Rho GTPase-activating protein 1

Arhgap17 6 2 38.24 0.5862 1.09 PBS Rho GTPase-activating protein 17

Arhgap29 12 3 60.47 0.2109 1.65 PBS Rho GTPase-activating protein 29

Arhgdia 7 7 434.42 0.0217 1.49 Flu Rho GDP-dissociation inhibitor 1

Arhgdib 11 5 155.61 0.0503 2.26 Flu Rho GDP-dissociation inhibitor 2

Arhgef1 16 5 254.56 0.5019 1.14 PBS Rho guanine nucleotide exchange factor 1

Arhgef1 10 0 88.8 --- Rho guanine nucleotide exchange factor 1 (Fragment)

Arhgef15 17 4 225.01 0.7729 1.17 PBS Rho guanine nucleotide exchange factor 15

Arhgef2 9 3 93.25 0.3246 1.45 PBS Rho guanine nucleotide exchange factor 2

Arhgef6 4 1 65.77 0.3810 1.38 PBS Rho guanine nucleotide exchange factor 6

Arhgef7 9 1 115.23 0.0024 2.19 Flu Rho guanine nucleotide exchange factor 7

Arid1a 17 2 91.63 0.1135 1.43 PBS AT-rich interactive domain-containing protein 1A

Arid5b 17 1 115.62 0.2530 2.08 PBS AT-rich interactive domain-containing protein 5B

Arl1 4 1 95.12 0.0387 2.42 Flu ADP-ribosylation factor-like protein 1

Arl8a 4 1 129.87 0.9603 1.01 PBS ADP-ribosylation factor-like protein 8A (Fragment)

Arl8b 7 2 131.84 0.0477 2.22 Flu ADP-ribosylation factor-like protein 8B

Armc10 3 1 178.63 0.4165 1.18 PBS Armadillo repeat-containing protein 10

Arpc1a 10 4 212.57 0.0436 1.57 PBS Actin-related protein 2/3 complex subunit 1A

Arpc1b 13 2 478.56 0.5246 1.07 Flu Actin-related protein 2/3 complex subunit 1B

Arpc1b 5 0 217.75 --- Actin-related protein 2/3 complex subunit 1B (Fragment)

Arpc2 15 7 551.91 0.3479 1.22 PBS Actin-related protein 2/3 complex subunit 2

Arpc2 2 0 28.57 --- Actin-related protein 2/3 complex subunit 2 (Fragment)

Arpc3 10 2 291.4 0.0750 1.20 Flu Actin-related protein 2/3 complex subunit 3

Arpc3 6 2 205.61 0.1648 1.96 Flu Actin-related protein 2/3 complex subunit 3 (Fragment)

Arpc3 10 1 269.21 0.7695 1.18 Flu Actin-related protein 2/3 complex subunit 3

Arpc3 7 0 204.36 --- Actin-related protein 2/3 complex subunit 3

Arpc4 7 4 364.3 0.5443 1.06 PBS Actin-related protein 2/3 complex subunit 4

Arpc5 4 4 125.19 0.9220 1.02 PBS Actin-related protein 2/3 complex subunit 5

Arpc5l 5 3 102.04 0.0445 1.30 Flu Actin-related protein 2/3 complex subunit 5

Arrb1 5 2 53.36 0.9908 1.35 Flu Beta-arrestin-1

Arrb2 4 1 36.18 0.5956 1.48 Flu Beta-arrestin-2

Arrdc5 3 0 26.48 --- Arrestin domain-containing protein 5

Art3 4 2 114.61 0.4959 1.21 Flu NAD(P)(+)--arginine ADP-ribosyltransferase

Art3 4 0 74.96 --- NAD(P)(+)--arginine ADP-ribosyltransferase (Fragment)

Art4 5 4 154.45 0.2790 1.31 Flu Ecto-ADP-ribosyltransferase 4

Arvcf 11 1 114.3 0.3729 1.98 Flu Armadillo repeat protein deleted in velo-cardio-facial syndrome homolog

Asah1 8 7 268.05 0.0067 1.86 Flu Acid ceramidase

Asb15 2 0 26.48 --- Ankyrin repeat and SOCS box protein 15

Asna1 2 0 2.45 --- ATPase Asna1

Asph 9 7 226.99 0.5627 1.20 Flu Aspartyl/asparaginyl beta-hydroxylase

Atic 10 5 223.79 0.4624 1.17 Flu Bifunctional purine biosynthesis protein PURH

Atl1 3 0 37.86 --- Atlastin-1

Atl3 12 5 274.81 0.4085 1.22 PBS Atlastin-3

Atox1 2 1 22.53 0.1867 1.57 Flu Copper transport protein ATOX1

Atp12a 11 1 186 0.8252 1.03 PBS Potassium-transporting ATPase alpha chain 2

Atp13a1 14 4 89.2 0.0095 3.60 PBS Manganese-transporting ATPase 13A1

Atp1a1 39 15 1562.22 0.0465 1.45 PBS Sodium/potassium-transporting ATPase subunit alpha-1

Atp1a2 24 3 757.98 0.7355 1.03 PBS Sodium/potassium-transporting ATPase subunit alpha-2

Atp1a3 20 1 647.42 0.7197 1.06 Flu Sodium/potassium-transporting ATPase subunit alpha

Atp1a4 16 2 301.85 0.4593 1.14 Flu Sodium/potassium-transporting ATPase subunit alpha-4

Atp1b1 8 4 149.44 0.6073 1.15 PBS Sodium/potassium-transporting ATPase subunit beta-1

Atp1b3 4 0 26.66 --- Sodium/potassium-transporting ATPase subunit beta-3

Atp2a1 18 1 625.33 0.9483 1.45 Flu Sarcoplasmic/endoplasmic reticulum calcium ATPase 1

Atp2a2 44 15 1639.29 0.0155 2.11 PBS Sarcoplasmic/endoplasmic reticulum calcium ATPase 2

Atp2a3 26 10 586.55 0.0307 2.18 PBS Sarcoplasmic/endoplasmic reticulum calcium ATPase 3

Atp2b1 24 4 514.92 0.0487 2.19 PBS Plasma membrane calcium-transporting ATPase 1

Atp2b2 16 1 195.5 0.3124 1.25 PBS Plasma membrane calcium-transporting ATPase 2

Atp2b3 13 0 247.59 --- Calcium-transporting ATPase

Atp2b4 21 4 340.73 0.0810 1.54 PBS Calcium-transporting ATPase

Atp4a 9 1 180.1 0.3246 1.89 PBS Potassium-transporting ATPase alpha chain 1

Atp5a1 41 23 1931.59 0.7732 1.07 PBS ATP synthase subunit alpha, mitochondrial

Atp5b 41 29 2493.34 0.1413 1.68 PBS ATP synthase subunit beta, mitochondrial

Atp5c1 13 4 320.8 0.0236 6.52 PBS ATP synthase subunit gamma

Atp5c1 8 0 124 --- ATP synthase subunit gamma, mitochondrial (Fragment)

Atp5d 3 1 96.38 0.8278 1.42 Flu ATP synthase subunit delta, mitochondrial

Atp5f1 14 8 290.03 0.0228 1.37 Flu ATP synthase F(0) complex subunit B1, mitochondrial

Atp5h 7 4 244.81 0.2442 1.35 Flu ATP synthase subunit d, mitochondrial (Fragment)

Atp5i 5 1 69.29 0.0471 1.32 Flu ATP synthase subunit e, mitochondrial

Atp5j2 1 0 35.19 --- ATP synthase subunit f, mitochondrial

Atp5o 15 2 600.06 0.1514 1.59 Flu ATP synthase subunit O, mitochondrial

Atp5o 8 0 362.05 --- ATP synthase subunit O, mitochondrial (Fragment)

Atp6v0a1 19 9 493.42 0.1082 1.23 Flu V-type proton ATPase subunit a

Atp6v0a2 2 0 26.38 --- V-type proton ATPase 116 kDa subunit a isoform 2

Atp6v0c 6 3 125.46 0.0020 2.09 Flu V-type proton ATPase 16 kDa proteolipid subunit (Fragment)

Atp6v0d1 11 5 277.11 0.0102 1.76 Flu V-type proton ATPase subunit d 1

Atp6v1a 23 12 881.92 0.0089 1.36 Flu V-type proton ATPase catalytic subunit A

Atp6v1b1 10 0 328.92 --- ATPase, H+ transporting, lysosomal V1 subunit B1

Atp6v1b2 19 6 640.91 0.0698 1.48 Flu V-type proton ATPase subunit B, brain isoform

Atp6v1d 4 1 90.25 0.0093 1.73 Flu V-type proton ATPase subunit D

Atp6v1e1 10 3 184.03 0.7152 1.05 Flu V-type proton ATPase subunit E 1

Atp6v1h 7 3 67.24 0.2107 1.31 Flu V-type proton ATPase subunit H

Atp8a1 12 6 235.33 0.0244 1.80 PBS Phospholipid-transporting ATPase IA

Atp8a2 7 0 65.84 --- Phospholipid-transporting ATPase IB

B2m 3 2 112.56 0.2234 2.40 Flu Beta-2-microglobulin

Bak1 6 2 178.94 0.0159 2.53 Flu Bcl-2 homologous antagonist/killer

Bak1 2 0 46.34 --- Bcl-2 homologous antagonist/killer (Fragment)

Baz1b 32 7 474.71 0.2755 1.33 PBS Tyrosine-protein kinase BAZ1B

BC005537 1 1 22.56 0.2606 6.36 PBS Protein BC005537

BC094916 4 1 132.74 0.7315 1.20 Flu Protein BC094916

Bcam 40 19 1806.28 0.1155 1.47 PBS Basal cell adhesion molecule

Bcam 13 1 646.87 0.4988 1.18 PBS Basal cell adhesion molecule (Fragment)

Bcap31 8 2 115.67 0.0625 1.28 Flu B-cell receptor-associated protein 31

Bcat2 9 4 185.68 0.0143 1.66 PBS Branched-chain-amino-acid aminotransferase, mitochondrial

Bcl11b 17 4 148.21 0.1797 1.80 PBS B-cell lymphoma/leukemia 11B

Bclaf1 14 4 122 0.0626 1.40 Flu Bcl-2-associated transcription factor 1

Bend3 9 0 27.71 --- BEN domain-containing protein 3

Bend7 4 2 41.49 0.0170 2.37 PBS BEN domain-containing protein 7

Best1 4 2 49.78 0.0679 2.33 PBS Bestrophin-1

Bgn 22 16 1018.6 0.5932 1.08 Flu Biglycan

Bin2 7 4 70.1 0.3416 1.37 PBS Bridging integrator 2

Blk 8 1 91.1 0.1926 679.47 Flu Tyrosine-protein kinase Blk

Blmh 7 2 104.08 0.7496 1.18 PBS Bleomycin hydrolase

Blvrb 8 4 213.2 0.0121 5.24 PBS Flavin reductase (NADPH)

Bmp2k 10 3 111.49 0.1025 1.31 Flu BMP-2-inducible protein kinase

Bms1 11 4 71.9 0.0143 1.28 Flu BMS1 homolog, ribosome assembly protein (Yeast)

Bpgm 4 2 143.24 0.0980 1.41 PBS Bisphosphoglycerate mutase

Bpgm 2 0 108.14 --- Phosphoglycerate mutase (Fragment)

Bphl 6 3 164.39 0.0771 1.45 Flu Valacyclovir hydrolase

Bre 6 1 62.36 0.0163 3.20 Flu BRCA1-A complex subunit BRE

Bsg 2 1 61.58 0.9822 1.02 PBS Basigin

Bsn 18 4 105.65 0.6390 1.09 PBS Protein bassoon (Fragment)

Bst1 4 3 101.84 0.0190 1.95 Flu ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 2

Bst2 2 1 100.14 0.1321 1.36 Flu Bone marrow stromal antigen 2

Btbd1 5 1 34.28 0.3268 1.32 PBS BTB/POZ domain-containing protein 1

Btf3 2 0 28.68 --- Transcription factor BTF3

Btn2a2 4 0 51.99 --- Butyrophilin subfamily 2 member A2

Bub3 9 3 202.75 0.1477 1.96 Flu Mitotic checkpoint protein BUB3

Bzw1 8 4 32.04 0.2215 1.18 PBS Basic leucine zipper and W2 domain-containing protein 1

C1qbp 2 1 47.12 0.1754 5.08 Flu Complement component 1 Q subcomponent-binding protein, mitochondrial

C3 24 15 694.85 0.0015 2.34 Flu Complement C3

C4b 10 5 139.2 0.2592 1.31 PBS Complement C4-B

Ca1 7 3 228.58 0.1399 1.28 PBS Carbonic anhydrase 1

Ca2 14 9 665.37 0.0192 2.04 PBS Carbonic anhydrase 2

Ca4 13 4 456.14 0.3062 1.25 PBS Carbonic anhydrase 4

Cacna1b 1 0 23.28 --- Voltage-dependent N-type calcium channel subunit alpha-1B (Fragment)

Cacna2d1 18 12 304.25 0.7357 1.08 Flu Voltage-dependent calcium channel subunit alpha-2/delta-1

Cad 13 1 102.99 0.3819 2.47 PBS CAD protein

Cadm1 4 4 90.76 0.0571 1.74 PBS Cell adhesion molecule 1

Calcrl 6 4 199.55 0.0121 2.12 PBS Calcitonin gene-related peptide type 1 receptor

Cald1 23 0 851.6 --- Protein Cald1

Cald1 22 0 805.07 --- Protein Cald1

Cald1 26 0 971.25 --- Caldesmon 1

Cald1 10 0 342.78 --- Protein Cald1 (Fragment)

Cald1 7 0 284.74 --- Protein Cald1 (Fragment)

Calm1 10 4 502.43 0.1116 1.48 Flu Calmodulin

Calr 23 16 683.33 0.7162 1.15 Flu Calreticulin

Camk2a 8 0 144.73 --- Calcium/calmodulin-dependent protein kinase type II subunit alpha

Camk2a 4 0 64.51 --- Calcium/calmodulin-dependent protein kinase type II subunit alpha (Fragment)

Camk2d 10 1 233.94 0.0531 1.53 Flu Calcium/calmodulin-dependent protein kinase type II subunit delta

Camk2d 5 0 55.4 --- Calcium/calmodulin-dependent protein kinase type II subunit delta (Fragment)

Camk2g 8 0 125.93 --- Calcium/calmodulin-dependent protein kinase type II subunit gamma

Camp 2 2 65.53 0.8249 1.07 Flu Cathelin-related antimicrobial peptide

Cand1 15 5 135.76 0.4186 1.10 Flu Cullin-associated NEDD8-dissociated protein 1

Canx 18 9 491.57 0.8976 1.07 PBS Calnexin

Cap1 24 16 1071.85 0.7356 1.06 Flu Adenylyl cyclase-associated protein 1

Cap2 5 0 54.03 --- Adenylyl cyclase-associated protein 2

Capg 9 1 363.38 0.2463 1.70 Flu Capping protein (Actin filament), gelsolin-like

Capg 8 0 323.27 --- Macrophage-capping protein

Capn1 15 8 262.09 0.0405 2.10 PBS Calpain-1 catalytic subunit

Capn2 16 8 384 0.0142 2.61 PBS Calpain-2 catalytic subunit

Capns1 6 1 161.79 0.2187 1.41 PBS Calpain small subunit 1

Capns2 4 1 53.66 0.4536 1.87 PBS Calpain small subunit 2

Caprin1 7 3 157.87 0.2476 1.12 Flu Caprin-1

Capza1 12 8 464.34 0.0009 1.48 Flu F-actin-capping protein subunit alpha-1

Capza2 13 7 481.82 0.0364 1.27 Flu F-actin-capping protein subunit alpha-2

Capzb 22 9 1035.76 0.1196 1.19 Flu Capping protein (Actin filament) muscle Z-line, beta, isoform CRA_a

Car4 8 0 245.06 --- Carbonic anhydrase 4 (Fragment)

Carkd 7 5 105.06 0.1252 1.22 Flu ATP-dependent (S)-NAD(P)H-hydrate dehydratase

Cat 21 13 734.46 0.1994 1.21 PBS Catalase

Cav1 5 1 155.93 0.9571 1.08 Flu Caveolin (Fragment)

Cav1 21 9 845.07 0.9930 1.03 PBS Caveolin-1

Cav2 7 7 347.86 0.4498 1.15 PBS Caveolin-2

Cbr1 6 1 53.06 0.0378 2.45 Flu Carbonyl reductase [NADPH] 1

Cbr2 40 10 2305.5 0.1037 2.11 PBS Carbonyl reductase [NADPH] 2

Cbr2 33 0 1594.35 --- Carbonyl reductase [NADPH] 2 (Fragment)

Cbr3 4 1 81.42 0.0363 3.06 Flu Carbonyl reductase [NADPH] 3

Cbx3 8 3 165.07 0.0476 1.83 Flu Chromobox protein homolog 3

Cbx5 4 3 62.38 0.4597 1.17 PBS Chromobox protein homolog 5

Ccar1 15 3 171.41 0.0443 2.75 Flu Cell division cycle and apoptosis regulator protein 1

Ccar2 7 3 72.01 0.0144 1.34 PBS Cell cycle and apoptosis regulator protein 2

Ccdc127 2 0 47.69 --- Coiled-coil domain-containing protein 127

Ccdc186 12 4 89.4 0.3211 1.43 Flu Coiled-coil domain-containing protein 186

Ccdc64 6 0 58.11 --- Bicaudal D-related protein 1

Ccny 5 2 72.21 0.3413 3.34 PBS Cyclin-Y

Ccnyl1 2 0 34.81 --- Protein Ccnyl1

Cct2 22 13 960.98 0.0612 2.42 PBS T-complex protein 1 subunit beta

Cct3 21 2 569.25 0.2016 1.81 PBS T-complex protein 1 subunit gamma

Cct3 4 1 29.38 0.5521 1.20 PBS T-complex protein 1 subunit gamma (Fragment)

Cct3 14 0 230.74 --- T-complex protein 1 subunit gamma (Fragment)

Cct4 22 1 588.82 0.0834 3.04 PBS T-complex protein 1 subunit delta

Cct4 22 0 570.92 --- T-complex protein 1 subunit delta

Cct5 16 11 330.74 0.1121 2.88 PBS T-complex protein 1 subunit epsilon

Cct6a 17 1 310.65 0.0039 24.68 PBS T-complex protein 1 subunit zeta

Cct6a 18 2 474.23 0.0090 5.34 PBS T-complex protein 1 subunit zeta

Cct6b 8 0 79.66 --- T-complex protein 1 subunit zeta-2

Cct7 16 7 595.33 0.1653 1.59 PBS T-complex protein 1 subunit eta

Cct8 26 8 728.9 0.0830 1.36 Flu T-complex protein 1 subunit theta

Cct8 14 1 306.22 0.9422 1.26 Flu T-complex protein 1 subunit theta (Fragment)

Cd14 6 2 113.65 0.0152 1.49 PBS Monocyte differentiation antigen CD14

Cd151 3 1 42.75 0.5020 1.19 PBS CD151 antigen

Cd177 2 2 40.69 0.1691 1.22 Flu CD177 antigen

Cd200 2 1 68.5 0.3656 1.28 PBS OX-2 membrane glycoprotein

Cd34 8 3 124.84 0.0251 3.87 PBS Hematopoietic progenitor cell antigen CD34

Cd36 15 8 866.11 0.0262 1.93 PBS CD36 antigen, isoform CRA_a

Cd38 9 6 131.62 0.0977 1.46 PBS ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1

Cd44 3 1 50.64 0.0550 1.83 Flu CD44 antigen

Cd47 9 4 310.84 0.0725 1.52 PBS Leukocyte surface antigen CD47

Cd55 2 1 30.83 0.2789 1.86 Flu Complement decay-accelerating factor, GPI-anchored

Cd74 16 5 223.23 0.0993 1.98 Flu H-2 class II histocompatibility antigen gamma chain

Cd81 4 2 114.44 0.7827 1.20 Flu CD81 antigen

Cd9 4 0 77.9 --- CD9 antigen

Cd93 8 3 252.71 0.0397 2.03 PBS Complement component C1q receptor

Cdc37 4 1 77.19 0.0383 3.37 Flu Hsp90 co-chaperone Cdc37

Cdc40 5 1 64.25 0.2586 1.46 Flu Pre-mRNA-processing factor 17

Cdc42 10 6 236.3 0.1191 1.99 PBS Cell division control protein 42 homolog

Cdc42bpb 24 4 149.69 0.8687 1.60 PBS Serine/threonine-protein kinase MRCK beta

Cdc42bpg 13 4 117.65 0.3544 1.08 PBS Serine/threonine-protein kinase MRCK gamma

Cdc5l 12 3 71.18 0.3716 2.54 Flu Cell division cycle 5-like protein

Cdc6 6 0 44.78 --- Cell division control protein 6 homolog

Cdh1 12 9 311.85 0.9699 1.02 Flu Cadherin-1

Cdh13 9 6 219.19 0.5127 1.10 Flu Cadherin-13

Cdh5 13 9 437.9 0.1241 1.45 PBS Cadherin-5

Cdipt 4 1 163.02 0.1354 1.23 Flu CDP-diacylglycerol--inositol 3-phosphatidyltransferase

Cdk11b 11 2 100.01 0.8777 1.26 PBS Cyclin-dependent kinase 11B

Cdkl2 12 4 87.05 0.0579 1.36 Flu Cyclin-dependent kinase-like 2

Cdkl4 8 2 109.83 0.1444 1.70 Flu Cyclin-dependent kinase-like 4

Cdkl5 10 2 83.84 0.0256 4.43 Flu Cyclin-dependent kinase-like 5

Cds2 4 1 137.84 0.3477 1.18 PBS Phosphatidate cytidylyltransferase 2

Cds2 3 0 56 --- Phosphatidate cytidylyltransferase (Fragment)

Cdv3 1 1 28.76 0.4664 6.58 Flu Protein CDV3

Celf2 4 1 38.22 0.0370 20.08 Flu CUGBP Elav-like family member 2

Celsr1 17 4 82.4 0.5943 1.05 PBS Cadherin EGF LAG seven-pass G-type receptor 1

Cenpv 6 4 155.25 0.0463 3.21 PBS Centromere protein V

Cep55 10 0 84.18 --- Centrosomal protein of 55 kDa

Cept1 3 2 19.87 0.6355 1.05 Flu Choline/ethanolaminephosphotransferase 1

Cers2 3 1 36.7 0.9418 1.17 Flu Ceramide synthase 2

Cers5 6 2 45.76 0.1322 1.84 PBS Ceramide synthase 5

Ces1 4 1 107.87 0.8501 1.29 PBS Liver carboxylesterase 1

Ces1a 6 1 66.54 0.3309 1.95 Flu Carboxylic ester hydrolase

Ces1b 8 1 195.37 0.3717 297.49 PBS Carboxylic ester hydrolase

Ces1c 11 3 329.93 0.0112 3.19 Flu Carboxylesterase 1C

Ces1d 27 14 1269.06 0.1787 1.33 PBS Carboxylesterase 1D

Ces1e 5 1 125.95 0.7265 2.41 Flu Carboxylesterase 1E

Ces1h 3 0 39.35 --- Protein Ces1h

Ces2b 4 0 47.14 --- Carboxylic ester hydrolase

Ces2g 6 3 103.98 0.2315 1.27 Flu Carboxylic ester hydrolase

Ces3b 3 0 20.84 --- Carboxylesterase 3B

Cfap20 3 2 132.08 0.1959 1.28 Flu Cilia- and flagella-associated protein 20

Cfh 8 3 75.92 0.1690 1.14 Flu Complement factor H

Cfl1 7 3 328.98 0.1276 1.82 PBS Cofilin-1

Cfl2 3 0 76.66 --- Cofilin-2

Cgn 42 2 849.2 0.0694 1.37 PBS Cingulin

Cgn 11 1 166.3 0.3003 2.16 PBS Cingulin

Cgn 40 0 681.63 --- Cingulin

Cgnl1 17 1 100.35 0.8844 1.52 Flu Cingulin-like 1

Chchd3 10 3 278.47 0.8348 1.00 PBS MICOS complex subunit Mic19

Chchd3 3 0 65.25 --- MICOS complex subunit Mic19 (Fragment)

Chchd6 7 2 77.11 0.9097 1.04 PBS MICOS complex subunit Mic25

Chd1 28 6 183.34 0.2026 1.19 PBS Chromodomain-helicase-DNA-binding protein 1

Chd3 20 1 190.16 0.0070 43.16 PBS Protein Chd3

Chd4 45 9 423.76 0.0772 1.54 PBS Chromodomain-helicase-DNA-binding protein 4

Chd5 19 3 200.71 0.1637 1.51 Flu Chromodomain-helicase-DNA-binding protein 5

Chd6 20 7 119.48 0.0482 1.56 PBS Chromodomain-helicase-DNA-binding protein 6

Chd7 37 8 196.51 0.2939 1.23 PBS Chromodomain-helicase-DNA-binding protein 7

Chi3l1 6 3 69.65 0.1489 1.51 Flu Chitinase-3-like protein 1

Chid1 1 1 16.54 0.7017 1.27 PBS Chitinase domain-containing protein 1

Chil3 11 7 500.76 0.6418 1.08 Flu Chitinase-like protein 3

Chmp4b 4 0 86.59 --- Charged multivesicular body protein 4b

Chmp6 4 0 127.99 --- Charged multivesicular body protein 6

Chp1 4 1 59.21 0.3884 1.18 PBS Calcineurin B homologous protein 1

Chrnd 5 1 42.88 0.1169 1.54 PBS Acetylcholine receptor subunit delta

Chtop 5 3 142.36 0.2443 1.22 Flu Chromatin target of PRMT1 protein

Cirh1a 8 2 74.11 0.6510 1.19 Flu Cirhin

Cisd1 1 0 27.09 --- CDGSH iron-sulfur domain-containing protein 1

Ckap4 34 13 1458.7 0.0548 2.02 Flu Cytoskeleton-associated protein 4

Ckap5 41 6 228.7 0.2674 1.23 PBS Cytoskeleton-associated protein 5

Ckb 4 2 145.07 0.0227 1.80 Flu Creatine kinase B-type

Ckmt1 12 3 194.11 0.3867 1.26 Flu Creatine kinase U-type, mitochondrial

Ckmt2 8 4 185.41 0.9247 1.08 Flu Creatine kinase S-type, mitochondrial

Clasp1 19 1 112.97 0.0302 1.66 PBS CLIP-associating protein 1

Cldn18 4 4 131.01 0.6530 1.42 Flu Claudin-18

Cldn5 1 1 26.45 0.0453 1.62 PBS Claudin-5

Clec14a 4 2 61.21 0.0072 4.66 PBS C-type lectin domain family 14 member A

Clic1 9 6 234.04 0.1464 1.36 Flu Chloride intracellular channel protein 1

Clic3 7 4 149.33 0.2180 1.33 Flu Chloride intracellular channel protein

Clic4 11 8 293.19 0.6682 1.14 Flu Chloride intracellular channel protein 4

Clic5 20 12 882.27 0.0172 1.97 PBS Chloride intracellular channel protein 5

Clic6 3 0 46.97 --- Chloride intracellular channel protein 6 (Fragment)

Clic6 7 0 207.64 --- Chloride intracellular channel protein 6

Clint1 8 7 273.79 0.7373 1.39 PBS Clathrin interactor 1

Clk2 8 2 55.99 0.5389 1.50 PBS Dual-specificity protein kinase CLK2

Clpp 3 0 45.42 --- ATP-dependent Clp protease proteolytic subunit, mitochondrial

Clta 6 2 122.57 0.0111 3.17 Flu Clathrin light chain A

Cltc 138 76 7169.64 0.5221 1.06 Flu Clathrin heavy chain 1

Cltc 18 0 704.37 --- Clathrin heavy chain 1 (Fragment)

Cmas 3 1 40.42 0.4955 1.15 Flu N-acylneuraminate cytidylyltransferase

Cmpk1 5 1 63.71 0.2197 1.98 Flu UMP-CMP kinase

Cmpk2 6 1 185.43 0.7820 1.13 PBS UMP-CMP kinase 2, mitochondrial

Cmya5 30 4 189.15 0.2238 1.26 PBS Cardiomyopathy-associated protein 5

Cndp2 9 6 115.71 0.0630 1.48 Flu Cytosolic non-specific dipeptidase

Cnn1 16 10 608.1 0.2807 1.16 PBS Calponin-1

Cnn2 10 2 425.21 0.4716 1.16 Flu Calponin-2

Cnn3 6 3 171.13 0.4159 1.28 Flu Calponin

Cnot1 19 5 131.16 0.4704 2.25 PBS CCR4-NOT transcription complex subunit 1

Cnot2 6 2 73.48 0.4714 1.13 Flu CCR4-NOT transcription complex subunit 2

Cnp 13 3 111.11 0.6347 5.51 Flu 2',3'-cyclic-nucleotide 3'-phosphodiesterase

Cnpy2 3 2 73.89 0.3298 1.30 PBS Protein canopy homolog 2

Cntn6 12 4 69.34 0.7146 1.06 Flu Contactin-6

Col12a1 36 15 339.15 0.4025 1.55 Flu Collagen alpha-1(XII) chain

Col14a1 18 5 247.07 0.8277 1.09 PBS Collagen alpha-1(XIV) chain

Col15a1 7 3 60.55 0.9942 1.12 Flu Collagen alpha-1(XV) chain

Col18a1 17 10 291.29 0.8369 1.03 Flu Collagen alpha-1(XVIII) chain

Col1a1 126 83 3239.65 0.5959 7.45 Flu Collagen alpha-1(I) chain

Col1a2 70 49 2082.59 0.5348 9.23 Flu Collagen alpha-2(I) chain

Col24a1 27 9 125.8 0.1408 1.40 PBS Collagen alpha-1(XXIV) chain

Col2a1 37 9 243.76 0.0502 2.56 Flu Collagen alpha-1(II) chain

Col3a1 83 37 1748.63 0.3246 19.17 Flu Collagen alpha-1(III) chain

Col3a1 49 10 522.73 0.3665 1.25 PBS Collagen alpha-1(III) chain (Fragment)

Col3a1 7 0 75.77 --- Collagen alpha-1(III) chain (Fragment)

Col4a1 30 10 195.48 0.9282 1.02 Flu Collagen alpha-1(IV) chain

Col4a2 34 12 199.35 0.3298 1.14 Flu Collagen alpha-2(IV) chain

Col5a2 34 9 119.59 0.9497 1.00 Flu Collagen alpha-2(V) chain

Col6a1 24 12 602.86 0.4189 1.19 Flu Collagen alpha-1(VI) chain

Col6a2 11 8 178 0.7099 1.02 Flu Collagen alpha-2(VI) chain

Col6a3 74 41 1902.99 0.7909 1.05 Flu Protein Col6a3

Col6a5 27 2 98.56 0.7958 1.03 PBS Collagen alpha-5(VI) chain

Colec12 15 4 260.76 0.2102 1.18 Flu Collectin-12

Colgalt1 7 2 87.86 0.0627 2.55 Flu Procollagen galactosyltransferase 1

Comt 5 1 84.2 0.0128 1.87 Flu Catechol O-methyltransferase

Copa 26 10 499.85 0.2064 1.34 Flu Coatomer subunit alpha

Copb1 15 10 192.37 0.8984 1.18 PBS Coatomer subunit beta

Copb2 13 6 303.2 0.5302 1.19 PBS Coatomer subunit beta'

Cope 4 3 92.34 0.0856 1.87 Flu Coatomer subunit epsilon

Copg1 19 5 353.53 0.4824 1.34 PBS Coatomer subunit gamma-1

Copg2 10 2 109.11 0.0378 1.75 Flu Coatomer subunit gamma-2 (Fragment)

Cops3 6 4 145.78 0.0512 1.36 Flu COP9 signalosome complex subunit 3

Cops4 6 4 78.68 0.0623 1.24 PBS COP9 signalosome complex subunit 4

Cops7a 1 0 6.5 --- COP9 signalosome complex subunit 7a

Cops7b 3 2 30.88 0.8076 1.43 Flu COP9 signalosome complex subunit 7b

Coq6 4 2 38.56 0.1664 1.64 PBS Ubiquinone biosynthesis monooxygenase COQ6, mitochondrial

Coq9 5 1 46.13 0.3994 1.23 Flu Ubiquinone biosynthesis protein COQ9, mitochondrial (Fragment)

Coro1a 22 1 688.39 0.2323 1.93 Flu Coronin-1A

Coro1a 19 0 547.61 --- Coronin

Coro1b 10 1 226.35 0.0307 1.60 Flu Coronin-1B

Coro1c 19 7 722.08 0.0354 1.37 PBS Coronin-1C

Coro1c 7 0 293.99 --- Coronin

Coro2b 8 1 74.61 0.4083 1.09 PBS Coronin-2B (Fragment)

Coro2b 14 5 369.4 0.7235 1.06 PBS Coronin-2B

Coro6 4 1 56.26 0.0888 1.94 PBS Coronin

Coro7 6 2 85.6 0.7665 1.24 PBS Coronin-7

Cotl1 6 4 98.14 0.0758 2.34 Flu Coactosin-like protein

Cox15 4 0 51.09 --- Cytochrome c oxidase assembly protein COX15 homolog

Cox4i1 16 2 748.13 0.0127 2.19 Flu Cytochrome c oxidase subunit 4 isoform 1, mitochondrial

Cox4i1 9 0 421.89 --- Cytochrome c oxidase subunit 4 isoform 1, mitochondrial (Fragment)

Cox5a 10 5 414.87 0.0509 1.65 Flu Cytochrome c oxidase subunit 5A, mitochondrial

Cox5b 6 1 114.99 0.1674 1.29 Flu Cytochrome c oxidase subunit 5B, mitochondrial

Cox5b 5 0 92.78 --- Cytochrome c oxidase subunit 5B, mitochondrial (Fragment)

Cox6a1 1 1 14.4 0.1288 1.89 Flu Cytochrome c oxidase subunit 6A1, mitochondrial

Cox6b1 5 3 232.38 0.0255 1.80 Flu Cytochrome c oxidase subunit 6B1

Cox6c 4 1 196.6 0.0588 1.63 Flu Cytochrome c oxidase subunit 6C

Cox6c 3 0 54.94 --- Cytochrome c oxidase subunit 6C (Fragment)

Cox7a2 3 0 106.23 --- Cytochrome c oxidase subunit 7A2, mitochondrial

Cox7b 1 1 14.08 0.1917 1.50 PBS Cytochrome c oxidase subunit 7B, mitochondrial

Cp 24 14 659.93 0.3740 1.21 Flu Ceruloplasmin

Cp 5 0 87.82 --- Ceruloplasmin (Fragment)

Cp 4 0 48.81 --- Ceruloplasmin (Fragment)

Cpm 16 8 268.78 0.9312 1.04 Flu Carboxypeptidase M

Cpne1 6 4 98.09 0.6229 1.13 PBS Copine-1 (Fragment)

Cpne3 6 1 75.5 0.0963 2.34 PBS Copine-3

Cpq 4 2 109.22 0.8233 1.02 Flu Carboxypeptidase Q

Cpsf6 6 3 54.89 0.4854 1.11 PBS Cleavage and polyadenylation-specificity factor subunit 6

Cpt1a 9 2 114.14 0.0360 5.30 PBS Carnitine O-palmitoyltransferase 1, liver isoform

Cr1l 5 2 57.49 0.2334 1.20 PBS Complement component receptor 1-like protein

Crat 4 1 93.65 0.1129 1.37 PBS Carnitine O-acetyltransferase

Crat 1 1 30.17 0.8364 1.05 PBS Carnitine O-acetyltransferase (Fragment)

Creg1 2 1 54.53 0.0008 2.96 Flu Protein CREG1

Crip2 6 5 250.97 0.5800 1.08 PBS Cysteine-rich protein 2

Crk 3 0 62.48 --- Adapter molecule crk

Crmp1 10 0 376.57 --- Dihydropyrimidinase-related protein 1

Crnkl1 13 2 166.34 0.8807 1.19 Flu Crooked neck-like protein 1

Crocc 22 0 163.85 --- Rootletin

Cryab 5 2 51.98 0.2947 1.35 Flu Alpha-crystallin B chain

Cryzl1 2 1 16.41 0.0080 2.72 Flu Quinone oxidoreductase-like protein 1

Cs 19 6 463.73 0.0339 2.49 PBS Citrate synthase, mitochondrial

Csde1 7 3 93.24 0.5687 1.42 PBS Cold shock domain-containing protein E1

Cse1l 16 6 252.22 0.2630 1.25 PBS Exportin-2

Csk 5 2 49.52 0.5293 1.57 PBS Tyrosine-protein kinase CSK

Csl 17 0 317.89 --- Citrate synthase

Csnk1a1 6 4 109.69 0.0060 1.54 Flu Casein kinase I isoform alpha

Csnk1d 11 1 174.68 0.0850 1.39 Flu Casein kinase I isoform delta

Csnk1e 12 0 125.73 --- Casein kinase I isoform epsilon

Csnk2a1 15 10 503.14 0.8485 1.06 Flu Casein kinase II subunit alpha

Csnk2a2 13 7 182.44 0.8901 1.03 PBS Casein kinase II subunit alpha'

Csnk2b 5 4 92.34 0.0817 1.44 PBS Casein kinase II subunit beta

Cspg4 14 6 185.87 0.1566 1.59 PBS Chondroitin sulfate proteoglycan 4

Csrp1 8 6 583.68 0.2749 1.31 Flu Cysteine and glycine-rich protein 1

Cstb 1 0 33.33 --- Cystatin-B

Ctbp1 2 0 35.08 --- C-terminal-binding protein 1 (Fragment)

Ctbp2 8 4 106.86 0.6775 1.16 Flu C-terminal-binding protein 2

Ctcf 3 1 59.76 0.0133 4.77 PBS Transcriptional repressor CTCF

Ctdspl2 6 1 64.11 0.0911 1.27 Flu CTD small phosphatase-like protein 2

Ctnna1 53 31 2300.39 0.2122 1.16 PBS Catenin alpha-1

Ctnna2 8 0 307.66 --- Catenin (Cadherin associated protein), alpha 2, isoform CRA_c

Ctnna2 11 0 517.42 --- Catenin alpha-2

Ctnna3 2 0 65.13 --- Catenin alpha-3

Ctnnb1 10 1 553.94 0.3562 1.38 PBS Catenin beta-1 (Fragment)

Ctnnb1 36 6 1703.46 0.5148 1.09 PBS Catenin beta-1

Ctnnb1 8 1 292.12 0.9120 1.02 Flu Catenin beta-1 (Fragment)

Ctnnb1 13 0 374.84 --- Catenin beta-1 (Fragment)

Ctnnd1 32 16 1191.68 0.3107 1.24 PBS Catenin delta-1

Ctsa 5 1 94.38 0.0034 2.54 Flu Lysosomal protective protein

Ctsb 9 7 261.16 0.2598 1.94 Flu Cathepsin B

Ctsc 4 2 126.65 0.0800 2.07 Flu Dipeptidyl peptidase 1

Ctsd 13 0 392.79 --- Cathepsin D (Fragment)

Ctsd 14 0 425.96 --- Cathepsin D

Ctsh 6 2 224.17 0.0177 3.30 Flu Pro-cathepsin H

Ctss 6 4 222.09 0.3460 1.72 Flu Cathepsin S

Ctsz 7 3 179.09 0.4243 1.30 Flu Cathepsin Z

Cttn 4 4 105.05 0.3860 1.26 PBS Src substrate cortactin

Cul3 14 2 107.53 0.0052 2.99 Flu Cullin-3

Cul4a 10 4 122.43 0.4735 1.16 PBS Cullin-4A

Cul4b 8 0 80.08 --- Cullin-4B

Cyb5a 6 2 184.68 0.1483 1.59 PBS Cytochrome b5

Cyb5a 4 0 70.95 --- Cytochrome b5

Cyb5b 4 3 191.15 0.0618 1.33 Flu Cytochrome b5 type B

Cyb5r3 17 9 831.31 0.0371 1.40 Flu NADH-cytochrome b5 reductase 3

Cyba 3 1 80.34 0.0167 3.41 Flu Cytochrome b-245 light chain

Cybb 11 2 137.44 0.0329 2.36 Flu Cytochrome b-245 heavy chain

Cyc1 11 6 268.59 0.2797 2.29 Flu Cytochrome c1, heme protein, mitochondrial

Cycs 8 5 365.99 0.0245 1.49 Flu Cytochrome c, somatic

Cyct 2 0 17.67 --- Cytochrome c, testis-specific

Cyfip1 19 5 420.39 0.7694 1.03 PBS Cytoplasmic FMR1-interacting protein 1

Cyfip1 4 0 54.71 --- Cytoplasmic FMR1-interacting protein 1 (Fragment)

Cyfip2 14 1 176.56 0.0288 1.87 Flu Cytoplasmic FMR1-interacting protein 2 (Fragment)

Cyfip2 17 0 270 --- Cytoplasmic FMR1-interacting protein 2

Cyp1a1 6 1 84.33 0.8828 1.02 Flu Cytochrome P450 1A1

Cyp26a1 8 1 48.36 0.5629 1.37 PBS Cytochrome P450 26A1

Cyp2b10 18 6 531.39 0.2439 1.29 PBS Cytochrome P450 2B10

Cyp2b13 9 1 122.05 0.9445 3.11 Flu Cytochrome P450, family 2, subfamily b, polypeptide 13

Cyp2b23 6 0 79.77 --- Protein Cyp2b23

Cyp2c29 8 2 109.91 0.0015 3.14 PBS Cytochrome P450 2C29

Cyp2d11 6 3 64.51 0.6858 1.05 PBS Cytochrome P450 2D11

Cyp2d22 7 1 99.51 0.8690 1.17 Flu Cytochrome P450 CYP2D22

Cyp2f2 29 18 1500.31 0.1170 1.36 PBS Cytochrome P450 2F2

Cyp2g1 4 0 49.47 --- Cytochrome P450, family 2, subfamily g, polypeptide 1

Cyp2s1 5 1 93.25 0.3087 1.32 PBS Cytochrome P450 2S1

Cyp4b1 20 9 471.79 0.0868 1.63 PBS Cytochrome P450 4B1

Cyp4b1 10 0 150.07 --- Cytochrome P450 4B1 (Fragment)

D10Jhu81e 5 4 77.46 0.1058 2.18 PBS ES1 protein homolog, mitochondrial

Daam1 20 6 181.29 0.7024 1.03 Flu Disheveled-associated activator of morphogenesis 1

Dad1 4 1 112.24 0.3339 1.17 Flu Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit DAD1

Dag1 11 4 96.45 0.4393 1.12 PBS Dystroglycan

Dars 15 7 273.02 0.0295 1.29 Flu Aspartate--tRNA ligase, cytoplasmic

Dazap1 4 3 137.44 0.0265 2.68 PBS DAZ-associated protein 1

Dbn1 12 9 296.38 0.4054 1.45 Flu Drebrin

Dbnl 9 5 389.41 0.0749 1.82 Flu Drebrin-like protein

Dbt 9 3 136.28 0.0674 1.79 PBS Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial

Dclk1 7 3 87.19 0.0330 1.53 PBS Serine/threonine-protein kinase DCLK1

Dcn 19 7 737.5 0.0761 1.51 PBS Decorin

Dcps 6 5 109.06 0.0307 1.81 Flu m7GpppX diphosphatase

Dctn1 17 7 340.67 0.0370 2.03 PBS Dynactin subunit 1

Dctn2 7 5 176.5 0.5146 1.10 PBS Dynactin subunit 2

Dctn4 6 1 62.14 0.2191 1.31 Flu Dynactin subunit 4

Dctn6 3 1 27.98 0.5964 1.52 Flu Dynactin 6, isoform CRA_b

Dcxr 11 0 122.44 --- Dicarbonyl L-xylulose reductase, isoform CRA_a

Ddah1 7 2 111.28 0.1706 1.48 PBS N(G),N(G)-dimethylarginine dimethylaminohydrolase 1

Ddah2 7 2 197.76 0.4963 1.52 Flu N(G),N(G)-dimethylarginine dimethylaminohydrolase 2

Ddb1 28 15 351.13 0.9133 1.04 PBS DNA damage-binding protein 1

Ddc 2 0 28.84 --- Aromatic-L-amino-acid decarboxylase

Ddost 14 8 455.85 0.5986 1.21 PBS Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit

Ddx1 13 6 235.31 0.0358 1.49 Flu ATP-dependent RNA helicase DDX1

Ddx10 11 0 130 --- Probable ATP-dependent RNA helicase DDX10

Ddx17 25 12 806.55 0.1323 1.45 Flu Probable ATP-dependent RNA helicase DDX17

Ddx18 9 2 165.52 0.0809 1.51 Flu ATP-dependent RNA helicase DDX18

Ddx21 21 8 557.1 0.5249 1.28 PBS Nucleolar RNA helicase 2

Ddx23 14 0 82.32 --- MCG18410, isoform CRA_a

Ddx39a 14 1 321.09 0.5234 1.91 Flu ATP-dependent RNA helicase DDX39A

Ddx39b 19 5 566.74 0.1185 1.36 Flu Spliceosome RNA helicase Ddx39b

Ddx3x 30 17 1123.77 0.0284 1.31 Flu ATP-dependent RNA helicase DDX3X

Ddx4 8 2 115.93 0.5304 1.35 Flu Probable ATP-dependent RNA helicase DDX4

Ddx41 12 2 135.52 0.1616 1.63 Flu Probable ATP-dependent RNA helicase DDX41

Ddx46 10 3 79.93 0.0870 3.22 PBS Probable ATP-dependent RNA helicase DDX46

Ddx5 32 13 1030.3 0.0114 1.47 Flu Probable ATP-dependent RNA helicase DDX5

Ddx58 8 1 45 0.0648 2.25 Flu Probable ATP-dependent RNA helicase DDX58

Ddx6 12 7 238.75 0.3357 1.16 Flu Probable ATP-dependent RNA helicase DDX6

Decr1 14 6 375.92 0.2738 1.32 PBS 2,4-dienoyl-CoA reductase, mitochondrial

Dek 15 4 222.03 0.2780 1.36 Flu Protein DEK

Dennd5a 18 3 107.14 0.0707 2.37 Flu DENN domain-containing protein 5A

Derl1 4 1 47.47 0.3017 1.32 PBS Derlin-1

Derl2 2 2 32.19 0.0243 2.33 Flu Derlin-2

Des 49 23 2350.02 0.8176 1.05 Flu Desmin

Dguok 2 2 19.16 0.3039 1.19 PBS Deoxyguanosine kinase, mitochondrial

Dhrs1 2 1 49.91 0.7077 1.77 Flu Dehydrogenase/reductase SDR family member 1

Dhrs7b 4 3 110.91 0.0145 1.50 Flu Dehydrogenase/reductase SDR family member 7B

Dhx15 19 8 564.94 0.3241 1.39 Flu DEAH (Asp-Glu-Ala-His) box polypeptide 15, isoform CRA_a

Dhx15 8 0 223.62 --- Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 (Fragment)

Dhx32 10 3 86.14 0.0346 2.85 Flu Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX32

Dhx33 16 0 113.19 --- Putative ATP-dependent RNA helicase DHX33

Dhx38 7 1 95.31 0.5099 1.56 Flu DEAH (Asp-Glu-Ala-His) box polypeptide 38

Dhx8 17 0 130 --- ATP-dependent RNA helicase DHX8 (Fragment)

Dhx9 73 42 2755.01 0.4252 1.08 Flu ATP-dependent RNA helicase A

Dhx9 6 0 80.89 --- ATP-dependent RNA helicase A (Fragment)

Dkc1 12 4 252.97 0.0066 1.98 PBS H/ACA ribonucleoprotein complex subunit 4

Dkc1 7 0 99.24 --- H/ACA ribonucleoprotein complex subunit 4 (Fragment)

Dlat 17 10 462.03 0.2091 1.23 PBS Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial

Dld 16 12 547.99 0.0673 1.92 PBS Dihydrolipoyl dehydrogenase, mitochondrial

Dlg1 10 1 142.51 0.8383 1.06 Flu Disks large homolog 1

Dlg1 8 1 86.64 0.9547 1.23 PBS Disks large homolog 1

Dlg1 10 0 182.31 --- Disks large homolog 1

Dlg1 12 0 154.5 --- Disks large homolog 1 (Fragment)

Dlst 12 4 335.62 0.0415 2.83 PBS Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial

Dmd 43 11 300.1 0.3263 1.58 PBS Dystrophin

Dmtn 6 1 98.48 0.1270 1.25 PBS Dematin

Dnah1 39 7 178.24 0.2906 1.38 Flu Protein Dnah1

Dnah11 41 7 268.15 0.2443 1.96 Flu Protein Dnah11

Dnah7b 51 8 220.82 0.2448 1.52 Flu Protein Dnah7b

Dnaja1 8 3 155.02 0.1453 1.97 Flu DnaJ homolog subfamily A member 1

Dnaja2 5 2 85.9 0.7224 1.50 Flu DnaJ homolog subfamily A member 2

Dnaja4 7 2 69.58 0.8707 1.30 Flu DnaJ homolog subfamily A member 4

Dnajb1 8 1 98.15 0.4695 1.06 Flu DnaJ homolog subfamily B member 1

Dnajb11 4 0 120.71 --- DnaJ homolog subfamily B member 11

Dnajb4 10 7 232.88 0.4513 1.21 Flu DnaJ homolog subfamily B member 4

Dnajb7 7 1 50.37 0.5382 1.02 Flu DnaJ homolog subfamily B member 7

Dnajc10 7 2 79.34 0.0348 1.55 Flu DnaJ homolog subfamily C member 10

Dnajc11 9 1 157.95 0.4233 1.94 Flu DnaJ homolog subfamily C member 11

Dnajc11 12 3 247.92 0.7948 1.02 Flu DnaJ homolog subfamily C member 11

Dnajc13 30 5 218.75 0.6283 1.08 PBS MCG115602

Dnajc3 8 0 78.11 --- DnaJ homolog subfamily C member 3

Dnajc9 3 1 41.15 0.0913 3.47 Flu DnaJ homolog subfamily C member 9

Dnm1 6 0 65.16 --- Dynamin-1

Dnm2 20 7 302.3 0.8345 1.11 Flu Dynamin-2

Dnm3 17 3 124.21 0.2227 1.71 Flu Dynamin-3

Dnmt1 16 1 91.31 0.5819 1.38 Flu DNA (cytosine-5)-methyltransferase

Dnpep 7 3 88.77 0.8611 1.12 Flu Aspartyl aminopeptidase

Dnttip2 13 3 116.57 0.0114 1.67 PBS Deoxynucleotidyltransferase terminal-interacting protein 2

Dock2 18 2 98.27 0.2296 2.16 Flu Dedicator of cytokinesis protein 2

Dock6 18 6 156.26 0.7602 1.12 Flu Dedicator of cytokinesis protein 6

Dock7 30 12 213.37 0.2971 1.39 Flu Dedicator of cytokinesis protein 7

Dock8 21 2 180.91 0.5082 1.90 Flu Dedicator of cytokinesis protein 8

Dock9 25 6 317.15 0.1785 3.11 PBS Dedicator of cytokinesis protein 9

Dpep1 21 13 672.1 0.6121 1.24 Flu Dipeptidase 1

Dpf2 4 1 104.61 0.0667 2.53 Flu Zinc finger protein ubi-d4

Dpm1 4 2 38.69 0.2758 1.26 Flu Dolichol-phosphate mannosyltransferase subunit 1

Dpp3 6 5 92.31 0.0453 1.46 Flu Dipeptidyl peptidase 3

Dpp4 19 10 535.8 0.0610 1.68 PBS Dipeptidyl peptidase 4

Dpp7 3 0 73.09 --- Dipeptidyl peptidase 2

Dpysl2 42 24 1892.31 0.0387 1.65 PBS Dihydropyrimidinase-related protein 2

Dpysl3 13 3 563.62 0.1107 1.21 Flu Dihydropyrimidinase-related protein 3

Dpysl3 8 1 419.65 0.7929 1.06 PBS Dihydropyrimidinase-related protein 3 (Fragment)

Drg1 3 1 48.81 0.5800 1.56 Flu Developmentally-regulated GTP-binding protein 1

Dsp 35 11 423.02 0.8022 1.16 PBS Desmoplakin

Dst 73 1 430.73 0.8718 1.01 Flu Dystonin

Dst 66 0 370.68 --- Dystonin

Dstn 5 3 106.02 0.4354 1.08 Flu Destrin

Dtna 12 4 168.33 0.1139 1.15 PBS Dystrobrevin alpha

Dusp3 5 2 207.51 0.5781 1.07 Flu Dual-specificity protein phosphatase 3

Dusp3 3 0 68.27 --- Dual-specificity protein phosphatase 3 (Fragment)

Dync1h1 116 66 3009.9 0.0066 1.64 PBS Cytoplasmic dynein 1 heavy chain 1

Dync1i2 4 2 69.3 0.2705 1.36 Flu Cytoplasmic dynein 1 intermediate chain 2

Dync1li1 11 3 134.59 0.9146 1.08 PBS Cytoplasmic dynein 1 light intermediate chain 1

Dync1li2 9 2 101.31 0.5824 1.33 PBS Cytoplasmic dynein 1 light intermediate chain 2

Dynll1 4 1 197.43 0.1346 1.40 Flu Dynein light chain 1, cytoplasmic

Dynll2 3 0 179.56 --- Dynein light chain 2, cytoplasmic

Dynlt3 1 1 32.28 0.4932 1.10 PBS Dynein light chain Tctex-type 3

Dysf 18 3 112.94 0.2565 1.85 PBS Dysferlin

Ear1 3 1 64.85 0.5838 1.31 PBS Eosinophil cationic protein 1

Ear2 5 2 135.59 0.9854 1.05 Flu Eosinophil cationic protein 2

Ear6 4 4 133.8 0.4392 1.26 Flu Ear6 protein

Ebp 2 0 46.85 --- 3-beta-hydroxysteroid-Delta(8),Delta(7)-isomerase

Ech1 2 1 44.38 0.5575 1.20 Flu Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial

Echdc3 3 0 28.09 --- Enoyl-CoA hydratase domain-containing protein 3, mitochondrial

Echs1 10 1 149.13 0.1710 1.35 Flu Enoyl-CoA hydratase, mitochondrial (Fragment)

Echs1 14 4 327.84 0.4270 1.13 Flu Enoyl-CoA hydratase, mitochondrial

Eci1 15 8 426.03 0.8116 1.05 Flu Enoyl-CoA delta isomerase 1, mitochondrial

Eci2 8 1 108.98 0.9607 1.15 Flu Enoyl-CoA delta isomerase 2, mitochondrial

Edc4 10 5 109.17 0.0565 2.52 PBS Enhancer of mRNA decapping 4, isoform CRA_b

Eef1a1 31 17 1141.9 0.0123 1.77 Flu Elongation factor 1-alpha 1

Eef1a2 13 1 387.74 0.4179 1.35 Flu Elongation factor 1-alpha 2

Eef1d 11 3 268.42 0.0752 1.60 Flu Elongation factor 1-delta

Eef1g 15 11 489.99 0.9565 1.03 PBS Elongation factor 1-gamma

Eef2 48 25 1681.92 0.0740 2.58 PBS Elongation factor 2

Efemp1 3 1 58.45 0.3629 40.28 Flu EGF-containing fibulin-like extracellular matrix protein 1

Efemp2 7 5 98.5 0.1426 1.76 Flu EGF-containing fibulin-like extracellular matrix protein 2

Efhc1 15 6 119.27 0.5475 1.11 Flu EF-hand domain-containing protein 1

Efhd2 20 13 804.19 0.0029 2.11 Flu EF-hand domain-containing protein D2

Efnb1 8 3 159.01 0.1116 1.31 PBS Ephrin-B1

Efr3a 19 7 227.4 0.6950 1.07 PBS Protein EFR3 homolog A

Eftud1 15 1 88.26 0.2672 2.08 PBS Elongation factor Tu GTP-binding domain-containing protein 1

Eftud2 18 10 570.92 0.8989 1.08 Flu 116 kDa U5 small nuclear ribonucleoprotein component

Eftud2 5 0 142.26 --- 116 kDa U5 small nuclear ribonucleoprotein component (Fragment)

Ehd1 39 14 1458.8 0.1681 1.27 PBS EH domain-containing protein 1

Ehd2 46 28 2001.81 0.0485 1.76 PBS EH domain-containing protein 2

Ehd3 24 0 757.75 --- EH domain-containing protein 3

Ehd4 42 22 1886.89 0.0330 1.77 PBS EH domain-containing protein 4

Eif2a 12 3 95.39 0.0230 2.42 Flu Eukaryotic translation initiation factor 2A

Eif2s1 9 3 265.82 0.0471 1.56 Flu Eukaryotic translation initiation factor 2 subunit 1

Eif2s2 5 2 47.95 0.7497 1.06 PBS Eukaryotic translation initiation factor 2 subunit 2

Eif2s3x 11 2 252.98 0.0812 4.26 Flu Eukaryotic translation initiation factor 2 subunit 3, X-linked

Eif2s3y 9 0 144.54 --- Eukaryotic translation initiation factor 2 subunit 3, Y-linked

Eif3a 19 9 274.12 0.2435 2.35 Flu Eukaryotic translation initiation factor 3 subunit A

Eif3b 14 7 164.44 0.4074 1.33 Flu Eukaryotic translation initiation factor 3 subunit B

Eif3c 12 3 226.32 0.0655 2.12 PBS Eukaryotic translation initiation factor 3 subunit C

Eif3d 9 2 122.46 0.1403 2.17 PBS Eukaryotic translation initiation factor 3 subunit D

Eif3e 5 4 149.9 0.0752 1.56 Flu Eukaryotic translation initiation factor 3 subunit E

Eif3f 3 3 144.47 0.4535 1.29 PBS Eukaryotic translation initiation factor 3 subunit F

Eif3g 5 3 95.66 0.0115 1.95 Flu Eukaryotic translation initiation factor 3 subunit G

Eif3h 5 1 53.22 0.0826 2.48 Flu Eukaryotic translation initiation factor 3 subunit H

Eif3k 2 0 45.33 --- Eukaryotic translation initiation factor 3 subunit K

Eif3l 10 6 289.4 0.2144 1.36 Flu Eukaryotic translation initiation factor 3 subunit L

Eif3m 5 5 180 0.0523 2.06 Flu Eukaryotic translation initiation factor 3 subunit M

Eif4a1 20 6 815.53 0.0199 2.28 Flu Eukaryotic initiation factor 4A-I

Eif4a2 15 1 557.09 0.0060 2.24 Flu Eukaryotic initiation factor 4A-II

Eif4a3 22 2 887.65 0.0139 1.71 Flu Eukaryotic initiation factor 4A-III

Eif4g1 17 5 158.69 0.9884 1.18 PBS Eukaryotic translation initiation factor 4 gamma 1

Eif4g2 14 4 102.03 0.1789 1.26 PBS Eukaryotic translation initiation factor 4 gamma 2

Eif5a 3 3 87.72 0.9331 1.03 Flu Eukaryotic translation initiation factor 5A (Fragment)

Eif5b 16 2 156.1 0.0431 2.54 Flu Eukaryotic translation initiation factor 5B

Eif6 3 3 89.68 0.2360 1.39 Flu Eukaryotic translation initiation factor 6

Elavl1 12 5 301.9 0.4101 1.30 PBS ELAV-like protein 1

Ell2 9 2 73.27 0.5317 1.24 PBS RNA polymerase II elongation factor ELL2

Elmo1 9 2 90.45 0.0651 1.49 PBS Engulfment and cell motility protein 1

Elovl1 1 0 54.6 --- Elongation of very long chain fatty acids protein 1

Emc1 8 3 175.26 0.1074 1.59 Flu ER membrane protein complex subunit 1

Emc2 6 2 102.74 0.0211 2.20 Flu ER membrane protein complex subunit 2

Emc3 4 1 100.04 0.1320 2.17 PBS ER membrane protein complex subunit 3

Emc8 4 1 64.56 0.6850 1.29 PBS ER membrane protein complex subunit 8 (Fragment)

Emd 1 1 52.69 0.0651 2.76 Flu Emerin

Eml2 7 3 64.43 0.8024 1.13 PBS Echinoderm microtubule-associated protein-like 2

Eml4 7 3 46.92 0.6944 1.02 PBS Echinoderm microtubule-associated protein-like 4

Endod1 8 2 148.12 0.1975 1.79 Flu Endonuclease domain-containing 1 protein

Eng 6 3 91.26 0.1252 1.36 PBS Endoglin

Enkur 14 2 61 0.9284 1.04 PBS Enkurin

Eno1 22 1 1122.12 0.4375 2.25 Flu Alpha-enolase

Eno1 20 0 852.1 --- Alpha-enolase

Eno2 8 1 277.5 0.8448 1.24 PBS Enolase

Eno3 6 0 214.57 --- Enolase (Fragment)

Eno3 9 0 335.76 --- Beta-enolase

Enpep 17 1 553.7 0.0925 1.40 PBS Glutamyl aminopeptidase (Fragment)

Enpep 30 9 1066.11 0.1070 1.41 PBS Glutamyl aminopeptidase

Entpd1 8 4 370.93 0.0236 2.80 PBS Ectonucleoside triphosphate diphosphohydrolase 1

Eogt 6 1 74.66 0.3360 1.24 PBS EGF domain-specific O-linked N-acetylglucosamine transferase

Epb41 38 15 872.95 0.0489 1.89 PBS Protein 4.1

Epb41 4 1 47.21 0.1410 1.80 PBS Protein 4.1 (Fragment)

Epb41 14 0 162.92 --- Protein 4.1 (Fragment)

Epb41l2 36 16 1302.05 0.0698 1.41 PBS Band 4.1-like protein 2

Epb41l3 7 0 74.49 --- Band 4.1-like protein 3

Epb41l4b 12 2 78.64 0.6108 1.17 PBS Band 4.1-like protein 4B

Epb41l4b 7 1 92.94 0.9591 1.22 PBS Band 4.1-like protein 4B

Epb41l5 15 4 418.07 0.0338 1.53 PBS Band 4.1-like protein 5

Epb42 14 2 513.01 0.3642 1.76 PBS Erythrocyte membrane protein band 4.2

Epb42 12 0 424.17 --- Erythrocyte membrane protein band 4.2

Epcam 1 0 4.27 --- Epithelial cell adhesion molecule

Ephx1 10 2 255.44 0.2181 1.22 PBS Epoxide hydrolase 1 (Fragment)

Ephx1 19 5 555.18 0.3519 1.30 PBS Epoxide hydrolase 1

Epn1 4 1 98.64 0.0307 1.79 Flu Epsin-1 (Fragment)

Epn2 8 2 327.19 0.1190 1.27 PBS Epsin-2

Epn3 4 1 180.79 0.2011 3.26 Flu Epsin-3

Eppk1 41 13 618.7 0.4516 1.17 Flu Epiplakin

Eprs 19 10 388.48 0.0473 1.87 PBS Bifunctional glutamate/proline--tRNA ligase

Eps15 14 1 171.39 0.0912 1.93 Flu Epidermal growth factor receptor substrate 15

Eps15 14 0 157.8 --- Epidermal growth factor receptor substrate 15

Eps15l1 11 4 234.82 0.1123 1.41 Flu Epidermal growth factor receptor substrate 15-like 1

Eps8l2 6 4 136.27 0.9267 1.08 Flu Epidermal growth factor receptor kinase substrate 8-like protein 2

Epx 15 8 351.64 0.4728 1.22 PBS Eosinophil peroxidase

Erap1 14 6 322.49 0.4561 1.23 Flu Endoplasmic reticulum aminopeptidase 1

Erbb2ip 9 1 75.24 0.6222 1.10 Flu Erbb2ip protein

Erh 3 2 135.31 0.0753 2.36 Flu Enhancer of rudimentary homolog

Erlin1 10 3 324.87 0.1060 2.15 PBS Erlin-1

Erlin2 16 6 708.93 0.0003 1.50 Flu Erlin-2

Ermp1 3 1 68.82 0.1700 1.70 Flu Endoplasmic reticulum metallopeptidase 1

Ero1a 5 4 163.2 0.5216 1.28 Flu ERO1-like protein alpha

Erp29 6 2 148.97 0.0087 2.51 Flu Endoplasmic reticulum resident protein 29

Erp44 8 3 233.65 0.0083 1.66 Flu Endoplasmic reticulum resident protein 44

Esam 7 1 171.43 0.1316 1.46 PBS Endothelial cell-selective adhesion molecule

Esam 6 0 146.2 --- Endothelial cell-selective adhesion molecule (Fragment)

Esd 7 3 101.57 0.7347 1.10 PBS S-formylglutathione hydrolase

Esrra 2 0 30.02 --- Steroid hormone receptor ERR1

Esyt1 23 12 565.03 0.4832 1.16 PBS Extended synaptotagmin-1

Esyt2 20 11 242.79 0.2520 1.22 PBS Extended synaptotagmin-2

Etf1 6 2 183.72 0.0070 2.10 Flu Eukaryotic peptide chain release factor subunit 1

Etfa 13 9 511.81 0.3900 1.17 PBS Electron transfer flavoprotein subunit alpha, mitochondrial

Etfb 9 4 297.31 0.8006 1.04 Flu Electron transfer flavoprotein subunit beta

Etfdh 11 1 86.26 0.1920 1.70 PBS Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial

Evl 5 1 78.74 0.0388 2.55 Flu Ena/VASP-like protein

Evpl 38 5 430.79 0.0094 2.27 PBS Envoplakin

Ewsr1 10 3 187.42 0.0970 1.41 Flu RNA-binding protein EWS

Exosc2 5 1 89.29 0.0547 2.54 Flu Exosome complex component RRP4

Exosc9 6 1 74.81 0.4356 1.49 Flu Exosome complex component RRP45

Extl1 3 0 50.6 --- Exostosin-like 1

Ezr 46 12 1756.55 0.0156 1.78 PBS Ezrin

F11r 5 3 156.37 0.0557 1.62 PBS Junctional adhesion molecule A

F13a1 19 14 415.56 0.3020 1.09 Flu Coagulation factor XIII A chain

Fabp5 3 2 25.6 0.6411 1.31 PBS Fatty acid-binding protein, epidermal

Faf2 8 5 170.43 0.0461 1.66 Flu FAS-associated factor 2

FAM120A 12 4 219.93 0.1474 1.80 Flu Constitutive coactivator of PPAR-gamma-like protein 1

Fam129a 11 1 78.39 0.0876 1.58 PBS Protein Niban

Fam129a 19 3 294.49 0.7192 1.13 Flu Protein Niban

Fam129a 17 0 237.64 --- Protein Niban

Fam129b 19 8 523.27 0.0640 1.84 PBS Niban-like protein 1

Fam129b 5 1 110.87 0.3062 1.81 PBS Niban-like protein 1 (Fragment)

Fam166b 2 1 38.42 0.7990 1.06 PBS Protein FAM166B

Fam49a 5 3 94.81 0.9873 1.07 PBS Protein FAM49A

Fam49b 5 1 150.42 0.0473 2.14 Flu Protein FAM49B

Fam60a 4 1 36.99 0.5988 2.36 Flu Protein FAM60A (Fragment)

Fam98a 4 2 90.72 0.3381 1.26 PBS Protein FAM98A

Farp1 19 7 226.93 0.1179 1.32 Flu FERM, RhoGEF and pleckstrin domain-containing protein 1

Farsa 3 0 59.9 --- Phenylalanine--tRNA ligase alpha subunit

Farsb 14 3 211.96 0.4455 1.14 Flu Phenylalanine--tRNA ligase beta subunit

Farsb 4 0 60.9 --- Phenylalanine--tRNA ligase beta subunit

Fasn 55 38 1210.32 0.1393 1.50 PBS Fatty acid synthase

Fbl 13 4 305.93 0.4988 1.26 Flu rRNA 2'-O-methyltransferase fibrillarin

Fbll1 3 0 49.32 --- rRNA/tRNA 2'-O-methyltransferase fibrillarin-like protein 1

Fbln5 13 8 627.53 0.1418 1.38 PBS Fibulin-5

Fbrsl1 13 3 75.15 0.7386 1.04 PBS Protein Fbrsl1

Fcgbp 9 2 60.39 0.6367 1.08 Flu Protein Fcgbp

Fcho2 10 3 150.98 0.7362 1.04 Flu F-BAR domain only protein 2

Fem1b 7 4 34.06 0.0309 1.49 PBS Protein fem-1 homolog B

Fermt2 23 10 1064.79 0.2842 1.27 PBS Fermitin family homolog 2

Fermt2 7 0 121.82 --- Fermitin family homolog 2 (Fragment)

Fermt3 19 5 318.71 0.6809 1.05 PBS Fermitin family homolog 3

Fetub 6 0 53.19 --- Fetuin-B

Fga 18 9 441.85 0.0179 1.28 Flu Fibrinogen alpha chain

Fgb 13 4 292.74 0.0425 1.43 Flu Fibrinogen beta chain

Fgd5 12 2 56.21 0.7611 1.05 PBS FYVE, RhoGEF and PH domain-containing protein 5

Fgd6 21 2 143.4 0.0906 2.13 PBS FYVE, RhoGEF and PH domain-containing protein 6

Fgg 12 7 478.06 0.0083 1.38 Flu Fibrinogen gamma chain

Fgl2 4 1 55.28 0.1189 1.46 Flu Fibroleukin

Fgr 9 3 99.31 0.6792 1.31 Flu Tyrosine-protein kinase Fgr

Fh 16 8 400.31 0.0907 2.05 PBS Fumarate hydratase, mitochondrial

Fh1 6 1 96.83 0.1272 1.84 PBS Fumarate hydratase, mitochondrial (Fragment)

Fhl1 9 3 382.28 0.0980 1.28 PBS Four and a half LIM domains protein 1

Fhl1 7 0 211.03 --- Four and a half LIM domains protein 1

Fhod1 11 4 211.52 0.4886 1.24 Flu FH1/FH2 domain-containing protein 1

Fignl1 9 1 93.57 0.7436 1.16 Flu Fidgetin-like protein 1

Fis1 3 2 86.3 0.2394 2.07 Flu Mitochondrial fission 1 protein

Fjx1 3 1 37.49 0.8313 1.08 PBS Four-jointed box protein 1

Fkbp11 3 1 37.69 0.0139 3.82 Flu Peptidyl-prolyl cis-trans isomerase FKBP11

Fkbp1a 3 3 140.24 0.3891 1.22 PBS Peptidyl-prolyl cis-trans isomerase FKBP1A

Fkbp4 10 3 174.75 0.1702 1.29 Flu Peptidyl-prolyl cis-trans isomerase FKBP4

Fkbp4 7 0 77.28 --- Peptidyl-prolyl cis-trans isomerase

Fkbp8 6 2 144.91 0.0523 2.11 Flu Peptidyl-prolyl cis-trans isomerase FKBP8

Fkbp8 3 0 64.41 --- Peptidyl-prolyl cis-trans isomerase FKBP8 (Fragment)

Flii 29 16 681.75 0.5534 1.07 Flu Protein flightless-1 homolog

Flna 144 53 5163.22 0.0108 1.30 PBS Filamin-A

Flna 14 1 265.66 0.5909 1.44 PBS Filamin-A (Fragment)

Flna 35 0 1337.58 --- Filamin-A (Fragment)

Flnb 77 39 2173.73 0.2301 1.17 Flu Filamin-B

Flnc 42 4 597.93 0.3198 1.27 Flu Filamin-C

Flot1 24 3 1034.62 0.3693 1.15 PBS Flotillin-1

Flot1 21 0 847.63 --- Flotillin-1

Flot2 28 18 1376.64 0.4120 1.12 PBS Flotillin-2

Fmnl1 12 1 98.96 0.1952 1.41 PBS Formin-like protein 1

Fmnl2 13 2 191.9 0.9595 1.07 PBS Formin-like protein 2

Fmnl3 14 0 156.22 --- Formin-like protein 3

Fmnl3 14 0 193.22 --- Formin-like protein 3

Fmo1 25 13 801.54 0.0705 1.50 PBS Dimethylaniline monooxygenase [N-oxide-forming] 1

Fmo2 34 20 1294.41 0.0323 1.89 PBS Dimethylaniline monooxygenase [N-oxide-forming] 2

Fmo3 6 3 72.01 0.0526 1.76 PBS Dimethylaniline monooxygenase [N-oxide-forming] 3

Fmo5 15 3 67.09 0.9352 1.02 PBS Dimethylaniline monooxygenase [N-oxide-forming] 5

Fmr1 7 1 64.8 0.0063 8.99 PBS Fragile X mental retardation protein 1 homolog

Fn1 68 43 2745.58 0.2022 1.40 Flu Fibronectin

Fn1 9 0 409.8 --- Fibronectin

Focad 9 3 70.79 0.9960 1.19 Flu Focadhesin

Foxk2 4 1 34.04 0.0511 5.09 PBS Forkhead box protein K2

Frg1 3 0 42.86 --- Protein FRG1

Frmd8 2 1 33.35 0.7360 1.02 Flu FERM domain-containing protein 8

Fscn1 4 2 54.19 0.0100 6.91 PBS Fascin

Fth1 4 2 168.44 0.0378 2.79 Flu Ferritin heavy chain

Ftl1 7 6 317.8 0.0108 2.67 Flu Ferritin light chain 1

Fubp1 11 2 92.74 0.7681 1.15 PBS Far upstream element-binding protein 1

Fus 10 2 408.96 0.0117 2.49 Flu RNA-binding protein FUS

Fus 3 0 89.31 --- RNA-binding protein FUS (Fragment)

Fxr1 15 1 243.4 0.0254 1.40 Flu Fragile X mental retardation syndrome-related protein 1

Fxr2 6 2 94.84 0.1127 1.49 PBS Fragile X mental retardation syndrome-related protein 2

Fxr2 6 0 179.82 --- Fragile X mental retardation syndrome-related protein 2

Fyn 6 0 106.81 --- Tyrosine-protein kinase

G3bp1 11 6 188.78 0.8250 1.01 PBS Ras GTPase-activating protein-binding protein 1

G6pd2 6 0 75.4 --- Glucose-6-phosphate 1-dehydrogenase

G6pdx 17 4 245.18 0.0396 2.36 Flu Glucose-6-phosphate 1-dehydrogenase X

Gabra1 5 0 46.63 --- Gamma-aminobutyric acid receptor subunit alpha-1

Gak 17 4 116.96 0.2719 1.20 Flu Cyclin-G-associated kinase

Galc 2 1 26.58 0.0198 1.80 Flu Galactocerebrosidase

Galns 4 1 54.99 0.1107 9.25 Flu N-acetylgalactosamine-6-sulfatase

Galnt2 8 3 80.94 0.8760 1.03 PBS Polypeptide N-acetylgalactosaminyltransferase 2

Ganab 18 10 604.18 0.5346 1.13 Flu Neutral alpha-glucosidase AB

Gapdh 33 1 1412.58 0.3966 1.27 Flu Glyceraldehyde-3-phosphate dehydrogenase

Gapdhs 4 0 146.05 --- Glyceraldehyde-3-phosphate dehydrogenase, testis-specific

Gars 7 1 97.64 0.2665 2.31 Flu Glycine--tRNA ligase

Gatad2b 8 3 71.44 0.0737 1.71 Flu Gatad2b protein

Gatm 6 2 73.15 0.1465 2.05 Flu Glycine amidinotransferase, mitochondrial

Gbp2 13 6 262.92 0.2473 1.49 Flu Guanylate-binding protein 1

Gbp7 4 2 53.7 0.7449 1.02 Flu Gbp6 protein

Gclc 4 2 43.78 0.0233 2.72 Flu Glutamate--cysteine ligase catalytic subunit

Gclm 3 1 59.39 0.4518 1.20 Flu Glutamate--cysteine ligase regulatory subunit

Gclm 3 0 43.41 --- Glutamate--cysteine ligase regulatory subunit (Fragment)

Gcn1l1 27 4 268.24 0.2002 1.49 Flu Protein Gcn1l1

Gda 5 2 163.99 0.0615 1.76 PBS Guanine deaminase

Gdi1 16 5 605.95 0.2596 1.31 PBS Rab GDP dissociation inhibitor alpha

Gdi2 33 16 1018.66 0.0081 1.50 Flu Rab GDP dissociation inhibitor beta

Gfap 7 0 141 --- Glial fibrillary acidic protein

Ggcx 6 1 73.66 0.1053 2.29 Flu Vitamin K-dependent gamma-carboxylase

Ghitm 4 1 85.19 0.0937 1.99 Flu Growth hormone-inducible transmembrane protein

Gimap4 11 7 519.95 0.0010 1.73 Flu GTPase IMAP family member 4

Gipc1 5 0 41.46 --- PDZ domain-containing protein GIPC1

Git1 9 2 41.26 0.6044 2.48 PBS ARF GTPase-activating protein GIT1

Glb1 4 1 91.08 0.0003 3.92 Flu Beta-galactosidase

Glg1 22 7 449.87 0.1264 2.57 Flu Golgi apparatus protein 1 (Fragment)

Glipr2 8 7 331.13 0.0078 1.68 Flu Golgi-associated plant pathogenesis-related protein 1

Glo1 3 2 57 0.3976 1.15 PBS Lactoylglutathione lyase

Glod4 8 2 181.26 0.0066 1.42 Flu Glyoxalase domain-containing protein 4

Glrx5 1 1 32.53 0.0508 3.11 Flu Glutaredoxin-related protein 5, mitochondrial

Gls 7 3 151.35 0.4247 1.46 PBS Glutaminase kidney isoform, mitochondrial

Glud1 21 11 702.99 0.2192 1.45 PBS Glutamate dehydrogenase 1, mitochondrial

Glud1 6 0 221.82 --- Glutamate dehydrogenase 1, mitochondrial (Fragment)

Glul 6 2 53.9 0.0238 3.20 PBS Glutamine synthetase

Glyr1 17 8 375.07 0.1652 1.10 Flu Putative oxidoreductase GLYR1

Gm10036 11 2 329.81 0.7039 1.15 Flu Protein Gm10036

Gm10094 9 5 202.67 0.1290 1.32 Flu Histone deacetylase complex subunit SAP18

Gm10260 8 4 278.91 0.0121 1.95 Flu Protein Gm10260

Gm10320 1 0 41.82 --- Protein Gm10320

Gm10709 9 0 98.43 --- MCG9889

Gm10881 1 0 83.59 --- Ig kappa chain V-V region L7 (Fragment)

Gm12728 4 0 121.03 --- Protein Gm12728

Gm14214 5 0 153.84 --- Protein Gm14214 (Fragment)

Gm15013 12 2 403.06 0.6099 1.67 Flu 40S ribosomal protein S4

Gm15294 3 0 99.2 --- Protein Gm15294

Gm16519 8 2 185.2 0.3028 1.48 Flu Protein Gm16519

Gm17087 7 0 279.32 --- Protein Gm17087

Gm17190 6 1 150.18 0.1232 5.61 PBS Protein Gm17190

Gm17430 5 0 53.67 --- Protein Gm17430

Gm18025 14 0 354.35 --- Uncharacterized protein

Gm1840 12 0 328.57 --- Glucose-6-phosphate isomerase

Gm20425 46 2 1804.69 0.0555 2.26 Flu Protein Gm20425

Gm20441 3 2 36.34 0.1360 2.15 PBS Protein Gm20441 (Fragment)

Gm20498 3 0 63.04 --- Protein Gm20498

Gm20521 4 3 61.29 0.8044 1.07 PBS Protein Gm20521

Gm20708 4 1 43.53 0.3354 1.19 Flu Protein Gm20708

Gm21992 3 0 95.42 --- Protein Gm21992

Gm28285 2 0 37.45 --- Protein Gm28285 (Fragment)

Gm3550 10 1 112.03 0.1120 2.52 PBS MCG123916

Gm3839 28 0 1276.98 --- Glyceraldehyde-3-phosphate dehydrogenase

Gm4877 7 2 220.69 0.4201 1.54 PBS Protein Gm4877

Gm4950 4 1 38.84 0.9302 1.04 PBS Proteasome subunit beta type

Gm4978 9 0 274.76 --- MCG5732

Gm5145 5 0 54.39 --- Protein Gm5145

Gm5218 9 0 69.3 --- Protein Gm5218

Gm5414 5 0 86.54 --- MCG1050941

Gm5422 10 1 76.41 0.3604 1.06 PBS Protein Gm5422

Gm5424 6 3 101.52 0.5454 1.09 PBS MCG15755

Gm5428 11 0 418.99 --- 60S ribosomal protein L6

Gm5786 13 0 370.56 --- Protein Gm5786

Gm6096 6 0 110.7 --- Protein Gm6096

Gm6576 12 1 358.93 0.7851 1.37 PBS Protein Gm6576

Gm7168 4 0 17.66 --- Sperm motility kinase Y

Gm7293 26 0 1005 --- Glyceraldehyde-3-phosphate dehydrogenase

Gm8394 4 2 76.68 0.4006 1.31 Flu Proteasome subunit alpha type

Gm8973 3 0 54.4 --- Protein Gm8973

Gm8994 18 0 710.19 --- Protein Gm8994

Gm9774 4 2 29.74 0.1673 2.21 Flu MCG119397

Gmppb 3 1 3.04 0.8582 1.07 PBS Mannose-1-phosphate guanyltransferase beta

Gmps 10 2 81.25 0.0392 4.26 Flu GMP synthase [glutamine-hydrolyzing]

Gna11 9 3 246.43 0.1801 1.27 PBS Guanine nucleotide-binding protein subunit alpha-11

Gna12 5 0 67.87 --- Guanine nucleotide-binding protein subunit alpha-12 (Fragment)

Gna13 14 8 485.36 0.3145 1.19 PBS Guanine nucleotide-binding protein subunit alpha-13

Gna14 5 1 77.58 0.5656 1.11 PBS Guanine nucleotide-binding protein subunit alpha-14

Gnai1 16 0 614.04 --- Guanine nucleotide-binding protein G(i) subunit alpha-1

Gnai2 33 15 1717.29 0.8382 1.04 Flu Guanine nucleotide-binding protein G(i) subunit alpha-2

Gnai3 16 6 682 0.6565 1.05 PBS Guanine nucleotide-binding protein G(k) subunit alpha

Gnal 4 1 100.77 0.2600 2.20 PBS Guanine nucleotide-binding protein G(olf) subunit alpha

Gnao1 13 7 465.35 0.1136 1.56 PBS Guanine nucleotide-binding protein G(o) subunit alpha

Gnaq 12 7 273.84 0.3556 1.17 PBS Guanine nucleotide-binding protein G(q) subunit alpha

Gnas 20 9 435.6 0.0517 1.36 PBS Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas

Gnat2 6 0 160.83 --- Guanine nucleotide-binding protein G(t) subunit alpha-2 (Fragment)

Gnb1 20 8 1104.62 0.0646 1.40 PBS Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1

Gnb2 20 7 1007.45 0.0175 1.32 PBS Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2

Gnb2l1 18 10 645.5 0.3409 1.54 PBS Guanine nucleotide-binding protein subunit beta-2-like 1

Gnb3 3 0 92.15 --- Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3

Gnb4 9 3 283.2 0.0141 1.21 PBS Guanine nucleotide-binding protein subunit beta-4

Gng12 3 2 155.08 0.5305 1.43 PBS Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12

Golga2 8 2 76.09 0.1722 1.51 PBS Golgin subfamily A member 2

Golim4 4 2 75.06 0.0182 2.28 Flu Golgi integral membrane protein 4

Golt1b 1 1 50.4 0.2298 1.72 Flu Vesicle transport protein GOT1B

Gorasp2 5 3 112.18 0.0198 1.92 Flu Golgi reassembly stacking protein 2, isoform CRA_d

Got1 3 2 42.87 0.9373 1.01 Flu Aspartate aminotransferase, cytoplasmic

Got2 21 9 965.3 0.2328 1.14 Flu Aspartate aminotransferase, mitochondrial

Gpc4 5 2 69.42 0.7233 1.05 PBS Glypican-4

Gpd1 6 0 117.76 --- Glycerol-3-phosphate dehydrogenase [NAD(+)]

Gpd2 15 8 387.6 0.4608 1.15 PBS Glycerol-3-phosphate dehydrogenase, mitochondrial

Gpi 17 6 632.39 0.3030 1.22 PBS Glucose-6-phosphate isomerase

Gpihbp1 3 1 43.32 0.1861 2.30 PBS Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1

Gprc5a 6 4 344.56 0.6542 1.11 PBS Retinoic acid-induced protein 3

Gps1 5 1 64.72 0.0640 1.61 Flu COP9 signalosome complex subunit 1

Gpx1 11 7 264.21 0.1385 1.25 PBS Glutathione peroxidase 1

Gpx3 11 5 318.89 0.9531 1.03 Flu Glutathione peroxidase 3

Gpx4 5 2 96.94 0.3323 1.13 Flu Glutathione peroxidase

Gpx5 3 0 66.31 --- Glutathione peroxidase

Grb2 11 5 218.21 0.0244 2.11 Flu Growth factor receptor-bound protein 2

Grtp1 4 0 44.41 --- Growth hormone-regulated TBC protein 1

Gsdma2 5 1 35.81 0.1816 1.26 PBS Gasdermin-A2

Gsn 37 15 1423.72 0.0215 1.41 PBS Gelsolin

Gsn 8 1 282.12 0.1647 1.27 PBS Gelsolin (Fragment)

Gsr 8 5 155.16 0.2661 1.32 PBS Glutathione reductase, mitochondrial

Gss 6 0 73.34 --- Glutathione synthetase

Gsta3 6 1 175.6 0.5117 1.48 Flu Glutathione S-transferase A3

Gsta4 5 1 119.55 0.0015 1.82 Flu Glutathione S-transferase A4

Gstk1 9 3 228.85 0.4358 1.12 PBS Glutathione S-transferase kappa 1

Gstm1 24 6 1131.2 0.9585 1.09 Flu Glutathione S-transferase Mu 1

Gstm1 14 0 494.51 --- Glutathione S-transferase Mu 1 (Fragment)

Gstm2 19 8 586.47 0.9569 1.01 Flu Glutathione S-transferase Mu 2

Gstm3 5 0 174.71 --- Glutathione S-transferase Mu 3

Gstm5 3 0 56.72 --- Glutathione S-transferase Mu 5

Gstm6 3 0 37.2 --- Glutathione S-transferase Mu 6

Gsto1 9 3 97.86 0.7599 1.13 Flu Glutathione S-transferase omega-1

Gstp1 9 9 375.84 0.4475 1.10 Flu Glutathione S-transferase P 1

Gucy1a3 11 5 132.15 0.3700 1.23 PBS Guanylate cyclase soluble subunit alpha-3

Gucy1b3 17 11 463.26 0.1221 1.36 PBS Guanylate cyclase soluble subunit beta-1

Gulp1 9 1 135.69 0.6253 1.07 Flu PTB domain-containing engulfment adapter protein 1

Gusb 6 3 128.68 0.2588 2.00 PBS Beta-glucuronidase

Gvin1 14 4 237.02 0.0669 1.98 PBS Interferon-induced very large GTPase 1

Gyg 6 4 118.62 0.4612 1.38 PBS Glycogenin-1

Gzma 5 4 105.26 0.4103 1.20 PBS Granzyme A

H13 3 2 118.91 0.3013 1.45 Flu H13 protein

H1f0 22 11 1278.02 0.2006 1.53 PBS Histone H1.0

H1fx 10 1 116.97 0.1573 1.13 Flu H1 histone family, member X

H2-Aa 3 3 162.88 0.1597 2.37 Flu H-2 class II histocompatibility antigen, A-B alpha chain

H2-Ab1 10 1 376.75 0.7030 3.08 Flu H-2 class II histocompatibility antigen, A beta chain

H2-Ab1 8 0 326.47 --- H-2 class II histocompatibility antigen, A-F beta chain (Fragment)

H2afv 5 1 193.76 0.0365 3.68 Flu Histone H2A

H2afv 5 0 256.43 --- Histone H2A

H2afx 6 2 214.98 0.6374 7.99 Flu Histone H2AX

H2afy 11 4 338.83 0.1835 3.47 Flu Core histone macro-H2A.1

H2afy2 7 2 98.48 0.2685 1.54 Flu Core histone macro-H2A.2

H2-D1 20 5 943.61 0.0344 2.23 Flu H-2 class I histocompatibility antigen, D-B alpha chain

H2-D1 8 1 279.6 0.4760 1.51 Flu H-2 class I histocompatibility antigen, D-D alpha chain

H2-D1 4 0 82.9 --- H-2 class I histocompatibility antigen, D-K alpha chain (Fragment)

H2-D1 9 0 284.14 --- H-2 class I histocompatibility antigen, D-K alpha chain

H2-D1 4 0 206.3 --- H-2 class I histocompatibility antigen, D-P alpha chain

H2-DMb2 3 1 68.97 0.1124 4.64 Flu H2-M beta 2

H2-Eb1 2 2 58.09 0.0050 9.51 Flu H-2 class II histocompatibility antigen, I-A beta chain

H2-K1 18 2 535.49 0.1614 2.20 Flu H-2 class I histocompatibility antigen, K-B alpha chain

H2-K1 8 1 238.02 0.1755 99.05 Flu H-2 class I histocompatibility antigen, K-Q alpha chain (Fragment)

H2-K1 6 0 114.81 --- H-2 class I histocompatibility antigen, K-D alpha chain

H2-Q10 5 0 192.2 --- H-2 class I histocompatibility antigen, Q10 alpha chain

H2-Q2 4 0 171.41 --- Histocompatibility 2, Q region locus 2

H2-Q4 11 0 433.3 --- Protein H2-Q4

H2-Q7 9 2 360.27 0.1747 2.33 Flu H-2 class I histocompatibility antigen, Q7 alpha chain

H2-Q8 7 0 295.27 --- H-2 class I histocompatibility antigen, Q8 alpha chain

H2-T23 2 0 55.47 --- H-2 class I histocompatibility antigen, D-37 alpha chain

H3f3a 9 1 292.04 0.2844 1.95 Flu Histone H3.3

H6pd 15 12 484.84 0.0809 1.29 Flu GDH/6PGL endoplasmic bifunctional protein

Hacd3 6 4 94.06 0.8893 1.03 PBS Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3

Hadh 13 6 425.79 0.0144 4.96 PBS Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial

Hadha 41 22 1203.78 0.0721 1.86 PBS Trifunctional enzyme subunit alpha, mitochondrial

Hadhb 27 17 667.63 0.0495 2.55 PBS Trifunctional enzyme subunit beta, mitochondrial

haemaglobin alpha 2 20 13 1033.56 0.7620 1.06 Flu Alpha globin 1

Hapln4 2 0 7.2 --- Hyaluronan and proteoglycan link protein 4

Hars 9 3 115.94 0.5217 1.08 Flu Histidine--tRNA ligase, cytoplasmic

Hat1 4 1 85.45 0.0349 5.54 Flu Histone acetyltransferase type B catalytic subunit

Hbb-b1 30 1 1951.72 0.2710 1.44 PBS Hemoglobin subunit beta-1

Hbb-b2 15 1 662.12 0.6248 1.08 PBS Hemoglobin subunit beta-2

Hbbt1 41 9 2770.53 0.1177 1.38 PBS Beta-globin

Hcfc1 23 6 211.07 0.3331 2.13 Flu Host cell factor 1

Hck 19 9 352.23 0.1676 1.12 Flu Tyrosine-protein kinase

Hdac1 13 3 306 0.1276 1.64 Flu Histone deacetylase 1

Hdac2 7 1 171.97 0.1025 1.64 Flu Histone deacetylase 2

Hdac4 7 0 71.29 --- Histone deacetylase 4

Hdgf 6 2 84.64 0.1673 1.62 Flu Hepatoma-derived growth factor

Hdlbp 26 11 439.75 0.9314 1.02 PBS Vigilin

Heatr1 20 2 154.1 0.1075 1.34 PBS HEAT repeat containing 1

Hes5 7 1 60.66 0.4197 1.37 PBS Transcription factor HES-5

Hexa 3 2 35.94 0.0142 2.06 Flu Beta-hexosaminidase subunit alpha

Hexb 7 2 105.72 0.0927 4.50 Flu Beta-hexosaminidase subunit beta

Hibadh 7 3 142.14 0.1337 1.29 Flu 3-hydroxyisobutyrate dehydrogenase, mitochondrial

Hibch 8 4 155.2 0.3059 2.71 Flu 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial

Hint1 2 2 43.5 0.6146 1.07 PBS Histidine triad nucleotide-binding protein 1

Hip1 5 1 71.51 0.1214 4.18 PBS Huntingtin-interacting protein 1 (Fragment)

Hip1 34 8 808.03 0.5487 1.06 Flu Huntingtin-interacting protein 1

Hip1 21 0 477.26 --- Huntingtin-interacting protein 1 (Fragment)

Hip1r 11 3 78.53 0.9926 1.04 PBS Huntingtin-interacting protein 1-related protein

Hist1h1a 26 5 1027.72 0.0626 1.68 Flu Histone H1.1

Hist1h1b 23 4 1032.41 0.7143 1.04 PBS Histone H1.5

Hist1h1c 29 4 1299.91 0.2298 1.30 Flu Histone H1.2

Hist1h1d 32 1 1334.3 0.2830 1.60 Flu Histone H1.3

Hist1h1e 27 6 1378.25 0.1136 1.96 PBS Histone H1.4

Hist1h1t 10 2 486.26 0.0251 1.79 Flu Histone H1t

Hist1h2aa 6 0 392.62 --- Histone H2A

Hist1h2af 8 1 402.82 0.4697 2.02 PBS Histone H2A type 1-F

Hist1h2ba 10 0 273.23 --- Histone H2B type 1-A

Hist1h2bb 18 1 937.41 0.2027 1.32 PBS Histone H2B type 1-B

Hist1h3a 10 2 326.09 0.8815 4.55 Flu Histone H3.1

Hist2h2aa1 5 0 354.39 --- Histone H2A

Hist2h2bb 12 1 838.3 0.9843 1.31 Flu Histone H2B type 2-B

Hist2h2be 14 0 793.36 --- Histone H2B type 2-E

Hist2h3b 10 2 322.05 0.2153 3.08 Flu Histone H3

Hist2h4 16 12 1083.54 0.1059 3.31 Flu Histone H4

Hivep2 17 2 89.88 0.3066 1.14 Flu Transcription factor HIVEP2

Hk1 22 6 439.79 0.2048 1.14 Flu Hexokinase-1

Hk2 12 2 170.12 0.0485 1.76 PBS Hexokinase

Hk3 6 1 75.11 0.4584 1.10 Flu Hexokinase

Hkdc1 13 1 183.73 0.0387 1.64 Flu Putative hexokinase HKDC1

Hlx 3 1 10.37 0.1478 1.48 PBS H2.0-like homeobox protein

Hmgb1 11 1 439.85 0.1086 1.32 Flu High mobility group protein B1 (Fragment)

Hmgb1 8 0 223.29 --- High mobility group protein B1 (Fragment)

Hmgb2 11 4 329.19 0.1616 1.63 Flu High mobility group protein B2

Hmox2 9 6 88.95 0.5407 1.07 PBS Heme oxygenase 2

Hnrnpa0 7 5 307.65 0.9910 1.00 PBS Heterogeneous nuclear ribonucleoprotein A0

Hnrnpa1 17 9 666.37 0.3797 1.27 Flu Heterogeneous nuclear ribonucleoprotein A1

Hnrnpa2b1 26 17 1392.32 0.9878 1.03 PBS Heterogeneous nuclear ribonucleoproteins A2/B1

Hnrnpa3 22 14 1021.73 0.4287 1.25 Flu Heterogeneous nuclear ribonucleoprotein A3

Hnrnpab 9 6 421.45 0.4984 1.18 Flu Heterogeneous nuclear ribonucleoprotein A/B

Hnrnpc 11 4 393.15 0.1538 1.44 Flu Heterogeneous nuclear ribonucleoproteins C1/C2

Hnrnpd 10 2 345.25 0.7159 1.32 PBS Heterogeneous nuclear ribonucleoprotein D0 (Fragment)

Hnrnpd 9 0 309.03 --- Heterogeneous nuclear ribonucleoprotein D0 (Fragment)

Hnrnpdl 8 1 128.7 0.2281 2.45 Flu Heterogeneous nuclear ribonucleoprotein D-like (Fragment)

Hnrnpdl 8 0 153.86 --- Heterogeneous nuclear ribonucleoprotein D-like

Hnrnpf 10 3 450.96 0.1354 2.06 Flu Heterogeneous nuclear ribonucleoprotein F

Hnrnph1 8 2 465.97 0.0846 1.98 Flu Heterogeneous nuclear ribonucleoprotein H

Hnrnph2 10 3 432.21 0.0393 2.02 Flu Heterogeneous nuclear ribonucleoprotein H2

Hnrnph3 5 3 155.3 0.7065 1.09 Flu MCG11326, isoform CRA_b

Hnrnpk 25 4 1168.67 0.0099 2.23 Flu Heterogeneous nuclear ribonucleoprotein K

Hnrnpk 19 1 827.41 0.0133 2.34 Flu Heterogeneous nuclear ribonucleoprotein K (Fragment)

Hnrnpl 22 18 647.58 0.6158 1.14 PBS Heterogeneous nuclear ribonucleoprotein L (Fragment)

Hnrnpll 5 2 51.7 0.0273 3.33 PBS Heterogeneous nuclear ribonucleoprotein L-like

Hnrnpm 8 3 178.46 0.4568 1.28 PBS Heterogeneous nuclear ribonucleoprotein M (Fragment)

Hnrnpm 50 29 1665.89 0.6524 1.14 PBS Heterogeneous nuclear ribonucleoprotein M

Hnrnpr 15 4 341.54 0.2570 1.14 Flu Heterogeneous nuclear ribonucleoprotein R

Hnrnpr 4 0 33.98 --- Protein Hnrnpr

Hnrnpu 36 15 1397.47 0.0477 1.56 PBS Heterogeneous nuclear ribonucleoprotein U

Hnrnpul1 13 6 260.1 0.8203 1.01 PBS Heterogeneous nuclear ribonucleoprotein U-like protein 1

Hnrnpul2 22 14 530.49 0.2299 2.17 Flu Heterogeneous nuclear ribonucleoprotein U-like protein 2

Homer3 5 2 74.72 0.1455 1.20 Flu Homer protein homolog 3

Hook2 5 1 69.62 0.3495 1.25 PBS Protein Hook homolog 2

Hp1bp3 39 3 1105.38 0.1549 1.22 PBS Heterochromatin protein 1-binding protein 3

Hp1bp3 24 0 833.33 --- Heterochromatin protein 1-binding protein 3 (Fragment)

Hpca 3 0 23.05 --- Neuron-specific calcium-binding protein hippocalcin (Fragment)

Hpcal1 5 2 112.78 0.0524 1.96 Flu Hippocalcin-like protein 1

Hpgd 5 3 129.95 0.9907 1.06 Flu 15-hydroxyprostaglandin dehydrogenase [NAD(+)]

Hprt1 6 4 173.7 0.8708 1.71 PBS Hypoxanthine-guanine phosphoribosyltransferase

Hpx 9 4 90.49 0.0524 1.90 Flu Hemopexin

Hras 9 4 217 0.5525 1.10 PBS GTPase HRas

Hrg 4 1 52.27 0.1874 4.32 Flu Histidine-rich glycoprotein

Hs2st1 9 2 151.23 0.1466 1.43 Flu Heparan sulfate 2-O-sulfotransferase 1

Hsd11b1 10 6 382.02 0.1855 1.61 PBS Corticosteroid 11-beta-dehydrogenase isozyme 1

Hsd17b10 15 8 717.36 0.3135 1.32 PBS 17beta-hydroxysteroid dehydrogenase type 10/short chain L-3-hydroxyacyl-CoA dehydrogenase

Hsd17b11 6 2 230.04 0.1995 1.13 Flu Estradiol 17-beta-dehydrogenase 11

Hsd17b12 5 5 151.54 0.0221 1.75 Flu Very-long-chain 3-oxoacyl-CoA reductase

Hsd17b4 10 6 265.69 0.8718 1.05 PBS Peroxisomal multifunctional enzyme type 2

Hsd17b8 3 2 83.3 0.0670 1.62 Flu Estradiol 17-beta-dehydrogenase 8

Hsp90aa1 26 11 976.95 0.1489 1.50 PBS Heat shock protein HSP 90-alpha

Hsp90ab1 39 15 1559.94 0.1465 1.52 PBS Heat shock protein HSP 90-beta

Hsp90b1 46 27 2089.61 0.0646 2.79 PBS Endoplasmin

Hspa12a 12 2 183.86 0.0589 2.07 PBS Heat shock 70 kDa protein 12A

Hspa12b 33 20 924.81 0.0577 1.35 PBS Heat shock 70 kDa protein 12B

Hspa14 2 1 0.9 0.9440 2.66 PBS Heat shock 70 kDa protein 14

Hspa1a 14 4 487.24 0.7526 1.03 Flu Heat shock 70 kDa protein 1A

Hspa1l 8 0 413.06 --- Heat shock 70 kDa protein 1-like

Hspa2 18 1 868.29 0.3439 1.27 Flu Heat shock-related 70 kDa protein 2

Hspa4 20 12 550.11 0.0721 1.49 PBS Heat shock 70 kDa protein 4

Hspa4l 7 1 77.88 0.1948 1.40 PBS Heat shock 70 kDa protein 4L (Fragment)

Hspa4l 16 2 240.39 0.7887 1.00 Flu Heat shock 70 kDa protein 4L

Hspa5 45 22 2151.86 0.6333 1.11 Flu 78 kDa glucose-regulated protein

Hspa8 47 13 2677.73 0.7312 1.04 Flu Heat shock cognate 71 kDa protein

Hspa8 14 0 693.59 --- Heat shock cognate 71 kDa protein

Hspa9 21 13 777.33 0.8554 1.01 Flu Stress-70 protein, mitochondrial

Hspb1 6 2 158.42 0.2786 1.14 Flu Heat shock protein beta-1

Hspd1 30 22 1160.96 0.0516 2.50 PBS 60 kDa heat shock protein, mitochondrial

Hspe1 6 4 100.19 0.1471 1.45 Flu 10 kDa heat shock protein, mitochondrial

Hspg2 82 13 2629.07 0.2266 1.21 PBS Basement membrane-specific heparan sulfate proteoglycan core protein

Hspg2 67 1 2164.65 0.3811 1.36 PBS Basement membrane-specific heparan sulfate proteoglycan core protein

Hsph1 9 3 112.26 0.0048 2.98 Flu Heat shock protein 105 kDa

Htra2 7 3 212.62 0.0044 1.82 Flu Serine protease HTRA2, mitochondrial

Htra2 7 1 97.03 0.0538 2.16 Flu Serine protease HTRA2, mitochondrial (Fragment)

Hyal2 3 2 54.79 0.8806 1.12 Flu Hyaluronidase

Hyou1 23 14 534.25 0.2164 1.51 PBS Hypoxia up-regulated protein 1

Iars 19 6 107.69 0.5676 1.18 PBS Isoleucine--tRNA ligase, cytoplasmic

Iars2 12 10 235.43 0.2652 1.28 Flu Isoleucine--tRNA ligase, mitochondrial

Icam1 14 8 513.11 0.4789 1.14 PBS Intercellular adhesion molecule 1

Icam2 12 2 137.63 0.0883 1.22 PBS Intercellular adhesion molecule 2 (Fragment)

Icam2 5 1 117 0.6556 1.04 Flu Intercellular adhesion molecule 2

Ice2 1 0 31.68 --- Little elongation complex subunit 2 (Fragment)

Icoslg 2 1 27.19 0.2037 4.55 Flu ICOS ligand

Ide 11 2 68.33 0.0961 1.55 Flu Insulin-degrading enzyme

Idh1 12 5 291.09 0.4303 1.13 Flu Isocitrate dehydrogenase [NADP] cytoplasmic

Idh2 31 17 1315.63 0.3166 1.29 PBS Isocitrate dehydrogenase [NADP], mitochondrial

Idh3a 12 6 336.32 0.5807 1.07 Flu Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial

Idh3b 7 4 208.66 0.4523 1.14 Flu Isocitrate dehydrogenase [NAD] subunit, mitochondrial

Idh3g 5 2 74.12 0.6958 1.18 PBS Isocitrate dehydrogenase [NAD] subunit gamma 1, mitochondrial

Ido1 8 0 100.69 --- Indoleamine 2,3-dioxygenase 1

Ifi205a 4 0 43.96 --- Interferon-activable protein 205-A

Ifi30 2 2 62.3 0.0639 3.87 Flu Gamma-interferon-inducible lysosomal thiol reductase

Ifi47 7 3 117.85 0.4014 2.01 Flu GTP-binding protein

Ifit1 8 3 161.52 0.0607 5.43 Flu Interferon-induced protein with tetratricopeptide repeats 1

Ifitm3 2 1 99.56 0.9157 1.04 PBS Interferon-induced transmembrane protein 3

Igfn1 26 3 126.86 0.2580 1.14 PBS Immunoglobulin-like and fibronectin type III domain-containing protein 1

Igh-3 7 3 90.61 0.0035 6.72 Flu Ig gamma-2B chain C region

Igha 18 10 419.71 0.0977 5.46 Flu Protein Igha (Fragment)

Ighg1 11 3 95.81 0.1499 1.15 Flu Ig gamma-1 chain C region secreted form (Fragment)

Ighg2c 16 6 310.06 0.1273 1.37 Flu Protein Ighg2c

Ighg3 5 2 159.73 0.0813 4.20 Flu Protein Ighg3 (Fragment)

Ighm 19 13 721.4 0.3012 1.86 Flu Ig mu chain C region (Fragment)

Ighv1-26 5 0 263.07 --- MCG114299 (Fragment)

Ighv1-31 5 0 273.75 --- Protein Ighv1-31

Ighv1-52 2 1 52.83 0.4198 105.56 Flu Protein Ighv1-52

Ighv1-55 1 1 13.58 0.1451 4.91 Flu Protein Ighv1-55 (Fragment)

Ighv1-69 2 1 42.02 0.0141 16.40 Flu Protein Ighv1-69

Ighv1-72 2 0 37.88 --- Ig heavy chain V region B1-8/186-2 (Fragment)

Ighv1-77 1 1 27.78 0.3777 2.27 Flu Protein Ighv1-77

Ighv1-78 2 2 29.23 0.3512 1.98 PBS Protein Ighv1-78

Ighv1-81 3 1 132.1 0.1219 3.40 Flu Protein Ighv1-81 (Fragment)

Ighv3-1 2 1 106.03 0.6975 5.16 Flu Protein Ighv3-1 (Fragment)

Ighv5-16 2 1 17.35 0.0685 13.18 Flu Protein Ighv5-16

Ighv5-17 2 0 40.5 --- Protein Ighv5-17 (Fragment)

Ighv8-12 1 1 55.99 0.1082 14.84 Flu MCG116913 (Fragment)

Ighv8-4 1 1 35.37 0.7363 94.18 Flu Protein Ighv8-4

Ighv8-8 2 0 58.56 --- Protein Ighv8-8 (Fragment)

Ighv9-3 4 3 120.44 0.0304 10.58 Flu Protein Ighv9-3 (Fragment)

Igkc 7 5 153.7 0.4203 4.16 Flu Protein Igkc (Fragment)

Igkv12-47 1 1 55.42 0.1680 59.14 Flu Protein Igkv12-47 (Fragment)

Igk-V19-17 3 1 52.47 0.5650 2.25 Flu Ig kappa chain V19-17

Igkv1-99 3 2 65.62 0.0533 8.04 Flu Protein Igkv1-99

Igkv4-53 2 1 95.71 0.3204 12.13 Flu Protein Igkv4-53

Igkv4-57 1 1 101.14 0.7653 2.13 Flu Protein Igkv4-57 (Fragment)

Igkv5-39 3 0 86.84 --- Protein Igkv5-39

Igkv5-43 4 0 79.67 --- Protein Igkv5-43 (Fragment)

Igkv8-19 1 1 24.65 0.0633 2.13 Flu Protein Igkv8-19 (Fragment)

Igtp 12 3 395.36 0.0209 3.34 Flu Protein Igtp

Iigp1 12 4 295.72 0.1159 2.38 Flu Interferon-inducible GTPase 1

Ik 14 2 155.94 0.7669 1.04 PBS Protein Red

Ikzf4 6 0 57.21 --- Zinc finger protein Eos

Il15 2 0 55 --- Interleukin-15

Il16 23 8 305.87 0.4865 1.11 PBS Pro-interleukin-16

Il17ra 5 2 30.14 0.8952 1.05 Flu Interleukin-17 receptor A

Ilf2 10 3 313.93 0.0673 1.49 Flu Interleukin enhancer-binding factor 2

Ilf3 17 9 219.74 0.4516 1.20 Flu Interleukin enhancer-binding factor 3

Ilk 30 16 731.33 0.0298 1.53 PBS Integrin-linked protein kinase

Immt 33 1 1248 0.2293 1.35 Flu MICOS complex subunit Mic60

Immt 32 1 1282.43 0.5653 1.08 PBS MICOS complex subunit Mic60

Impa1 5 3 112.25 0.0120 1.72 Flu Inositol (Myo)-1(Or 4)-monophosphatase 1

Impdh1 10 3 95.39 0.1442 1.56 PBS Inosine-5'-monophosphate dehydrogenase

Impdh2 8 0 75.05 --- Inosine-5'-monophosphate dehydrogenase 2

Impdh2 7 0 71.96 --- Inosine-5'-monophosphate dehydrogenase 2 (Fragment)

Ina 9 0 197.26 --- Alpha-internexin

Inadl 20 6 185 0.3222 2.10 PBS InaD-like protein

Inmt 16 9 789.14 0.4835 1.12 PBS Indolethylamine N-methyltransferase

Inpp1 4 0 83.95 --- Inositol polyphosphate 1-phosphatase

Ints8 9 4 54.01 0.7842 1.47 Flu Integrator complex subunit 8

Ipo5 10 5 135.75 0.1337 1.68 PBS Importin-5

Ipo7 4 1 68.12 0.6619 1.17 Flu Importin-7

Iqgap1 77 45 3270.25 0.1362 1.38 PBS Ras GTPase-activating-like protein IQGAP1

Iqgap2 14 3 145.04 0.3449 2.48 Flu Ras GTPase-activating-like protein IQGAP2

Iqgap3 12 2 122.94 0.4786 1.29 Flu Protein Iqgap3

Irgm1 7 3 193.17 0.0140 2.34 Flu Immunity-related GTPase family M protein 1

Irgm2 8 2 99.01 0.3342 1.50 Flu Interferon-g induced GTPase

Isg15 4 3 233.84 0.0219 2.07 Flu G1p2 protein

Isoc2a 1 1 26.11 0.0849 1.50 Flu Isochorismatase domain-containing protein 2A, mitochondrial

Isyna1 4 4 69.95 0.1854 1.43 PBS Inositol-3-phosphate synthase 1

Itga1 23 8 489.32 0.0960 1.24 PBS Integrin alpha-1

Itga2 6 3 126.49 0.1015 1.69 PBS Integrin alpha-2

Itga3 13 7 411.04 0.0192 4.20 PBS Integrin alpha-3

Itga3 5 0 99.94 --- Integrin alpha-3 (Fragment)

Itga5 10 3 103.08 0.2296 1.33 PBS Integrin alpha-5

Itga6 9 6 167.8 0.5595 1.11 Flu Integrin alpha-6

Itga8 8 5 146.17 0.1484 1.44 PBS Integrin alpha-8

Itgam 8 3 94.71 0.0714 1.98 Flu Integrin alpha-M

Itgb1 26 13 949.14 0.0137 3.24 PBS Integrin beta-1

Itgb2 14 8 310.08 0.0243 1.82 Flu Integrin beta-2

Itgb3 5 1 62.37 0.2036 1.36 PBS Integrin beta-3

Itih1 5 2 27.72 0.5156 1.02 Flu Inter-alpha-trypsin inhibitor heavy chain H1

Itih2 4 2 49.33 0.6367 1.42 Flu Inter-alpha-trypsin inhibitor heavy chain H2

Itm2b 3 1 19.02 0.0365 1.21 Flu Integral membrane protein 2B

Itpr1 30 5 221.47 0.4628 1.12 PBS Inositol 1,4,5-trisphosphate receptor type 1

Itpr2 2 0 28.98 --- Inositol 1,4,5-trisphosphate receptor type 2 (Fragment)

Itpr3 20 2 148.33 0.0444 1.74 Flu Inositol 1,4,5-trisphosphate receptor type 3

Ivd 13 8 254.48 0.1463 1.75 PBS Isovaleryl-CoA dehydrogenase, mitochondrial

Jchain 5 2 43.73 0.0772 4.52 Flu Immunoglobulin J chain

Jup 39 28 1583 0.0447 1.34 PBS Junction plakoglobin

Kank2 18 12 433.72 0.2076 1.19 PBS KN motif and ankyrin repeat domain-containing protein 2

Kank3 15 6 275.09 0.0716 1.70 PBS KN motif and ankyrin repeat domain-containing protein 3

Kars 11 4 137.71 0.0362 1.64 Flu Lysine--tRNA ligase

Kbtbd3 3 0 30.15 --- Kelch repeat and BTB domain-containing protein 3

Kcnab2 4 2 67.11 0.0484 3.92 Flu Voltage-gated potassium channel subunit beta-2

Kcnj3 6 0 45.79 --- G protein-activated inward rectifier potassium channel 1

Kctd12 9 3 237.41 0.4922 1.65 Flu BTB/POZ domain-containing protein KCTD12

Kctd12b 4 0 56.16 --- Potassium channel tetramerisation domain containing 12b

Kctd16 5 1 59.11 0.2217 1.96 PBS BTB/POZ domain-containing protein KCTD16

Kdelc1 9 2 120.27 0.0331 1.95 Flu KDEL motif-containing protein 1

Kdelc2 10 3 195.21 0.2616 1.16 Flu KDEL (Lys-Asp-Glu-Leu) containing 2, isoform CRA_b

Kdelr1 2 2 48.11 0.8066 1.03 Flu ER lumen protein-retaining receptor

Kdm2a 10 3 88.69 0.7812 1.03 PBS Lysine-specific demethylase 2A

Khdrbs1 14 4 131.48 0.1113 1.95 Flu KH domain-containing, RNA-binding, signal transduction-associated protein 1

Khsrp 17 9 376.76 0.0868 1.56 Flu Far upstream element-binding protein 2

Kiaa0020 16 4 115.04 0.0877 5.75 Flu Pumilio domain-containing protein KIAA0020

Kif21b 24 4 115.35 0.0998 2.08 Flu Kinesin-like protein

Kif5a 11 0 230.68 --- Kinesin heavy chain isoform 5A

Kif5b 19 8 490.58 0.0432 1.16 PBS Kinesin-1 heavy chain

Kiss1 3 1 42.86 0.2556 1.59 Flu Metastasis-suppressor KiSS-1

Klc2 8 2 65.45 0.1882 4.36 PBS Kinesin light chain 2

Klhdc8a 6 2 29.02 0.0971 1.42 PBS Kelch domain-containing protein 8A

Kpna2 2 1 45.32 0.0070 81.39 Flu Importin subunit alpha-1

Kpna3 4 1 95.2 0.0967 2.45 Flu Importin subunit alpha-4

Kpna4 8 5 77.35 0.5986 1.21 PBS Importin subunit alpha-3

Kpna6 5 1 102.6 0.0115 2.82 Flu Importin subunit alpha

Kpnb1 22 12 638.33 0.6524 1.16 Flu Importin subunit beta-1

Krt1 11 1 502.04 0.8613 1.11 PBS Keratin, type II cytoskeletal 1

Krt10 12 2 553.84 0.8056 1.20 Flu Keratin, type I cytoskeletal 10

Krt13 12 0 621.66 --- Keratin, type I cytoskeletal 13

Krt14 22 1 676.87 0.9900 1.12 Flu Keratin, type I cytoskeletal 14

Krt15 12 0 635.48 --- Keratin 15, isoform CRA_a

Krt16 11 2 335.82 0.7737 1.24 Flu Keratin, type I cytoskeletal 16

Krt17 20 2 684.47 0.5704 1.16 PBS Keratin, type I cytoskeletal 17

Krt18 44 31 1588.89 0.0332 1.64 Flu Keratin, type I cytoskeletal 18

Krt19 37 11 2099.26 0.3793 1.14 Flu Keratin 19

Krt2 16 2 525.21 0.2643 1.80 PBS Keratin, type II cytoskeletal 2 epidermal

Krt20 6 0 151.38 --- Keratin, type I cytoskeletal 20

Krt222 4 0 71.49 --- Keratin-like protein KRT222

Krt25 4 0 125.27 --- Keratin, type I cytoskeletal 25

Krt32 2 0 45.73 --- Keratin, type I cuticular Ha2

Krt4 13 2 249.23 0.6330 1.07 Flu Keratin, type II cytoskeletal 4

Krt42 16 3 555.12 0.9740 1.48 Flu Keratin, type I cytoskeletal 42

Krt5 20 10 744.33 0.7884 1.34 Flu Keratin, type II cytoskeletal 5

Krt6a 16 0 580.35 --- Keratin, type II cytoskeletal 6A

Krt6b 16 0 505.85 --- Keratin, type II cytoskeletal 6B

Krt7 36 14 1777.83 0.2359 1.35 Flu Keratin, type II cytoskeletal 7

Krt71 19 3 519.05 0.7897 1.54 Flu Keratin, type II cytoskeletal 71

Krt72 11 2 290.8 0.9486 1.11 PBS Keratin, type II cytoskeletal 72

Krt73 16 3 480.24 0.5569 1.13 PBS Keratin, type II cytoskeletal 73

Krt74 13 1 404.8 0.7426 4.19 Flu Keratin, type II cytoskeletal 74

Krt75 14 2 544.72 0.1105 4.99 PBS Keratin, type II cytoskeletal 75

Krt76 16 1 364.89 0.4985 198.35 PBS Keratin, type II cytoskeletal 2 oral

Krt77 12 0 329.88 --- Keratin, type II cytoskeletal 1b

Krt78 14 2 291.15 0.9917 1.33 Flu Protein Krt78

Krt79 14 2 332.23 0.8198 1.45 Flu Keratin, type II cytoskeletal 79

Krt8 55 22 2416.68 0.0179 1.32 Flu Keratin, type II cytoskeletal 8

Krt83 9 0 121.69 --- Keratin, type II cuticular Hb3

Krt84 8 0 263.69 --- Keratin, type II cuticular Hb4

Krt86 9 0 157.82 --- Keratin 86

Krtcap2 1 1 63.98 0.0357 2.71 Flu Keratinocyte associated protein 2, isoform CRA_c

Kxd1 11 3 405.96 0.8686 1.07 Flu KxDL motif-containing protein 1

L3hypdh 2 0 41.71 --- Trans-L-3-hydroxyproline dehydratase

Lactb 12 5 307.77 0.0027 1.54 Flu Serine beta-lactamase-like protein LACTB, mitochondrial

Lama4 42 25 1392.43 0.0831 1.32 PBS Laminin subunit alpha-4

Lama5 30 14 456.73 0.3212 1.26 PBS Laminin subunit alpha-5

Lamb1 38 22 1016.7 0.3037 1.11 PBS Laminin subunit beta-1

Lamb2 29 17 905.81 0.0156 1.40 PBS Laminin subunit beta-2

Lamc1 31 1 1426.73 0.2399 1.14 PBS Laminin subunit gamma-1

Lamc1 30 0 1363.56 --- Laminin subunit gamma-1

Lamc1 11 0 261.71 --- Laminin subunit gamma-1 (Fragment)

Lamc1 6 0 298.69 --- Laminin subunit gamma-1 (Fragment)

Lamc2 18 6 81.52 0.8866 1.05 PBS Laminin subunit gamma-2

Lamp1 7 5 168.38 0.5701 1.41 Flu Lysosome-associated membrane glycoprotein 1

Lamp2 5 3 146.54 0.0153 2.13 Flu Lysosome-associated membrane glycoprotein 2

Lamtor1 4 1 137.49 0.1157 1.45 Flu Ragulator complex protein LAMTOR1

Lancl1 3 1 48.37 0.0248 1.28 Flu LanC-like protein 1

Lancl2 4 3 50.44 0.0502 2.04 Flu LanC-like protein 2

Lap3 6 4 120.72 0.0274 3.08 Flu Cytosol aminopeptidase

Lars 15 4 124.27 0.1341 1.58 Flu Leucine--tRNA ligase, cytoplasmic

Lasp1 9 4 355.85 0.0039 1.90 Flu LIM and SH3 domain protein 1

Lasp1 4 0 195.13 --- LIM and SH3 domain protein 1 (Fragment)

Lbr 20 8 652.59 0.8115 1.06 Flu Lamin-B receptor

Lbr 4 1 200.38 0.8871 2.38 Flu Lamin-B receptor (Fragment)

Lclat1 1 0 2.01 --- Lclat1 protein

Lcmt2 3 0 46.81 --- tRNA wybutosine-synthesizing protein 4

Lcn2 5 1 96.6 0.0763 1.71 Flu Neutrophil gelatinase-associated lipocalin

Lcn2 5 0 82.74 --- Neutrophil gelatinase-associated lipocalin (Fragment)

Lcp1 37 21 1674.34 0.6778 1.17 Flu Plastin-2

Ldha 20 3 862.36 0.0191 6.65 PBS L-lactate dehydrogenase A chain

Ldha 15 0 658.28 --- L-lactate dehydrogenase (Fragment)

Ldhb 6 1 186.94 0.2609 1.32 Flu L-lactate dehydrogenase B chain

Ldhc 5 1 116.51 0.2639 1.51 PBS L-lactate dehydrogenase (Fragment)

Lemd3 9 3 132.71 0.4496 1.22 PBS Inner nuclear membrane protein Man1

Leprot 1 1 81.22 0.3419 1.52 Flu Leptin receptor gene-related protein

Letm1 11 5 117.45 0.1927 1.40 Flu LETM1 and EF-hand domain-containing protein 1, mitochondrial

Lgals1 8 4 209.17 0.7989 1.10 Flu Galectin-1

Lgals3 11 4 410.36 0.0827 1.67 Flu Galectin-3

Lgals3bp 9 6 199.94 0.0362 1.87 Flu Galectin-3-binding protein

Lgals9 8 5 244.15 0.1108 1.33 Flu Galectin

Lgmn 2 1 62.48 0.0176 72.24 Flu Legumain

Lhx2 6 1 29.34 0.3279 1.52 PBS LIM/homeobox protein Lhx2

Lig4 5 1 52.82 0.7900 1.01 PBS DNA ligase 4

Lima1 35 12 806.39 0.4626 1.06 Flu LIM domain and actin-binding protein 1

Limch1 40 9 1231.59 0.1296 1.36 PBS LIM and calponin homology domains-containing protein 1

Limch1 34 0 761.15 --- LIM and calponin homology domains-containing protein 1 (Fragment)

Limd1 5 3 64.06 0.6756 1.15 Flu LIM domain-containing protein 1

Lims1 10 7 157.04 0.4424 1.09 Flu LIM and senescent cell antigen-like-containing domain protein 1

Lims2 4 0 26.52 --- LIM and senescent cell antigen-like-containing domain protein 2

Lin7a 2 1 18.81 0.2708 2.26 PBS Protein lin-7 homolog A

Lin7c 5 3 120.3 0.1823 1.25 PBS Protein lin-7 homolog C

Lman1 8 2 117.46 0.0284 2.66 Flu Protein ERGIC-53

Lman2 7 5 167.78 0.0282 1.90 Flu Vesicular integral-membrane protein VIP36

Lmf1 5 1 40.99 0.4741 1.15 Flu Lipase maturation factor 1

Lmf2 6 2 80.96 0.1651 1.61 PBS Lipase maturation factor 2

Lmln 7 1 38.05 0.2865 1.39 PBS Leishmanolysin-like peptidase

Lmna 67 32 3786.39 0.0158 1.16 PBS Prelamin-A/C

Lmnb1 70 34 3481.37 0.8901 1.01 Flu Lamin-B1

Lmnb2 49 21 1891.17 0.7584 1.11 PBS Lamin-B2

Lmo7 77 1 2293.67 0.3051 1.16 PBS Protein Lmo7 (Fragment)

Lmo7 68 0 2275.28 --- Protein Lmo7 (Fragment)

Lmo7 76 0 2244.15 --- Protein Lmo7

Lmod1 9 4 133.73 0.0769 1.67 PBS Leiomodin-1

Lmtk3 17 4 99.08 0.0679 1.51 Flu Serine/threonine-protein kinase LMTK3

Lnpep 7 2 117.64 0.0368 2.16 PBS Leucyl-cystinyl aminopeptidase

Lonp1 16 2 118.14 0.1697 1.93 PBS Lon protease homolog, mitochondrial

Lpcat1 12 6 280.49 0.8463 1.03 Flu Lysophosphatidylcholine acyltransferase 1

Lpcat3 4 1 48.71 0.1662 1.26 Flu Lysophospholipid acyltransferase 5

Lpp 14 10 318.45 0.0019 1.47 Flu Lipoma-preferred partner homolog

Lpxn 5 3 29.15 0.3247 1.56 PBS Leupaxin

Lrig3 8 3 91.51 0.8037 1.01 PBS Leucine-rich repeats and immunoglobulin-like domains protein 3

Lrp1 28 15 441.3 0.0831 1.87 PBS Prolow-density lipoprotein receptor-related protein 1

Lrp5 4 0 57.25 --- Low-density lipoprotein receptor-related protein 5

Lrpap1 4 1 39.06 0.4378 2.15 Flu Alpha-2-macroglobulin receptor-associated protein

Lrpprc 12 2 218.36 0.0373 5.43 PBS Leucine-rich PPR motif-containing protein, mitochondrial

Lrrc1 4 0 77.22 --- Leucine-rich repeat-containing protein 1

Lrrc16a 19 2 177.67 0.2945 1.34 PBS Leucine-rich repeat-containing protein 16A

Lrrc47 3 1 50.86 0.3713 1.16 Flu Leucine rich repeat containing 47

Lrrc57 1 0 24.35 --- Leucine-rich repeat-containing protein 57 (Fragment)

Lrrc59 10 6 129.73 0.0100 2.14 Flu Leucine-rich repeat-containing protein 59

Lrrc8c 6 1 41.07 0.3757 1.43 Flu Volume-regulated anion channel subunit LRRC8C

Lrrfip1 12 2 289.07 0.0285 1.54 Flu Leucine-rich repeat flightless-interacting protein 1

Lrrfip1 7 0 286.88 --- Leucine rich repeat (In FLII) interacting protein 1, isoform CRA_e

Lrrfip1 9 0 257.22 --- Leucine-rich repeat flightless-interacting protein 1

Lrrfip1 9 0 262.1 --- Leucine-rich repeat flightless-interacting protein 1 (Fragment)

Lrrfip2 13 3 320.69 0.5066 1.11 PBS Leucine-rich repeat flightless-interacting protein 2

Lsm12 2 1 31.93 0.1701 2.86 Flu Protein LSM12 homolog

Lsp1 15 12 539.69 0.0179 1.98 Flu Lymphocyte-specific protein 1

Lta4h 14 8 425.99 0.3246 1.12 Flu Leukotriene A-4 hydrolase

Ltbp4 3 1 27.98 0.0675 2.87 Flu Latent-transforming growth factor beta-binding protein 4

Ltf 12 6 319.82 0.0325 2.23 PBS Lactotransferrin

Luc7l2 4 2 78.05 0.8601 1.22 PBS Putative RNA-binding protein Luc7-like 2

Luc7l3 6 2 138.53 0.9678 1.14 Flu Luc7-like protein 3

Lum 21 9 940.38 0.0946 1.36 PBS Lumican

Lxn 2 1 93.26 0.0003 1.83 Flu Latexin

Ly6a 1 1 29.4 0.0776 5.60 Flu Lymphocyte antigen 6A-2/6E-1

Ly6c1 2 2 32.58 0.6123 1.22 Flu Lymphocyte antigen 6C1

Lyn 33 20 1423.79 0.8670 1.01 Flu Tyrosine-protein kinase Lyn

Lyve1 6 1 140.2 0.1906 1.40 PBS Lymphatic vessel endothelial hyaluronic acid receptor 1

Lyz2 9 8 227.02 0.3383 1.45 PBS Lysozyme C-2

M6pr 5 2 193.17 0.6025 1.48 PBS Cation-dependent mannose-6-phosphate receptor

Macf1 14 2 239.25 0.1674 3.59 PBS Microtubule-actin cross-linking factor 1 (Fragment)

Macf1 105 0 2207.37 --- Microtubule-actin cross-linking factor 1

Macf1 107 0 2539.9 --- Microtubule-actin cross-linking factor 1 (Fragment)

Macf1 104 0 2449.94 --- Microtubule-actin cross-linking factor 1

Macf1 137 0 3128.01 --- Microtubule-actin cross-linking factor 1

Macf1 41 0 955.68 --- Microtubule-actin cross-linking factor 1 (Fragment)

Macf1 42 0 1013.43 --- Microtubule-actin cross-linking factor 1 (Fragment)

Macf1 10 0 144.12 --- Microtubule-actin cross-linking factor 1 (Fragment)

Macrod1 4 2 42.62 0.2840 1.27 PBS O-acetyl-ADP-ribose deacetylase MACROD1

Magi3 29 5 183.44 0.1131 1.63 PBS Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 3

Magohb 5 3 111.05 0.0385 2.19 Flu Protein mago nashi homolog 2 (Fragment)

Magt1 2 1 52.14 0.2790 1.47 PBS Magnesium transporter protein 1 (Fragment)

Mak16 3 1 31.36 0.2157 3.03 Flu Protein MAK16 homolog

Mal2 1 1 60.66 0.0345 2.04 PBS Protein MAL2

Man2a1 11 6 108.23 0.2646 1.30 Flu Alpha-mannosidase 2

Man2b1 10 2 99.9 0.0067 3.47 Flu Lysosomal alpha-mannosidase

Man2c1 5 1 94.53 0.1205 1.45 Flu Alpha-mannosidase 2C1

Manea 2 0 10.65 --- Glycoprotein endo-alpha-1,2-mannosidase

Manf 10 3 85.23 0.2131 1.38 Flu Arginine-rich, mutated in early stage tumors, isoform CRA_b

Maoa 20 5 406.86 0.0352 3.96 PBS Amine oxidase [flavin-containing] A

Maob 12 7 340.92 0.9277 1.03 Flu Amine oxidase [flavin-containing] B

Map1a 25 4 192.97 0.5440 1.10 PBS Microtubule-associated protein 1A

Map4 19 6 101.87 0.7995 1.06 Flu Microtubule-associated protein

Mapk1 12 4 342.18 0.1625 1.22 Flu Mitogen-activated protein kinase 1

Mapk10 3 0 51.72 --- Mitogen-activated protein kinase

Mapk3 12 6 310.19 0.7702 1.03 PBS Mitogen-activated protein kinase 3

Mapre2 9 5 63.51 0.3914 1.26 PBS Microtubule-associated protein RP/EB family member 2

Marc2 13 1 318.21 0.1255 1.79 Flu Mitochondrial amidoxime reducing component 2

Marc2 5 1 105.57 0.2863 1.33 Flu Mitochondrial amidoxime reducing component 2 (Fragment)

Marcks 3 2 66.07 0.3119 2.38 PBS Myristoylated alanine-rich C-kinase substrate

Mat2a 3 3 60.38 0.9083 1.01 PBS S-adenosylmethionine synthase isoform type-2

Matr3 6 2 138.39 0.3614 1.34 Flu Matrin-3

Mavs 5 1 67.79 0.4665 1.20 Flu Mitochondrial antiviral-signaling protein

Mbd2 6 1 78.2 0.0102 1.71 Flu Methyl-CpG-binding domain protein 2

Mbnl2 4 0 51.14 --- Muscleblind-like protein 2

Mboat7 2 2 73.68 0.2142 1.21 Flu Lysophospholipid acyltransferase 7

Mcam 17 8 392.67 0.0327 2.45 PBS Cell surface glycoprotein MUC18

Mccc1 15 6 187.09 0.9713 1.50 Flu Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial

Mccc2 6 2 236.13 0.6311 1.06 PBS Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial

Mcm2 12 2 61.88 0.7249 1.15 PBS DNA replication licensing factor MCM2

Mcm3 7 2 115.02 0.1598 4.70 Flu DNA replication licensing factor MCM3

Mcpt4 3 1 31.57 0.1259 2.18 Flu Mast cell protease 4

Mcu 10 5 206.71 0.3531 1.19 Flu Calcium uniporter protein, mitochondrial

Mdh1 12 7 361.51 0.3373 1.20 Flu Malate dehydrogenase, cytoplasmic

Mdh2 19 12 999.44 0.1399 1.17 Flu Malate dehydrogenase, mitochondrial

Mdm1 19 5 176.14 0.0250 1.54 PBS Nuclear protein MDM1

Me1 7 6 139.76 0.0097 1.75 PBS NADP-dependent malic enzyme

Me2 12 5 113.19 0.0236 1.69 Flu NAD-dependent malic enzyme, mitochondrial

Mecp2 26 12 959.41 0.5010 1.10 PBS Methyl-CpG-binding protein 2

Mecp2 8 0 253.9 --- Methyl-CpG-binding protein 2

Med12 19 5 96.32 0.5932 1.18 Flu Mediator of RNA polymerase II transcription subunit 12

Mei1 8 2 59.64 0.6138 1.08 PBS Meiosis inhibitor protein 1

Met 7 1 69.25 0.4367 1.81 PBS Hepatocyte growth factor receptor

Metap1 2 0 41.13 --- Methionine aminopeptidase 1

Methig1 8 1 247.06 0.8214 1.08 PBS Protein Methig1

Mettl7a1 17 9 628.28 0.5458 1.09 PBS MCG20149, isoform CRA_a

Mfap4 5 4 274.64 0.0072 3.60 PBS Microfibril-associated glycoprotein 4

Mfge8 15 7 338.26 0.9663 1.03 PBS Lactadherin

Mfhas1 9 1 71.57 0.0586 1.65 Flu Malignant fibrous histiocytoma-amplified sequence 1 homolog

Mfsd10 3 1 55.76 0.0303 1.78 Flu Major facilitator superfamily domain-containing protein 10

Mgll 6 2 115.93 0.6140 1.13 Flu Monoglyceride lipase

Mgp 2 1 46.05 0.3098 1.14 PBS Matrix Gla protein

Mgst1 10 4 540.64 0.3153 1.16 Flu Microsomal glutathione S-transferase 1

Mgst1 7 1 345.01 0.9302 1.21 Flu Microsomal glutathione S-transferase 1 (Fragment)

Mgst3 4 3 157.01 0.9860 1.03 PBS Microsomal glutathione S-transferase 3

Micu2 5 2 95.54 0.4145 1.38 Flu Calcium uptake protein 2, mitochondrial

Mif 1 0 41.14 --- Macrophage migration inhibitory factor

Mlec 6 3 92.42 0.0408 1.80 Flu Malectin

Mllt4 29 5 407.61 0.8813 1.04 PBS Afadin

Mllt4 4 0 80.34 --- Afadin (Fragment)

Mme 20 6 479.82 0.1247 1.55 PBS Neprilysin

Mmp2 8 2 89.44 0.0054 10.86 Flu 72 kDa type IV collagenase

Mmp9 15 12 393.82 0.0807 1.69 PBS Matrix metalloproteinase-9

Mndal 11 2 136.69 0.9542 1.17 Flu Myeloid cell nuclear differentiation antigen-like protein

Mocs3 4 0 27.66 --- Adenylyltransferase and sulfurtransferase MOCS3

Mogs 15 3 160.08 0.8657 2.31 Flu Mannosyl-oligosaccharide glucosidase

Mospd2 7 3 59.37 0.5932 1.12 Flu Motile sperm domain-containing protein 2

Mpc2 4 1 46.78 0.0662 1.44 Flu Mitochondrial pyruvate carrier 2

Mpdu1 1 0 34.47 --- Mannose-P-dolichol utilization defect 1 protein

Mpeg1 5 1 45.33 0.0664 14.10 Flu Macrophage-expressed gene 1 protein

Mpo 13 6 447.27 0.0702 1.57 PBS Myeloperoxidase

Mpp1 17 4 237.53 0.0717 1.46 PBS 55 kDa erythrocyte membrane protein

Mpp1 2 0 33.12 --- 55 kDa erythrocyte membrane protein (Fragment)

Mpp1 5 0 73.46 --- 55 kDa erythrocyte membrane protein (Fragment)

Mpp2 8 3 112.79 0.1921 1.25 PBS MAGUK p55 subfamily member 2

Mprip 32 0 835.94 --- Myosin phosphatase Rho-interacting protein

Mprip 31 0 783.03 --- Myosin phosphatase Rho-interacting protein (Fragment)

Mprip 41 0 877.99 --- Myosin phosphatase Rho-interacting protein

Mpz 9 5 153.41 0.2290 1.32 PBS Myelin protein P0

Mrc1 7 3 67.35 0.0823 2.42 PBS Macrophage mannose receptor 1

Mrc2 6 1 86.72 0.0405 1.87 Flu C-type mannose receptor 2

Mrpl45 9 1 49.22 0.1644 17.55 PBS 39S ribosomal protein L45, mitochondrial

Msn 83 32 5034.2 0.0242 2.07 PBS Moesin

Msra 8 2 68.99 0.0218 1.33 Flu Mitochondrial peptide methionine sulfoxide reductase

Mta1 12 0 93.49 --- Metastasis-associated protein MTA1

Mta2 9 1 128.94 0.0523 1.78 Flu Metastasis-associated protein MTA2

Mtap 6 2 130.64 0.0122 2.27 Flu S-methyl-5'-thioadenosine phosphorylase

Mtch1 17 4 450.36 0.3736 1.12 Flu Mitochondrial carrier homolog 1

Mtch1 9 0 224.49 --- Mitochondrial carrier homolog 1 (Fragment)

Mtch2 11 9 429.6 0.1805 1.21 Flu Mitochondrial carrier homolog 2

Mtcl1 31 9 174.86 0.5720 1.25 PBS Microtubule cross-linking factor 1

Mtco1 4 2 55.73 0.0954 1.33 Flu Cytochrome c oxidase subunit 1

Mtco2 14 7 828.93 0.0035 1.72 Flu Cytochrome c oxidase subunit 2

mt-Co3 2 0 48.97 --- Cytochrome c oxidase subunit 3

Mt-Cyb 1 1 45.17 0.7703 1.04 Flu Cytochrome b

Mthfd1 20 7 326.5 0.2300 1.43 PBS C-1-tetrahydrofolate synthase, cytoplasmic

Mthfd1l 16 7 134.01 0.8377 1.18 Flu Monofunctional C1-tetrahydrofolate synthase, mitochondrial

Mtnd1 2 2 55.57 0.9043 1.02 PBS NADH-ubiquinone oxidoreductase chain 1

Mtnd2 2 2 38.34 0.0071 4.68 PBS NADH-ubiquinone oxidoreductase chain 2

Mtnd4 1 1 20.74 0.1937 1.43 Flu NADH-ubiquinone oxidoreductase chain 4

Mtnd5 3 3 82.61 0.1711 1.33 Flu NADH-ubiquinone oxidoreductase chain 5

Mtpn 1 1 43.76 0.0206 10.19 PBS Myotrophin

Mtx2 6 5 241.48 0.0226 1.83 Flu Metaxin-2

Muc1 3 1 48.66 0.0695 2.30 Flu Mucin-1

Mug1 9 1 92.88 0.0989 2.25 Flu Murinoglobulin-1

Mut 7 2 90.66 0.3811 1.39 Flu Methylmalonyl-CoA mutase, mitochondrial

Mvp 21 10 511.21 0.0112 1.46 Flu Major vault protein

Mxra8 3 1 8.05 0.4610 1.34 Flu Matrix-remodeling-associated protein 8

Myadm 4 3 192.68 0.3647 1.28 PBS Myeloid-associated differentiation marker

Mybbp1a 23 9 386.31 0.3510 1.38 Flu Myb-binding protein 1A

Myct1 5 3 69.74 0.0756 1.17 Flu Myc target protein 1

Myd88 3 1 40.9 0.1471 1.75 PBS Myeloid differentiation primary response protein MyD88

Mydgf 1 1 35.38 0.0058 1.99 Flu Myeloid-derived growth factor

Myef2 7 6 99.71 0.3841 1.29 PBS Myelin expression factor 2

Myg1 5 1 48.99 0.0814 5.47 Flu UPF0160 protein MYG1, mitochondrial

Myh1 29 0 686.68 --- Myosin-1

Myh10 98 32 4514.23 0.3250 1.29 PBS Myosin-10

Myh11 117 5 5860.15 0.1105 1.41 PBS Myosin-11

Myh11 110 0 5447.07 --- Myosin-11

Myh13 31 0 473.92 --- Protein Myh13

Myh14 171 91 9191.34 0.1152 1.66 PBS Myosin-14

Myh15 25 2 180.52 0.6326 1.04 PBS Protein Myh15

Myh2 37 0 761.79 --- MCG140437, isoform CRA_d

Myh3 21 0 497.09 --- Myosin-3

Myh4 31 1 764.92 0.6950 1.48 Flu Myosin-4

Myh6 95 21 4578.62 0.0129 2.22 PBS MCG133649, isoform CRA_a

Myh7 67 1 2875.65 0.1710 2.59 Flu Myosin, heavy polypeptide 7, cardiac muscle, beta

Myh8 33 1 806.09 0.0728 1.99 PBS Myosin-8

Myh9 176 91 9302.31 0.2858 1.16 Flu Myosin-9

Myl1 5 1 153.57 0.3227 1.42 PBS Myosin light chain 1/3, skeletal muscle isoform

Myl12a 19 4 1042.21 0.0590 1.59 Flu MCG5400

Myl12b 17 0 918.96 --- Myosin regulatory light chain 12B

Myl3 5 0 204.48 --- Myosin light chain 3

Myl4 13 5 286.76 0.0751 1.42 Flu Myosin light chain 4 (Fragment)

Myl6 15 8 721.32 0.0351 1.41 Flu Myosin light polypeptide 6

Myl6b 9 3 72.2 0.0558 1.74 PBS Myosin light chain 6B

Myl7 3 1 95.59 0.8693 1.08 Flu Myosin regulatory light chain 2, atrial isoform

Myl9 14 3 671.58 0.0834 1.66 Flu Myosin regulatory light polypeptide 9

Mylk 47 20 1041.33 0.5490 1.08 PBS Myosin light chain kinase, smooth muscle

Myo18a 53 5 1250.92 0.3527 1.17 PBS Myo18a protein

Myo18a 41 0 1133.05 --- Unconventional myosin-XVIIIa

Myo1a 13 1 270.09 0.5589 1.36 PBS Unconventional myosin-Ia

Myo1b 73 2 3392.32 0.0130 2.23 PBS Unconventional myosin-Ib

Myo1b 73 2 3399.68 0.0740 1.51 PBS Unconventional myosin-Ib

Myo1c 109 56 5899.48 0.1998 1.36 PBS Unconventional myosin-Ic

Myo1c 5 0 334.31 --- Unconventional myosin-Ic (Fragment)

Myo1d 83 37 3154.78 0.1229 1.47 PBS Unconventional myosin-Id

Myo1e 37 16 1088.4 0.0466 1.34 Flu Unconventional myosin-Ie

Myo1f 24 3 785.7 0.0399 1.95 Flu Myosin IF

Myo1f 22 1 620.35 0.2555 2.21 PBS Unconventional myosin-If

Myo1g 45 17 1285.93 0.0589 1.45 Flu Unconventional myosin-Ig

Myo3b 14 3 118.06 0.9516 1.13 PBS Myosin-IIIb

Myo5a 21 4 133.15 0.7298 1.23 PBS Unconventional myosin-Va

Myo5b 18 7 355.91 0.4841 1.15 PBS Myosin Vb, isoform CRA_a

Myo6 51 1 1867.6 0.1291 1.32 PBS Unconventional myosin-VI

Myo6 50 0 1765.67 --- Unconventional myosin-VI

Myo6 45 0 1526.01 --- Unconventional myosin-VI

Myof 53 27 949.13 0.0976 1.17 PBS Myoferlin

Myom2 11 6 84.49 0.6148 1.00 Flu Myomesin 2

Myoz2 7 2 108.99 0.3320 1.23 PBS Myozenin-2

Mzb1 3 1 25.01 0.3154 1.84 PBS Marginal zone B- and B1-cell-specific protein

Naa40 1 1 19.48 0.2405 3.77 Flu N-alpha-acetyltransferase 40

Naca 58 8 443.92 0.0243 2.18 Flu Nascent polypeptide-associated complex subunit alpha, muscle-specific form

Nadk2 4 2 21.48 0.1565 1.65 Flu NAD kinase 2, mitochondrial

Naga 4 3 96.32 0.0004 2.98 Flu Alpha-N-acetylgalactosaminidase

Nampt 7 2 207.37 0.5493 1.21 Flu Nicotinamide phosphoribosyltransferase

Nans 7 3 61.7 0.0412 2.01 Flu N-acetylneuraminic acid synthase (Sialic acid synthase)

Nap1l1 6 4 104.73 0.0167 1.83 Flu Nucleosome assembly protein 1-like 1

Nap1l4 3 1 47.88 0.0963 3.34 PBS Nucleosome assembly protein 1-like 4

Napa 5 2 161.31 0.0262 1.46 Flu Alpha-soluble NSF attachment protein

Napb 4 1 66.13 0.1577 2.25 PBS Beta-soluble NSF attachment protein

Napsa 4 1 60.51 0.0563 3.98 PBS Napsin-A

Nars 8 3 157.9 0.0290 2.32 Flu Asparagine--tRNA ligase, cytoplasmic

Nat10 4 2 53.06 0.4646 3.73 Flu N-acetyltransferase 10

Ncbp1 7 3 78.84 0.0646 1.86 Flu Nuclear cap-binding protein subunit 1

Ncbp2 4 1 33.29 0.0381 3.32 PBS Nuclear cap-binding protein subunit 2

Nceh1 5 5 75.36 0.6817 1.07 PBS Neutral cholesterol ester hydrolase 1

Ncf1 4 1 61.59 0.1234 1.87 PBS Neutrophil cytosol factor 1

Nckap1 14 9 236.39 0.8882 1.02 PBS Nck-associated protein 1

Nckap1l 5 0 53.32 --- NCK associated protein 1 like

Ncl 33 18 860.24 0.2721 1.36 PBS Nucleolin

Ncoa5 9 1 213.04 0.0274 8.87 Flu Nuclear receptor coactivator 5

Ncoa5 11 1 238.98 0.8933 1.24 Flu Nuclear receptor coactivator 5

Ncstn 7 2 100.38 0.2492 1.18 Flu Nicastrin

Ndrg1 4 2 61.92 0.0822 4.34 PBS Protein NDRG1

Ndrg2 5 1 58.11 0.4931 1.09 Flu Protein NDRG2

Ndrg4 1 0 54.67 --- Protein NDRG4 (Fragment)

Ndufa1 2 0 33.24 --- NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1

Ndufa10 7 4 195.71 0.0733 1.69 Flu NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial

Ndufa11 3 0 27.33 --- NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11

Ndufa13 6 3 161.14 0.0051 1.62 Flu NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13

Ndufa4 4 1 75.69 0.6659 1.04 Flu Cytochrome c oxidase subunit NDUFA4

Ndufa6 3 2 57.5 0.1145 1.44 Flu NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6

Ndufa7 5 1 53.62 0.0898 2.11 Flu NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7

Ndufa8 7 4 144.73 0.4061 1.53 Flu NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8

Ndufa9 14 10 364.02 0.0855 1.45 Flu NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial

Ndufb10 5 3 253.6 0.0269 2.02 Flu NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10

Ndufb4 4 1 60.75 0.0370 1.69 Flu NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4

Ndufb5 2 1 22.84 0.1259 1.56 PBS NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial (Fragment)

Ndufb7 4 4 49.02 0.0264 1.35 Flu NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7

Ndufb9 2 2 39.29 0.0779 2.36 Flu NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9

Ndufc2 3 0 38.71 --- NADH dehydrogenase [ubiquinone] 1 subunit C2

Ndufs1 25 14 806.78 0.3497 1.17 Flu NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial

Ndufs2 16 7 341.64 0.5569 1.19 Flu NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial

Ndufs3 10 4 292.13 0.0151 1.93 Flu NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial

Ndufs5 2 0 25.32 --- NADH dehydrogenase [ubiquinone] iron-sulfur protein 5 (Fragment)

Ndufs6 1 0 27.67 --- NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial

Ndufs7 6 2 233.17 0.1412 1.54 Flu NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial

Ndufs8 5 3 168.09 0.0143 2.45 Flu NADH dehydrogenase (Ubiquinone) Fe-S protein 8

Ndufv1 15 1 473.11 0.9083 1.45 Flu NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial

Ndufv1 13 0 431.21 --- NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial

Ndufv2 8 0 117.21 --- NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial

Nebl 5 1 114.09 0.7273 1.44 Flu LIM zinc-binding domain-containing Nebulette

Nebl 6 0 54.4 --- Nebulette (Fragment)

Necap2 3 2 29.81 0.2917 2.42 Flu Adaptin ear-binding coat-associated protein 2

Nedd4 20 12 495.38 0.6752 1.04 Flu E3 ubiquitin-protein ligase NEDD4

Nedd4 4 0 58.72 --- E3 ubiquitin-protein ligase NEDD4

Nedd4l 12 2 128.89 0.4966 2.05 PBS E3 ubiquitin-protein ligase NEDD4-like

Nefh 43 8 285.04 0.1897 1.65 PBS Neurofilament heavy polypeptide

Nefl 7 0 82.05 --- Neurofilament light polypeptide

Nes 17 7 149.46 0.2338 1.31 PBS Nestin

Nexn 11 0 130.69 --- Nexilin (Fragment)

Nexn 13 0 166.75 --- Nexilin

Nfasc 18 3 128.96 0.1089 1.45 PBS Neurofascin (Fragment)

Nfib 9 0 107.88 --- Nuclear factor 1 B-type

Nfib 6 0 71.53 --- Nuclear factor 1 B-type (Fragment)

Ngp 4 4 309.8 0.9207 1.00 Flu Neutrophilic granule protein

Nhp2 3 3 172.14 0.0434 1.79 Flu H/ACA ribonucleoprotein complex subunit 2

Nid1 27 20 929.58 0.1234 1.19 PBS Nidogen-1

Nid2 19 13 566.12 0.0974 1.49 PBS Nidogen-2

Nipsnap3b 3 1 28.39 0.0884 1.48 Flu Protein NipSnap homolog 3B

Nit2 3 1 59.28 0.2140 1.33 Flu Omega-amidase NIT2

Nkapl 3 2 37.34 0.5582 1.44 PBS Protein Nkapl

Nkx2-5 6 3 62.39 0.0981 1.97 PBS Homeobox protein Nkx-2.5

Nlrx1 9 4 186.09 0.4687 1.23 Flu NLR family member X1

Nme1 7 1 240.53 0.1935 1.49 Flu Nucleoside diphosphate kinase A

Nme2 11 2 285.32 0.1003 1.43 Flu Nucleoside diphosphate kinase B

Nmi 6 2 36.02 0.6885 1.10 PBS N-myc-interactor

Nnt 15 7 209.49 0.0417 1.32 PBS NAD(P) transhydrogenase, mitochondrial

No66 7 4 59.74 0.8949 1.24 Flu Bifunctional lysine-specific demethylase and histidyl-hydroxylase NO66

Nol6 9 1 55.16 0.0961 2.36 Flu Nucleolar protein 6

Nol7 3 1 65.07 0.1815 1.74 Flu Nucleolar protein 7

Nolc1 26 4 182.18 0.2243 1.11 Flu Protein Nolc1

Nono 24 15 714.04 0.7452 1.05 Flu Non-POU domain-containing octamer-binding protein

Nop2 16 0 200.4 --- Probable 28S rRNA (cytosine-C(5))-methyltransferase

Nop2 15 0 153.25 --- Probable 28S rRNA (cytosine-C(5))-methyltransferase

Nop56 20 9 777.95 0.1597 1.44 Flu Nucleolar protein 56

Nop58 15 5 460.29 0.9522 1.02 PBS Nucleolar protein 58

Nop58 9 0 311.42 --- Nucleolar protein 58 (Fragment)

Nostrin 10 4 150.82 0.0497 1.42 PBS Nostrin

Nox1 4 1 42.37 0.0851 2.11 Flu NADPH oxidase 1

Npc1 6 2 73.64 0.0617 1.24 Flu Niemann-Pick C1 protein

Npepps 17 4 129.21 0.0320 1.45 Flu Puromycin-sensitive aminopeptidase

Npepps 4 0 33.5 --- Puromycin-sensitive aminopeptidase (Fragment)

Nploc4 4 2 92.12 0.0247 2.24 Flu Nuclear protein localization protein 4 homolog

Npm1 16 6 388.49 0.6906 1.30 PBS Nucleophosmin

Npnt 8 3 159.02 0.7493 1.04 Flu Nephronectin

Nptn 5 1 57.94 0.8156 1.14 PBS Neuroplastin

Nrp1 12 6 324.86 0.2848 1.27 PBS Neuropilin-1

Nsf 9 3 193.11 0.3365 1.15 Flu Vesicle-fusing ATPase

Nsfl1c 6 1 192.31 0.0024 1.67 Flu NSFL1 cofactor p47

Nsfl1c 6 0 141.55 --- NSFL1 cofactor p47

Nt5c 4 2 34.28 0.5412 1.41 PBS 5'(3')-deoxyribonucleotidase, cytosolic type

Nt5dc2 7 3 91.45 0.0051 2.09 Flu 5'-nucleotidase domain containing 2

Nt5e 23 12 474.73 0.7397 1.08 PBS 5' nucleotidase, ecto

Ntn1 3 2 34.7 0.7551 1.02 PBS Netrin-1

Ntn4 5 1 63.35 0.4786 3.94 PBS Netrin-4

Nudt21 3 1 62.89 0.0025 2.71 Flu Cleavage and polyadenylation specificity factor subunit 5

Numa1 56 29 1191.91 0.3460 1.12 Flu Protein Numa1

Numb 6 2 148.97 0.2802 1.10 PBS Protein numb homolog

Numbl 11 2 86.17 0.4626 1.31 Flu Numb-like protein

Nup107 8 3 65.9 0.4121 2.44 PBS Nuclear pore complex protein Nup107

Nup133 16 5 144.32 0.3700 1.63 Flu Nuclear pore complex protein Nup133

Nup153 8 3 168.34 0.3013 2.45 Flu Protein Nup153

Nup155 10 5 126.96 0.0836 1.79 Flu Nuclear pore complex protein Nup155

Nup160 6 2 69.75 0.2076 1.58 Flu Nuclear pore complex protein Nup160

Nup205 19 5 209.24 0.1048 1.55 Flu Protein Nup205

Nup205 5 0 66.95 --- Protein Nup205

Nup210 10 4 154.64 0.9494 1.04 Flu Nuclear pore membrane glycoprotein 210

Nup214 9 4 40.69 0.0392 1.64 Flu Nuclear pore complex protein Nup214

Nup37 4 3 115.31 0.7834 1.08 PBS Nucleoporin Nup37

Nup88 5 0 25.08 --- Nuclear pore complex protein Nup88

Nup93 14 11 408.92 0.1872 1.64 Flu Nuclear pore complex protein Nup93

Nup98 13 10 153.64 0.6679 1.52 Flu Nuclear pore complex protein Nup98-Nup96

Nxf1 8 2 151.64 0.0844 1.40 PBS Nuclear RNA export factor 1

Oat 16 10 662.57 0.7356 1.08 PBS Ornithine aminotransferase, mitochondrial

Ociad1 7 5 55.76 0.1979 1.83 Flu OCIA domain-containing protein 1 (Fragment)

Odf3 7 2 40.26 0.3614 16.16 Flu Outer dense fiber protein 3

Ogdh 32 19 751.42 0.0315 1.56 PBS 2-oxoglutarate dehydrogenase, mitochondrial

Ogdhl 11 0 122.73 --- Protein Ogdhl

Ogn 21 10 862.19 0.4860 1.32 Flu Mimecan

Ogt 7 3 90.16 0.0449 1.44 Flu UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit

Olfr347 2 1 18.48 0.4775 2.51 Flu Olfactory receptor

Olfr430 1 0 16.75 --- Olfactory receptor

Olfr828 1 1 6.3 0.6941 2.35 PBS Olfactory receptor

Opa1 15 3 214.87 0.0067 2.53 PBS Dynamin-like 120 kDa protein, mitochondrial

Osbpl1a 10 4 68.01 0.6860 1.05 Flu Oxysterol-binding protein-related protein 1

Osbpl8 10 2 56.02 0.0448 4.49 Flu

Osbpl9 2 1 25.53 0.1633 1.42 Flu Oxysterol-binding protein

Ostc 1 1 52.06 0.0119 2.93 Flu Oligosaccharyltransferase complex subunit OSTC

Ostf1 3 3 89.53 0.0103 3.31 Flu Osteoclast-stimulating factor 1

Otub1 4 0 89.34 --- Ubiquitin thioesterase OTUB1

Oxct1 15 5 272.95 0.0174 6.91 PBS Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial

P4hb 37 21 1452.27 0.3786 1.45 PBS Protein disulfide-isomerase

Pa2g4 8 3 167.79 0.0337 2.46 Flu Proliferation-associated protein 2G4

Pa2g4 3 0 58.61 --- Proliferation-associated protein 2G4 (Fragment)

Pabpc1 21 3 862.31 0.0612 1.63 Flu Polyadenylate-binding protein 1

Pabpc1l 3 2 40 0.1861 2.50 Flu Polyadenylate-binding protein

Pabpc2 10 0 433.65 --- Polyadenylate-binding protein

Pabpc4 19 2 402.76 0.0184 1.77 Flu Polyadenylate-binding protein

Pabpc5 6 1 81.1 0.6213 1.44 PBS Poly A binding protein, cytoplasmic 5

Pabpc6 13 0 463.9 --- Polyadenylate-binding protein

Pacrg 1 1 28.82 0.7013 1.10 PBS Parkin coregulated gene protein homolog

Pacsin2 10 0 184.94 --- Protein kinase C and casein kinase substrate in neurons protein 2

Pafah1b1 7 3 192.74 0.6009 1.13 PBS Platelet-activating factor acetylhydrolase IB subunit alpha

Pafah1b1 3 0 37.09 --- Platelet-activating factor acetylhydrolase IB subunit alpha (Fragment)

Pafah1b2 5 2 89.22 0.0560 1.49 PBS Platelet-activating factor acetylhydrolase IB subunit beta

Paics 13 4 225.97 0.8255 1.02 PBS Multifunctional protein ADE2

Pak1 7 0 145.39 --- Non-specific serine/threonine protein kinase

Pak2 10 4 166.85 0.5026 1.40 PBS Serine/threonine-protein kinase PAK 2

Pak3 7 1 67.28 0.6701 1.14 PBS Serine/threonine-protein kinase PAK 3

Pald1 24 16 617.77 0.5780 1.09 PBS Paladin

Palld 19 6 142.06 0.0195 1.71 PBS Palladin

Parg 16 5 98.94 0.5885 1.34 PBS Poly(ADP-ribose) glycohydrolase

Park7 9 7 396.23 0.3114 1.33 PBS Protein deglycase DJ-1

Parp1 19 1 282.91 0.2062 1.55 PBS Poly [ADP-ribose] polymerase

Parp1 16 0 161.09 --- Poly [ADP-ribose] polymerase 1

Parp3 2 1 20.22 0.0222 4.52 Flu Poly [ADP-ribose] polymerase

Parva 16 5 477.46 0.0954 1.31 PBS Alpha-parvin

Parvb 4 1 158.92 0.1056 1.37 PBS Beta-parvin

Pc 36 19 959.12 0.1060 1.30 PBS Pyruvate carboxylase, mitochondrial

Pcbp1 17 6 670.86 0.5905 1.13 Flu Poly(rC)-binding protein 1

Pcbp2 10 5 355.92 0.3162 1.30 Flu Poly(rC)-binding protein 2

Pcca 9 5 165.74 0.1063 1.62 PBS Propionyl-CoA carboxylase alpha chain, mitochondrial

Pccb 9 7 192.52 0.1685 1.43 PBS Propionyl-CoA carboxylase beta chain, mitochondrial

Pcdh1 5 2 56.46 0.2502 2.04 PBS Protein Pcdh1 (Fragment)

Pcdhga1 6 0 47.77 --- MCG133388, isoform CRA_t

Pck2 10 2 106.43 0.0011 1.69 Flu Phosphoenolpyruvate carboxykinase [GTP], mitochondrial

Pcmt1 10 4 168.57 0.3118 1.25 Flu Protein-L-isoaspartate(D-aspartate) O-methyltransferase

Pcmt1 7 0 109.41 --- Protein-L-isoaspartate O-methyltransferase (Fragment)

Pcna 8 3 182.35 0.0486 7.20 Flu Proliferating cell nuclear antigen

Pcyox1 8 8 285.34 0.1949 1.33 PBS Prenylcysteine oxidase

Pdcd10 3 1 55.21 0.0466 2.38 Flu Programmed cell death protein 10

Pdcd4 8 3 92.41 0.1986 1.36 Flu Programmed cell death protein 4

Pdcd6 6 2 78.05 0.0106 1.36 Flu Programmed cell death protein 6

Pdcd6ip 18 12 525.68 0.1362 1.34 Flu Programmed cell death 6-interacting protein

Pde5a 9 3 67.31 0.0240 1.72 Flu cGMP-specific 3',5'-cyclic phosphodiesterase

Pdgfrb 9 3 74.79 0.0144 1.62 Flu Platelet-derived growth factor receptor beta

Pdha1 13 9 297.64 0.9961 1.01 PBS Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial

Pdhb 16 10 514.92 0.2372 1.11 Flu Pyruvate dehydrogenase E1 component subunit beta, mitochondrial

Pdia3 47 31 1968.37 0.0114 1.78 Flu Protein disulfide-isomerase A3

Pdia4 31 21 744.5 0.7565 1.09 Flu Protein disulfide-isomerase A4

Pdia6 16 13 880.26 0.2319 1.47 Flu Protein disulfide-isomerase A6

Pdlim1 15 4 367.53 0.0550 1.71 Flu PDZ and LIM domain protein 1

Pdlim2 7 4 209.51 0.1050 1.71 Flu PDZ and LIM domain protein 2

Pdlim5 7 1 75.28 0.0977 1.86 PBS PDZ and LIM domain protein 5

Pdlim5 7 0 175.1 --- ENH isoform 1b

Pdlim5 5 0 129.6 --- PDZ and LIM domain protein 5 (Fragment)

Pdlim7 12 2 95.76 0.0319 2.09 Flu PDZ and LIM domain protein 7

Pdpr 6 0 55.81 --- Pyruvate dehydrogenase phosphatase regulatory subunit, mitochondrial

Pds5b 21 6 112.46 0.6617 1.06 PBS Sister chromatid cohesion protein PDS5 homolog B

Pdxdc1 3 0 40 --- Pyridoxal-dependent decarboxylase domain-containing protein 1

Pdxk 2 1 25.43 0.0406 1.51 Flu Pyridoxal kinase

Pdzd4 5 0 61.08 --- PDZ domain-containing protein 4

Pebp1 3 1 37.95 0.0863 2.26 Flu Phosphatidylethanolamine-binding protein 1

Pecam1 15 7 466.65 0.0442 1.50 PBS Platelet endothelial cell adhesion molecule

Pecam1 8 1 165.49 0.5049 34.39 Flu Platelet endothelial cell adhesion molecule (Fragment)

Pef1 1 0 45.82 --- Peflin

Pes1 7 2 86.1 0.0990 1.28 Flu Pescadillo homolog

Pf4 3 1 29.96 0.0900 1.61 PBS C-X-C motif chemokine

Pfas 12 2 91.2 0.1101 1.47 PBS Phosphoribosylformylglycinamidine synthase

Pfkl 12 7 242.12 0.0619 1.32 PBS ATP-dependent 6-phosphofructokinase, liver type

Pfkp 9 3 265.66 0.7569 1.07 PBS ATP-dependent 6-phosphofructokinase, platelet type

Pfn1 10 7 553.68 0.9975 1.01 Flu Profilin-1

Pgam1 12 6 270.65 0.0023 2.14 Flu Phosphoglycerate mutase 1

Pgam2 7 0 130.69 --- Phosphoglycerate mutase 2

Pgd 16 10 558.17 0.9217 1.03 PBS 6-phosphogluconate dehydrogenase, decarboxylating

Pgk1 18 9 492.73 0.8252 1.13 Flu Phosphoglycerate kinase 1

Pgk2 10 1 191.27 0.4958 1.09 Flu Phosphoglycerate kinase 2

Pgls 3 1 27.05 0.0046 1.84 Flu 6-phosphogluconolactonase

Pgm2 11 3 115.6 0.9175 1.06 Flu Phosphoglucomutase-2

Pgm5 13 4 234.99 0.0495 1.76 PBS Phosphoglucomutase-like protein 5

Pgrmc1 7 4 173.11 0.1943 1.26 Flu Membrane-associated progesterone receptor component 1

Pgrmc2 3 2 52.31 0.7972 1.03 PBS Membrane-associated progesterone receptor component 2

Phb 11 10 479.58 0.2303 1.43 PBS Prohibitin

Phb2 19 3 782.83 0.3877 1.23 PBS Prohibitin-2

Phb2 14 1 448.66 0.4442 1.40 Flu Prohibitin-2 (Fragment)

Phf3 30 2 186.24 0.6699 1.05 PBS PHD finger protein 3

Phgdh 4 1 71.24 0.1139 2.53 Flu D-3-phosphoglycerate dehydrogenase

Phlpp2 10 5 72.16 0.1021 1.34 Flu MCG16947

Pi16 4 1 34.1 0.2240 1.99 Flu Peptidase inhibitor 16

Pi4ka 15 3 121.36 0.1412 1.34 PBS Protein Pi4ka

Pi4ka 6 0 57.42 --- Protein Pi4ka (Fragment)

Picalm 15 6 624.93 0.1001 1.24 Flu Phosphatidylinositol-binding clathrin assembly protein

Pigk 3 1 35.75 0.0670 1.31 Flu GPI-anchor transamidase

Pigs 4 2 74.27 0.0837 2.38 PBS GPI transamidase component PIG-S

Pik3cb 5 0 72.21 --- Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform

Pik3r1 8 1 91.1 0.9084 1.26 Flu Phosphatidylinositol 3-kinase regulatory subunit alpha

Pip4k2b 6 1 144.74 0.1864 1.53 Flu Phosphatidylinositol 5-phosphate 4-kinase type-2 beta

Pip4k2c 2 1 26.36 0.1119 2.03 Flu Phosphatidylinositol 5-phosphate 4-kinase type-2 gamma

Pitpnm2 15 2 76.18 0.3689 1.11 PBS Membrane-associated phosphatidylinositol transfer protein 2

Pklr 6 0 36.84 --- Pyruvate kinase

Pkm 46 30 1626.4 0.2726 1.45 PBS Pyruvate kinase PKM

Pkn1 6 0 70.93 --- Serine/threonine-protein kinase N1

Plbd1 4 2 94.19 0.0458 1.93 Flu Phospholipase B-like 1

Plcb3 9 1 89.43 0.6878 1.04 Flu 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3

Plcd1 3 1 27.69 0.8771 1.08 PBS 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-1

Plcd3 1 1 17.91 0.8593 1.08 PBS 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-3

Plcg1 8 3 98.93 0.8245 1.05 PBS 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1

Pld3 4 2 36.69 0.0126 1.81 PBS Phospholipase D3

Pld4 6 3 197.15 0.6840 1.98 PBS Phospholipase D4

Plec 179 73 5315.09 0.0392 1.22 PBS Plectin

Plec 30 0 934.84 --- Plectin (Fragment)

Plek 1 1 18.24 0.0598 1.89 Flu Pleckstrin

Plekhg6 8 1 40.72 0.3917 1.84 Flu Pleckstrin homology domain-containing family G member 6

Plekho2 12 2 151.51 0.0146 1.35 PBS Pleckstrin homology domain-containing family O member 2

Plg 9 2 95.25 0.1751 1.64 Flu Plasminogen

Plgrkt 4 4 77.09 0.0608 1.50 Flu Plasminogen receptor (KT)

Plin3 7 6 175.24 0.0881 1.26 PBS Perilipin-3

Plod3 9 2 105.53 0.9508 1.37 Flu Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3

Plp2 1 1 30.8 0.5338 1.23 PBS Protein Gm6169

Plrg1 5 1 41.09 0.2524 1.53 Flu Pleiotropic regulator 1

Pls1 13 1 274.04 0.4291 1.35 Flu Plastin-1

Pls3 35 1 1116.52 0.0942 1.69 PBS Plastin-3

Pls3 35 0 1050.43 --- Plastin-3

Plscr1 3 2 69.53 0.3927 1.12 Flu Phospholipid scramblase 1

Plscr3 7 2 97.34 0.1919 1.14 Flu Phospholipid scramblase 3

Pltp 7 3 79.59 0.2371 1.67 Flu Phospholipid transfer protein

Plvap 17 5 504.94 0.1462 1.59 PBS Plasmalemma vesicle associated protein

Plxdc2 4 1 58.07 0.1202 1.43 PBS Plexin domain-containing protein 2

Plxna4 16 2 87.53 0.4783 1.15 Flu Plexin-A4

Plxnb2 12 4 71.54 0.2502 1.46 Flu Plexin-B2

Pml 9 2 90.94 0.0215 3.73 Flu Protein PML

Pmm2 5 1 45.67 0.8387 1.48 PBS Phosphomannomutase 2

Pmpca 5 1 49.52 0.2574 1.34 Flu Mitochondrial-processing peptidase subunit alpha

Pnkp 6 0 90.66 --- Bifunctional polynucleotide phosphatase/kinase

Pnn 17 10 265.37 0.7432 1.10 PBS Pinin

Pnp 13 4 275.51 0.0049 1.67 Flu Purine nucleoside phosphorylase

Pnp2 9 0 99.37 --- Purine nucleoside phosphorylase

Podn 7 2 189.93 0.5320 1.12 Flu Podocan

Podn 5 0 139.5 --- Podocan (Fragment)

Podxl 3 2 112.27 0.2945 1.36 PBS Podocalyxin

Pofut1 1 1 27.02 0.0091 1.68 Flu GDP-fucose protein O-fucosyltransferase 1

Polg2 6 0 54.19 --- DNA polymerase subunit gamma-2, mitochondrial

Polr2a 37 16 591.44 0.3304 1.22 Flu DNA-directed RNA polymerase II subunit RPB1

Polr2b 31 21 751.2 0.8808 1.06 PBS DNA-directed RNA polymerase II subunit RPB2

Polr2c 4 1 65.68 0.1923 2.01 Flu DNA-directed RNA polymerase II subunit RPB3

Polr2e 3 1 69.02 0.0265 2.01 Flu DNA-directed RNA polymerases I, II, and III subunit RPABC1

Polr2g 1 1 28.64 0.2567 1.24 Flu DNA-directed RNA polymerase II subunit RPB7

Polr2h 1 0 26.05 --- DNA-directed RNA polymerases I, II, and III subunit RPABC3

Pon1 9 4 148.19 0.4300 1.12 PBS Serum paraoxonase/arylesterase 1

Pon2 5 1 55.89 0.0193 3.91 PBS Serum paraoxonase/arylesterase 2

Pon3 8 3 156.74 0.0273 1.36 Flu Serum paraoxonase/lactonase 3

Pon3 2 0 37.66 --- Serum paraoxonase/lactonase 3 (Fragment)

Por 22 17 805.59 0.8049 1.05 Flu NADPH--cytochrome P450 reductase

Por 2 0 93.81 --- NADPH--cytochrome P450 reductase (Fragment)

Postn 37 20 1757.14 0.8296 1.09 Flu Periostin

Postn 9 0 145.25 --- Periostin (Fragment)

Ppa1 6 1 48.78 0.0090 3.79 Flu Inorganic pyrophosphatase

Ppa2 5 1 80.56 0.0757 2.92 PBS Inorganic pyrophosphatase 2, mitochondrial

Ppap2b 6 2 79.9 0.3714 1.15 PBS Lipid phosphate phosphohydrolase 3

Ppfia1 18 2 125.77 0.9197 1.04 Flu Ppfia1 protein

Ppia 18 7 1008.24 0.2435 1.46 Flu Peptidyl-prolyl cis-trans isomerase A

Ppib 16 9 730.61 0.0220 1.90 Flu Peptidyl-prolyl cis-trans isomerase B

Ppic 8 6 273.65 0.0045 2.98 Flu Peptidyl-prolyl cis-trans isomerase C

Ppih 5 0 57.55 --- Peptidyl-prolyl cis-trans isomerase H

Ppil1 2 1 18.62 0.0029 2.72 Flu Peptidyl-prolyl cis-trans isomerase-like 1

Ppip5k1 11 2 80 0.4680 1.39 PBS Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 1

Ppl 76 2 1852.12 0.1628 1.39 PBS Periplakin

Ppl 75 0 1769.64 --- Periplakin

Ppm1f 6 4 105.97 0.8649 1.03 Flu Protein phosphatase 1F

Ppp1ca 17 3 923.08 0.4199 1.24 Flu Serine/threonine-protein phosphatase PP1-alpha catalytic subunit

Ppp1cb 21 2 848.18 0.3354 1.08 Flu Serine/threonine-protein phosphatase PP1-beta catalytic subunit

Ppp1cc 17 1 863.29 0.4508 1.09 Flu Serine/threonine-protein phosphatase PP1-gamma catalytic subunit

Ppp1r12a 24 10 425.44 0.1856 1.22 PBS Protein phosphatase 1 regulatory subunit 12A

Ppp1r12b 12 2 134.75 0.4812 1.31 Flu Protein phosphatase 1 regulatory subunit

Ppp1r13b 7 2 59.76 0.4060 1.50 PBS Apoptosis-stimulating of p53 protein 1

Ppp1r18 10 3 97.74 0.0240 1.74 Flu Phostensin

Ppp1r7 7 3 91.27 0.0136 1.29 Flu Protein phosphatase 1 regulatory subunit 7

Ppp1r9b 11 3 93.95 0.3013 1.10 Flu Neurabin-2

Ppp2ca 12 1 387.69 0.0328 2.74 Flu Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform

Ppp2cb 12 1 338.43 0.5330 1.46 Flu Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform

Ppp2r1a 25 10 810.28 0.0552 1.45 Flu Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform

Ppp2r1b 10 0 248.34 --- Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform

Ppp2r1b 11 0 284.21 --- Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform

Ppp2r2a 6 1 93.68 0.0012 2.05 Flu Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform

Ppp2r2d 3 0 48.62 --- Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B delta isoform

Ppp2r4 5 1 40.37 0.1748 1.89 PBS Serine/threonine-protein phosphatase 2A activator

Ppp2r5a 5 0 60.74 --- Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform

Ppp2r5d 3 1 1.31 0.0072 2.41 Flu Protein Ppp2r5d

Ppp3ca 10 4 275.18 0.3138 1.17 Flu Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform

Ppp3cb 8 2 116.19 0.0823 1.89 PBS Serine/threonine-protein phosphatase

Ppp3cc 3 0 60.24 --- Serine/threonine-protein phosphatase 2B catalytic subunit gamma isoform

Ppp4c 3 0 46.43 --- Serine/threonine-protein phosphatase 4 catalytic subunit

Ppp6c 4 1 95.07 0.0128 2.56 Flu Serine/threonine-protein phosphatase 6 catalytic subunit

Ppt1 3 2 125.32 0.0192 2.52 Flu Palmitoyl-protein thioesterase 1

Prdx1 26 13 684.29 0.1223 1.28 Flu Peroxiredoxin-1

Prdx2 11 7 636.58 0.0721 1.53 PBS Peroxiredoxin-2

Prdx3 3 3 100.53 0.4880 1.09 Flu Thioredoxin-dependent peroxide reductase, mitochondrial

Prdx4 4 2 184.63 0.1285 2.01 Flu Peroxiredoxin-4 (Fragment)

Prdx5 7 5 256.11 0.0128 1.66 Flu Peroxiredoxin-5, mitochondrial

Prdx6 24 12 1044.55 0.2418 1.38 Flu Peroxiredoxin 6

Prdx6 2 0 114.44 --- Peroxiredoxin-6

Prdx6b 7 1 148.24 0.4161 1.18 PBS MCG48959

Preb 4 1 46.7 0.2023 1.21 Flu Prolactin regulatory element-binding protein

Prelp 31 13 1124.59 0.8269 1.00 Flu Prolargin

Prep 10 3 148.25 0.2629 1.18 PBS Prolyl endopeptidase

Prg2 4 3 119.94 0.7324 1.48 Flu Bone marrow proteoglycan

Prkaa1 13 3 249.74 0.1764 1.24 PBS 5'-AMP-activated protein kinase catalytic subunit alpha-1

Prkaa2 9 1 154.84 0.6165 12.29 PBS 5'-AMP-activated protein kinase catalytic subunit alpha-2

Prkaca 13 4 259.63 0.0316 2.23 PBS cAMP-dependent protein kinase catalytic subunit alpha

Prkacb 14 1 225.01 0.0402 1.84 PBS cAMP-dependent protein kinase catalytic subunit beta

Prkar1a 10 6 188.18 0.7040 1.04 Flu cAMP-dependent protein kinase type I-alpha regulatory subunit

Prkar2a 17 7 543.17 0.1100 1.30 PBS Protein kinase, cAMP dependent regulatory, type II alpha

Prkar2b 7 1 90.89 0.2050 1.12 Flu cAMP-dependent protein kinase type II-beta regulatory subunit

Prkcd 11 3 152.69 0.0724 1.65 PBS Protein kinase C delta type

Prkcdbp 8 5 210.78 0.7952 1.20 Flu Protein kinase C delta-binding protein

Prkcg 8 1 42.92 0.7123 1.04 Flu Protein kinase C gamma type

Prkch 7 3 99.69 0.3383 1.21 Flu Protein kinase C eta type

Prkcsh 11 6 264.53 0.0993 2.15 Flu Glucosidase 2 subunit beta

Prkcz 3 0 60.6 --- Protein kinase C zeta type

Prkg1 6 1 80.97 0.0559 6.15 PBS cGMP-dependent protein kinase 1

Prnp 1 0 3.2 --- Major prion protein

Prpf19 11 8 296.35 0.7266 1.07 PBS Pre-mRNA-processing factor 19

Prpf40a 14 4 108.85 0.1830 1.16 Flu Pre-mRNA-processing factor 40 homolog A

Prpf8 39 21 781.41 0.9144 1.01 PBS Pre-mRNA-processing-splicing factor 8

Prph 17 0 634.87 --- Peripherin

Prps1 15 2 495.84 0.0860 2.02 Flu Ribose-phosphate pyrophosphokinase 1

Prps1l1 7 0 305.8 --- Protein Prps1l1

Prps2 13 2 379.11 0.0910 1.60 Flu Ribose-phosphate pyrophosphokinase 2

Prpsap1 9 3 321.63 0.5431 1.16 Flu MCG6846, isoform CRA_c

Prpsap2 13 6 205.35 0.0158 1.64 Flu Phosphoribosyl pyrophosphate synthase-associated protein 2

Prrc2b 31 6 156.41 0.2249 1.25 Flu Protein PRRC2B (Fragment)

Prss1 3 0 74.28 --- MCG124046

Prss34 6 0 59.58 --- Mast cell protease-11

Prx 74 0 1532.23 --- Periaxin

Prx 77 0 1628.74 --- Periaxin

Psip1 10 1 174.44 0.4858 1.21 PBS PC4 and SFRS1-interacting protein

Psip1 5 0 46.21 --- PC4 and SFRS1-interacting protein

Psma1 6 2 75.13 0.0078 2.83 Flu Proteasome subunit alpha type-1

Psma2 11 6 247.58 0.0177 1.50 Flu Proteasome subunit alpha type-2

Psma3 6 4 153.37 0.1349 1.52 Flu Proteasome subunit alpha type-3

Psma4 5 3 148.41 0.0164 2.37 Flu Proteasome subunit alpha type-4

Psma6 5 2 135.51 0.0698 1.38 Flu Proteasome subunit alpha type-6

Psma7 8 2 201.32 0.2885 1.65 PBS Proteasome subunit alpha type-7

Psma8 7 0 123.1 --- Proteasome subunit alpha type-7-like

Psmb1 6 4 180.91 0.0043 1.62 Flu Proteasome subunit beta type-1

Psmb10 6 3 167.89 0.8884 1.10 PBS Proteasome subunit beta type-10

Psmb2 5 2 43.31 0.0418 1.37 Flu Proteasome subunit beta type-2

Psmb3 5 2 141.81 0.0850 2.50 PBS Proteasome subunit beta type-3

Psmb4 5 1 115.91 0.9682 1.07 PBS Proteasome subunit beta type-4

Psmb5 2 1 18.36 0.2688 1.21 PBS Proteasome subunit beta type-5

Psmb6 4 3 104.79 0.9941 1.01 PBS Proteasome subunit beta type-6

Psmb8 3 1 92.48 0.4602 1.24 PBS Proteasome subunit beta type (Fragment)

Psmc1 15 2 191.37 0.0604 1.96 Flu 26S protease regulatory subunit 4

Psmc2 10 1 167.47 0.8552 1.33 PBS 26S protease regulatory subunit 7

Psmc3 5 1 83.48 0.0390 2.69 Flu 26S protease regulatory subunit 6A (Fragment)

Psmc3 13 3 213.51 0.1623 1.22 Flu 26S protease regulatory subunit 6A

Psmc4 5 2 51.33 0.0569 2.28 PBS 26S protease regulatory subunit 6B

Psmc5 13 4 136.78 0.5039 1.10 PBS 26S protease regulatory subunit 8

Psmc6 9 1 158.15 0.3119 1.18 PBS 26S protease regulatory subunit 10B

Psmd1 6 5 188.57 0.2087 1.18 Flu 26S proteasome non-ATPase regulatory subunit 1

Psmd11 8 2 73.48 0.0554 1.47 Flu 26S proteasome non-ATPase regulatory subunit 11 (Fragment)

Psmd11 11 3 153.99 0.1058 1.55 Flu 26S proteasome non-ATPase regulatory subunit 11

Psmd12 8 5 246.23 0.0324 1.55 PBS 26S proteasome non-ATPase regulatory subunit 12

Psmd13 11 1 154.73 0.2605 1.42 Flu 26S proteasome non-ATPase regulatory subunit 13

Psmd13 6 1 60.28 0.9689 1.21 Flu 26S proteasome non-ATPase regulatory subunit 13

Psmd13 6 0 60.32 --- 26S proteasome non-ATPase regulatory subunit 13 (Fragment)

Psmd13 4 0 39.33 --- 26S proteasome non-ATPase regulatory subunit 13 (Fragment)

Psmd2 13 6 247.18 0.0316 2.62 PBS 26S proteasome non-ATPase regulatory subunit 2

Psmd3 13 3 153.62 0.0554 1.89 PBS 26S proteasome non-ATPase regulatory subunit 3

Psmd3 14 0 116.41 --- 26S proteasome non-ATPase regulatory subunit 3 (Fragment)

Psmd5 8 4 282.99 0.9561 1.02 Flu 26S proteasome non-ATPase regulatory subunit 5

Psmd5 3 0 64.06 --- 26S proteasome non-ATPase regulatory subunit 5 (Fragment)

Psmd6 11 4 212.94 0.0252 1.58 Flu 26S proteasome non-ATPase regulatory subunit 6

Psmd7 3 2 115.92 0.3001 1.63 Flu 26S proteasome non-ATPase regulatory subunit 7

Psme1 9 2 311.96 0.0047 3.17 Flu Proteasome activator complex subunit 1

Psme1 9 0 89.71 --- Proteasome activator complex subunit 1 (Fragment)

Psme2 9 4 388.6 0.0781 2.39 Flu Proteasome activator complex subunit 2

Psme3 7 0 77.25 --- Proteasome activator complex subunit 3

Psme3 4 0 38.75 --- Proteasome activator complex subunit 3 (Fragment)

Pspc1 6 3 112.22 0.0831 2.05 Flu Paraspeckle component 1

Ptbp1 19 10 967.33 0.4789 1.11 PBS MCG13402, isoform CRA_a

Ptbp1 7 0 146.42 --- Polypyrimidine tract-binding protein 1 (Fragment)

Ptbp3 15 4 396.62 0.2341 1.33 Flu Polypyrimidine tract-binding protein 3

Ptges3 2 1 80.73 0.7646 1.02 PBS Prostaglandin E synthase 3

Ptgfrn 8 5 211.44 0.0470 1.64 PBS Prostaglandin F2 receptor negative regulator

Ptgis 17 9 399.55 0.3556 1.22 Flu Prostacyclin synthase

Ptgr1 6 1 50.99 0.6453 1.11 Flu Prostaglandin reductase 1

Ptgs1 7 5 92.79 0.5887 1.27 Flu Prostaglandin G/H synthase 1

Ptk2 9 2 94.86 0.5798 1.12 PBS Focal adhesion kinase 1

Ptk7 14 4 191.66 0.0586 3.07 PBS Inactive tyrosine-protein kinase 7

Ptpn1 5 3 105.68 0.0342 1.86 Flu Tyrosine-protein phosphatase non-receptor type 1

Ptpn21 7 2 47.28 0.1926 1.93 PBS Protein tyrosine phosphatase, non-receptor type 21, isoform CRA_a

Ptpn6 9 6 280.7 0.0236 2.73 Flu Tyrosine-protein phosphatase non-receptor type 6

Ptpn9 4 1 40.64 0.0629 2.38 Flu Protein tyrosine phosphatase, non-receptor type 9

Ptprc 15 6 174.25 0.0339 1.97 Flu Receptor-type tyrosine-protein phosphatase C

Ptrf 28 12 1703.66 0.1327 1.35 PBS Polymerase I and transcript release factor

Puf60 12 6 366.15 0.6651 1.20 Flu Poly(U)-binding-splicing factor PUF60

Pura 14 6 398.93 0.4799 1.09 Flu Transcriptional activator protein Pur-alpha

Purb 10 5 389.83 0.0270 1.36 Flu Transcriptional activator protein Pur-beta

Purg 3 0 21.73 --- Purine-rich element-binding protein gamma

Pxdn 16 4 219.03 0.0542 1.55 Flu Peroxidasin homolog

Pxn 3 1 77.49 0.7980 1.39 PBS Paxillin

Pycard 2 1 30.89 0.5265 1.55 Flu Apoptosis-associated speck-like protein containing a CARD

Pycr1 5 1 54.64 0.0411 1.60 PBS Pyrroline-5-carboxylate reductase 1, mitochondrial (Fragment)

Pycr1 5 0 118.4 --- Pyrroline-5-carboxylate reductase 1, mitochondrial (Fragment)

Pycr2 7 2 226.84 0.0584 1.94 Flu Pyrroline-5-carboxylate reductase

Pycrl 2 1 74.66 0.3976 1.14 Flu Pyrroline-5-carboxylate reductase 3

Pygb 30 7 625.4 0.0491 1.50 Flu Glycogen phosphorylase, brain form

Pygl 10 1 106.1 0.6965 1.33 PBS Glycogen phosphorylase, liver form

Pygm 20 5 200.5 0.7791 1.06 Flu Alpha-1,4 glucan phosphorylase

Pyhin1 8 4 258.8 0.7522 1.06 PBS Pyrin and HIN domain-containing protein 1

Qars 16 6 156.92 0.7398 1.08 Flu Glutaminyl-tRNA synthetase

Qdpr 5 3 148.78 0.0172 1.82 Flu Dihydropteridine reductase

Rab1 12 2 452.42 0.3107 1.46 Flu RAB1, member RAS oncogene family, isoform CRA_a

Rab10 9 3 382.78 0.3215 1.15 Flu RAB10, member RAS oncogene family

Rab11a 2 0 27.1 --- Ras-related protein Rab-11A (Fragment)

Rab11a 9 0 320.15 --- RAB11a, member RAS oncogene family

Rab11b 6 1 251.74 0.1093 1.39 PBS Ras-related protein Rab-11B (Fragment)

Rab11b 10 1 408.68 0.2737 1.28 Flu Ras-related protein Rab-11B

Rab11fip1 13 2 94.63 0.1758 1.35 PBS Rab11 family-interacting protein 1

Rab12 10 2 126.78 0.1484 3.73 PBS Ras-related protein Rab-12

Rab13 6 1 115 0.0540 2.25 PBS Ras-related protein Rab-13

Rab14 13 5 610.49 0.0077 1.20 Flu Ras-related protein Rab-14

Rab15 3 0 93.45 --- Ras-related protein Rab-15

Rab18 3 0 97.64 --- RAB18, member RAS oncogene family, isoform CRA_a

Rab1b 13 3 477.26 0.4776 1.14 PBS RAB1B, member RAS oncogene family, isoform CRA_c

Rab21 4 3 139.11 0.8937 1.01 Flu RAB21, member RAS oncogene family

Rab27a 3 2 48.04 0.8622 1.04 PBS Ras-related protein Rab-27A

Rab29 3 1 59.51 0.0008 2.57 Flu Ras-related protein Rab-7L1

Rab2a 12 2 389.81 0.1098 1.19 Flu RAB2, member RAS oncogene family

Rab2b 7 0 178.75 --- RAB2B, member RAS oncogene family, isoform CRA_a

Rab31 5 0 64.79 --- Rab22B

Rab35 9 4 177.85 0.4624 1.14 PBS RAB35, member RAS oncogene family

Rab3b 4 1 81.62 0.0347 2.51 Flu Ras-related protein Rab-3B

Rab3d 4 0 162.43 --- RAB3D, member RAS oncogene family, isoform CRA_b

Rab4b 2 0 100.99 --- Ras-related protein Rab-4B

Rab5a 6 0 193.05 --- Ras-related protein Rab-5A

Rab5b 6 2 129.77 0.0197 3.96 PBS RAB5B, member RAS oncogene family

Rab5c 11 6 419.63 0.9076 1.03 PBS RAB5C, member RAS oncogene family, isoform CRA_a

Rab6a 7 4 134.14 0.0507 1.18 Flu Ras-related protein Rab-6A

Rab7 15 10 430.83 0.2767 1.24 PBS MCG130610

Rab8a 8 1 286.03 0.5259 1.07 PBS RAB8A, member RAS oncogene family, isoform CRA_a

Rab8b 10 3 322.55 0.2099 1.17 Flu RAB8B, member RAS oncogene family

Rac1 14 2 326.07 0.4008 1.16 PBS Ras-related C3 botulinum toxin substrate 1

Rac2 9 1 226.15 0.0173 2.24 Flu Ras-related C3 botulinum toxin substrate 2

Rac3 6 0 155.19 --- RAS-related C3 botulinum substrate 3, isoform CRA_a (Fragment)

Rad21 6 3 75.15 0.9428 1.07 PBS Double-strand-break repair protein rad21 homolog

Rae1 6 6 121.71 0.0609 1.96 Flu mRNA export factor

Rai14 15 6 274.85 0.0741 1.42 PBS Ankycorbin

Rala 8 3 365.7 0.7982 1.04 Flu Ras-related protein Ral-A

Ralb 8 1 349.48 0.1700 1.98 PBS Ras-related protein Ral-B

Ralb 5 0 200.76 --- Ras-related protein Ral-B (Fragment)

Ralgapa2 6 1 24.73 0.7221 1.06 PBS Ral GTPase-activating protein subunit alpha-2 (Fragment)

Raly 9 2 144.18 0.0312 1.90 Flu RNA-binding protein Raly

Ramp2 3 2 96.76 0.9457 1.02 Flu Receptor activity-modifying protein 2

Ran 8 2 337.74 0.0028 1.98 Flu GTP-binding nuclear protein Ran

Ranbp1 2 1 14.11 0.0210 3.51 Flu Ran-specific GTPase-activating protein

Ranbp2 36 11 488.41 0.0027 1.87 PBS E3 SUMO-protein ligase RanBP2

Rangap1 12 4 269.92 0.0541 1.62 Flu Ran GTPase-activating protein 1

Rap1a 13 2 730.13 0.0029 2.27 PBS Ras-related protein Rap-1A

Rap1a 10 0 549.19 --- MCG10748, isoform CRA_b

Rap1b 13 2 753.57 0.1437 1.63 PBS Ras-related protein Rap-1b

Rap2a 2 1 46.11 0.3038 1.38 Flu Ras-related protein Rap-2a

Rap2b 2 0 50.25 --- Ras-related protein Rap-2b

Rars 10 7 157.95 0.6305 1.05 Flu Arginine--tRNA ligase, cytoplasmic

Rasip1 28 14 896.14 0.2793 1.19 PBS Ras-interacting protein 1

Rasl2-9 6 0 216.23 --- GTP-binding nuclear protein Ran, testis-specific isoform

Raver1 10 6 93.95 0.3649 1.28 PBS Ribonucleoprotein PTB-binding 1

Rbbp4 6 2 220.71 0.0254 1.84 Flu Histone-binding protein RBBP4

Rbbp5 6 3 48.08 0.1845 2.03 PBS Retinoblastoma-binding protein 5

Rbbp7 5 1 129.51 0.0423 2.18 Flu Histone-binding protein RBBP7 (Fragment)

Rbbp7 8 0 201.12 --- Histone-binding protein RBBP7

Rbm12 7 2 19.32 0.2537 1.65 PBS RNA-binding protein 12

Rbm14 6 2 201.29 0.1594 1.94 PBS RNA-binding protein 14

Rbm3 2 2 7.03 0.0842 6.62 Flu RNA-binding protein 3

Rbm31y 7 2 52.38 0.1660 1.99 Flu MCG53108

Rbm39 11 2 349.85 0.0295 1.98 Flu RNA-binding protein 39

Rbm39 11 0 247.86 --- RNA-binding protein 39 (Fragment)

RBM8 2 2 75.08 0.0115 2.11 Flu RNA-binding protein 8A

Rbms1 3 1 44.18 0.0133 2.08 Flu RNA-binding motif, single-stranded-interacting protein 1

Rbmx 25 1 645.81 0.7347 2.22 Flu RNA binding motif protein, X chromosome, isoform CRA_b

Rbmx 26 0 760.54 --- RNA-binding motif protein, X chromosome

Rbmxl1 26 1 811.27 0.0269 3.36 Flu RNA binding motif protein, X-linked-like-1

Rbp1 2 1 44.94 0.0835 1.66 Flu Retinol-binding protein 1

Rcc1 11 7 377.61 0.0895 1.63 Flu Regulator of chromosome condensation

Rcc2 12 6 164.83 0.0835 2.09 PBS Protein RCC2

Rcl1 4 2 89.41 0.4178 1.59 PBS RNA 3'-terminal phosphate cyclase-like protein

Rcn1 2 2 77.56 0.1040 3.26 Flu Reticulocalbin-1

Rcn2 3 2 33.85 0.9550 1.02 PBS Reticulocalbin-2

Rdh11 5 1 84.85 0.6241 1.11 Flu Retinol dehydrogenase 11

Rdx 49 12 1988.52 0.1308 1.39 PBS Radixin

Reck 7 4 131.93 0.9334 1.01 Flu Reversion-inducing cysteine-rich protein with Kazal motifs

Rer1 4 0 85.07 --- Protein RER1

Retnla 1 1 35.09 0.2302 11.03 Flu Resistin-like alpha

Rftn1 4 1 49.47 0.0125 4.26 Flu Raftlin

Rfwd2 1 0 15.55 --- E3 ubiquitin-protein ligase RFWD2

Rgs12 13 4 80.22 0.5776 1.31 PBS Regulator of G-protein-signaling 12

Rhag 1 1 23.05 0.0222 2.08 PBS Ammonium transporter Rh type A

Rhbdf1 8 4 39.39 0.3484 1.13 PBS Inactive rhomboid protein 1

Rhoa 9 3 407.91 0.8865 1.02 Flu Transforming protein RhoA

Rhob 4 1 172.27 0.1316 1.21 Flu Ras homolog gene family, member B

Rhoc 7 0 303.96 --- Rho-related GTP-binding protein RhoC

Rhof 2 0 21.1 --- Rho-related GTP-binding protein RhoF

Rhog 11 7 323.71 0.0210 1.24 Flu Rho-related GTP-binding protein RhoG

Rhot2 5 3 90.48 0.3279 1.19 Flu Mitochondrial Rho GTPase 2

Rmdn2 7 3 133.83 0.0658 1.23 Flu Regulator of microtubule dynamics protein 2

Rmdn3 6 3 160.78 0.2029 1.27 PBS Regulator of microtubule dynamics protein 3

Rnf213 44 6 226.59 0.9993 1.03 PBS E3 ubiquitin-protein ligase RNF213

Rngtt 10 1 68.82 0.8710 1.24 PBS RNA guanylyltransferase and 5'-phosphatase, isoform CRA_a

Rnh1 12 7 290.36 0.1155 1.78 Flu Ribonuclease inhibitor

Rnpep 7 3 91.92 0.0296 2.46 Flu Aminopeptidase B

Rnpepl1 5 1 59.96 0.3631 1.66 Flu Protein Rnpepl1

Rnps1 14 7 321.92 0.1233 1.49 Flu RNA-binding protein with serine-rich domain 1

Rp2 4 2 169.37 0.0749 1.89 Flu Protein XRP2

Rpap1 6 1 66.51 0.6963 1.03 PBS RNA polymerase II-associated protein 1

Rpf2 6 1 106.04 0.0072 4.02 Flu Ribosome production factor 2 homolog

Rpf2 6 0 46.55 --- Ribosome production factor 2 homolog (Fragment)

Rpl10 7 3 222.94 0.1073 1.71 Flu 60S ribosomal protein L10 (Fragment)

Rpl10 4 0 53.79 --- 60S ribosomal protein L10 (Fragment)

Rpl10a 19 1 580.93 0.3864 1.80 Flu Ribosomal protein

Rpl10a 21 0 549.19 --- 60S ribosomal protein L10a

Rpl12 13 3 478.38 0.0076 1.82 Flu 60S ribosomal protein L12

Rpl13 10 2 295.67 0.4082 1.67 PBS 60S ribosomal protein L13

Rpl13a 12 4 196.44 0.2899 1.42 Flu 60S ribosomal protein L13a

Rpl14 6 3 166.52 0.3308 1.13 Flu 60S ribosomal protein L14

Rpl15 9 5 226.75 0.9711 1.12 PBS Ribosomal protein L15

Rpl17 6 1 169.71 0.8714 1.06 PBS 60S ribosomal protein L17

Rpl18 11 2 506.28 0.7486 1.44 Flu 60S ribosomal protein L18

Rpl18 5 0 158.58 --- 60S ribosomal protein L18 (Fragment)

Rpl18 5 0 94.6 --- 60S ribosomal protein L18 (Fragment)

Rpl18 8 0 318.18 --- 60S ribosomal protein L18

Rpl18a 7 3 125.36 0.5686 1.16 Flu 60S ribosomal protein L18a

Rpl19 4 1 197.9 0.3303 1.29 Flu Ribosomal protein L19

Rpl21 5 4 196.42 0.2197 1.27 Flu 60S ribosomal protein L21

Rpl22 9 5 234.3 0.3793 1.32 Flu 60S ribosomal protein L22

Rpl23 4 1 135.28 0.0148 1.92 Flu 60S ribosomal protein L23

Rpl23 2 0 89.38 --- 60S ribosomal protein L23 (Fragment)

Rpl23a 11 4 330.38 0.2685 1.81 Flu 60S ribosomal protein L23a

Rpl24 14 2 251.74 0.2002 1.26 Flu 60S ribosomal protein L24

Rpl26 11 2 240.8 0.0266 1.80 Flu 60S ribosomal protein L26 (Fragment)

Rpl27 11 6 134.5 0.1089 1.59 Flu 60S ribosomal protein L27

Rpl27a 5 4 91.12 0.0166 2.54 Flu 60S ribosomal protein L27a

Rpl28 5 2 108.26 0.3015 1.33 PBS 60S ribosomal protein L28

Rpl29 9 0 132.68 --- 60S ribosomal protein L29

Rpl3 19 12 548.29 0.6091 1.04 PBS 60S ribosomal protein L3

Rpl30 7 3 453.48 0.1438 1.59 Flu 60S ribosomal protein L30

Rpl31 8 3 163.84 0.0153 2.06 Flu 60S ribosomal protein L31

Rpl31 6 0 76.37 --- 60S ribosomal protein L31

Rpl32 4 1 134.64 0.2584 4.61 Flu 60S ribosomal protein L32

Rpl35 5 3 186.41 0.4581 1.14 Flu 60S ribosomal protein L35

Rpl35a 10 3 56.66 0.1201 1.23 PBS 60S ribosomal protein L35a

Rpl36 4 1 78.25 0.1866 1.40 Flu 60S ribosomal protein L36

Rpl38 2 0 31.65 --- 60S ribosomal protein L38

Rpl4 21 12 497.12 0.8996 1.04 Flu 60S ribosomal protein L4

Rpl5 15 7 497.93 0.9540 1.00 Flu 60S ribosomal protein L5

Rpl6 11 1 534.78 0.5013 1.12 Flu 60S ribosomal protein L6

Rpl7 15 7 368.16 0.7159 1.08 Flu 60S ribosomal protein L7

Rpl7a 18 3 789.18 0.1148 1.32 Flu 60S ribosomal protein L7a

Rpl8 12 4 329.1 0.8009 1.00 PBS 60S ribosomal protein L8

Rpl9 7 1 64.61 0.0204 1.53 PBS 60S ribosomal protein L9 (Fragment)

Rpl9 8 3 298.69 0.1589 1.48 Flu 60S ribosomal protein L9

Rpl9-ps1 6 0 65.06 --- MCG50795

Rplp0 13 3 539.08 0.1787 1.67 Flu 60S acidic ribosomal protein P0

Rplp0 9 0 411.32 --- 60S acidic ribosomal protein P0 (Fragment)

Rplp1 1 1 57.34 0.0007 3.37 Flu 60S acidic ribosomal protein P1

Rplp2 4 3 101.46 0.0407 3.37 Flu 60S acidic ribosomal protein P2

Rpn1 22 16 815.7 0.0407 1.43 Flu Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1

Rpn2 14 11 736.83 0.4959 1.14 Flu Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 2

Rprd1a 4 0 206.73 --- Regulation of nuclear pre-mRNA domain-containing protein 1A

Rprd1b 16 3 667.56 0.0357 1.80 PBS Regulation of nuclear pre-mRNA domain-containing protein 1B

Rprd1b 12 0 347.31 --- Regulation of nuclear pre-mRNA domain-containing protein 1B (Fragment)

Rps10 8 3 142.7 0.6466 1.15 Flu 40S ribosomal protein S10

Rps11 8 2 259.48 0.0578 2.80 Flu 40S ribosomal protein S11

Rps12 9 4 201.69 0.1681 1.86 Flu 40S ribosomal protein S12

Rps13 8 4 266.42 0.1252 1.71 Flu 40S ribosomal protein S13

Rps14 5 3 258.66 0.0370 2.12 Flu 40S ribosomal protein S14

Rps15 3 0 44.47 --- 40S ribosomal protein S15

Rps15a 7 1 146.43 0.0284 1.90 Flu 40S ribosomal protein S15a

Rps16 7 6 285.61 0.0315 1.85 Flu 40S ribosomal protein S16

Rps17 6 5 131.34 0.0056 2.12 Flu 40S ribosomal protein S17

Rps19 12 2 122.72 0.1426 1.74 Flu 40S ribosomal protein S19

Rps2 16 0 455.93 --- 40S ribosomal protein S2

Rps20 7 1 165.52 0.2430 1.65 Flu 40S ribosomal protein S20

Rps23 6 2 108.71 0.0334 1.74 Flu 40S ribosomal protein S23

Rps24 7 3 167.31 0.1127 1.64 Flu 40S ribosomal protein S24

Rps25 3 2 110.3 0.3167 1.68 PBS 40S ribosomal protein S25

Rps26 2 1 113.82 0.0751 1.27 Flu 40S ribosomal protein S26

Rps27l 5 2 68.75 0.4068 1.29 Flu 40S ribosomal protein S27

Rps28 1 1 26.3 0.0706 1.95 Flu 40S ribosomal protein S28

Rps3 26 14 803.9 0.2084 1.34 Flu 40S ribosomal protein S3

Rps3a 22 9 814.68 0.8538 1.06 Flu 40S ribosomal protein S3a

Rps4x 19 8 639.62 0.0118 2.18 Flu 40S ribosomal protein S4, X isoform

Rps5 7 0 112.08 --- 40S ribosomal protein S5

Rps5 8 0 247.99 --- 40S ribosomal protein S5 (Fragment)

Rps6 10 3 180.3 0.5683 1.14 Flu 40S ribosomal protein S6

Rps6ka3 6 0 56.58 --- Ribosomal protein S6 kinase alpha-3

Rps7 14 5 318.81 0.0193 1.98 Flu 40S ribosomal protein S7

Rps8 10 8 473.51 0.8696 1.02 PBS 40S ribosomal protein S8

Rps9 15 6 322.2 0.0484 1.39 Flu 40S ribosomal protein S9

Rpsa 11 6 432.52 0.0100 2.14 Flu 40S ribosomal protein SA

Rraga 6 2 83.05 0.0183 2.29 Flu Ras-related GTP-binding protein A

Rragb 3 0 47.5 --- Ras-related GTP-binding protein B (Fragment)

Rragc 4 0 128.42 --- Ras-related GTP-binding protein C

Rragd 8 0 106.73 --- Ras-related GTP binding D, isoform CRA_a

Rras 9 2 337.23 0.2165 1.24 PBS Ras-related protein R-Ras

Rras2 8 3 249.36 0.9636 1.07 PBS Ras-related protein R-Ras2

Rrbp1 44 15 610.84 0.1881 1.68 PBS Ribosome-binding protein 1

Rrn3 6 1 58.61 0.8837 1.05 PBS RNA polymerase I-specific transcription initiation factor RRN3

Rrp9 7 3 77.52 0.0196 1.93 Flu U3 small nucleolar RNA-interacting protein 2

Rsl1d1 19 5 192.14 0.8713 1.01 PBS Ribosomal L1 domain-containing protein 1

Rsu1 10 6 265.08 0.2186 1.19 PBS Ras suppressor protein 1

Rtcb 11 3 198.67 0.0042 1.90 Flu tRNA-splicing ligase RtcB homolog

Rtn1 3 0 52.7 --- Reticulon (Fragment)

Rtn3 16 3 242.49 0.8077 1.18 Flu Reticulon-3

Rtn4 12 4 209.72 0.0779 1.43 Flu Reticulon-4

Rttn 13 4 92.54 0.6339 1.08 PBS Rotatin

Ruvbl1 11 6 189.91 0.1046 1.51 Flu RuvB-like 1

Ruvbl2 13 9 391.46 0.3340 1.19 Flu RuvB-like 2

S100a10 3 2 27.93 0.0695 1.49 PBS Protein S100-A10

S100a11 2 2 96.67 0.1003 3.07 PBS Protein S100-A11

S100a6 1 0 37.75 --- Protein S100-A6

S100a8 3 2 134.54 0.1217 1.44 Flu Protein S100-A8

S100a9 5 1 133.93 0.6226 1.07 PBS Protein S100-A9

S1pr1 2 1 39.95 0.0504 2.07 PBS Sphingosine 1-phosphate receptor 1

Sacm1l 11 4 223.87 0.9456 1.03 Flu Phosphatidylinositide phosphatase SAC1

Sae1 4 2 67.11 0.1382 2.16 PBS SUMO-activating enzyme subunit 1

Safb 16 3 201.56 0.2137 1.41 Flu Scaffold attachment factor B1

Safb2 18 2 148.01 0.9051 1.12 PBS Scaffold attachment factor B2

Samhd1 25 13 678.42 0.1511 2.09 Flu Deoxynucleoside triphosphate triphosphohydrolase SAMHD1

Samm50 14 5 315.59 0.9559 1.00 PBS Sorting and assembly machinery component 50 homolog

Sar1b 1 0 43.71 --- GTP-binding protein SAR1b

Sarnp 3 1 73.3 0.0109 1.86 Flu SAP domain-containing ribonucleoprotein

Sbds 7 2 69.93 0.0199 3.05 Flu Ribosome maturation protein SBDS

Scamp2 1 1 115.85 0.4559 1.50 PBS Secretory carrier-associated membrane protein 2

Scamp3 6 2 198.29 0.3217 1.64 PBS Secretory carrier-associated membrane protein 3

Scarb2 5 4 74.34 0.1570 1.84 PBS Lysosome membrane protein 2

Scel 21 6 353.39 0.0864 1.40 PBS Sciellin

Scfd1 15 5 192.48 0.2549 1.48 Flu Sec1 family domain-containing protein 1

Scgb1a1 3 2 63.01 0.3462 1.35 PBS Uteroglobin

Scly 4 0 51.26 --- Selenocysteine lyase

Scn7a 42 27 1548.06 0.1399 1.27 PBS Sodium channel protein

Scp2 13 3 128.26 0.0249 1.33 Flu Non-specific lipid-transfer protein

Scrib 22 0 244.15 --- Protein scribble homolog

Scrib 14 0 129.33 --- Protein scribble homolog (Fragment)

Sdha 25 19 815.82 0.1097 1.70 PBS Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial

Sdhb 9 3 127.4 0.8879 1.01 Flu Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial

Sdhc 3 2 28.43 0.0386 1.52 Flu Succinate dehydrogenase cytochrome b560 subunit, mitochondrial

Sdpr 20 15 889.75 0.0856 1.52 PBS Serum deprivation-response protein

Sec11a 5 2 152.87 0.0190 2.44 Flu Signal peptidase complex catalytic subunit SEC11

Sec13 2 2 25.92 0.5293 1.07 Flu Protein SEC13 homolog

Sec14l2 2 1 88.86 0.4230 2.49 Flu SEC14-like protein 2

Sec14l3 26 11 947.19 0.3575 1.17 PBS MCG140354

Sec22b 7 5 235.25 0.0045 1.65 Flu Vesicle-trafficking protein SEC22b

Sec23a 9 5 236.42 0.0479 1.45 Flu Protein transport protein Sec23A

Sec23b 11 5 182.91 0.2166 2.48 Flu Protein transport protein Sec23B

Sec23ip 10 3 74.4 0.1506 1.98 PBS SEC23-interacting protein

Sec24c 10 3 204.03 0.0328 1.59 Flu Protein Sec24c

Sec24d 7 2 51.73 0.2763 1.39 Flu Protein Sec24d

Sec31a 13 5 295.05 0.2435 1.52 PBS Protein transport protein Sec31A

Sec31b 9 0 79.59 --- Protein transport protein Sec31B

Sec61a1 7 4 212.29 0.0179 4.12 PBS Protein transport protein Sec61 subunit alpha isoform 1

Sec62 7 3 106.83 0.2462 1.18 PBS Translocation protein SEC62

Secisbp2 14 4 96.62 0.6567 1.44 Flu MCG1271

Seh1l 4 1 44.81 0.0278 1.69 Flu Nucleoporin SEH1

Selenbp1 34 21 1647.92 0.1288 1.31 PBS Selenium-binding protein 1

Selenbp2 4 1 243.86 0.4056 1.54 Flu Selenium-binding protein 2 (Fragment)

Selt 4 0 45.62 --- Selenoprotein T

Sema3c 14 6 214.95 0.0350 2.00 PBS Semaphorin-3C

Sephs1 2 2 29.49 0.8486 1.03 PBS Selenide, water dikinase 1

Sept10 6 2 110.45 0.3027 1.53 PBS Septin-10

Sept11 13 5 402.66 0.8723 1.00 Flu Septin-11

Sept2 16 6 504.98 0.8584 1.04 PBS Septin-2

Sept4 10 1 169.08 0.6911 1.12 PBS Septin-4 (Fragment)

Sept4 12 0 206.05 --- Septin-4

Sept5 5 1 60.61 0.6051 1.02 Flu Septin-5

Sept6 10 1 73.08 0.5496 2.35 PBS Septin-6

Sept6 3 1 29.63 0.9559 1.37 Flu Septin-6 (Fragment)

Sept7 11 6 342.71 0.0136 1.37 Flu Septin-7

Sept8 8 4 147.96 0.0253 3.28 PBS Septin-8

Sept9 15 4 227.66 0.9672 1.04 PBS Septin-9

Serbp1 12 2 215.56 0.0712 2.45 Flu Plasminogen activator inhibitor 1 RNA-binding protein

Serpina1a 10 1 391.79 0.1379 1.52 PBS Alpha-1-antitrypsin 1-1

Serpina1b 11 0 361.39 --- Alpha-1-antitrypsin 1-2

Serpina1c 10 0 417.07 --- Alpha-1-antitrypsin 1-3

Serpina1d 13 1 502.27 0.2595 2.91 Flu Alpha-1-antitrypsin 1-4

Serpina3g 3 0 68.41 --- Serine protease inhibitor A3G (Fragment)

Serpina3k 8 2 171.52 0.9661 1.00 Flu Serine protease inhibitor A3K

Serpina3m 7 0 120.65 --- Serine protease inhibitor A3M

Serpina3n 9 2 155.16 0.0890 2.35 PBS Serine (Or cysteine) peptidase inhibitor, clade A, member 3N, isoform CRA_a

Serpinb1a 10 2 316.63 0.0090 1.74 Flu Leukocyte elastase inhibitor A

Serpinb1a 7 1 243.16 0.4376 1.40 Flu Leukocyte elastase inhibitor A

Serpinb1b 6 2 84.59 0.0603 1.35 Flu Leukocyte elastase inhibitor B

Serpinb6a 15 3 448.97 0.3984 1.24 PBS Serine (Or cysteine) peptidase inhibitor, clade B, member 6a, isoform CRA_a

Serpinb6a 9 1 224.46 0.6732 15.96 PBS Serpin B6 (Fragment)

Serpinb6b 9 4 272.1 0.9782 1.29 Flu NK13

Serpinb9 11 5 298.55 0.2672 1.27 Flu Protein Serpinb9

Serpinb9c 2 0 37.65 --- Protein Serpinb9c

Serpinc1 20 8 861.35 0.5317 1.07 PBS Antithrombin-III

Serpinc1 7 0 194.99 --- Antithrombin-III

Serpine2 9 3 110.9 0.3024 1.71 Flu Glia-derived nexin

Serpinh1 42 24 2161.75 0.0041 2.04 Flu Serpin H1

Set 3 0 55.9 --- Protein SET

Sf1 6 3 46.86 0.0710 1.94 Flu Splicing factor 1

Sf3a1 13 5 151.91 0.2229 2.10 Flu Splicing factor 3A subunit 1

Sf3a2 7 2 119.93 0.1344 2.86 PBS Splicing factor 3A subunit 2

Sf3a3 9 3 89.04 0.2469 1.69 PBS Splicing factor 3A subunit 3

Sf3b1 18 14 404.25 0.3276 1.42 Flu Splicing factor 3B subunit 1

Sf3b2 11 5 64.82 0.9535 1.03 Flu Protein Sf3b2

Sf3b3 19 11 548.35 0.7440 1.03 PBS Splicing factor 3B subunit 3

Sf3b4 3 1 76.66 0.9943 1.70 Flu Splicing factor 3B subunit 4

Sf3b6 7 1 56.67 0.0431 2.24 Flu Splicing factor 3B subunit 6

Sfn 8 2 183.64 0.4307 1.59 Flu 14-3-3 protein sigma

Sfpq 25 14 826.64 0.0397 1.58 Flu Splicing factor, proline- and glutamine-rich

Sftpa1 20 12 893.48 0.5192 1.11 Flu MCG1040641, isoform CRA_a

Sftpb 4 1 160.12 0.7147 1.12 Flu Pulmonary surfactant-associated protein B

Sftpb 4 0 200.18 --- Pulmonary surfactant-associated protein B

Sftpc 8 6 346.54 0.0024 1.70 Flu Pulmonary surfactant-associated protein C

Sftpd 7 2 73.84 0.8735 1.12 Flu Pulmonary surfactant-associated protein D

Sfxn1 7 2 191.12 0.1648 1.57 Flu Sideroflexin-1

Sfxn3 10 5 357.86 0.5354 1.07 Flu Sideroflexin-3

Sgcb 4 2 29.71 0.1002 1.34 PBS Beta-sarcoglycan

Sgcd 6 3 125.1 0.3094 1.21 PBS Delta-sarcoglycan

Sgcg 3 1 53 0.1622 1.39 PBS Gamma-sarcoglycan

Sgol2 17 2 97.78 0.4027 1.24 PBS Shugoshin-like 2

Sgpl1 10 5 174.88 0.2925 1.83 Flu Sphingosine-1-phosphate lyase 1

Sh3bgrl 3 2 121.72 0.1290 1.35 Flu SH3 domain-binding glutamic acid-rich-like protein

Sh3bgrl3 3 1 155.56 0.1498 7.22 Flu SH3 domain-binding glutamic acid-rich-like protein 3

Sh3bp4 5 1 38.43 0.0250 4.45 PBS SH3 domain-binding protein 4

Sh3gl1 7 3 96.96 0.0114 2.08 Flu Endophilin-A2

Sh3glb2 4 2 36.98 0.6196 1.17 PBS Endophilin-B2

Shank3 20 1 213.12 0.2305 1.68 PBS SH3 and multiple ankyrin repeat domains protein 3

Shank3 20 0 170.05 --- SH3 and multiple ankyrin repeat domains protein 3

Shc2 7 4 42.3 0.2275 1.30 PBS SHC-transforming protein 2

She 8 2 52.78 0.2347 2.00 Flu SH2 domain-containing adapter protein E

Shmt1 6 3 63.07 0.6677 1.34 Flu Serine hydroxymethyltransferase (Fragment)

Shmt2 5 1 151.12 0.6822 1.57 Flu Serine hydroxymethyltransferase

Sidt2 5 0 29.41 --- SID1 transmembrane family member 2

Sipa1 10 5 157.22 0.0266 1.41 PBS Signal-induced proliferation-associated protein 1

Skiv2l2 14 4 89.08 0.0648 2.02 Flu Superkiller viralicidic activity 2-like 2

Skt 36 6 203.41 0.5516 1.25 PBS Sickle tail protein

Slc12a2 10 5 143.29 0.2047 1.63 Flu Solute carrier family 12 member 2

Slc12a4 11 5 77.08 0.8730 1.17 Flu Solute carrier family 12 member 4

Slc16a1 5 1 30.9 0.8695 1.02 Flu Monocarboxylate transporter 1

Slc1a4 3 2 50.52 0.3863 1.25 Flu Neutral amino acid transporter A

Slc1a5 5 2 100.2 0.0702 2.01 Flu Amino acid transporter

Slc25a1 7 2 209.68 0.0483 1.87 Flu Tricarboxylate transport protein, mitochondrial

Slc25a1 11 0 85.99 --- Tricarboxylate transport protein, mitochondrial (Fragment)

Slc25a10 5 2 162.13 0.1878 1.70 PBS Mitochondrial dicarboxylate carrier

Slc25a11 18 4 504.82 0.6217 1.05 PBS Mitochondrial 2-oxoglutarate/malate carrier protein

Slc25a11 12 0 389.7 --- Mitochondrial 2-oxoglutarate/malate carrier protein (Fragment)

Slc25a12 21 10 736.7 0.9422 1.00 PBS Calcium-binding mitochondrial carrier protein Aralar1

Slc25a13 10 4 310.43 0.2334 1.36 Flu Calcium-binding mitochondrial carrier protein Aralar2

Slc25a20 7 0 173.1 --- Mitochondrial carnitine/acylcarnitine carrier protein

Slc25a24 10 6 230.16 0.5830 1.09 PBS Calcium-binding mitochondrial carrier protein SCaMC-1

Slc25a3 20 11 509.66 0.2984 1.25 PBS Phosphate carrier protein, mitochondrial

Slc25a35 4 1 61.59 0.8776 1.30 Flu Solute carrier family 25 member 35

Slc25a4 25 6 904.15 0.1939 1.20 PBS ADP/ATP translocase 1

Slc25a5 29 7 1063.85 0.3821 1.17 PBS ADP/ATP translocase 2

Slc26a10 2 0 44.86 --- Solute carrier family 26 member 10

Slc27a2 5 1 20.65 0.0021 1.43 Flu Very long-chain acyl-CoA synthetase

Slc27a4 3 2 32.5 0.5803 1.02 PBS Long-chain fatty acid transport protein 4

Slc30a1 7 3 53.87 0.6546 1.06 Flu Zinc transporter 1

Slc34a2 6 4 111.25 0.1147 1.34 PBS Sodium-dependent phosphate transport protein 2B

Slc35b2 2 1 19.04 0.0305 2.18 Flu Adenosine 3'-phospho 5'-phosphosulfate transporter 1

Slc35b4 2 0 34.17 --- UDP-xylose and UDP-N-acetylglucosamine transporter

Slc35f3 2 0 22.9 --- Putative thiamine transporter SLC35F3

Slc35f6 1 1 53.68 0.5024 1.51 Flu Solute carrier family 35 member F6

Slc39a4 1 1 60.79 0.4199 1.42 PBS Zinc transporter ZIP4

Slc3a2 8 4 87.19 0.4906 1.19 Flu 4F2 cell-surface antigen heavy chain

Slc43a1 2 1 45.65 0.2400 1.65 Flu Large neutral amino acids transporter small subunit 3

Slc43a3 3 1 65.18 0.1287 1.58 PBS Solute carrier family 43 member 3

Slc44a1 6 2 44.43 0.4531 1.14 PBS Choline transporter-like protein 1

Slc44a2 18 9 316.48 0.1140 1.44 PBS Choline transporter-like protein 2

Slc4a1 26 16 1294.52 0.0304 1.63 PBS Band 3 anion transport protein

Slc4a1ap 7 5 44.25 0.0115 1.75 Flu Protein Slc4a1ap (Fragment)

Slc51a 2 1 30 0.5513 1.13 PBS Organic solute transporter subunit alpha

Slc6a14 3 2 73.95 0.0315 1.80 PBS Transporter

Slc9a2 7 1 74.95 0.5214 1.62 PBS Sodium/hydrogen exchanger

Slc9a3r2 24 12 847.57 0.1659 1.28 PBS Na(+)/H(+) exchange regulatory cofactor NHE-RF2

Slco2a1 11 7 261.59 0.0762 1.31 PBS Solute carrier organic anion transporter family member 2A1

Slfn5 6 1 50.95 0.9802 1.03 PBS Schlafen family member 5

Slit2 11 1 72.03 0.8927 1.27 Flu Slit homolog 2 protein

Slmap 12 4 94.5 0.1304 1.25 PBS Sarcolemmal membrane-associated protein

Smap1 2 1 25.47 0.2858 1.44 Flu Stromal membrane-associated protein 1

Smarca1 26 3 259.59 0.1174 1.45 PBS Probable global transcription activator SNF2L1

Smarca2 12 2 103.47 0.7060 1.11 Flu Probable global transcription activator SNF2L2

Smarca5 44 16 948.26 0.2165 1.27 Flu SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5

Smarcc1 10 1 72.75 0.4547 1.38 Flu SWI/SNF complex subunit SMARCC1

Smarcc2 14 6 343.88 0.0773 2.28 PBS SWI/SNF complex subunit SMARCC2

Smarcd3 12 5 77.84 0.5030 2.94 Flu SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 3

Smc1a 28 3 308.76 0.1151 2.64 PBS Structural maintenance of chromosomes protein 1A

Smc1b 25 3 152.53 0.2066 1.22 PBS Structural maintenance of chromosomes protein

Smc3 23 7 337.36 0.1703 1.72 Flu Structural maintenance of chromosomes protein

Smco2 4 2 35.97 0.6880 1.15 Flu Single-pass membrane and coiled-coil domain-containing protein 2 (Fragment)

Smn1 5 1 42.4 0.4177 1.15 PBS Survival motor neuron protein

Smok2b 3 0 11.49 --- Sperm motility kinase 2B

Smpd4 10 2 65.64 0.0706 2.93 Flu Sphingomyelin phosphodiesterase 4

Smpdl3a 3 1 66.12 0.0087 2.10 Flu Acid sphingomyelinase-like phosphodiesterase 3a

Smpdl3b 5 2 42.37 0.4101 1.13 Flu Acid sphingomyelinase-like phosphodiesterase 3b

Smu1 8 4 130.89 0.1268 1.94 Flu WD40 repeat-containing protein SMU1

Snap23 4 2 109.24 0.0426 1.67 Flu Synaptosomal-associated protein

Snap91 5 0 140.54 --- Clathrin coat assembly protein AP180 (Fragment)

Snd1 27 15 720.9 0.1189 1.87 PBS Staphylococcal nuclease domain-containing protein 1

Snd1 6 1 67.01 0.4892 2.35 PBS Staphylococcal nuclease domain-containing protein 1

Snf8 3 0 38.25 --- Vacuolar-sorting protein SNF8

Snrnp200 29 15 919.82 0.7027 1.05 PBS U5 small nuclear ribonucleoprotein 200 kDa helicase

Snrnp40 9 5 186.95 0.6336 1.18 PBS U5 small nuclear ribonucleoprotein 40 kDa protein

Snrpa 8 1 128.54 0.0168 9.08 Flu U1 small nuclear ribonucleoprotein A

Snrpa 3 0 58.41 --- U1 small nuclear ribonucleoprotein A

Snrpa1 8 3 104.34 0.6649 1.26 PBS U2 small nuclear ribonucleoprotein A'

Snrpb2 3 2 34.49 0.6013 1.07 Flu U2 small nuclear ribonucleoprotein B'' (Fragment)

Snrpd1 2 2 144.13 0.0843 2.32 Flu Small nuclear ribonucleoprotein Sm D1

Snrpd2 3 0 65 --- Small nuclear ribonucleoprotein Sm D2

Snrpd3 5 1 126.48 0.0128 1.76 Flu Small nuclear ribonucleoprotein Sm D3

Snrpe 4 1 86.95 0.0737 23.19 PBS Small nuclear ribonucleoprotein E

Snrpn 9 2 109.61 0.0041 1.93 Flu Small nuclear ribonucleoprotein-associated protein N

Snta1 12 2 103.49 0.9740 1.01 PBS Alpha-1-syntrophin

Sntb1 7 5 120.37 0.6659 1.11 PBS Beta-1-syntrophin

Sntb2 11 4 287.42 0.0253 1.56 PBS Beta-2-syntrophin

Snu13 4 2 137.86 0.4179 1.18 Flu NHP2-like protein 1

Snw1 14 5 97.81 0.4739 2.23 Flu SNW domain-containing protein 1

Snx1 9 2 180.73 0.1187 1.66 Flu Sorting nexin 1

Snx2 5 3 241.17 0.0369 1.55 Flu Sorting nexin-2

Snx6 5 2 101.87 0.3599 1.26 Flu Sorting nexin-6

Snx9 8 6 107.31 0.8701 1.01 PBS Sorting nexin-9

Soat1 7 4 201.51 0.0255 2.26 Flu Sterol O-acyltransferase 1

Sod1 7 3 220.87 0.7664 1.11 Flu Superoxide dismutase [Cu-Zn]

Sod2 7 3 228.99 0.0090 1.38 Flu Superoxide dismutase [Mn], mitochondrial

Sod3 2 1 102.27 0.4272 1.12 Flu Extracellular superoxide dismutase [Cu-Zn]

Son 14 3 138.8 0.2358 3.09 Flu Protein SON

Sorbs1 27 1 690.81 0.0450 1.32 Flu Sorbin and SH3 domain-containing protein 1

Sorbs1 26 0 733.02 --- Sorbin and SH3 domain-containing protein 1

Sorbs1 23 0 589.91 --- Sorbin and SH3 domain-containing protein 1

Sorbs3 23 11 563.38 0.2503 1.20 PBS Vinexin

Sort1 11 4 146.52 0.1914 1.57 Flu Sortilin

Sp100 8 1 94.95 0.6941 1.42 Flu Nuclear autoantigen Sp-100

Sp110 11 4 94.44 0.1525 1.76 Flu Sp110 nuclear body protein

Sparc 4 1 100.77 0.4518 2.51 PBS SPARC

Spata16 6 2 29.79 0.1106 1.72 PBS Spermatogenesis-associated protein 16

Spata5 10 0 108.47 --- Spermatogenesis-associated protein 5

Spcs1 1 1 54.31 0.0598 2.85 Flu Signal peptidase complex subunit 1

Spcs1 2 1 53.25 0.6910 1.04 PBS Signal peptidase complex subunit 1

Spcs2 9 6 354.1 0.0115 2.52 Flu Signal peptidase complex subunit 2

Spcs3 1 0 28.72 --- Signal peptidase complex subunit 3

Specc1l 32 14 355.82 0.7660 1.05 Flu Cytospin-A

Spg11 21 5 82.09 0.0515 3.48 PBS Spatacsin

Spon1 6 4 65.23 0.9124 1.05 PBS Spondin-1

Spta1 158 98 6869.16 0.1192 1.68 PBS Spectrin alpha chain, erythrocytic 1

Sptan1 234 1 12623.89 0.0883 1.41 PBS Spectrin alpha chain, non-erythrocytic 1

Sptan1 235 1 12603.94 0.7351 1.12 Flu Spectrin alpha chain, non-erythrocytic 1

Sptan1 235 0 12605.53 --- Spectrin alpha chain, non-erythrocytic 1

Sptb 132 0 5769.79 --- Spectrin beta chain, erythrocytic

Sptb 135 0 5815.99 --- Spectrin beta 1

Sptbn1 198 111 10629.69 0.1037 1.28 PBS Spectrin beta chain, non-erythrocytic 1

Sptbn2 43 4 779.25 0.1113 1.36 PBS Protein Sptbn2

Sptbn4 31 4 393 0.8162 1.03 Flu Protein Sptbn4

Sptbn5 8 0 66.23 --- Protein Sptbn5 (Fragment)

Sptlc2 3 2 64.52 0.1343 1.70 Flu Serine palmitoyltransferase 2

Sqrdl 12 4 283.48 0.0488 1.92 PBS Sulfide:quinone oxidoreductase, mitochondrial

Sqrdl 6 0 194.92 --- Sulfide:quinone oxidoreductase, mitochondrial (Fragment)

Sqstm1 3 1 85.83 0.0466 2.12 Flu Sequestosome-1

Srbd1 9 1 79.99 0.1565 1.73 PBS S1 RNA-binding domain-containing protein 1

Src 20 8 605.07 0.5776 1.08 PBS Tyrosine-protein kinase

Srd5a3 3 1 67.2 0.9692 1.01 Flu Polyprenol reductase

Srgap2 8 3 59.68 0.5679 1.47 Flu SLIT-ROBO Rho GTPase-activating protein 2

Srp54 7 4 48.77 0.4691 1.18 Flu Signal recognition particle 54 kDa protein

Srp68 8 1 101.3 0.0114 1.72 Flu Signal recognition particle subunit SRP68

Srp72 9 2 39.37 0.5051 1.94 PBS Signal recognition particle subunit SRP72

Srpr 10 1 66.05 0.3890 1.43 Flu Signal recognition particle receptor subunit alpha

Srrm2 62 14 611.42 0.9736 1.05 Flu Serine/arginine repetitive matrix protein 2

Srrt 10 2 171.46 0.1553 2.74 PBS Serrate RNA effector molecule homolog

Srrt 7 0 116.49 --- Serrate RNA effector molecule homolog (Fragment)

Srsf1 20 9 581.43 0.0159 2.27 Flu Serine/arginine-rich splicing factor 1

Srsf10 4 2 94.7 0.0405 2.21 Flu Serine/arginine-rich-splicing factor 10

Srsf11 3 2 46.34 0.0774 1.81 Flu Protein Srsf11

Srsf2 10 3 296.2 0.0189 2.89 Flu Serine/arginine-rich splicing factor 2

Srsf3 6 1 111.82 0.5074 1.12 Flu Serine/arginine-rich splicing factor 3

Srsf4 9 0 85.31 --- Serine/arginine-rich-splicing factor 4

Srsf5 5 2 74.1 0.1255 1.78 PBS MCG7614, isoform CRA_c

Srsf6 8 3 256.55 0.1320 1.54 Flu Serine/arginine-rich splicing factor 6

Srsf7 9 4 320.45 0.3588 1.23 Flu Serine/arginine-rich splicing factor 7

Srsf9 8 3 124.6 0.0422 1.57 Flu Serine/arginine-rich splicing factor 9

Ssb 20 7 387.09 0.2270 1.21 Flu Lupus La protein homolog

Ssb 10 1 116.47 0.7461 1.87 PBS Lupus La protein homolog (Fragment)

Ssbp1 5 3 152.73 0.0683 1.51 Flu Single-stranded DNA-binding protein

Ssr1 3 0 127.81 --- Translocon-associated protein subunit alpha

Ssr3 2 2 88.31 0.0764 1.57 Flu Translocon-associated protein subunit gamma

Ssr4 5 3 240.02 0.0086 1.88 Flu Translocon-associated protein subunit delta

Ssrp1 18 8 246.55 0.3366 1.16 Flu FACT complex subunit SSRP1

St13 5 1 132.78 0.0311 1.73 Flu Hsc70-interacting protein

Stab1 14 1 214.05 0.0765 1.29 PBS Stabilin 1, isoform CRA_a

Stab1 14 0 202.5 --- Stabilin-1

Stag1 16 3 254.93 0.3003 1.61 Flu Cohesin subunit SA-1

Stag2 12 3 188.46 0.7453 1.10 Flu Cohesin subunit SA-2

Stat1 18 11 546.97 0.5634 1.35 Flu Signal transducer and activator of transcription

Stat3 7 4 236.42 0.1365 1.52 Flu Signal transducer and activator of transcription 3

Stau1 5 1 115.45 0.0169 2.76 Flu Double-stranded RNA-binding protein Staufen homolog 1

Stau1 5 0 59.53 --- Double-stranded RNA-binding protein Staufen homolog 1

Steap3 4 0 37.14 --- Metalloreductase STEAP3

Stip1 13 3 229.58 0.8379 1.26 Flu Stress-induced-phosphoprotein 1

Stk24 8 1 72.61 0.8031 1.08 PBS Mammalian sterile twenty 3 kinase

Stmnd1 5 1 34.97 0.5642 1.54 PBS Stathmin domain-containing protein 1

Stom 9 3 488.38 0.4526 1.13 Flu Erythrocyte band 7 integral membrane protein

Stoml2 13 10 439.3 0.0040 1.77 Flu Stomatin-like protein 2, mitochondrial

Stoml3 3 0 41.3 --- Stomatin (Epb7.2)-like 3

Strap 5 4 270.44 0.2506 1.38 Flu Serine-threonine kinase receptor-associated protein

Strn3 3 1 36 0.0014 5.06 Flu Striatin-3

Stt3a 9 4 152.73 0.0214 5.69 PBS Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit STT3A

Stt3b 7 5 197.61 0.0978 1.29 Flu Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit STT3B

Stx11 5 4 130.32 0.2830 1.15 PBS MCG49559

Stx12 4 4 177.06 0.0001 1.48 Flu Syntaxin-12

Stx4 5 5 78.75 0.0364 1.78 PBS Syntaxin-4

Stx5a 6 4 61.75 0.3458 1.25 Flu Syntaxin-5 (Fragment)

Stx7 4 0 119.09 --- Syntaxin-7

Stxbp1 9 5 134.29 0.4082 1.20 Flu Syntaxin-binding protein 1

Stxbp2 20 1 659.37 0.1482 3.79 PBS Syntaxin-binding protein 2 (Fragment)

Stxbp2 17 1 666.84 0.2759 1.27 PBS Syntaxin-binding protein 2

Stxbp3 12 4 277.26 0.0601 1.18 PBS Syntaxin-binding protein 3

Sub1 7 2 90.29 0.0331 3.53 PBS Activated RNA polymerase II transcriptional coactivator p15

Sucla2 16 9 334.63 0.4922 1.19 PBS Succinyl-CoA ligase [ADP-forming] subunit beta, mitochondrial

Suclg1 5 3 84.34 0.3630 1.29 Flu Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial

Suclg2 16 8 205.12 0.2174 1.44 PBS Succinyl-CoA ligase [GDP-forming] subunit beta, mitochondrial

Suco 4 1 47.96 0.5810 1.15 PBS SUN domain-containing ossification factor (Fragment)

Sumf1 4 2 45.12 0.0119 2.02 Flu Sulfatase-modifying factor 1

Sun1 15 4 314.22 0.5152 1.13 PBS SUN domain-containing protein 1

Sun1 9 1 165.11 0.7989 1.59 Flu SUN domain-containing protein 1 (Fragment)

Sun1 5 0 89.52 --- SUN domain-containing protein 1 (Fragment)

Sun2 17 8 817.51 0.0902 1.22 Flu SUN domain-containing protein 2

Suox 3 2 24.56 0.4061 1.46 PBS Sulfite oxidase, mitochondrial

Supt16h 26 10 504.78 0.6369 1.08 PBS FACT complex subunit SPT16

Supt5h 12 6 124.81 0.0680 1.70 Flu Transcription elongation factor SPT5

Supt6h 14 2 88.8 0.8399 1.29 Flu Transcription elongation factor SPT6

Surf4 7 5 217.26 0.0097 1.37 Flu Surfeit locus protein 4

Surf4 6 1 83.64 0.5403 1.17 PBS Surfeit locus protein 4 (Fragment)

Svil 60 1 1454.67 0.5371 1.08 PBS Supervillin

Svil 60 0 1408.83 --- Archvillin

Svil 29 0 771.9 --- Supervillin (Fragment)

Swap70 10 6 109.16 0.8152 1.07 PBS Switch-associated protein 70

Syce1 5 2 21.76 0.7137 1.01 PBS Synaptonemal complex central element protein 1

Sycp2 19 5 129.68 0.9641 1.11 PBS Synaptonemal complex protein 2

Syk 7 2 28.74 0.9731 1.50 PBS Tyrosine-protein kinase SYK

Syncrip 15 6 380.56 0.8516 1.02 Flu Heterogeneous nuclear ribonucleoprotein Q

Syne1 76 7 422.02 0.0641 1.32 Flu Nesprin-1

Syne2 70 10 558.17 0.0919 1.43 PBS Nesprin-2

Syne2 20 0 283.04 --- Nesprin-2 (Fragment)

Syne2 14 0 88.24 --- Nesprin-2 (Fragment)

Syne3 16 3 110.04 0.0994 1.60 PBS Nesprin-3

Synm 35 9 511.8 0.1622 1.18 Flu Synemin

Synpo 14 5 156.54 0.0165 2.17 PBS Synaptopodin

Sypl 2 1 37.44 0.6953 1.06 PBS Synaptophysin-like protein 1

Sypl1 6 2 99.79 0.2182 1.32 PBS Synaptophysin-like protein 1

Szrd1 1 0 8.35 --- SUZ domain-containing protein 1

Tacstd2 1 1 17.22 0.4242 1.20 PBS Tumor-associated calcium signal transducer 2

Taf15 3 1 134.5 0.1355 50.53 Flu Protein Taf15

Taf6 9 3 102.12 0.4059 1.15 Flu Transcription initiation factor TFIID subunit 6

Tagln 11 5 375.81 0.2119 1.21 Flu Transgelin

Tagln2 26 14 1187.72 0.6649 1.06 Flu Transgelin-2

Tagln3 6 0 199.06 --- Transgelin-3

Taldo1 14 5 264.52 0.4669 1.77 Flu Transaldolase

Tap1 21 13 658.3 0.2649 1.61 Flu Antigen peptide transporter 1

Tap2 21 14 691.07 0.0485 2.21 Flu Antigen peptide transporter 2

Tapbp 17 10 449.19 0.0542 2.77 Flu Tapasin

Tardbp 13 1 258.55 0.4651 1.72 Flu TAR DNA-binding protein 43 (Fragment)

Tardbp 10 0 352.84 --- TAR DNA-binding protein 43

Tardbp 10 0 251.13 --- TAR DNA-binding protein 43

Tardbp 8 0 292.4 --- TAR DNA-binding protein 43 (Fragment)

Tars 14 4 100.12 0.3997 1.22 Flu Threonine--tRNA ligase, cytoplasmic

Tatdn2 13 3 101.43 0.0714 1.65 Flu Protein Tatdn2

Tax1bp1 6 2 50.5 0.5887 1.44 Flu Tax1-binding protein 1 homolog

Tax1bp3 2 1 49.76 0.0262 2.15 Flu Tax1-binding protein 3

Tbc1d8b 12 4 90.49 0.7807 1.35 PBS TBC1 domain family member 8B

Tbkbp1 6 3 27.33 0.9967 1.64 Flu TANK-binding kinase 1-binding protein 1

Tbl3 8 2 49.46 0.0248 3.61 PBS Transducin beta-like protein 3

Tcirg1 7 2 87.57 0.0153 4.84 Flu V-type proton ATPase subunit a

Tcof1 25 4 192.38 0.8529 1.62 Flu Treacle protein

Tcp1 19 5 611.14 0.8869 1.07 PBS T-complex protein 1 subunit alpha

Tecr 10 4 262.48 0.3852 1.15 Flu MCG11048, isoform CRA_c

Tek 7 3 50.46 0.3496 1.23 PBS Angiopoietin-1 receptor

Tf 39 1 1733.61 0.0381 3.60 Flu Serotransferrin

Tgfb1i1 4 3 80.46 0.0583 1.57 PBS Transforming growth factor beta-1-induced transcript 1 protein

Tgfbi 6 4 134.54 0.0144 2.45 Flu Transforming growth factor, beta induced

Tgm1 6 2 122.68 0.2032 11.27 Flu Protein-glutamine gamma-glutamyltransferase K

Tgm2 35 20 1634.42 0.0584 1.42 Flu Protein-glutamine gamma-glutamyltransferase 2

Thbd 8 7 235.13 0.0383 2.42 PBS Thrombomodulin

Thbs1 20 9 378.63 0.0218 1.97 PBS Thrombospondin-1

Thbs3 4 2 31.1 0.3661 1.36 PBS Thrombospondin-3

Thoc2 16 8 132.78 0.7989 1.09 Flu THO complex subunit 2

Thoc3 2 1 51.16 0.0165 2.40 Flu THO complex subunit 3

Thoc5 5 1 77.3 0.0188 9.49 Flu THO complex subunit 5 homolog

Thop1 6 1 81.18 0.0613 5.16 PBS Thimet oligopeptidase

Thrap3 4 1 68.72 0.2727 1.24 PBS Thyroid hormone receptor-associated protein 3 (Fragment)

Thrap3 12 5 295.51 0.6257 1.32 Flu Thyroid hormone receptor-associated protein 3

Thy1 4 2 117.67 0.0295 4.09 Flu Thy-1 membrane glycoprotein

Tia1 4 0 54.82 --- Nucleolysin TIA-1

Tial1 4 1 76.99 0.0164 2.64 Flu Nucleolysin TIAR

Timm23 1 0 60.19 --- MCG11298

Timm44 7 2 77.11 0.1208 1.48 PBS Mitochondrial import inner membrane translocase subunit TIM44

Timm50 6 1 48.55 0.0094 1.62 Flu Mitochondrial import inner membrane translocase subunit TIM50

Timp3 7 5 237.86 0.1026 1.43 PBS Metalloproteinase inhibitor 3

Timp3 2 0 40.37 --- Metalloproteinase inhibitor 3 (Fragment)

Tjp1 55 32 1570.56 0.1430 1.22 PBS Tight junction protein ZO-1

Tjp2 37 21 873.32 0.6900 1.03 Flu Tight junction protein ZO-2

Tjp3 11 2 106.43 0.1294 1.55 PBS Tight junction protein 3

Tkt 39 23 1180.52 0.1850 1.44 PBS Transketolase

Tln1 149 74 7021.5 0.0015 1.80 PBS Talin-1

Tln1 5 0 235.38 --- Talin-1 (Fragment)

Tln2 39 5 991.18 0.0120 2.25 PBS Talin-2

Tlr8 6 1 42.02 0.5225 1.11 Flu Toll-like receptor 8

Tm9sf2 5 3 47.52 0.3700 1.24 Flu Transmembrane 9 superfamily member 2

Tm9sf3 5 2 59.62 0.7430 1.11 PBS Transmembrane 9 superfamily member 3

Tmbim1 1 1 13.06 0.7414 1.04 PBS Protein lifeguard 3 (Fragment)

Tmcc2 3 1 51.93 0.0038 90.07 PBS Transmembrane and coiled-coil domains protein 2

Tmcc3 11 4 96.1 0.2283 1.96 PBS Transmembrane and coiled-coil domains protein 3

Tmco1 4 1 38.97 0.0260 1.77 Flu Transmembrane and coiled-coil domain-containing protein 1 (Fragment)

Tmed10 8 4 312.92 0.0034 2.67 Flu Transmembrane emp24 domain-containing protein 10

Tmed2 1 1 32.42 0.5568 4.42 Flu Transmembrane emp24 domain trafficking protein 2

Tmed4 6 1 135.3 0.0030 1.95 Flu Transmembrane emp24 domain-containing protein 4

Tmed7 3 3 92.25 0.7250 1.10 PBS Protein Tmed7

Tmed9 8 3 373.02 0.0058 2.11 Flu Tmed9 protein

Tmem100 3 1 41.51 0.5046 1.88 PBS Transmembrane protein 100

Tmem109 3 1 67.36 0.4986 1.03 Flu Transmembrane protein 109

Tmem165 4 2 173.05 0.0327 3.20 Flu Transmembrane protein 165

Tmem173 4 2 190.24 0.1924 3.89 Flu Stimulator of interferon genes protein

Tmem176b 5 1 50.79 0.0066 2.34 PBS Transmembrane protein 176B

Tmem2 14 8 299.9 0.1974 1.29 PBS Transmembrane protein 2

Tmem205 2 2 27.03 0.2315 1.22 PBS Transmembrane protein 205

Tmem214 6 3 57.1 0.4431 1.44 PBS Transmembrane protein 214

Tmem256 1 1 26.76 0.1656 1.14 PBS Transmembrane protein 256

Tmem30a 4 0 75.71 --- Cell cycle control protein 50A

Tmem33 3 2 92.11 0.2191 1.33 PBS Transmembrane protein 33

Tmem38b 2 1 46.7 0.1688 1.61 Flu Trimeric intracellular cation channel type B

Tmem43 17 11 445.54 0.1076 1.25 Flu Transmembrane protein 43

Tmem55b 3 2 58.33 0.0130 2.09 Flu Type 1 phosphatidylinositol 4,5-bisphosphate 4-phosphatase

Tmem63a 6 1 104.01 0.1375 2.43 PBS CSC1-like protein 1

Tmod1 20 6 1236.4 0.6062 1.07 PBS Tropomodulin-1

Tmod2 17 4 259.15 0.0160 3.08 PBS Tropomodulin-2

Tmod3 15 7 596.13 0.6426 1.08 Flu Tropomodulin-3

Tmod4 5 1 97.62 0.1805 1.68 PBS Tropomodulin 4

Tmpo 21 4 895.73 0.0205 1.77 Flu Lamina-associated polypeptide 2, isoforms beta/delta/epsilon/gamma

Tmpo 14 2 765.36 0.0858 1.49 Flu Lamina-associated polypeptide 2, isoforms alpha/zeta

Tmtc3 11 2 67.79 0.7698 1.04 PBS Transmembrane and TPR repeat-containing protein 3

Tmx1 3 3 67.75 0.9514 1.10 PBS Thioredoxin-related transmembrane protein 1

Tmx2 1 1 32.11 0.0055 1.59 Flu Thioredoxin-related transmembrane protein 2

Tmx3 4 2 110.3 0.2128 1.34 PBS Protein disulfide-isomerase TMX3

Tmx4 2 2 32.1 0.0017 2.18 Flu MCG129075

Tnc 22 11 430.46 0.1193 5.19 Flu Tenascin

Tnik 14 3 147.5 0.0666 1.75 PBS Traf2 and NCK-interacting protein kinase

Tnks1bp1 21 8 303.6 0.3434 1.77 PBS 182 kDa tankyrase-1-binding protein

Tnnc1 2 0 89.8 --- Troponin C, slow skeletal and cardiac muscles

Tnni3 13 5 551.24 0.3308 1.23 PBS Troponin I, cardiac muscle

Tnnt2 10 4 418.5 0.4785 1.08 PBS Troponin T, cardiac muscle

Tns1 68 3 2018.73 0.0902 1.49 PBS Protein Tns1

Tns1 66 1 1907.64 0.3208 6.01 PBS Protein Tns1 (Fragment)

Tns1 65 0 1935.87 --- Protein Tns1 (Fragment)

Tns1 5 0 124.77 --- Protein Tns1 (Fragment)

Tns2 17 6 340.23 0.1056 1.50 PBS Tensin-2

Tns3 15 4 239.32 0.8214 1.05 Flu Tensin-3

Tnxb 30 9 262.15 0.0095 4.59 PBS Protein Tnxb

Tollip 4 2 125.9 0.0600 1.44 Flu Toll-interacting protein

Tom1 7 2 64.24 0.2378 1.17 Flu Target of Myb protein 1

Tomm20 3 1 60.59 0.3546 1.17 Flu MCG10089

Tomm22 3 1 156.44 0.0071 2.10 Flu Mitochondrial import receptor subunit TOM22 homolog

Tomm40 12 7 329.15 0.0064 1.75 Flu Mitochondrial import receptor subunit TOM40 homolog

Tomm40 2 0 84.77 --- Mitochondrial import receptor subunit TOM40 homolog (Fragment)

Tomm40l 3 2 21.68 0.8819 1.03 Flu Mitochondrial import receptor subunit TOM40B

Tomm70a 9 3 177.58 0.8642 1.02 PBS Mitochondrial import receptor subunit TM70

Top1 24 10 392.02 0.8340 1.00 PBS DNA topoisomerase 1

Top1mt 10 2 137.75 0.5009 1.17 Flu DNA topoisomerase I, mitochondrial

Top2a 37 2 464.2 0.1256 1.65 Flu DNA topoisomerase 2-alpha

Top2b 40 10 991.38 0.2513 1.40 Flu DNA topoisomerase 2-beta

Topaz1 18 4 127.67 0.1294 1.17 PBS Testis- and ovary-specific PAZ domain-containing protein 1

Tor1aip1 10 1 113.52 0.4163 1.58 Flu Torsin-1A-interacting protein 1

Tor1aip1 7 0 71.99 --- Torsin-1A-interacting protein 1

Tor1aip1 5 0 36.68 --- Torsin-1A-interacting protein 1 (Fragment)

Tpi1 12 6 360.44 0.3319 1.23 Flu Triosephosphate isomerase

Tpm1 22 0 864.23 --- Tropomyosin alpha-1 chain

Tpm1 23 0 1100.1 --- Tropomyosin 1, alpha, isoform CRA_c

Tpm1 23 0 704.09 --- Tropomyosin 1, alpha, isoform CRA_k

Tpm1 25 0 743.27 --- Tropomyosin alpha-1 chain

Tpm1 28 0 1050.3 --- Tropomyosin alpha-1 chain

Tpm1 21 0 765.25 --- Tropomyosin alpha-1 chain

Tpm1 26 0 848.23 --- Tpm1 protein

Tpm1 24 0 809.05 --- Tropomyosin 1, alpha, isoform CRA_j

Tpm1 24 0 1205.06 --- Tropomyosin alpha-1 chain

Tpm1 24 0 939.96 --- Tropomyosin alpha-1 chain

Tpm2 23 2 872.44 0.3995 1.76 PBS Tropomyosin beta chain

Tpm2 20 0 757.76 --- Tropomyosin beta chain

Tpm3 19 0 673.8 --- Tropomyosin alpha-3 chain

Tpm3 20 0 740.59 --- Tropomyosin alpha-3 chain

Tpm3 24 0 1046.42 --- Tropomyosin alpha-3 chain

Tpm3 23 0 997.84 --- Tropomyosin alpha-3 chain

Tpm3-rs7 23 0 961.26 --- Protein Tpm3-rs7

Tpm4 16 5 380.07 0.0540 1.44 Flu Tropomyosin alpha-4 chain

Tpp1 8 3 170.6 0.5797 1.11 Flu Tripeptidyl-peptidase 1

Tpp2 10 1 74.79 0.0512 19.06 PBS Tripeptidyl-peptidase 2

Tppp3 4 2 109.06 0.3991 1.17 PBS Tubulin polymerization-promoting protein family member 3

Tpr 35 5 583.01 0.0548 1.84 Flu Nucleoprotein TPR

Tpr 9 0 174.74 --- Nucleoprotein TPR (Fragment)

Tpt1 3 1 159.85 0.0033 3.78 Flu Translationally-controlled tumor protein

Tra2a 6 2 135.25 0.1749 1.29 Flu Transformer-2 protein homolog alpha

Tra2b 12 8 528.49 0.0117 1.60 Flu Transformer-2 protein homolog beta

Tram1 2 1 59.14 0.9043 1.13 Flu Translocating chain-associated membrane protein 1

Trap1 10 4 251.62 0.0479 2.84 PBS Heat shock protein 75 kDa, mitochondrial

Trappc3 4 1 73.58 0.0867 1.53 Flu Trafficking protein particle complex 3

Trdn 20 1 147.72 0.8218 1.07 Flu Triadin

Trim28 13 6 442.22 0.1390 1.43 Flu Transcription intermediary factor 1-beta

Trim3 11 2 98.72 0.0935 1.22 PBS Tripartite motif-containing protein 3

Trip10 7 2 60.99 0.2769 2.25 Flu Cdc42-interacting protein 4

Trip12 16 5 119.06 0.2935 1.67 PBS E3 ubiquitin-protein ligase TRIP12

Trnt1 6 1 46.15 0.1090 2.85 Flu CCA tRNA nucleotidyltransferase 1, mitochondrial

Trpm4 6 2 73.59 0.6524 1.01 Flu Transient receptor potential cation channel subfamily M member 4

Trpv2 8 2 43.06 0.7488 1.01 PBS Transient receptor potential cation channel subfamily V member 2

Tsfm 3 1 69.32 0.4779 1.76 PBS Elongation factor Ts, mitochondrial

Tspan4 3 1 26.87 0.0192 4.16 PBS Tetraspanin (Fragment)

Tspan7 2 2 104.19 0.0665 2.00 PBS Tetraspanin-7

Tspan8 3 1 126.21 0.5425 1.53 PBS Tetraspanin-8

Tspan9 3 2 100.67 0.5089 1.11 PBS Tetraspanin (Fragment)

Tspo 3 2 113.89 0.0240 5.21 PBS Translocator protein

Tsr1 10 1 78.66 0.0370 2.40 Flu Pre-rRNA-processing protein TSR1 homolog

Tst 14 10 433.54 0.6637 1.13 Flu Thiosulfate sulfurtransferase

Ttr 2 0 63.46 --- Transthyretin

Tuba1a 35 1 2092.53 0.0246 8.56 PBS Tubulin alpha-1A chain

Tuba1b 35 0 2077.15 --- Tubulin alpha-1B chain

Tuba1c 33 0 2010.84 --- Tubulin alpha-1C chain

Tuba4a 30 3 1607.44 0.0526 1.52 Flu Tubulin alpha-4A chain (Fragment)

Tuba8 18 2 1179.47 0.1023 2.03 Flu Tubulin alpha-8 chain

Tubal3 7 1 236.51 0.3050 1.48 Flu Tubulin alpha chain-like 3

Tubb1 11 2 441.57 0.1214 1.62 PBS Tubulin beta-1 chain

Tubb2a 51 2 2841.97 0.6692 1.25 PBS Tubulin beta-2A chain

Tubb3 32 0 1958.88 --- Tubulin beta-3 chain

Tubb4a 43 3 2292.78 0.3432 1.22 PBS Tubulin beta-4A chain

Tubb4b 57 2 3311.04 0.4394 1.26 PBS Tubulin beta-4B chain

Tubb5 53 4 2998.68 0.4254 1.30 PBS Tubulin beta-5 chain

Tubb6 30 3 1736.15 0.9863 1.11 Flu Tubulin beta-6 chain

Tufm 14 6 379.53 0.0104 1.34 Flu Elongation factor Tu, mitochondrial

Tulp3 4 0 34.15 --- Tubby-related protein 3

Twf1 12 3 276.78 0.0008 1.66 Flu Twinfilin-1

Twf2 7 3 137.78 0.0051 2.05 Flu Twinfilin-2

Txn 4 1 92.06 0.1803 1.37 Flu Thioredoxin

Txndc5 12 6 400.1 0.4373 1.27 Flu Thioredoxin domain-containing protein 5

Txnl1 6 1 110.58 0.0896 1.52 Flu Thioredoxin-like protein 1

Txnrd1 6 1 68.43 0.0101 2.07 Flu Thioredoxin reductase 1, cytoplasmic

U2af1 3 3 123.34 0.3114 1.54 Flu Splicing factor U2AF 35 kDa subunit

U2af2 6 5 131.65 0.1837 1.25 Flu Splicing factor U2AF 65 kDa subunit

U2surp 22 5 129.67 0.0475 1.99 PBS U2 snRNP-associated SURP motif-containing protein

Uba1 34 17 969.01 0.8727 1.01 PBS Ubiquitin-like modifier-activating enzyme 1

Uba1y 11 0 126.96 --- Ubiquitin-like modifier-activating enzyme 1 Y

Uba2 8 1 80.16 0.3333 1.15 Flu SUMO-activating enzyme subunit 2

Ube2d2 2 1 23.91 0.0384 2.93 PBS Ubiquitin-conjugating enzyme E2 D2

Ube2l3 4 3 35.67 0.1834 1.56 PBS Ubiquitin-conjugating enzyme E2 L3

Ube2n 6 5 139.8 0.0056 2.44 Flu MCG4297

Ube2o 10 3 52.73 0.8385 1.15 Flu (E3-independent) E2 ubiquitin-conjugating enzyme UBE2O

Ubtf 30 14 610.32 0.9511 1.01 PBS Nucleolar transcription factor 1

Ubxn6 7 1 73.96 0.0503 2.60 Flu UBX domain-containing protein 6

Ufl1 8 1 98.59 0.0364 3.23 PBS E3 UFM1-protein ligase 1

Ufsp2 5 3 37.86 0.4141 1.13 PBS Ufm1-specific protease 2

Uggt1 40 13 970.21 0.1024 1.21 Flu UDP-glucose:glycoprotein glucosyltransferase 1

Uggt1 5 0 64.42 --- UDP-glucose:glycoprotein glucosyltransferase 1 (Fragment)

Ugp2 8 5 154.18 0.1722 1.14 Flu UTP--glucose-1-phosphate uridylyltransferase

Ugt1a6b 5 2 104.88 0.2225 1.30 Flu UDP-glucuronosyltransferase

Unc93b1 2 2 51.71 0.3155 2.01 Flu Protein unc-93 homolog B1

Upf1 12 4 156.24 0.4004 1.24 Flu Regulator of nonsense transcripts 1

Uqcc1 1 0 23.45 --- Ubiquinol-cytochrome-c reductase complex assembly factor 1 (Fragment)

Uqcrb 2 1 33.43 0.3261 1.15 Flu Cytochrome b-c1 complex subunit 7

Uqcrc1 17 8 653.38 0.4213 1.17 PBS Cytochrome b-c1 complex subunit 1, mitochondrial

Uqcrc1 5 0 215.83 --- Cytochrome b-c1 complex subunit 1, mitochondrial (Fragment)

Uqcrc2 22 15 1283.66 0.3277 1.13 PBS Cytochrome b-c1 complex subunit 2, mitochondrial

Uqcrq 1 1 45.09 0.4408 1.41 Flu Cytochrome b-c1 complex subunit 8

Use1 3 0 86.04 --- Vesicle transport protein USE1

Usmg5 2 2 50.28 0.4851 1.15 PBS Up-regulated during skeletal muscle growth protein 5

Uso1 3 3 62.36 0.2508 1.32 Flu General vesicular transport factor p115

Usp14 4 1 52.2 0.8781 1.04 PBS Ubiquitin carboxyl-terminal hydrolase 14

Usp33 6 0 49.22 --- Ubiquitin carboxyl-terminal hydrolase 33

Usp39 6 2 47.06 0.9444 3.07 PBS U4/U6.U5 tri-snRNP-associated protein 2

Usp40 3 0 41.72 --- Ubiquitin carboxyl-terminal hydrolase 40 (Fragment)

Usp5 7 3 58 0.2737 1.21 Flu Ubiquitin carboxyl-terminal hydrolase 5

Usp6nl 19 6 136.23 0.0434 1.95 PBS USP6 N-terminal-like protein

Usp7 13 2 127.61 0.8618 1.37 Flu Ubiquitin carboxyl-terminal hydrolase

Usp7 2 0 33.56 --- Ubiquitin carboxyl-terminal hydrolase 7 (Fragment)

Usp9x 16 3 115.51 0.5268 1.11 PBS Probable ubiquitin carboxyl-terminal hydrolase FAF-X

Utrn 79 32 1416.31 0.0334 1.34 PBS Protein Utrn

Vamp1 4 1 34.47 0.6350 26.10 Flu Vesicle-associated membrane protein 1

Vamp3 4 3 265.65 0.2683 1.13 Flu Vesicle-associated membrane protein 3

Vapa 10 7 275.76 0.0315 1.92 Flu Vesicle-associated membrane protein-associated protein A

Vapb 8 1 185.4 0.0646 2.52 Flu Vesicle-associated membrane protein, associated protein B and C

Vars 22 8 343.03 0.1089 1.49 Flu Valine--tRNA ligase

Vasp 11 3 126.03 0.8259 1.50 PBS Vasodilator-stimulated phosphoprotein

Vat1 18 14 656.18 0.0448 1.59 PBS Synaptic vesicle membrane protein VAT-1 homolog

Vav1 6 4 67.71 0.1005 1.77 Flu Proto-oncogene vav

Vcl 108 59 4526.83 0.1149 1.30 PBS Vinculin

Vcp 62 39 2978.54 0.1489 1.61 Flu Transitional endoplasmic reticulum ATPase

Vdac1 16 4 1156.74 0.4487 1.18 Flu Voltage-dependent anion-selective channel protein 1

Vdac1 12 0 940.25 --- Voltage-dependent anion-selective channel protein 1

Vdac2 18 8 854.97 0.0845 1.14 Flu Voltage-dependent anion-selective channel protein 2 (Fragment)

Vdac3 17 13 826.36 0.3521 1.17 Flu Voltage-dependent anion-selective channel protein 3

Vill 4 1 90.83 0.8192 1.29 Flu Villin-like protein

Vim 83 52 5509.13 0.0023 1.89 Flu Vimentin

Vkorc1 2 0 61.25 --- Vitamin K epoxide reductase complex subunit 1

Vkorc1l1 1 1 38.85 0.4467 1.16 Flu Vitamin K epoxide reductase complex subunit 1-like protein 1

Vmp1 2 1 26.45 0.0184 8.40 Flu Vacuole membrane protein 1

Vnn1 5 4 197.14 0.2776 1.25 Flu Pantetheinase

Vps16 9 2 89.23 0.4170 1.24 PBS Vacuolar protein sorting 16 (Yeast)

Vps18 8 3 61.53 0.6385 1.09 PBS Vacuolar protein sorting-associated protein 18 homolog

Vps26a 7 4 123.51 0.0526 1.47 Flu Vacuolar protein sorting-associated protein 26A

Vps29 3 3 85.55 0.0550 1.48 Flu Vacuolar protein sorting-associated protein 29 (Fragment)

Vps35 15 9 620.54 0.3424 1.20 PBS Vacuolar protein sorting 35, isoform CRA_a

Vps45 6 1 32.7 0.0508 4.51 PBS Vacuolar protein sorting-associated protein 45

Vps4b 9 1 111.74 0.7099 1.15 PBS Vacuolar protein sorting 4b (Yeast)

Vrk3 13 7 177.1 0.3473 1.28 PBS Inactive serine/threonine-protein kinase VRK3

Vta1 5 1 167.58 0.0470 1.67 Flu Vacuolar protein sorting-associated protein VTA1 homolog

Vta1 5 1 46.7 0.1035 3.31 PBS Vacuolar protein sorting-associated protein VTA1 homolog (Fragment)

Vti1b 3 1 31.14 0.4291 1.75 Flu Vesicle transport through interaction with t-SNAREs homolog 1B (Fragment)

Vtn 2 1 99.69 0.0229 6.49 Flu Vitronectin

Vwa5a 6 1 69.98 0.0145 2.69 PBS von Willebrand factor A domain-containing protein 5A (Fragment)

Vwa5a 12 7 229.2 0.0386 2.60 PBS von Willebrand factor A domain-containing protein 5A

Vwf 34 18 882.53 0.3857 1.21 PBS von Willebrand factor

Wars 24 17 643.02 0.0486 1.46 Flu Tryptophan--tRNA ligase, cytoplasmic

Wasf2 4 3 78.91 0.3757 1.18 Flu Wiskott-Aldrich syndrome protein family member 2

Wasl 14 5 50.89 0.2543 1.24 PBS Neural Wiskott-Aldrich syndrome protein

Wdr1 23 13 658.24 0.3543 1.29 PBS WD repeat-containing protein 1

Wdr19 8 1 64.09 0.7703 1.87 PBS WD repeat-containing protein 19

Wdr26 5 1 55.21 0.8601 1.41 Flu WD repeat-containing protein 26

Wdr36 8 2 38.6 0.2799 1.94 PBS Protein Wdr36

Wdr43 9 3 71.47 0.8528 1.02 Flu WD repeat-containing protein 43

Wdr5 4 0 32.43 --- WD repeat-containing protein 5 (Fragment)

Wdr82 5 1 84.98 0.0194 2.80 Flu MCG19514, isoform CRA_a

Wfikkn2 3 1 30.54 0.0042 2.81 PBS WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 2

Wipf1 11 2 91.12 0.6341 1.44 Flu WAS/WASL-interacting protein family member 1

Wtap 4 2 31.56 0.0158 2.14 Flu MCG16685, isoform CRA_d

Wwp2 7 3 76.61 0.0983 1.58 PBS NEDD4-like E3 ubiquitin-protein ligase WWP2

Xdh 23 12 517.31 0.0061 2.42 PBS Xanthine dehydrogenase/oxidase

Xpnpep1 6 3 111 0.0110 2.19 Flu X-prolyl aminopeptidase (Aminopeptidase P) 1, soluble, isoform CRA_b

Xpnpep2 5 1 52.99 0.7783 2.77 PBS Protein Xpnpep2

Xpnpep3 8 0 53.11 --- Probable Xaa-Pro aminopeptidase 3

Xpo1 15 10 396.92 0.2798 1.56 PBS Exportin-1

Xrn2 11 4 149.21 0.2747 1.56 Flu 5'-3' exoribonuclease 2

Yap1 6 2 50.08 0.3082 1.73 Flu Transcriptional coactivator YAP1

Ybx1 3 2 74.33 0.0575 2.28 Flu Nuclease-sensitive element-binding protein 1 (Fragment)

Yes1 13 4 291.07 0.9361 1.01 PBS Tyrosine-protein kinase

Yme1l1 11 3 126.12 0.6449 1.03 PBS ATP-dependent zinc metalloprotease YME1L1

Ythdc1 5 2 52.55 0.1180 2.05 Flu YTH domain-containing protein 1

Ywhab 21 6 855.73 0.3478 1.31 Flu 14-3-3 protein beta/alpha

Ywhae 18 5 670.14 0.3349 1.37 PBS 14-3-3 protein epsilon

Ywhae 11 0 323.44 --- 14-3-3 protein epsilon (Fragment)

Ywhag 16 5 588.05 0.7260 1.06 Flu 14-3-3 protein gamma

Ywhah 15 5 535.69 0.0099 1.42 Flu 14-3-3 protein eta

Ywhaq 16 5 562.02 0.0800 3.17 Flu 14-3-3 protein theta

Ywhaz 24 8 1160.86 0.8362 1.01 Flu 14-3-3 protein zeta/delta

Zadh2 3 1 113.31 0.7358 1.06 PBS Zinc-binding alcohol dehydrogenase domain-containing protein 2

Zc3hav1 4 3 77.89 0.1538 1.87 Flu Zinc finger CCCH-type antiviral protein 1

Zcchc8 3 0 38.01 --- Zinc finger CCHC domain-containing protein 8 (Fragment)

Zdhhc17 3 0 19.94 --- Palmitoyltransferase ZDHHC17

Zfp292 17 2 63.89 0.0128 1.96 Flu Zinc finger protein 292

Zfp318 27 3 128.79 0.3213 1.52 PBS Zinc finger protein 318

Zfp790 10 3 92.12 0.0791 2.90 PBS Protein Zfp790

Zfp949 2 1 38.87 0.9464 2.03 PBS Protein Zfp949

Zfyve19 4 0 56.68 --- Abscission/NoCut checkpoint regulator

Znf326 6 3 60.08 0.0582 1.50 Flu DBIRD complex subunit ZNF326

Znf382 4 0 44.17 --- Zinc finger protein 382

Zyx 10 6 147.99 0.1435 1.57 Flu Zyxin

4 2 67.48 0.3434 1.30 PBS Uncharacterized protein C2orf54 homolog

3 1 59.09 0.4109 9.23 Flu Ig kappa chain V-III region TEPC 124

2 0 77.06 --- Ig kappa chain V-V region MOPC 149

5 0 49.33 --- Implantin (Fragment)

6 0 269.71 --- Ig heavy chain V region AC38 205.12

Fraction 3

Gene symbol Peptide count Unique peptides Confidence score Anova (p) Max fold change Highest mean condition Description

1110007C09Rik 2 0 42.1 --- Protein 1110007C09Rik

1700011A15Rik 2 0 37.74 --- Protein 1700011A15Rik

2010300C02Rik 14 2 94.03 0.7841 1.14 Flu Protein 2010300C02Rik

2210010C04Rik 2 0 34.58 --- Protein 2210010C04Rik

2810408A11Rik 2 1 21.87 0.0278 1.93 PBS Protein 2810408A11Rik (Fragment)

4732456N10Rik 14 1 463.44 0.1437 4.25 PBS Protein 4732456N10Rik

9030617O03Rik 3 1 35.65 0.6248 1.07 Flu Protein 9030617O03Rik (Fragment)

A2m 8 3 39.69 0.7728 1.00 Flu Alpha-2-macroglobulin

Aaas 4 1 136.56 0.0218 6.04 Flu Aladin

Abca4 6 0 63.81 --- Retinal-specific ATP-binding cassette transporter

Abcd1 6 3 90.92 0.3552 1.71 Flu ATP-binding cassette sub-family D member 1

Abcd3 14 11 326.28 0.8558 1.05 Flu ATP-binding cassette sub-family D member 3

Abce1 4 2 56.18 0.0113 3.53 Flu ATP-binding cassette sub-family E member 1

Abi3bp 14 5 113.47 0.2108 1.33 Flu Protein Abi3bp

Ablim1 9 2 159.88 0.8235 1.01 PBS Actin-binding LIM protein 1

Ablim3 9 4 125.5 0.1707 1.91 Flu Actin-binding LIM protein 3

Acaa2 8 6 147.94 0.1932 2.31 PBS 3-ketoacyl-CoA thiolase, mitochondrial

Acadl 2 2 31.07 0.9982 1.68 PBS Long-chain specific acyl-CoA dehydrogenase, mitochondrial

Acads 5 1 97.1 0.3090 4.00 PBS Short-chain specific acyl-CoA dehydrogenase, mitochondrial

Acadvl 5 2 85.03 0.0408 2.45 PBS Very long-chain specific acyl-CoA dehydrogenase, mitochondrial

Acan 10 8 236.26 0.0189 2.61 PBS Aggrecan core protein

Acly 3 2 118.19 0.5371 1.40 Flu ATP-citrate synthase

Aco2 7 4 156.47 0.0220 2.17 PBS Aconitate hydratase, mitochondrial

Acsl4 3 3 19.56 0.0618 2.65 PBS Long-chain-fatty-acid--CoA ligase 4

Acsl5 11 4 152.69 0.3493 1.37 PBS Acyl-CoA synthetase long-chain family member 5, isoform CRA_b

Actb 79 17 4055.42 0.3510 1.54 PBS Actin, cytoplasmic 1

Actbl2 35 0 1575.82 --- Beta-actin-like protein 2

Actc1 62 19 3308.65 0.2825 1.33 PBS Actin, alpha cardiac muscle 1

Actg1 39 1 1621.03 0.1290 7.39 PBS Actin, cytoplasmic 2 (Fragment)

Actg1 20 1 979.56 0.0157 2.43 PBS Actin, cytoplasmic 2

Actn1 59 3 2880.39 0.6325 1.06 PBS Alpha actinin 1a

Actn1 57 1 2703.08 0.6815 1.23 Flu Alpha-actinin-1

Actn2 44 21 1674.51 0.2972 1.54 PBS Alpha-actinin-2

Actn2 8 0 243.2 --- Alpha-actinin-2

Actn3 18 1 528.4 0.2535 1.76 PBS Alpha-actinin-3

Actn4 55 24 2307.89 0.7396 1.12 PBS Alpha-actinin-4

Actr1b 6 2 127.07 0.3703 1.98 PBS Beta-centractin

Actr2 6 5 185.3 0.5785 1.10 Flu Actin-related protein 2

Actr3 7 6 210.61 0.4174 1.33 Flu Actin-related protein 3

Acvrl1 4 2 65.78 0.0023 1.90 PBS Serine/threonine-protein kinase receptor R3

Adamts17 7 4 137.56 0.8422 1.29 Flu Protein Adamts17

Adamtsl1 10 2 56.01 0.2699 1.66 Flu ADAMTS-like protein 1

Add1 3 0 53.95 --- Alpha-adducin

Add3 5 3 96.58 0.6287 1.24 Flu Gamma-adducin

Adh1 4 1 40.35 0.0425 1.96 Flu Alcohol dehydrogenase 1

Adh5 1 0 0.98 --- Alcohol dehydrogenase class-3

Aebp1 12 4 50.78 0.1941 1.26 PBS Adipocyte enhancer-binding protein 1

Afap1l1 4 1 72.3 0.3389 1.36 Flu Actin filament-associated protein 1-like 1

Ager 6 6 164.47 0.0377 1.49 PBS Advanced glycosylation end product-specific receptor

Agrn 53 39 2878.43 0.5793 1.11 PBS Agrin

Ahctf1 12 5 209.15 0.8224 1.06 Flu Protein ELYS

Ahcy 5 2 36.27 0.1107 1.28 Flu Adenosylhomocysteinase

Ahnak 137 69 1999.95 0.0363 1.67 PBS Protein Ahnak

Aifm1 8 5 77.04 0.0681 1.58 Flu Apoptosis-inducing factor 1, mitochondrial

Akap9 32 9 210.8 0.8747 1.20 PBS A-kinase anchor protein 9

Akr1c21 5 1 28.57 0.0022 2.64 PBS Aldo-keto reductase family 1 member C21

Alb 24 22 1225.46 0.6484 1.11 PBS Serum albumin

Aldh1a1 10 2 319.14 0.2809 1.44 PBS Retinal dehydrogenase 1

Aldh1a7 6 0 104.19 --- Aldehyde dehydrogenase, cytosolic 1

Aldh2 18 8 503.87 0.1691 1.74 PBS Aldehyde dehydrogenase, mitochondrial

Aldh2 8 0 254.76 --- Aldehyde dehydrogenase, mitochondrial (Fragment)

Aldh4a1 7 1 156.39 0.9094 30.76 PBS Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial

Aldh6a1 4 1 78.89 0.2358 5.28 PBS Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial

Ank1 13 6 168.9 0.2886 1.25 PBS Ankyrin-1

Ankrd11 19 4 91.22 0.2171 1.37 PBS Protein Ankrd11

Ano10 1 1 13.84 0.4790 1.62 PBS Anoctamin-10

Anpep 7 6 161.68 0.0400 1.53 Flu Aminopeptidase N

Anxa1 9 4 391.53 0.6935 1.18 Flu Annexin A1

Anxa11 3 1 60.12 0.2993 1.84 Flu Annexin A11

Anxa2 13 9 664.12 0.2738 1.79 PBS Annexin A2

Anxa5 8 4 124.63 0.0144 4.06 PBS Annexin A5

Anxa6 10 5 246.33 0.3119 1.88 PBS Annexin A6

Anxa7 5 3 149.08 0.0153 3.06 Flu Annexin A7

Anxa8 3 0 17.44 --- Annexin A8

Ap1b1 14 2 236.39 0.4865 1.96 PBS AP-1 complex subunit beta-1

Ap2a1 20 3 716.96 0.3072 1.40 Flu AP-2 complex subunit alpha-1

Ap2a1 6 1 234.85 0.2081 38.33 Flu AP-2 complex subunit alpha-1 (Fragment)

Ap2a2 19 8 593.95 0.4429 1.28 Flu AP-2 complex subunit alpha-2

Ap2b1 18 4 397.61 0.0200 2.59 Flu AP-2 complex subunit beta

Ap2m1 13 7 323.4 0.6901 1.06 Flu AP-2 complex subunit mu

Ap2s1 1 1 40.73 0.0996 1.76 Flu AP-2 complex subunit sigma

Apc2 30 6 205.56 0.9866 1.04 PBS Adenomatous polyposis coli protein 2

Apoa1 5 3 173.62 0.0001 28.66 Flu Apolipoprotein A-I

Apoa4 4 2 74.04 0.0010 6.00 Flu Apolipoprotein A-IV

Apool 4 3 148.87 0.0036 2.05 Flu MICOS complex subunit Mic27

Aqp1 7 5 618.58 0.0224 1.60 PBS Aquaporin-1

Aqp5 5 4 188.71 0.0012 1.89 PBS Aquaporin-5

Arf3 5 3 91.1 0.1889 1.56 Flu ADP-ribosylation factor 3

Arf4 2 0 31.11 --- ADP-ribosylation factor 4

Arfgap1 2 1 18.35 0.1950 1.48 Flu ADP-ribosylation factor GTPase-activating protein 1

Arhgap21 13 1 126.63 0.5393 1.11 Flu Rho GTPase-activating protein 21

Arhgap31 10 2 72.9 0.0211 3.06 Flu CDC42 GTPase-activating protein

Arhgap42 8 3 107.28 0.4384 1.48 PBS Rho GTPase-activating protein 42

Arhgef17 9 5 92.92 0.0217 1.62 PBS Rho guanine nucleotide exchange factor 17

Arhgef2 11 4 172.33 0.4503 1.13 Flu Rho guanine nucleotide exchange factor 2

Arid3a 4 1 19.87 0.0728 2.13 Flu AT-rich interactive domain-containing protein 3A

Arl1 4 2 55.97 0.8106 1.92 PBS ADP-ribosylation factor-like protein 1

Arl8b 2 1 27.6 0.6732 1.13 Flu ADP-ribosylation factor-like protein 8B

Armc10 3 2 123.66 0.4209 1.73 Flu Armadillo repeat-containing protein 10

Arntl 5 2 26.88 0.0964 6.59 Flu Aryl hydrocarbon receptor nuclear translocator-like protein 1

Arpc1b 3 1 84.41 0.0001 3.30 Flu Actin-related protein 2/3 complex subunit 1B

Arpc1b 3 0 57.94 --- Actin-related protein 2/3 complex subunit 1B (Fragment)

Arpc2 3 2 34.77 0.1419 2.51 PBS Actin-related protein 2/3 complex subunit 2

Arpc3 5 2 76.62 0.5376 1.18 Flu Actin-related protein 2/3 complex subunit 3

Arpc3 3 1 50.76 0.0803 1.98 Flu Actin-related protein 2/3 complex subunit 3 (Fragment)

Arpc4 5 4 128.11 0.3847 1.27 Flu Actin-related protein 2/3 complex subunit 4

Art3 8 0 315.49 --- NAD(P)(+)--arginine ADP-ribosyltransferase

Art3 10 0 279.74 --- Ecto-ADP-ribosyltransferase 3

Art3 5 0 109.18 --- Ecto-ADP-ribosyltransferase 3 (Fragment)

Art4 6 2 255.81 0.0175 3.26 Flu Ecto-ADP-ribosyltransferase 4

Asap2 7 2 69.36 0.0074 2.19 PBS Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2

Aspn 11 5 360.28 0.5224 1.24 Flu Asporin

Ass1 6 2 40.26 0.0354 2.45 PBS Argininosuccinate synthase

Atad2b 14 8 106.25 0.0457 1.81 PBS Protein Atad2b

Atl3 3 1 83.32 0.2649 2.27 Flu Atlastin-3

Atp1a1 13 3 446.45 0.1799 1.56 PBS Sodium/potassium-transporting ATPase subunit alpha-1

Atp1a3 10 1 126.52 0.2829 2.01 PBS Sodium/potassium-transporting ATPase subunit alpha

Atp1a4 4 0 63.15 --- Sodium/potassium-transporting ATPase subunit alpha-4

Atp1b1 1 1 46.93 0.5890 1.13 Flu Sodium/potassium-transporting ATPase subunit beta (Fragment)

Atp2a2 21 13 758.31 0.4140 1.22 PBS Sarcoplasmic/endoplasmic reticulum calcium ATPase 2

Atp2a3 5 1 118.63 0.1182 1.89 PBS Sarcoplasmic/endoplasmic reticulum calcium ATPase 3

Atp5a1 18 1 736.55 0.1672 2.07 Flu ATP synthase subunit alpha, mitochondrial

Atp5a1 16 0 671.4 --- ATP synthase subunit alpha

Atp5b 18 16 737.59 0.1297 2.05 PBS ATP synthase subunit beta, mitochondrial

Atp5c1 5 3 65.9 0.5990 2.12 PBS ATP synthase subunit gamma

Atp5l 2 2 18.38 0.5040 1.29 PBS ATP synthase subunit g, mitochondrial

Atp5o 3 1 40.99 0.4537 1.84 PBS ATP synthase subunit O, mitochondrial

Atp6v0a1 17 10 408.91 0.3832 1.21 PBS V-type proton ATPase subunit a

Atp6v0a2 3 2 96.6 0.0377 1.66 Flu V-type proton ATPase 116 kDa subunit a isoform 2

Atp6v0c 8 4 161.34 0.0817 1.45 Flu V-type proton ATPase 16 kDa proteolipid subunit

Atp6v0d1 14 12 347.56 0.0446 2.11 Flu V-type proton ATPase subunit d 1

Atp6v1a 12 7 259.36 0.0200 2.31 Flu V-type proton ATPase catalytic subunit A

Atp6v1b1 2 0 61.76 --- ATPase, H+ transporting, lysosomal V1 subunit B1

Atp6v1b2 6 2 160.6 0.0074 3.64 Flu V-type proton ATPase subunit B, brain isoform

Atrx 19 6 196.42 0.0991 1.63 PBS Transcriptional regulator ATRX

Aup1 3 1 25.73 0.6735 1.77 Flu Ancient ubiquitous protein 1

Axl 5 3 55.22 0.2423 3.98 PBS Tyrosine-protein kinase receptor UFO

Bak1 4 2 80.28 0.0426 3.80 Flu Bcl-2 homologous antagonist/killer

Banf1 2 1 24.42 0.0200 1.84 Flu Barrier-to-autointegration factor

Baz1b 17 7 378.2 0.5735 1.12 Flu Tyrosine-protein kinase BAZ1B

Bcam 17 9 500.64 0.1166 1.81 PBS Basal cell adhesion molecule

Bcap31 3 1 53.25 0.0019 3.08 Flu B-cell receptor-associated protein 31

Bcl7b 3 1 33.61 0.0001 3.18 PBS B-cell CLL/lymphoma 7 protein family member B

Bgn 23 16 916.6 0.4286 1.16 Flu Biglycan

Blk 3 1 120.95 0.6486 1.04 PBS Tyrosine-protein kinase Blk

Blvrb 2 1 20.69 0.3214 5.05 PBS Flavin reductase (NADPH)

Bmper 4 2 61.13 0.6194 1.24 Flu BMP-binding endothelial regulator protein

Bok 3 0 10.58 --- Bcl-2-related ovarian killer protein (Fragment)

Bop1 3 1 31.93 0.2184 2.05 Flu Ribosome biogenesis protein BOP1

Brix1 7 4 61.94 0.3727 1.29 Flu Ribosome biogenesis protein BRX1 homolog

Brox 2 2 25.97 0.0664 1.71 Flu BRO1 domain-containing protein BROX

Bst1 2 2 87.51 0.0044 3.74 Flu ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 2

Bst2 4 2 263.42 0.0303 2.35 Flu Bone marrow stromal antigen 2

Btf3 3 2 32.2 0.4870 1.21 PBS Transcription factor BTF3

C1qc 3 1 39.03 0.0309 2.51 Flu Complement C1q subcomponent subunit C

C3 29 15 601.73 0.6625 1.13 Flu Complement C3

C4b 14 8 515.94 0.7158 1.06 Flu Complement C4-B

C5 6 3 43.24 0.1598 1.90 PBS Complement C5

Ca2 3 3 74.89 0.0895 2.76 PBS Carbonic anhydrase 2

Ca4 10 7 486.08 0.8993 1.07 PBS Carbonic anhydrase 4

Cacna2d1 38 28 1615.27 0.3909 1.18 PBS Voltage-dependent calcium channel subunit alpha-2/delta-1

Cacna2d3 5 2 28.33 0.4515 1.20 PBS Voltage-dependent calcium channel subunit alpha-2/delta-3

Cad 12 3 77.21 0.0078 2.96 Flu CAD protein

Calcrl 2 1 63.47 0.1103 1.88 PBS Calcitonin gene-related peptide type 1 receptor

Cald1 8 0 75.33 --- Protein Cald1

Calm1 1 1 23.35 0.0344 4.07 PBS Calmodulin

Calr 7 4 76.04 0.2550 6.79 PBS Calreticulin

Camk2a 5 0 92.67 --- Calcium/calmodulin-dependent protein kinase type II subunit alpha

Camk2d 8 2 200.41 0.0545 1.89 Flu Calcium/calmodulin-dependent protein kinase type II subunit delta

Camk2d 2 0 30.61 --- Calcium/calmodulin-dependent protein kinase type II subunit delta

Canx 5 2 49.87 0.2204 1.61 Flu Calnexin

Cap1 3 2 131.67 0.5740 1.52 PBS Adenylyl cyclase-associated protein 1

Capn1 5 2 104.8 0.3336 1.69 PBS Calpain-1 catalytic subunit

Capn2 3 3 71.03 0.2953 1.98 PBS Calpain-2 catalytic subunit

Capza1 7 2 156.58 0.0124 2.54 Flu F-actin-capping protein subunit alpha-1

Capza2 10 5 230.53 0.3832 1.17 Flu F-actin-capping protein subunit alpha-2

Capzb 8 7 208.66 0.0403 1.75 Flu Capping protein (Actin filament) muscle Z-line, beta, isoform CRA_a

Cat 1 1 20.72 0.1340 4.68 PBS Catalase

Catsper3 4 1 35.99 0.7596 1.03 Flu Cation channel sperm-associated protein 3

Cav1 18 12 727.67 0.4536 1.29 Flu Caveolin-1

Cav2 6 5 437.26 0.3585 1.13 Flu Caveolin-2

Cav3 3 0 69.57 --- Caveolin-3

Cbr2 12 5 598.87 0.1249 2.86 PBS Carbonyl reductase [NADPH] 2

Cbr2 8 0 347.25 --- Carbonyl reductase [NADPH] 2 (Fragment)

Cbx1 3 0 118.58 --- Chromobox protein homolog 1

Cbx3 6 3 216.09 0.0012 4.95 Flu Chromobox protein homolog 3

Ccar2 3 1 44.01 0.0177 3.01 Flu Cell cycle and apoptosis regulator protein 2

Ccdc114 7 2 59.3 0.0864 1.41 PBS Coiled-coil domain-containing protein 114

Ccdc127 2 1 41.57 0.8213 1.21 Flu Coiled-coil domain-containing protein 127

Ccdc141 13 5 280.18 0.5566 1.23 Flu Coiled-coil protein associated with myosin II and DISC1

Ccdc141 2 0 46.77 --- Protein Ccdc141 (Fragment)

Ccny 5 2 178.99 0.0388 1.82 Flu Cyclin-Y

Ccnyl1 3 1 77.18 0.5494 8.82 PBS Protein Ccnyl1

Cct2 10 6 261.04 0.2695 1.75 PBS T-complex protein 1 subunit beta

Cct3 3 1 71.98 0.0635 1.95 Flu T-complex protein 1 subunit gamma

Cct5 3 0 48.02 --- T-complex protein 1 subunit epsilon

Cct6a 4 3 182.34 0.8756 1.84 PBS T-complex protein 1 subunit zeta

Cct7 3 1 22.59 0.4778 2.13 PBS T-complex protein 1 subunit eta

Cct8 9 4 112.95 0.1134 1.30 PBS T-complex protein 1 subunit theta

Cd109 6 3 70.81 0.0458 1.88 Flu CD109 antigen

Cd14 5 2 204.18 0.0023 2.75 Flu Monocyte differentiation antigen CD14

Cd177 12 10 389.33 0.5748 1.07 Flu CD177 antigen

Cd36 10 8 442.18 0.0043 2.04 PBS CD36 antigen, isoform CRA_a

Cd38 4 2 68.71 0.1640 1.35 PBS ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1

Cd44 6 5 138.86 0.0011 2.11 Flu CD44 antigen

Cd47 7 3 221.99 0.0490 1.85 PBS Leukocyte surface antigen CD47

Cd48 4 3 44.6 0.0021 3.76 Flu CD48 antigen

Cd55 4 2 26.66 0.1998 1.34 PBS Complement decay-accelerating factor, GPI-anchored

Cd93 3 1 78.4 0.1008 3.38 PBS Complement component C1q receptor

Cdc42 5 1 89.77 0.9576 5.97 Flu Cell division control protein 42 homolog

Cdc42bpg 12 7 356.44 0.5590 1.15 PBS Serine/threonine-protein kinase MRCK gamma

Cdh1 7 5 294.23 0.2130 1.57 Flu Cadherin-1

Cdh13 5 4 180.16 0.8634 1.04 PBS Cadherin-13

Cdh5 16 11 757.27 0.6308 1.05 PBS Cadherin-5

Cdipt 3 0 48.78 --- CDP-diacylglycerol--inositol 3-phosphatidyltransferase

Cdk5 2 0 50.15 --- Cyclin-dependent-like kinase 5

Cenpv 5 3 167.46 0.0388 1.84 Flu Centromere protein V

Cenpv 3 1 81.58 0.3385 2.74 PBS Centromere protein V (Fragment)

Cep128 7 2 102.37 0.6819 1.94 PBS Centrosomal protein of 128 kDa

Cep135 9 4 318.22 0.9859 1.35 PBS Centrosomal protein of 135 kDa

Cep250 13 6 133.43 0.8006 1.47 PBS Centrosome-associated protein CEP250

Cep350 4 1 40.68 0.4841 1.17 Flu Protein Cep350 (Fragment)

Ces1d 3 3 30.13 0.8445 1.03 PBS Carboxylesterase 1D

Cfap126 2 0 33.68 --- Protein Flattop (Fragment)

Cfl1 3 1 74.37 0.1477 2.37 PBS Cofilin-1

Cfl2 2 0 48.96 --- Cofilin-2

Cgn 25 1 431.71 0.1183 1.92 Flu Cingulin

Cgn 24 0 378.35 --- Cingulin

Cgnl1 20 8 293.74 0.9943 1.01 PBS Cingulin-like protein 1

Chchd3 5 5 182.33 0.0291 2.40 Flu MICOS complex subunit Mic19

Chd3 9 1 176.48 0.0286 2.76 PBS Protein Chd3

Chd4 25 7 293.29 0.0040 2.51 PBS Chromodomain-helicase-DNA-binding protein 4

Chd4 6 1 82.65 0.0531 2.05 PBS Chromodomain-helicase-DNA-binding protein 4 (Fragment)

Chd5 5 0 171.11 --- Chromodomain-helicase-DNA-binding protein 5

Chd6 12 3 92.28 0.3036 1.26 Flu Chromodomain-helicase-DNA-binding protein 6

Chd7 16 7 67.19 0.7445 1.02 Flu Chromodomain-helicase-DNA-binding protein 7

Chil3 2 2 66.82 0.4281 1.57 Flu Chitinase-like protein 3

Chp2 2 1 23.97 0.2492 2.04 Flu Calcineurin B homologous protein 2

Ciart 3 3 25.06 0.0220 2.01 Flu Circadian-associated transcriptional repressor

Ckap4 18 14 635.9 0.0001 3.58 Flu Cytoskeleton-associated protein 4

Ckap5 33 12 184.51 0.5671 1.20 Flu Cytoskeleton-associated protein 5

Clic1 2 1 48.25 0.0068 3.56 Flu Chloride intracellular channel protein 1

Clic5 6 3 144.87 0.1534 1.88 PBS Chloride intracellular channel protein 5

Cltc 68 54 2769.53 0.3601 1.26 Flu Clathrin heavy chain 1

Clu 7 3 211.33 0.0162 1.35 Flu Clusterin

Cnn2 5 3 129.5 0.0911 2.26 Flu Calponin-2

Cnot1 14 2 160.85 0.3132 1.47 Flu CCR4-NOT transcription complex subunit 1

Cntrl 20 6 160.83 0.2555 1.23 Flu Centriolin

Col11a1 38 12 268.12 0.8382 1.47 Flu Collagen alpha-1(XI) chain

Col11a2 28 11 136.16 0.3438 1.32 PBS Collagen alpha-2(XI) chain

Col12a1 53 26 790.48 0.2224 1.81 PBS Collagen alpha-1(XII) chain

Col14a1 9 6 40.72 0.7499 1.72 Flu Collagen alpha-1(XIV) chain

Col15a1 15 1 636.31 0.3079 1.10 Flu Collagen alpha-1(XV) chain

Col15a1 13 1 570.05 0.5540 1.16 PBS Collagen alpha-1(XV) chain

Col16a1 29 1 227.66 0.5121 1.25 PBS Collagen alpha-1(XVI) chain (Fragment)

Col16a1 31 1 216.47 0.0313 3.92 Flu Collagen alpha-1(XVI) chain

Col18a1 29 20 505.96 0.0028 2.31 PBS Collagen alpha-1(XVIII) chain

Col1a1 316 254 9954.26 0.4070 1.40 PBS Collagen alpha-1(I) chain

Col1a2 213 156 7595.52 0.4575 1.34 PBS Collagen alpha-2(I) chain

Col2a1 42 16 494.86 0.2256 1.68 PBS Collagen alpha-1(II) chain

Col3a1 236 158 7092.71 0.4498 1.32 PBS Collagen alpha-1(III) chain

Col3a1 59 2 1420.56 0.3704 1.45 Flu Collagen alpha-1(III) chain (Fragment)

Col3a1 4 0 82.95 --- Collagen alpha-1(III) chain (Fragment)

Col4a1 99 55 2081.68 0.0004 1.93 PBS Collagen alpha-1(IV) chain

Col4a2 134 77 4472.29 0.0001 1.81 PBS Collagen alpha-2(IV) chain

Col4a2 20 2 609.9 0.3641 1.64 PBS Collagen alpha-2(IV) chain (Fragment)

Col4a3 66 37 1299.77 0.0000 2.59 PBS Collagen alpha-3(IV) chain

Col4a4 80 48 1712.97 0.0007 2.08 PBS Collagen alpha-4(IV) chain

Col4a5 78 17 1556.16 0.0006 2.62 PBS Col4a5 protein

Col4a5 61 4 1202.44 0.5127 1.18 PBS Protein Col4a5 (Fragment)

Col4a6 39 17 433.67 0.6942 1.10 Flu Protein Col4a6

Col5a1 64 26 928.14 0.2361 1.52 PBS Collagen alpha-1(V) chain

Col5a2 58 38 928.28 0.1800 1.67 PBS Collagen alpha-2(V) chain

Col6a1 60 45 2741.06 0.3093 1.26 PBS Collagen alpha-1(VI) chain

Col6a2 60 38 1922.86 0.2937 1.29 PBS Collagen alpha-2(VI) chain

Col6a3 191 15 10093.28 0.1955 1.38 Flu Protein Col6a3

Col6a3 174 1 9194.36 0.4516 4.76 PBS Protein Col6a3

Col6a5 22 6 104.91 0.6743 1.09 Flu Collagen alpha-5(VI) chain

Col6a6 17 3 104.97 0.4309 1.21 Flu Collagen alpha-6(VI) chain

Col7a1 50 21 308.08 0.5647 1.15 PBS Collagen alpha-1(VII) chain

Col8a1 17 8 193 0.7746 1.00 Flu Collagen alpha-1(VIII) chain

Colec12 9 5 100.16 0.3209 1.22 Flu Collectin-12

Copa 10 3 80.6 0.5984 2.49 Flu Coatomer subunit alpha

Copg2 9 3 96.9 0.1960 5.79 Flu Coatomer subunit gamma-2 (Fragment)

Coq5 1 1 34.65 0.3475 1.30 PBS 2-methoxy-6-polyprenyl-1,4-benzoquinol methylase, mitochondrial

Coq6 3 0 42.99 --- Ubiquinone biosynthesis monooxygenase COQ6, mitochondrial

Coro1a 7 1 234.09 0.0090 6.44 Flu Coronin-1A

Coro1a 7 0 198.99 --- Coronin

Coro1b 2 0 29.75 --- Coronin

Coro1c 5 2 138.73 0.2209 1.58 PBS Coronin-1C

Coro1c 2 0 49.75 --- Coronin-1C (Fragment)

Coro2b 4 3 39.87 0.4707 2.44 Flu Coronin-2B

Cox4i1 5 4 141.72 0.1596 1.66 Flu Cytochrome c oxidase subunit 4 isoform 1, mitochondrial

Cp 48 36 1718.43 0.8709 1.00 Flu Ceruloplasmin

Cp 3 1 90.28 0.7579 1.32 PBS Ceruloplasmin (Fragment)

Cpb2 3 3 65.41 0.4389 1.36 Flu Carboxypeptidase B2

Cpm 13 10 416.8 0.0073 2.17 Flu Carboxypeptidase M

Crip2 3 2 51.08 0.3234 1.36 PBS Cysteine-rich protein 2

Crispld2 4 2 30.03 0.7309 1.23 Flu Cysteine-rich secretory protein LCCL domain-containing 2

Crmp1 4 0 98.72 --- Dihydropyrimidinase-related protein 1

Crmp1 2 0 24.19 --- Collapsin response mediator protein 1A (Fragment)

Crocc 18 4 117.16 0.3736 1.33 PBS Rootletin

Crocc2 34 22 1127.47 0.2175 1.78 PBS Protein Crocc2

Cse1l 9 2 90.22 0.9864 1.09 PBS Exportin-2

Csn1s2a 1 0 35.8 --- Alpha-S2-casein-like A

Csnk1a1 3 1 59.03 0.0530 2.20 Flu Casein kinase I isoform alpha

Csnk2a1 4 3 54.97 0.7849 1.02 PBS Casein kinase II subunit alpha

Cspg4 15 7 226.03 0.2667 1.21 Flu Chondroitin sulfate proteoglycan 4

Csprs 7 1 106.17 0.1938 1.35 Flu Component of Sp100-rs

Csrp1 3 2 84.16 0.9671 1.13 PBS Cysteine and glycine-rich protein 1

Ctcf 2 1 2.36 0.4765 1.30 PBS Transcriptional repressor CTCF

Ctnna1 41 20 1598.13 0.4497 1.24 Flu Catenin alpha-1

Ctnna2 10 0 418.57 --- Catenin alpha-2

Ctnna2 5 0 293.98 --- Catenin (Cadherin associated protein), alpha 2, isoform CRA_c

Ctnna3 4 0 106.48 --- Catenin alpha-3

Ctnnb1 17 5 684.15 0.1414 1.41 Flu Catenin beta-1

Ctnnb1 6 1 159.75 0.7579 1.06 PBS Catenin beta-1 (Fragment)

Ctnnb1 6 1 153.68 0.1249 1.35 Flu Catenin beta-1 (Fragment)

Ctnnd1 13 12 350.6 0.0783 1.44 Flu Catenin delta-1

Ctsd 2 1 50.64 0.2690 2.74 Flu Cathepsin D

Cyba 5 2 52.66 0.9370 1.01 Flu Cytochrome b-245 light chain

Cyfip1 15 5 331.16 0.3068 1.30 Flu Cytoplasmic FMR1-interacting protein 1

Cyfip2 10 1 169.62 0.6425 1.85 PBS Cytoplasmic FMR1-interacting protein 2

Cyp2b10 2 1 22.49 0.0505 31.94 PBS Cytochrome P450 2B10

Cyp2f2 8 5 189.29 0.0858 1.45 Flu Cytochrome P450 2F2

Cyp4b1 4 2 60.01 0.1020 2.01 PBS Cytochrome P450 4B1

D1Pas1 17 0 687.74 --- DNA segment, Chr 1, Pasteur Institute 1

Daam1 9 3 88.3 0.5442 1.35 Flu Disheveled-associated activator of morphogenesis 1

Dapk3 3 0 77.57 --- Death-associated protein kinase 3

Dazap1 4 2 96.4 0.0693 2.12 PBS DAZ associated protein 1, isoform CRA_b

Dbnl 2 2 53.47 0.0161 3.65 Flu Drebrin-like protein

Dcaf13 6 2 46.57 0.1682 1.58 Flu DDB1- and CUL4-associated factor 13

Dclk1 8 2 115.53 0.2997 1.33 PBS Serine/threonine-protein kinase DCLK1

Dcn 13 8 402.85 0.5551 1.17 PBS Decorin

Dctn1 9 3 66.19 0.4919 1.33 PBS Dynactin subunit 1

Dctn2 2 1 52.3 0.4178 5.22 PBS Dynactin subunit 2

Ddc 2 0 39.29 --- Aromatic-L-amino-acid decarboxylase

Ddost 6 3 386.01 0.6281 1.38 PBS Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit

Ddx1 6 2 87.89 0.0229 2.49 Flu ATP-dependent RNA helicase DDX1

Ddx10 9 3 80.6 0.0332 4.05 Flu Probable ATP-dependent RNA helicase DDX10

Ddx17 12 4 469.04 0.0325 2.08 Flu Probable ATP-dependent RNA helicase DDX17

Ddx21 12 7 342.9 0.0159 2.93 Flu Nucleolar RNA helicase 2

Ddx39a 6 1 71.82 0.3315 1.41 PBS ATP-dependent RNA helicase DDX39A

Ddx39b 6 2 88.87 0.2478 5.60 PBS Spliceosome RNA helicase Ddx39b

Ddx3x 20 0 891.54 --- ATP-dependent RNA helicase DDX3X

Ddx4 10 3 62.25 0.8183 1.05 Flu Probable ATP-dependent RNA helicase DDX4

Ddx5 19 9 671.46 0.0024 2.74 Flu Probable ATP-dependent RNA helicase DDX5

Ddx6 4 4 106.27 0.0424 2.06 Flu Probable ATP-dependent RNA helicase DDX6

Derl1 1 1 33.83 0.3053 1.37 Flu Derlin-1

Des 52 33 2641.4 0.1925 1.48 Flu Desmin

Dhrs7b 6 1 132.16 0.0002 18.03 Flu Dehydrogenase/reductase SDR family member 7B

Dhx15 13 4 292.49 0.4684 1.47 PBS DEAH (Asp-Glu-Ala-His) box polypeptide 15, isoform CRA_a

Dhx15 4 0 147.44 --- Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 (Fragment)

Dhx30 7 1 53.9 0.0524 4.69 Flu Putative ATP-dependent RNA helicase DHX30

Dhx8 15 4 113.75 0.4480 1.27 Flu ATP-dependent RNA helicase DHX8 (Fragment)

Dhx9 25 17 756.6 0.4069 1.25 Flu ATP-dependent RNA helicase A

Dlat 15 4 149.62 0.0302 1.45 PBS Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial

Dld 6 6 154.53 0.1184 2.62 PBS Dihydrolipoyl dehydrogenase, mitochondrial

Dlst 5 2 142.58 0.5348 1.34 PBS Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial

Dmd 50 20 1510.11 0.0354 1.23 PBS Dystrophin

Dnah7a 24 7 151.15 0.9502 1.06 Flu Protein Dnah7a

Dnah9 25 14 134.77 0.0051 1.74 PBS Dynein, axonemal, heavy chain 9

Dnajc10 6 1 89.95 0.0081 3.69 Flu DnaJ homolog subfamily C member 10

Dnajc11 7 5 222.44 0.0604 1.97 Flu DnaJ homolog subfamily C member 11

Dnajc13 22 5 176.81 0.0262 1.60 Flu MCG115602

Dnm2 9 2 67.39 0.0008 2.41 Flu Dynamin-2 (Fragment)

Dock6 13 3 169.05 0.2789 1.86 Flu Dedicator of cytokinesis protein 6

Dock7 15 6 191.67 0.9682 1.02 Flu Dedicator of cytokinesis protein 7

Dock8 18 8 296.7 0.2452 1.34 Flu Dedicator of cytokinesis protein 8

Dock9 21 11 283.46 0.4967 1.19 PBS Dedicator of cytokinesis protein 9

Dpep1 32 23 1612.5 0.5490 1.26 Flu Dipeptidase 1

Dpp4 3 1 39.5 0.3631 1.30 PBS Dipeptidyl peptidase 4

Dpt 7 6 290.87 0.2091 1.37 Flu Dermatopontin

Dpysl2 14 9 553.9 0.9009 1.08 PBS Dihydropyrimidinase-related protein 2

Dpysl3 3 0 93.57 --- Dihydropyrimidinase-related protein 3

Dscaml1 18 5 99.12 0.3273 1.22 PBS Down syndrome cell adhesion molecule-like protein 1 homolog

Dsg2 8 5 306.36 0.2033 1.27 Flu Desmoglein-2

Dsp 84 35 2496.03 0.0335 1.43 PBS Desmoplakin

Dst 47 2 421.35 0.3705 1.16 PBS Dystonin

Dst 41 1 372.7 0.0201 2.12 Flu Dystonin

Dst 10 0 67.51 --- Dystonin (Fragment)

Dtna 12 4 446.06 0.4846 1.56 Flu Dystrobrevin alpha

Dtnb 6 2 118.74 0.2003 1.23 PBS Dystrobrevin beta

Dync1h1 52 25 1031.19 0.4764 1.16 PBS Cytoplasmic dynein 1 heavy chain 1

Ecm1 10 5 319.55 0.0653 1.95 Flu Extracellular matrix protein 1

Ect2 4 0 45.42 --- Protein ECT2 (Fragment)

Edc4 18 14 420.9 0.0014 2.44 Flu Enhancer of mRNA decapping 4, isoform CRA_b

Eef1a1 18 10 593.92 0.1581 1.42 Flu Elongation factor 1-alpha 1

Eef1a2 7 1 280.25 0.6681 1.24 Flu Elongation factor 1-alpha 2

Eef1g 5 2 96.58 0.2290 2.77 PBS Elongation factor 1-gamma

Eef2 9 5 306.91 0.1722 2.08 PBS Elongation factor 2

Efemp1 17 13 632.66 0.4870 1.16 Flu EGF-containing fibulin-like extracellular matrix protein 1

Efemp2 8 2 111.84 0.8642 1.17 Flu EGF-containing fibulin-like extracellular matrix protein 2

Efemp2 5 1 74.4 0.2040 4.73 Flu EGF-containing fibulin-like extracellular matrix protein 2 (Fragment)

Efhc1 5 2 58.71 0.5474 1.30 Flu EF-hand domain-containing protein 1

Efhd2 4 3 105.31 0.5329 2.43 PBS EF-hand domain-containing protein D2

Efr3a 15 6 181.32 0.0624 1.43 PBS Protein EFR3 homolog A

Eftud1 8 2 56.98 0.4514 1.35 PBS Elongation factor Tu GTP-binding domain-containing protein 1

Egfem1 2 0 52.78 --- EGF-like and EMI domain-containing protein 1 (Fragment)

Egfl7 7 6 129.66 0.0002 3.51 PBS Epidermal growth factor-like protein 7

Egfr 5 3 75.79 0.0548 1.47 PBS Epidermal growth factor receptor

Ehd1 10 5 218.98 0.4267 1.40 PBS EH domain-containing protein 1

Ehd2 17 10 637.87 0.1736 2.02 PBS EH domain-containing protein 2

Ehd3 6 2 149.37 0.1752 1.24 PBS EH domain-containing protein 3

Ehd4 20 13 824.54 0.1308 1.60 PBS EH domain-containing protein 4

Eif3a 12 5 89.35 0.0419 2.27 Flu Eukaryotic translation initiation factor 3 subunit A

Eif4a1 7 1 233.7 0.0307 Infinity PBS Eukaryotic initiation factor 4A-I

Eif4a2 7 0 184.92 --- Eukaryotic initiation factor 4A-II

Eif4a3 11 4 155.86 0.0144 11.77 Flu Eukaryotic initiation factor 4A-III

Eif4g3 14 2 92.39 0.2940 1.43 PBS Eukaryotic translation initiation factor 4 gamma 3

Elavl1 4 3 110.98 0.0018 2.28 Flu ELAV-like protein 1

Eln 24 21 779.03 0.4796 2.00 Flu Elastin

Emd 2 1 32.8 0.3483 16.32 Flu Emerin

Emid1 45 31 102.37 0.5225 1.22 PBS EMI domain-containing protein 1 (Fragment)

Emid1 6 4 82.47 0.6929 1.53 PBS EMI domain-containing protein 1

Emilin1 57 38 2870.02 0.0044 1.39 Flu EMILIN-1

Eml2 5 1 27.83 0.6336 1.74 PBS Echinoderm microtubule-associated protein-like 2

Endod1 11 6 249.11 0.8444 1.01 PBS Endonuclease domain-containing 1 protein

Enkur 5 0 79.63 --- Enkurin

Eno1 6 4 284.69 0.5208 1.92 PBS Alpha-enolase

Enpep 28 21 1066.95 0.3801 1.25 PBS Glutamyl aminopeptidase

Entpd1 2 2 189.05 0.0026 2.81 PBS Ectonucleoside triphosphate diphosphohydrolase 1

Epb41 7 1 78.72 0.1141 3.67 PBS Protein 4.1

Epb41l2 4 3 39.67 0.3984 1.31 PBS Band 4.1-like protein 2

Epb41l4b 7 0 68.52 --- Band 4.1-like protein 4B

Epb41l5 12 4 228.78 0.1260 1.28 Flu Band 4.1-like protein 5

Epb42 6 2 110.69 0.5645 1.14 Flu Erythrocyte membrane protein band 4.2

Ephx1 3 2 39.97 0.6360 1.03 Flu Epoxide hydrolase 1

Eppk1 47 26 1356.8 0.9628 1.01 PBS Epiplakin

Eprs 10 2 90.84 0.7824 1.21 Flu Bifunctional glutamate/proline--tRNA ligase

Eps8l2 4 2 45.01 0.3728 1.35 PBS Epidermal growth factor receptor kinase substrate 8-like protein 2

Epx 28 15 1157.96 0.0068 1.76 Flu Eosinophil peroxidase

Erbb2ip 4 4 29.41 0.0036 1.46 PBS Protein LAP2

Erlin1 6 2 264.56 0.0030 5.04 Flu Erlin-1

Erlin2 15 10 425.62 0.0360 2.16 Flu Erlin-2

Esyt1 7 3 127.2 0.6066 2.19 PBS Extended synaptotagmin-1

Etl4 24 10 170.99 0.7999 1.08 Flu Sickle tail protein

Evpl 20 3 172.78 0.3985 2.69 Flu Envoplakin

Ewsr1 12 5 64.77 0.7649 1.15 Flu RNA-binding protein EWS

Ezr 13 3 271.43 0.3338 1.48 PBS Ezrin

F13a1 11 3 229.58 0.0027 10.37 Flu Coagulation factor XIII A chain

F13b 5 3 80.74 0.0128 1.91 PBS Coagulation factor XIII B chain

Faf2 7 6 128.42 0.0436 2.57 Flu FAS-associated factor 2

Fam129b 9 2 143.72 0.5004 2.15 Flu Niban-like protein 1

Fam98a 3 3 68.25 0.5719 1.15 PBS Protein FAM98A

Farp1 15 6 148.5 0.0825 1.45 Flu FERM, RhoGEF and pleckstrin domain-containing protein 1

Fasn 11 5 235.01 0.1850 1.87 PBS Fatty acid synthase

Fat1 17 6 113.9 0.4114 1.40 PBS Protein Fat1

Fbl 4 2 82.09 0.3227 1.47 Flu rRNA 2'-O-methyltransferase fibrillarin

Fbln1 4 2 71.99 0.0162 1.56 Flu Fibulin-1

Fbln2 7 5 198.26 0.2026 1.48 Flu Fibulin-2

Fbln5 20 12 1042.36 0.6964 1.08 Flu Fibulin-5

Fbn1 165 138 7921.36 0.9858 1.01 Flu Fibrillin-1

Fbn2 20 8 444.35 0.3443 1.32 PBS Fibrillin-2

Fcgbp 7 1 59.03 0.4814 1.16 Flu Protein Fcgbp

Fermt2 8 5 194.61 0.1566 1.73 PBS Fermitin family homolog 2

Fermt3 8 2 67.78 0.5105 2.12 PBS Fermitin family homolog 3

Fga 21 14 855.68 0.0422 1.70 Flu Fibrinogen alpha chain

Fgb 26 18 1058.68 0.0186 2.05 Flu Fibrinogen beta chain

Fgd6 15 3 138.64 0.7680 1.10 Flu FYVE, RhoGEF and PH domain-containing protein 6

Fgf2 4 1 76.75 0.8809 1.58 PBS Fibroblast growth factor

Fgg 22 16 975.76 0.0206 1.96 Flu Fibrinogen gamma chain

Fgr 8 5 249.37 0.1016 1.50 Flu Tyrosine-protein kinase Fgr

Fh 2 1 29.33 0.1812 3.25 PBS Fumarate hydratase, mitochondrial

Fhl1 8 6 190.92 0.3657 2.67 PBS Four and a half LIM domains 1, isoform CRA_c

Fhod1 12 4 94.54 0.3692 3.93 Flu FH1/FH2 domain-containing protein 1

Filip1l 8 3 95 0.0608 3.68 Flu Filamin A-interacting protein 1-like

Fkbp8 7 2 122.68 0.0165 4.01 Flu Peptidyl-prolyl cis-trans isomerase FKBP8

Flii 13 8 297.72 0.0550 1.43 Flu Protein flightless-1 homolog

Flna 122 53 5548.99 0.3178 1.25 PBS Filamin-A

Flna 28 0 1283.55 --- Filamin-A (Fragment)

Flna 9 0 317.05 --- Filamin-A (Fragment)

Flnb 68 34 1965.18 0.6770 1.23 Flu Filamin-B

Flnc 32 6 617.58 0.5968 1.50 PBS Filamin-C

Flot1 20 13 713.66 0.9920 1.11 Flu Flotillin-1

Flot2 28 19 1240.12 0.0447 1.69 Flu Flotillin-2

Fmnl2 11 2 159.2 0.6198 1.10 Flu Formin-like protein 2

Fmnl2 4 0 78.28 --- Formin-like protein 2 (Fragment)

Fmnl3 7 2 200.07 0.4560 1.90 Flu Formin-like protein 3

Fmo1 3 2 41.77 0.2506 2.18 PBS Dimethylaniline monooxygenase [N-oxide-forming] 1

Fmo2 5 2 206.73 0.1754 3.30 PBS Dimethylaniline monooxygenase [N-oxide-forming] 2

Fmr1 5 1 62.53 0.8673 1.29 Flu Fragile X mental retardation protein 1 homolog

Fn1 112 3 5405.76 0.0002 8.39 Flu Fibronectin

Fn1 108 1 5263.93 0.0067 5.42 Flu Fibronectin

Fn1 4 1 228.29 0.1641 1.44 PBS Fibronectin (Fragment)

Foxp4 4 2 29.71 0.1871 1.74 Flu Forkhead box protein P4

Fras1 13 7 88.56 0.8149 1.27 PBS Extracellular matrix protein FRAS1

Frem1 14 5 355.38 0.0768 1.36 PBS FRAS1-related extracellular matrix protein 1

Frem2 14 6 173.93 0.0803 1.59 Flu FRAS1-related extracellular matrix protein 2

Ftl2 1 0 4.49 --- Ferritin light chain 2

Fus 4 2 154.84 0.6248 1.12 Flu RNA-binding protein FUS

Fus 5 0 64.53 --- RNA-binding protein FUS (Fragment)

Fxr1 7 1 123.78 0.0065 2.96 Flu Fragile X mental retardation syndrome-related protein 1

Fxr2 7 1 117.49 0.0218 8.97 PBS Fragile X mental retardation syndrome-related protein 2

Fyn 9 1 274 0.6552 1.38 PBS Tyrosine-protein kinase

Gapdh 18 8 695.13 0.4272 1.59 PBS Glyceraldehyde-3-phosphate dehydrogenase

Gapdhs 5 2 117.95 0.6395 1.02 PBS Glyceraldehyde-3-phosphate dehydrogenase, testis-specific

Gcn1l1 13 2 105.63 0.8160 1.14 PBS Protein Gcn1l1

Gdi1 4 2 47.87 0.5274 1.11 Flu Rab GDP dissociation inhibitor alpha

Gdi2 5 2 76.28 0.4142 2.47 PBS Rab GDP dissociation inhibitor beta

Gfap 6 0 121.38 --- Glial fibrillary acidic protein

Gfra2 1 1 53.37 0.0241 1.63 Flu GDNF family receptor alpha-2

Gimap1 3 1 72.4 0.0227 3.41 Flu GTPase IMAP family member 1

Git1 6 1 47.23 0.0145 3.86 Flu ARF GTPase-activating protein GIT1

Gja3 3 1 42.26 0.2917 1.52 Flu Gap junction alpha-3 protein

Gja5 3 1 43.1 0.4854 1.45 PBS Gap junction alpha-5 protein

Glipr2 6 1 82.58 0.1355 1.54 Flu Golgi-associated plant pathogenesis-related protein 1

Glud1 4 2 70.53 0.0042 2.87 PBS Glutamate dehydrogenase 1, mitochondrial (Fragment)

Glyr1 11 9 289.27 0.4582 1.13 Flu Putative oxidoreductase GLYR1

Gm10126 2 2 41.85 0.4462 1.21 Flu Protein Gm10126

Gm10260 5 2 130.01 0.0072 3.15 Flu Protein Gm10260

Gm10320 3 1 47.48 0.4885 1.26 PBS Protein Gm10320

Gm11214 4 1 141.45 0.0011 3.00 Flu Protein Gm11214 (Fragment)

Gm15294 2 1 96.38 0.3117 3.05 PBS Protein Gm15294

Gm17087 3 0 156.99 --- Protein Gm17087

Gm17430 3 0 53.3 --- Protein Gm17430

Gm20425 14 3 141.63 0.6619 1.07 Flu Protein Gm20425

Gm21292 2 1 26.82 0.1457 4.61 PBS Protein Gm21292

Gm21992 2 1 85.77 0.2936 1.63 PBS Protein Gm21992

Gm3259 5 2 34.46 0.1496 1.19 PBS Protein Gm3259

Gm4877 4 0 117.71 --- Protein Gm4877

Gm4978 5 0 81.19 --- MCG5732

Gm5093 6 3 131.21 0.0043 3.52 Flu Protein Gm5093

Gm5414 6 1 148.16 0.3658 1.33 Flu MCG1050941

Gm6576 9 0 300.99 --- Protein Gm6576

Gm8225 8 1 227.48 0.0015 2.17 PBS Protein Gm8225

Gna11 6 1 62.35 0.0949 1.38 Flu Guanine nucleotide binding protein, alpha 11

Gna12 4 0 72.2 --- Guanine nucleotide-binding protein subunit alpha-12 (Fragment)

Gna13 5 2 172.26 0.1341 1.50 Flu Guanine nucleotide-binding protein subunit alpha-13

Gna14 6 0 65.48 --- Guanine nucleotide-binding protein subunit alpha-14

Gnai1 15 2 573.22 0.0809 1.34 Flu Guanine nucleotide-binding protein G(i) subunit alpha-1

Gnai2 31 17 1616.97 0.0072 1.23 Flu Guanine nucleotide-binding protein G(i) subunit alpha-2

Gnai3 15 4 608.16 0.6139 1.06 Flu Guanine nucleotide-binding protein G(k) subunit alpha

Gnao1 11 5 330.07 0.2900 1.15 PBS Guanine nucleotide-binding protein G(o) subunit alpha

Gnaq 4 2 61.54 0.5593 1.12 Flu Guanine nucleotide-binding protein G(q) subunit alpha

Gnas 12 4 238.14 0.2522 1.23 Flu Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas

Gnat2 4 0 134.29 --- Guanine nucleotide-binding protein G(t) subunit alpha-2 (Fragment)

Gnb1 10 4 364.72 0.4137 1.63 PBS Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1

Gnb2 13 5 557.08 0.1166 3.38 PBS Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2

Gnb2l1 10 8 327.19 0.8465 1.12 Flu Guanine nucleotide-binding protein subunit beta-2-like 1

Gnb3 2 0 58.57 --- Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3

Gnb4 5 1 151.32 0.1125 2.95 PBS Guanine nucleotide-binding protein subunit beta-4

Golgb1 18 4 151.95 0.8409 1.04 Flu Protein Golgb1

Golt1b 1 1 57.7 0.9547 1.39 Flu Vesicle transport protein GOT1B

Got2 6 2 56.3 0.9930 1.24 PBS Aspartate aminotransferase, mitochondrial

Gp1bb 1 1 17.91 0.2965 1.61 Flu Glycoprotein Ib, beta polypeptide

Gpc1 4 3 90.49 0.0014 3.20 Flu Glypican-1

Gpc4 4 2 79.74 0.0122 2.00 Flu Glypican-4

Gpd2 7 5 60 0.8955 1.15 PBS Glycerol-3-phosphate dehydrogenase, mitochondrial

Gpihbp1 4 1 46.01 0.4033 1.09 PBS Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1

Gpr153 6 3 32.11 0.5917 1.15 PBS Probable G-protein-coupled receptor 153

Gprc5a 7 6 280.37 0.0470 1.84 PBS G protein-coupled receptor, family C, group 5, member A

Gpt2 5 1 44 0.3060 1.32 PBS Alanine aminotransferase 2

Gpx1 2 2 47.26 0.8460 1.01 Flu Glutathione peroxidase 1

Gsn 29 13 900.8 0.9922 1.02 PBS Gelsolin

Gsn 6 1 213.58 0.2265 1.31 Flu Gelsolin (Fragment)

Gsn 6 0 208.05 --- Gelsolin (Fragment)

Gstk1 5 2 56.32 0.0625 8.11 PBS Glutathione S-transferase kappa 1

Gstm7 1 1 43.01 0.0648 5.64 PBS Glutathione S-transferase Mu 7

Gstp1 3 2 132.05 0.8250 1.13 PBS Glutathione S-transferase P 1

Gtpbp4 5 2 45.36 0.2299 1.53 PBS Nucleolar GTP-binding protein 1

Gucy1b3 7 4 226.79 0.3203 1.41 PBS Guanylate cyclase soluble subunit beta-1

Gvin1 20 6 320.44 0.0559 4.78 Flu Interferon-induced very large GTPase 1

H1f0 10 3 343.79 0.8452 1.52 PBS Histone H1.0

H2-Ab1 3 2 99.74 0.0505 18.42 Flu H-2 class II histocompatibility antigen, A beta chain

H2afv 5 0 175.01 --- Histone H2A

H2afx 8 2 246.9 0.2912 4.41 Flu Histone H2AX

H2afy 17 10 960.66 0.0168 2.07 Flu Core histone macro-H2A.1

H2afy2 13 6 623.4 0.1055 1.65 Flu Core histone macro-H2A.2

H2-D1 15 3 415.1 0.0884 2.19 Flu H-2 class I histocompatibility antigen, D-B alpha chain

H2-D1 12 2 328.75 0.6703 1.03 PBS H-2 class I histocompatibility antigen, D-K alpha chain

H2-D1 2 0 54.26 --- H-2 class I histocompatibility antigen, D-K alpha chain (Fragment)

H2-Eb1 1 1 22.8 0.0014 21.47 Flu H-2 class II histocompatibility antigen, I-A beta chain

H2-K1 13 0 385 --- H-2 class I histocompatibility antigen, K-B alpha chain

H2-K1 10 0 331.11 --- H-2 class I histocompatibility antigen, K-K alpha chain (Fragment)

H2-K1 10 0 262.96 --- H-2 class I histocompatibility antigen, K-K alpha chain

H2-K1 2 0 41.58 --- H-2 class I histocompatibility antigen, K-D alpha chain

H2-M3 3 1 42.35 0.1799 2.07 Flu Histocompatibility 2, M region locus 3

H2-Q1 5 1 94.02 0.8469 1.01 Flu Protein H2-Q1

H2-Q2 4 0 114.15 --- Histocompatibility 2, Q region locus 2

H2-Q4 11 0 348.36 --- Protein H2-Q4

H2-Q7 14 2 521.15 0.0099 3.98 Flu H-2 class I histocompatibility antigen, Q7 alpha chain

H2-Q8 11 0 382.13 --- H-2 class I histocompatibility antigen, Q8 alpha chain

H2-T23 5 0 72.95 --- H-2 class I histocompatibility antigen, D-37 alpha chain

H3f3a 11 1 343.6 0.9438 11.12 PBS Histone H3.3

Hacd3 2 1 18.82 0.0527 1.68 PBS Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3

Hadhb 6 3 60.38 0.0890 5.13 PBS Trifunctional enzyme subunit beta, mitochondrial

haemaglobin alpha 2 10 9 383.04 0.1276 3.89 PBS Alpha globin 1

Hapln1 3 1 155.27 0.3081 3.76 PBS Hyaluronan and proteoglycan link protein 1

Hapln4 2 0 38.67 --- Hyaluronan and proteoglycan link protein 4

Hbb-b1 13 0 711.09 --- Hemoglobin subunit beta-1

Hbb-b2 7 0 210.18 --- Hemoglobin subunit beta-2

Hbbt1 17 5 981.32 0.2415 1.88 PBS Beta-globin

Hbb-y 5 2 54.89 0.6231 1.11 PBS Hemoglobin subunit epsilon-Y2

Hck 9 2 261.5 0.0370 2.25 Flu Tyrosine-protein kinase

Hdac1 4 2 87.14 0.0047 4.03 Flu Histone deacetylase 1

Hip1 5 3 60.11 0.2411 1.53 Flu Huntingtin-interacting protein 1

Hist1h1a 9 2 236.39 0.3226 1.71 Flu Histone H1.1

Hist1h1b 12 5 207.24 0.1527 2.25 Flu Histone H1.5

Hist1h1c 13 2 403.95 0.0247 1.75 Flu Histone H1.2

Hist1h1e 11 0 427.09 --- Histone H1.4

Hist1h1t 4 1 161 0.1310 1.51 PBS Histone H1t

Hist1h2aa 12 0 504.58 --- Histone H2A

Hist1h2ba 9 0 253.58 --- Histone H2B type 1-A

Hist1h2bb 16 1 895.94 0.1147 5.23 Flu Histone H2B type 1-B

Hist1h3a 11 1 342.88 0.7153 5.31 PBS Histone H3.1

Hist2h2aa1 10 0 452.16 --- Histone H2A

Hist2h2bb 11 0 737.92 --- Histone H2B type 2-B

Hist2h2be 12 0 775.56 --- Histone H2B type 2-E

Hist2h3b 11 1 385.12 0.6306 17.19 PBS Histone H3

Hist2h4 19 15 1236.97 0.1514 1.74 Flu Histone H4

Hist3h2a 11 0 536.36 --- Histone H2A

Hivep2 14 5 65.31 0.0012 1.82 PBS Transcription factor HIVEP2

Hmcn1 27 14 452.57 0.0999 1.57 PBS Protein Hmcn1

Hmgxb3 3 0 37.57 --- Protein Hmgxb3

Hnrnpa0 2 1 138.62 0.1315 1.91 Flu Heterogeneous nuclear ribonucleoprotein A0

Hnrnpa1 3 2 82.41 0.3764 1.74 PBS Heterogeneous nuclear ribonucleoprotein A1

Hnrnpa2b1 9 8 219.14 0.1198 2.35 PBS Heterogeneous nuclear ribonucleoproteins A2/B1

Hnrnpa3 10 7 244.48 0.6297 1.20 PBS Heterogeneous nuclear ribonucleoprotein A3

Hnrnpc 5 3 208.64 0.3363 1.19 Flu Heterogeneous nuclear ribonucleoproteins C1/C2

Hnrnpd 2 1 48.78 0.0073 4.09 Flu Heterogeneous nuclear ribonucleoprotein D0 (Fragment)

Hnrnpf 14 6 412.46 0.1059 2.26 PBS Heterogeneous nuclear ribonucleoprotein F

Hnrnph1 5 1 320.48 0.0026 3.00 Flu Heterogeneous nuclear ribonucleoprotein H

Hnrnph2 10 4 341.33 0.0095 3.11 Flu Heterogeneous nuclear ribonucleoprotein H2

Hnrnpk 16 7 507.6 0.4146 1.39 PBS Heterogeneous nuclear ribonucleoprotein K

Hnrnpk 8 0 178.06 --- Heterogeneous nuclear ribonucleoprotein K (Fragment)

Hnrnpl 12 10 306.76 0.9332 1.27 Flu Heterogeneous nuclear ribonucleoprotein L

Hnrnpm 49 20 1877.47 0.0002 2.67 Flu Heterogeneous nuclear ribonucleoprotein M

Hnrnpm 12 1 442.36 0.4756 1.37 PBS Heterogeneous nuclear ribonucleoprotein M (Fragment)

Hnrnpm 12 1 387.85 0.8592 1.29 Flu Heterogeneous nuclear ribonucleoprotein M (Fragment)

Hnrnpu 20 12 711.04 0.8481 1.09 PBS Heterogeneous nuclear ribonucleoprotein U

Hnrnpul2 7 3 143.56 0.8824 1.04 Flu Heterogeneous nuclear ribonucleoprotein U-like protein 2

Hp1bp3 11 8 294.22 0.2412 1.22 Flu Heterochromatin protein 1-binding protein 3

Hrg 2 1 32.66 0.0188 3.97 Flu Histidine-rich glycoprotein

Hs2st1 7 3 168.94 0.4642 1.19 Flu Heparan sulfate 2-O-sulfotransferase 1

Hsd11b1 2 1 101.26 0.3021 3.69 PBS Corticosteroid 11-beta-dehydrogenase isozyme 1

Hsd17b10 4 2 68.18 0.8925 1.10 PBS 3-hydroxyacyl-CoA dehydrogenase type-2

Hsd17b11 2 2 108.53 0.2437 1.29 Flu Estradiol 17-beta-dehydrogenase 11

Hsd17b12 7 6 221.81 0.3562 1.29 Flu Very-long-chain 3-oxoacyl-CoA reductase

Hsp90aa1 9 1 158.57 0.4059 1.48 Flu Heat shock protein HSP 90-alpha

Hsp90ab1 11 4 313.51 0.1187 1.43 PBS Heat shock protein 84b

Hsp90b1 14 9 490.3 0.3402 1.39 PBS Endoplasmin

Hspa12a 7 2 116.87 0.8247 1.00 PBS Heat shock 70 kDa protein 12A

Hspa12b 17 8 569.7 0.2979 1.27 Flu Heat shock 70 kDa protein 12B

Hspa1a 10 1 226.26 0.2033 1.66 Flu Heat shock 70 kDa protein 1A

Hspa1l 13 2 301.57 0.0015 2.17 PBS Heat shock 70 kDa protein 1-like

Hspa2 15 1 543.67 0.4505 1.51 Flu Heat shock-related 70 kDa protein 2

Hspa5 19 9 755.79 0.2966 1.55 PBS 78 kDa glucose-regulated protein

Hspa8 32 17 1194.31 0.0771 1.40 Flu Heat shock cognate 71 kDa protein

Hspa9 6 4 117.62 0.0873 1.85 Flu Stress-70 protein, mitochondrial

Hspd1 18 6 241.87 0.0866 3.30 PBS 60 kDa heat shock protein, mitochondrial

Hspg2 218 33 10998.23 0.0031 1.60 PBS Basement membrane-specific heparan sulfate proteoglycan core protein

Hspg2 177 1 8912.83 0.5170 1.39 Flu Basement membrane-specific heparan sulfate proteoglycan core protein

Htra1 3 1 31.35 0.3203 1.13 Flu Serine protease HTRA1

Hyal2 3 1 116.33 0.9931 1.46 PBS Hyaluronidase

Hyou1 9 2 46.3 0.5878 1.04 Flu Hypoxia up-regulated protein 1

Icam1 2 1 35.91 0.0150 2.30 PBS Intercellular adhesion molecule 1

Icam2 2 1 67.55 0.0364 2.05 Flu Intercellular adhesion molecule 2

Idh2 6 1 34.87 0.1786 2.96 PBS Isocitrate dehydrogenase [NADP], mitochondrial

Idh3a 2 1 25.84 0.1129 3.31 PBS Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial

Ifit1 2 0 65.93 --- Interferon-induced protein with tetratricopeptide repeats 1

Igfbp1 1 0 21.63 --- Insulin-like growth factor-binding protein 1

Igfbp6 3 1 33.66 0.4819 1.40 Flu Insulin-like growth factor-binding protein 6

Igha 3 1 61.58 0.0022 14.65 Flu Protein Igha (Fragment)

Ighg2c 8 3 114.89 0.0200 2.76 Flu Protein Ighg2c (Fragment)

Ighg3 6 3 52.96 0.2274 1.24 Flu Protein Ighg3 (Fragment)

Ighm 8 3 163.21 0.1773 1.62 Flu Ig mu chain C region (Fragment)

Ilk 13 11 224.27 0.2610 1.31 Flu Integrin-linked protein kinase

Immt 44 4 1766.21 0.1668 1.31 Flu MICOS complex subunit Mic60

Immt 41 0 1601.65 --- MICOS complex subunit Mic60

Ina 4 0 87.25 --- Alpha-internexin

Inmt 6 5 121.55 0.1829 1.55 PBS Indolethylamine N-methyltransferase

Iqgap1 49 33 1748.22 0.4243 1.17 Flu Ras GTPase-activating-like protein IQGAP1

Iqgap3 11 5 58.27 0.0592 1.72 Flu Protein Iqgap3

Irgm1 3 2 138.12 0.0002 27.26 Flu Immunity-related GTPase family M protein 1

Irgm2 5 3 141.34 0.0381 2.62 Flu Interferon-g induced GTPase

Isg15 2 2 27.54 0.0161 2.67 Flu G1p2 protein

Islr 5 1 101.94 0.0017 5.65 Flu Immunoglobulin superfamily containing leucine-rich repeat protein

Itch 9 1 340.58 0.2040 1.75 Flu E3 ubiquitin-protein ligase Itchy

Itga1 5 0 28.33 --- Integrin alpha-1

Itga3 5 2 126.11 0.1297 3.69 PBS Integrin alpha-3

Itga6 5 2 39.79 0.1897 5.61 PBS Integrin alpha-6

Itga8 5 3 47.29 0.0077 3.16 PBS Integrin alpha-8

Itgb1 18 14 405.89 0.0258 1.99 PBS Integrin beta-1

Itgb4 7 3 107.51 0.2790 1.26 Flu Integrin beta-4

Itih1 13 4 280.24 0.0027 3.45 Flu Inter-alpha-trypsin inhibitor heavy chain H1

Itih2 4 1 72.51 0.0011 3.41 Flu Inter-alpha-trypsin inhibitor heavy chain H2

Itih4 7 4 98.1 0.7620 1.05 Flu Inter alpha-trypsin inhibitor, heavy chain 4

Itih5 10 4 96.29 0.5848 1.11 Flu Inter-alpha-trypsin inhibitor heavy chain H5

Itm2b 3 1 43.8 0.2985 1.21 Flu Integral membrane protein 2B

Itpr1 34 11 512.54 0.5753 1.08 Flu Inositol 1,4,5-trisphosphate receptor type 1

Itpr2 18 4 229.93 0.4486 2.34 PBS Inositol 1,4,5-trisphosphate receptor type 2

Itpr3 32 10 438.7 0.7784 1.10 PBS Inositol 1,4,5-trisphosphate receptor type 3

Jak3 8 2 63.18 0.6329 1.20 Flu Tyrosine-protein kinase JAK3

Jcad 9 5 105.45 0.4792 1.25 Flu Junctional protein associated with coronary artery disease

Jup 33 19 1357.96 0.3277 1.15 Flu Junction plakoglobin

Kank2 23 12 643.67 0.0110 2.00 Flu KN motif and ankyrin repeat domain-containing protein 2

Kat2b 6 0 54.08 --- Histone acetyltransferase KAT2B

Kcnh4 7 3 61.22 0.3816 1.43 PBS Potassium voltage-gated channel, subfamily H (Eag-related), member 4

Kcnq4 1 1 28.43 0.7579 1.02 Flu Potassium voltage-gated channel subfamily KQT member 4

Kcp 3 2 47.81 0.5474 1.07 Flu Kielin/chordin-like protein (Fragment)

Kctd3 6 2 47.03 0.0128 3.08 PBS BTB/POZ domain-containing protein KCTD3

Kdm7a 10 2 74.54 0.4270 1.28 Flu Lysine-specific demethylase 7A

Keap1 7 2 66.29 0.0589 2.33 PBS Kelch-like ECH-associated protein 1

Khdrbs1 5 1 34.23 0.1038 1.45 PBS KH domain-containing, RNA-binding, signal transduction-associated protein 1

Khsrp 4 2 68.81 0.0200 3.33 Flu Far upstream element-binding protein 2

Kiaa2013 2 1 56.96 0.0764 10.52 Flu Uncharacterized protein KIAA2013

Kidins220 15 7 200.44 0.2338 1.17 PBS Protein Kidins220

Kif13b 13 4 190.32 0.0032 4.59 Flu Kinesin-like protein

Kif1a 14 2 162.45 0.2291 4.48 PBS Kinesin-like protein

Kif5a 8 0 130.58 --- Kinesin heavy chain isoform 5A

Kif5b 17 5 285.52 0.0083 3.01 Flu Kinesin-1 heavy chain

Kirrel 4 2 59.11 0.0299 2.20 Flu Kin of IRRE-like protein 1

Klrb1f 2 1 8.08 0.1195 1.62 Flu Killer cell lectin-like receptor subfamily B member 1F

Kpna4 5 1 35.09 0.1128 5.60 Flu Importin subunit alpha-3

Kpnb1 7 4 241.54 0.0144 2.60 Flu Importin subunit beta-1

Kri1 6 1 32.08 0.5217 1.28 Flu Protein KRI1 homolog

Krt1 9 0 455.13 --- Keratin, type II cytoskeletal 1

Krt10 9 4 509.25 0.0828 1.57 PBS Keratin, type I cytoskeletal 10

Krt13 11 0 548.83 --- Keratin, type I cytoskeletal 13

Krt14 25 5 945.35 0.0003 42.43 Flu Keratin, type I cytoskeletal 14

Krt15 16 5 709.89 0.7682 1.06 PBS Keratin 15, isoform CRA_a

Krt16 15 4 562.12 0.1048 1.67 PBS Keratin, type I cytoskeletal 16

Krt17 26 9 943.65 0.0612 3.33 Flu Keratin, type I cytoskeletal 17

Krt18 26 21 1217.7 0.0005 4.35 Flu Keratin, type I cytoskeletal 18

Krt19 32 15 1313.55 0.0012 2.73 Flu Keratin 19

Krt2 14 6 562.37 0.0143 2.00 PBS Keratin, type II cytoskeletal 2 epidermal

Krt20 7 1 166.34 0.1730 1.32 Flu Keratin, type I cytoskeletal 20

Krt222 4 2 62.23 0.7817 1.03 Flu Keratin-like protein KRT222

Krt23 4 0 73.78 --- Keratin, type I cytoskeletal 23

Krt31 4 0 100.77 --- Keratin, type I cuticular Ha1

Krt32 3 0 60.48 --- Keratin, type I cuticular Ha2

Krt34 4 1 56.36 0.5417 1.38 Flu Keratin, type I cuticular Ha4

Krt4 12 3 370.72 0.0024 21.39 Flu Keratin, type II cytoskeletal 4

Krt42 18 4 555.51 0.6950 1.06 Flu Keratin, type I cytoskeletal 42

Krt5 35 19 1693.77 0.0118 2.48 Flu Keratin, type II cytoskeletal 5

Krt6a 20 1 874.62 0.0238 3.28 Flu Keratin, type II cytoskeletal 6A

Krt6b 19 1 743.04 0.0270 2.14 PBS Keratin, type II cytoskeletal 6B

Krt7 33 14 1550.52 0.0105 2.92 Flu Keratin, type II cytoskeletal 7

Krt71 14 1 372.23 0.6894 1.00 Flu Keratin, type II cytoskeletal 71

Krt72 10 0 220.21 --- Keratin, type II cytoskeletal 72

Krt73 11 3 378.18 0.0107 2.20 PBS Keratin, type II cytoskeletal 73

Krt75 13 2 531.07 0.0568 1.52 PBS Keratin, type II cytoskeletal 75

Krt76 15 2 384.71 0.0121 2.11 PBS Keratin, type II cytoskeletal 2 oral

Krt77 11 1 350.13 0.9070 1.31 PBS Keratin, type II cytoskeletal 1b

Krt78 11 1 283.75 0.0403 1.66 PBS Protein Krt78

Krt79 13 0 357.05 --- Keratin, type II cytoskeletal 79

Krt8 49 24 2031.48 0.0019 3.38 Flu Keratin, type II cytoskeletal 8

Krt83 9 0 154.39 --- Keratin, type II cuticular Hb3

Krt84 7 0 238.3 --- Keratin, type II cuticular Hb4

Krt85 11 1 234.66 0.5272 1.35 PBS Keratin, type II cuticular Hb5

Krt86 10 0 189.11 --- Keratin 86

Kxd1 10 6 335.49 0.2154 1.53 Flu KxDL motif-containing protein 1 (Fragment)

Lama2 63 42 2009.69 0.9112 1.00 PBS Laminin subunit alpha-2

Lama3 137 99 6606.85 0.0074 1.45 PBS Laminin subunit alpha-3

Lama4 51 37 2242.98 0.2656 1.17 PBS Laminin subunit alpha-4

Lama5 129 95 7168.89 0.0416 1.46 PBS Laminin subunit alpha-5

Lamb1 65 39 2670.93 0.7914 1.05 PBS Laminin subunit beta-1

Lamb2 93 59 5338.36 0.3357 1.20 PBS Laminin subunit beta-2

Lamb3 90 58 5055.86 0.0185 1.34 PBS Laminin subunit beta-3

Lamc1 79 5 4073.66 0.4828 1.14 PBS Laminin subunit gamma-1

Lamc1 72 0 3833.87 --- Laminin subunit gamma-1

Lamc1 6 0 386.35 --- Laminin subunit gamma-1 (Fragment)

Lamc2 58 38 2646.94 0.0574 1.45 PBS Laminin subunit gamma-2

Lamc3 6 1 76.7 0.8894 1.14 PBS Laminin subunit gamma-3 (Fragment)

Lamtor1 4 4 151.99 0.0025 3.64 Flu Ragulator complex protein LAMTOR1

Lasp1 5 2 94.77 0.0043 4.61 Flu LIM and SH3 domain protein 1 (Fragment)

Lbr 8 4 394.84 0.0191 2.44 Flu Lamin-B receptor

Lck 6 2 195.02 0.0047 20.07 Flu Tyrosine-protein kinase

Lcp1 12 4 187.81 0.1128 1.80 PBS Plastin-2

Ldha 7 5 151.02 0.9373 1.38 PBS L-lactate dehydrogenase A chain

Lemd2 3 1 86.4 0.0094 3.79 Flu LEM domain-containing protein 2

Lemd3 6 2 102.15 0.0707 2.37 Flu Inner nuclear membrane protein Man1

Leprot 1 1 86.54 0.5737 1.02 PBS Leptin receptor gene-related protein

Lgals3 2 2 36.91 0.0865 2.39 Flu Galectin-3

Lgals3bp 12 9 328.57 0.0005 2.72 Flu Galectin-3-binding protein

Lgals8 3 2 167.77 0.0104 4.21 Flu Galectin-8

Lgals9 7 3 399.46 0.0205 1.57 Flu Galectin

Lima1 7 3 80.66 0.7484 1.00 Flu LIM domain and actin-binding protein 1

Limch1 24 2 762.05 0.1365 2.02 Flu LIM and calponin homology domains-containing protein 1

Limch1 17 0 381.82 --- LIM and calponin homology domains-containing protein 1 (Fragment)

Limch1 6 0 167.36 --- LIM and calponin homology domains-containing protein 1 (Fragment)

Lims1 2 0 70.12 --- LIM and senescent cell antigen-like domains 1, isoform CRA_c

Lmna 36 23 1783.6 0.6388 1.09 PBS Prelamin-A/C

Lmnb1 41 24 1295.73 0.5845 1.09 Flu Lamin-B1

Lmnb2 20 8 342.86 0.3754 1.58 PBS Lamin-B2

Lmo7 28 1 438.48 0.1907 2.11 Flu Protein Lmo7 (Fragment)

Lmo7 30 0 407.37 --- Protein Lmo7

Lmtk2 6 3 124.26 0.2558 1.63 PBS Serine/threonine-protein kinase LMTK2

Lox 4 2 160.73 0.1781 1.80 Flu Protein-lysine 6-oxidase

Loxl1 15 9 629.5 0.4020 1.40 Flu Lysyl oxidase homolog 1

Loxl2 3 2 37.43 0.2694 1.18 PBS Lysyl oxidase homolog 2

Lpcat1 4 3 164.4 0.0199 3.20 Flu Lysophosphatidylcholine acyltransferase 1

Lpl 3 2 76.5 0.0138 3.00 Flu Lipoprotein lipase

Lpp 13 8 302.91 0.0125 1.90 Flu Lipoma-preferred partner homolog

Lppr1 3 0 34.11 --- Lipid phosphate phosphatase-related protein type 1

Lrch3 3 0 41.86 --- Leucine-rich repeat and calponin homology domain-containing protein 3

Lrp1 13 7 238.99 0.0583 1.98 Flu Prolow-density lipoprotein receptor-related protein 1

Lrp4 4 3 40.44 0.0280 2.24 PBS Low-density lipoprotein receptor-related protein 4

Lrrc1 4 0 76.23 --- Leucine-rich repeat-containing protein 1

Lrrc39 3 0 39.85 --- Leucine rich repeat containing 39

Ltbp1 21 14 479.63 0.8353 1.12 Flu Latent-transforming growth factor beta-binding protein 1

Ltbp2 14 11 212.04 0.6855 1.11 PBS Latent-transforming growth factor beta-binding protein 2

Ltbp3 9 5 65.44 0.1727 1.27 PBS Latent-transforming growth factor beta-binding protein 3

Ltbp4 24 21 884.2 0.3878 1.21 Flu Latent-transforming growth factor beta-binding protein 4

Ltf 4 1 36.54 0.3687 2.51 PBS Lactotransferrin

Lum 6 4 336.59 0.8729 1.02 PBS Lumican

Ly6a 2 2 64.99 0.2153 2.17 Flu Lymphocyte antigen 6A-2/6E-1

Ly6c1 2 1 47.84 0.0752 1.65 Flu Lymphocyte antigen 6C1

Ly6c2 2 1 68.35 0.0125 4.75 Flu Lymphocyte antigen 6C2

Ly6d 1 1 20.32 0.0122 4.68 Flu Lymphocyte antigen 6D

Lyn 31 20 1187.82 0.4020 1.16 Flu Tyrosine-protein kinase Lyn

Lyz2 3 2 63.16 0.1907 1.78 PBS Lysozyme C-2

Macf1 149 0 4186.45 --- Microtubule-actin cross-linking factor 1

Macf1 126 0 3499.57 --- Microtubule-actin cross-linking factor 1

Macf1 121 0 3440.89 --- Microtubule-actin cross-linking factor 1 (Fragment)

Macf1 31 1 912.78 0.2711 2.09 Flu Microtubule-actin cross-linking factor 1 (Fragment)

Macf1 10 0 176.38 --- Microtubule-actin cross-linking factor 1 (Fragment)

Magi3 14 5 89.96 0.3518 1.31 Flu Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 3

Mal2 3 3 43.04 0.0155 2.62 PBS Protein MAL2

Map4k4 10 2 78.64 0.2543 1.42 Flu Mitogen-activated protein kinase kinase kinase kinase 4

Mapk10 2 0 49.5 --- Mitogen-activated protein kinase

Matr3 8 1 67.4 0.3818 1.17 Flu Matrin-3

Mavs 2 1 72.88 0.7668 4.96 Flu Mitochondrial antiviral-signaling protein

Mcam 3 1 46.67 0.1753 1.63 Flu Cell surface glycoprotein MUC18

Mcm5 5 1 39.06 0.0051 9.28 Flu DNA replication licensing factor MCM5

Mcu 3 3 38.57 0.8632 1.15 Flu Calcium uniporter protein, mitochondrial

Mdh1 5 2 52.08 0.9484 1.18 PBS Malate dehydrogenase, cytoplasmic

Mdh2 4 1 70.14 0.1989 3.21 PBS Malate dehydrogenase, mitochondrial

Mdh2 3 1 32.07 0.0238 5.65 Flu Malate dehydrogenase (Fragment)

Mecp2 4 2 103.36 0.9775 1.18 Flu Methyl-CpG-binding protein 2

Megf6 6 4 205.1 0.1767 1.36 PBS Multiple epidermal growth factor-like domains protein 6

Met 9 0 65.38 --- Hepatocyte growth factor receptor

Methig1 7 1 214.98 0.0610 1.43 Flu Protein Methig1

Mettl7a1 11 3 380.15 0.3621 1.74 PBS MCG20149, isoform CRA_a

Mfap2 6 2 306.02 0.3521 1.25 Flu Microfibrillar-associated protein 2

Mfap4 8 5 352.74 0.4667 1.59 Flu Microfibril-associated glycoprotein 4

Mgp 1 1 61.04 0.0620 2.81 Flu Matrix Gla protein

Mgst1 5 5 115.13 0.2518 1.56 Flu Microsomal glutathione S-transferase 1

Mgst3 3 2 145.68 0.1277 1.69 Flu Microsomal glutathione S-transferase 3

Mill2 6 4 74.02 0.6717 1.14 Flu MHC I like leukocyte 2

Mllt4 18 7 346.26 0.2461 1.17 PBS Afadin

Mme 30 22 1176.55 0.1232 1.64 PBS Neprilysin

Mmp19 1 1 34.23 0.0059 5.03 Flu Matrix metallopeptidase 19

Mmp2 6 2 59.29 0.0637 2.23 Flu 72 kDa type IV collagenase

Mmrn2 4 3 51.02 0.0331 1.90 Flu Multimerin-2

Mndal 4 2 48.14 0.3881 1.13 Flu Myeloid cell nuclear differentiation antigen-like protein

Mon2 5 2 37.95 0.4797 1.24 PBS Protein MON2 homolog

Mpo 7 4 280.75 0.5871 1.07 Flu Myeloperoxidase

Mpp5 2 1 34.4 0.0058 3.73 PBS MAGUK p55 subfamily member 5

Mprip 67 16 2421.14 0.1352 1.52 PBS Myosin phosphatase Rho-interacting protein

Mprip 46 4 1700.2 0.7228 1.07 Flu Myosin phosphatase Rho-interacting protein (Fragment)

Mprip 43 0 1582.88 --- Myosin phosphatase Rho-interacting protein (Fragment)

Mpz 10 2 304.15 0.9636 1.10 Flu Myelin protein P0

Mrpl19 5 1 45.16 0.0751 4.09 PBS 39S ribosomal protein L19, mitochondrial

Mrpl45 5 1 35.03 0.5334 112.12 PBS 39S ribosomal protein L45, mitochondrial

Msn 26 11 971.53 0.0383 3.05 PBS Moesin

Mta1 8 0 78.5 --- Metastasis-associated protein MTA1

Mta2 9 2 107.43 0.6416 1.17 Flu Metastasis-associated protein MTA2

Mtch1 6 1 162.89 0.2237 1.53 Flu Mitochondrial carrier homolog 1

Mtch1 5 0 147.97 --- Mitochondrial carrier homolog 1 (Fragment)

Mtch2 9 7 332.03 0.0062 2.66 Flu Mitochondrial carrier homolog 2

Mtco2 12 4 464.11 0.0297 2.61 Flu Cytochrome c oxidase subunit 2

Mtdh 5 2 21.57 0.4719 2.34 Flu Protein LYRIC

Muc1 2 1 39.38 0.0073 2.80 Flu Mucin-1

Mug1 9 2 96.36 0.0733 1.48 Flu Murinoglobulin-1

Mvp 8 2 217.31 0.2388 3.15 Flu Major vault protein

Mxra8 1 1 28.74 0.2804 2.29 Flu Matrix-remodeling-associated protein 8 (Fragment)

Myadm 6 6 294.39 0.0289 1.44 PBS Myeloid-associated differentiation marker

Myct1 3 1 41.25 0.2338 2.11 Flu Myc target protein 1

Myh10 179 96 10238.21 0.1134 1.47 PBS Myosin-10

Myh11 167 10 8410.04 0.3156 1.32 PBS Myosin-11

Myh11 151 0 7805.55 --- Myosin-11

Myh13 12 2 183.51 0.0530 2.13 PBS Protein Myh13

Myh14 196 109 12364.85 0.1879 1.51 PBS Myosin-14

Myh15 13 3 127.75 0.9664 1.41 Flu Protein Myh15

Myh2 20 1 284.68 0.1401 57.73 Flu MCG140437, isoform CRA_d

Myh6 22 10 562.16 0.3673 1.31 PBS MCG133649, isoform CRA_a

Myh7 14 2 249.88 0.3058 1.33 Flu Myosin, heavy polypeptide 7, cardiac muscle, beta

Myh9 227 131 12961.49 0.3147 1.22 Flu Myosin-9

Myl12a 10 5 557.12 0.3735 1.43 PBS MCG5400

Myl6 13 8 701.85 0.2983 1.53 Flu Myosin light polypeptide 6

Myl6b 4 1 53.7 0.0051 1.95 Flu Myosin light chain 6B

Myl9 7 2 360.64 0.6258 1.38 PBS Myosin regulatory light polypeptide 9

Mylk 30 12 606.35 0.0296 1.94 Flu Myosin light chain kinase, smooth muscle

Myo18a 27 10 388.42 0.6886 1.06 PBS Myo18a protein

Myo1a 5 1 233.61 0.6282 1.37 PBS Unconventional myosin-Ia

Myo1b 49 1 1934.86 0.9024 1.02 Flu Unconventional myosin-Ib

Myo1b 50 1 1910.11 0.5360 1.49 Flu Unconventional myosin-Ib

Myo1c 63 40 3042.91 0.0605 1.33 PBS Unconventional myosin-Ic

Myo1d 49 27 2067.31 0.4750 1.08 PBS Unconventional myosin-Id

Myo1e 22 8 605.33 0.4284 1.11 PBS Unconventional myosin-Ie

Myo1f 21 11 593.4 0.3670 1.36 Flu Myosin IF

Myo1g 21 13 664.61 0.0045 3.53 Flu Unconventional myosin-Ig

Myo3b 7 0 81.17 --- Myosin-IIIb

Myo5a 22 5 234.26 0.8809 1.04 PBS Unconventional myosin-Va

Myo5b 20 8 384.22 0.8873 1.03 PBS Myosin Vb, isoform CRA_a

Myo5c 25 9 473.59 0.7559 1.04 Flu Protein Myo5c

Myo6 32 5 1178.73 0.3396 1.33 Flu Unconventional myosin-VI

Myo6 28 0 951.08 --- Unconventional myosin-VI

Myof 17 3 284.19 0.3251 1.21 Flu Myoferlin

Myom1 14 4 101.81 0.6827 1.09 Flu Myomesin-1

Myom3 12 5 46.1 0.0213 2.06 Flu Myomesin-3

Myzap 15 4 409.19 0.6607 1.29 PBS Myocardial zonula adherens protein

Myzap 2 0 57.84 --- Myocardial zonula adherens protein (Fragment)

Naaa 2 2 16.73 0.5645 1.17 PBS N-acylethanolamine-hydrolyzing acid amidase

Naprt 2 0 29.07 --- Nicotinate phosphoribosyltransferase

Ncam2 4 0 33.58 --- Neural cell adhesion molecule 2

Ncl 18 7 230.52 0.2496 1.89 PBS Nucleolin

Ndc1 4 3 31.75 0.0194 2.07 PBS Nucleoporin NDC1

Ndrg4 1 0 37.27 --- Protein NDRG4 (Fragment)

Ndufa10 3 2 25.06 0.0641 7.38 Flu NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial

Ndufa4 2 2 53.63 0.2178 1.45 PBS Cytochrome c oxidase subunit NDUFA4

Ndufa9 3 2 17.81 0.6471 1.25 PBS NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial

Ndufaf6 4 2 26.18 0.1769 1.55 PBS NADH dehydrogenase (ubiquinone) complex I, assembly factor 6

Ndufs1 6 5 81.27 0.0604 1.70 Flu NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial

Ndufv1 4 1 57.46 0.3868 2.10 PBS NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial (Fragment)

Nebl 3 2 109.47 0.2881 1.49 Flu LIM zinc-binding domain-containing Nebulette

Nedd4 13 6 323.41 0.1684 1.39 Flu E3 ubiquitin-protein ligase NEDD4

Nedd4l 10 3 314.27 0.0315 2.33 Flu E3 ubiquitin-protein ligase NEDD4-like

Nefh 34 5 282.03 0.3978 1.23 PBS Neurofilament heavy polypeptide

Nefm 6 1 141.12 0.1972 3.63 PBS Neurofilament medium polypeptide

Negr1 2 1 61.61 0.0659 1.54 Flu Neuronal growth regulator 1

Nes 21 11 503.47 0.0113 3.62 Flu Nestin

Nfib 5 1 57.54 0.0269 1.66 Flu Nuclear factor 1 B-type

Nid1 53 33 2583.63 0.6170 1.07 PBS Nidogen-1

Nid2 30 23 987.02 0.3672 1.12 PBS Nidogen-2

Nin 20 6 128.38 0.8322 1.06 Flu Ninein

Nlrc4 3 0 37.61 --- NLR family CARD domain-containing protein 4

Nol10 8 3 52.93 0.4931 1.31 PBS Nucleolar protein 10

Nono 4 3 85.87 0.0469 1.59 Flu Non-POU domain-containing octamer-binding protein

Nop56 17 9 649.14 0.0398 2.07 Flu Nucleolar protein 56

Nop58 13 1 460.55 0.1594 1.75 PBS Nucleolar protein 58

Nop58 11 0 424.89 --- Nucleolar protein 58

Nop58 9 0 327.43 --- Nucleolar protein 58 (Fragment)

Nostrin 3 3 105.01 0.6487 1.19 PBS Nostrin

Npnt 30 21 1351.17 0.0034 1.67 PBS Nephronectin

Nsmf 3 1 22.38 0.0091 2.37 PBS NMDA receptor synaptonuclear signaling and neuronal migration factor

Nt5e 25 18 695.33 0.0093 1.71 Flu 5' nucleotidase, ecto

Ntn1 5 2 35.15 0.7676 1.77 PBS Netrin-1

Numa1 42 21 951.21 0.0002 2.42 Flu Protein Numa1

Numa1 12 1 279.53 0.0929 1.94 Flu Protein Numa1 (Fragment)

Nup107 6 6 261.45 0.5287 2.08 Flu Nuclear pore complex protein Nup107

Nup133 18 9 362.63 0.0081 4.03 Flu Nuclear pore complex protein Nup133

Nup155 14 9 495.54 0.4536 1.26 Flu Nuclear pore complex protein Nup155

Nup160 14 10 389.02 0.0110 2.94 Flu Nuclear pore complex protein Nup160

Nup188 5 1 48.3 0.0876 2.04 Flu Nucleoporin NUP188 homolog

Nup205 20 13 568.77 0.0193 3.13 Flu Protein Nup205

Nup210 17 6 420.39 0.0116 1.45 Flu Nuclear pore membrane glycoprotein 210

Nup210 8 0 215.96 --- Nuclear pore membrane glycoprotein 210 (Fragment)

Nup43 1 1 61.31 0.0067 5.64 Flu Nucleoporin Nup43

Nup85 7 2 167.85 0.0032 5.94 Flu Nuclear pore complex protein Nup85

Nup93 7 3 89.34 0.0036 5.16 Flu Nuclear pore complex protein Nup93

Nup98 11 6 223.38 0.0161 3.31 Flu Nuclear pore complex protein Nup98-Nup96

Nvl 10 3 231.95 0.0067 3.07 Flu Nuclear valosin-containing protein-like

Nxf1 6 4 183.89 0.0207 2.64 Flu Nuclear RNA export factor 1

Oat 2 2 61.02 0.2077 3.46 PBS Ornithine aminotransferase, mitochondrial

Obscn 40 12 224.36 0.6457 1.13 PBS Obscurin

Odf2 12 6 319.17 0.4358 1.09 PBS Outer dense fiber protein 2

Odf2 3 2 47.39 0.4222 1.26 Flu Outer dense fiber protein 2 (Fragment)

Odf3 5 2 47.84 0.4560 1.35 PBS Outer dense fiber protein 3

Ogdh 11 7 128.35 0.3404 1.66 PBS 2-oxoglutarate dehydrogenase, mitochondrial

Ogn 7 6 193.58 0.3532 1.44 PBS Mimecan

Olfr1238 4 2 34.03 0.9606 1.07 PBS Olfactory receptor

Osbpl1a 7 1 50.4 0.0159 1.62 Flu Oxysterol-binding protein-related protein 1

P3h1 5 2 42.19 0.5085 1.20 PBS Prolyl 3-hydroxylase 1

P4hb 12 4 219.75 0.0207 11.42 PBS Protein disulfide-isomerase

Pabpc2 6 1 87.06 0.3499 1.56 Flu Polyadenylate-binding protein

Pabpc4 7 1 134.57 0.8948 1.08 PBS Polyadenylate-binding protein

Pag1 3 3 124.32 0.0006 2.73 Flu Phosphoprotein associated with glycosphingolipid-enriched microdomains 1

Paics 4 1 34.27 0.0528 10.13 Flu Multifunctional protein ADE2

Pakap 12 9 365.73 0.6648 1.12 PBS Protein Pakap (Fragment)

Pald1 9 7 280.72 0.0413 1.75 Flu Paladin

Palld 13 3 152.03 0.1908 1.84 Flu Palladin

Palld 4 1 41.82 0.0190 2.82 Flu Palladin (Fragment)

Pank2 3 2 13.13 0.4671 1.30 PBS Pantothenate kinase 2 (Hallervorden-Spatz syndrome)

Papln 7 4 79.98 0.7704 1.09 Flu Papilin

Parg 10 6 85.5 0.5624 1.12 PBS Poly(ADP-ribose) glycohydrolase

Parva 7 3 107.57 0.9039 1.05 PBS Alpha-parvin

Parvb 5 2 60.04 0.1271 1.55 PBS Beta-parvin

Pcbp1 9 6 334.41 0.0248 2.01 Flu Poly(rC)-binding protein 1

Pcbp2 7 4 127.08 0.4595 1.30 PBS Poly(rC)-binding protein 2

Pcca 5 3 31.1 0.4968 1.21 PBS Propionyl-CoA carboxylase alpha chain, mitochondrial

Pcdhgc3 3 2 48.11 0.9730 1.04 PBS Protein Pcdhgc3

Pcnt 34 13 403.77 0.0128 1.95 PBS Pericentrin

Pdcd11 16 8 91.86 0.8220 1.33 Flu Protein RRP5 homolog

Pdcd6ip 12 8 388.49 0.1384 1.45 Flu Programmed cell death 6-interacting protein

Pde4d 3 0 45.97 --- cAMP-specific 3',5'-cyclic phosphodiesterase 4D (Fragment)

Pde8a 6 2 34.19 0.3453 1.32 Flu High affinity cAMP-specific and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8A

Pde8b 4 1 39.12 0.6825 1.22 Flu High affinity cAMP-specific and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8B (Fragment)

Pdgfrb 6 4 90.86 0.0406 1.76 Flu Platelet-derived growth factor receptor beta

Pdia3 5 4 134.93 0.4033 1.58 PBS Protein disulfide-isomerase A3

Pdia6 3 0 133.15 --- Protein disulfide-isomerase A6

Pdlim2 4 2 110.81 0.0047 2.44 Flu PDZ and LIM domain protein 2

Pdlim7 9 4 129.59 0.7543 1.13 PBS PDZ and LIM domain protein 7

Peak1 8 2 104.75 0.0451 4.67 Flu Pseudopodium-enriched atypical kinase 1

Pecam1 3 2 62.05 0.5257 1.71 PBS Platelet endothelial cell adhesion molecule

Pef1 3 1 32.63 0.2908 1.03 Flu Peflin

Pes1 6 2 71.46 0.0591 3.39 Flu Pescadillo homolog

Pfkl 8 4 151.54 0.0154 1.95 PBS ATP-dependent 6-phosphofructokinase, liver type

Pfkp 7 2 126.3 0.3904 1.48 Flu ATP-dependent 6-phosphofructokinase, platelet type

Pfn1 4 4 137.28 0.2472 2.35 PBS Profilin-1

Pgm5 6 3 53.88 0.3897 1.29 PBS Phosphoglucomutase-like protein 5

Phb 4 2 164.92 0.2600 3.51 PBS Prohibitin

Phb2 5 2 138.37 0.4291 1.43 PBS Prohibitin-2

Phb2 4 0 44.47 --- Prohibitin-2 (Fragment)

Phf2 11 3 72.1 0.8623 1.00 PBS Lysine-specific demethylase PHF2

Phip 6 2 79.52 0.8313 4.74 Flu PH-interacting protein

Phldb2 11 4 150.81 0.0161 2.75 Flu Pleckstrin homology-like domain family B member 2

Pi15 3 1 106.14 0.1888 1.63 Flu Peptidase inhibitor 15

Pik3c2g 7 1 62.65 0.0719 1.45 PBS Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit gamma

Pkd2 12 7 124.36 0.4886 1.20 PBS Polycystin-2

Pklr 3 0 46.56 --- Pyruvate kinase

Pkm 19 13 712.38 0.3299 1.56 PBS Pyruvate kinase PKM

Pkp2 12 5 220.04 0.0245 1.74 Flu Plakophilin 2

Plaur 3 2 95.28 0.6936 1.09 PBS Urokinase plasminogen activator surface receptor

Plcd3 2 1 25.34 0.9672 1.49 Flu 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-3

Plcg1 3 1 73.65 0.0081 3.76 Flu 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1

Plec 358 141 16774.92 0.9632 1.02 PBS Plectin

Plec 123 1 5849.81 0.4337 1.38 PBS Plectin (Fragment)

Plg 16 9 300.45 0.0053 5.01 Flu Plasminogen

Plgrkt 4 1 32.77 0.0012 10.49 Flu Plasminogen receptor (KT)

Plk1 7 1 84.12 0.1146 2.01 PBS Serine/threonine-protein kinase PLK1

Pls3 9 3 110.86 0.0833 1.58 PBS Plastin-3

Plscr1 1 1 28.26 0.7669 1.26 Flu Phospholipid scramblase 1

Plscr3 2 2 21.79 0.8018 1.13 PBS Phospholipid scramblase 3

Plvap 10 2 173.28 0.2420 1.28 PBS Plasmalemma vesicle associated protein

Plxdc2 3 2 51.17 0.0505 2.99 PBS Plexin domain-containing protein 2

Pml 23 2 899.44 0.0026 5.75 Flu Protein PML

Pml 23 0 718.9 --- Protein PML (Fragment)

Pnpla6 4 2 60.24 0.2340 1.41 Flu Neuropathy target esterase

Poc5 4 3 96.14 0.4745 1.04 Flu Centrosomal protein POC5

Pof1b 6 2 115.27 0.2765 1.22 Flu Protein POF1B

Polr2b 6 2 106.86 0.7025 1.49 PBS DNA-directed RNA polymerase II subunit RPB2

Pom121 10 5 88.09 0.0231 1.88 PBS Nuclear envelope pore membrane protein POM 121

Pon1 4 2 50.07 0.1715 1.66 Flu Serum paraoxonase/arylesterase 1

Postn 53 36 2273.16 0.8302 1.04 PBS Periostin

Postn 8 1 279.36 0.3662 1.37 PBS Periostin (Fragment)

Ppap2b 5 4 63.34 0.0048 1.98 PBS Lipid phosphate phosphohydrolase 3

Ppfibp1 7 3 157.76 0.8526 1.02 Flu Liprin-beta-1

Ppfibp2 8 3 110.56 0.0130 1.42 PBS Liprin-beta-2

Ppia 4 2 108.4 0.1607 4.89 PBS Peptidyl-prolyl cis-trans isomerase A

Ppic 3 1 89.65 0.0339 2.32 Flu Peptidyl-prolyl cis-trans isomerase C

Ppl 29 1 560.4 0.0113 1.71 PBS Periplakin

Ppl 29 0 513.5 --- Periplakin

Ppp1cc 4 3 57.56 0.1380 1.62 Flu Serine/threonine-protein phosphatase PP1-gamma catalytic subunit

Ppp1r12a 8 1 98.14 0.9116 1.36 Flu Protein phosphatase 1 regulatory subunit 12A

Ppp2ca 2 1 32.64 0.4084 1.70 PBS Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform

Ppp2r1a 5 1 127.09 0.3220 1.47 PBS Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform

Ppt2 5 1 23.39 0.5758 1.00 Flu Lysosomal thioesterase PPT2 (Fragment)

Prdx1 13 7 304.1 0.0049 1.95 Flu Peroxiredoxin-1 (Fragment)

Prdx2 2 1 45.16 0.3243 3.15 PBS Peroxiredoxin-2

Prdx4 3 1 90.63 0.3849 2.31 PBS Peroxiredoxin-4 (Fragment)

Prdx6 5 4 200.02 0.1548 2.34 PBS Peroxiredoxin-6

Prelp 23 17 858.36 0.2360 1.33 Flu Prolargin

Prg2 4 4 275.4 0.0638 1.32 Flu Bone marrow proteoglycan

Prg3 1 1 33.35 0.0509 1.66 Flu Proteoglycan 3

Prg4 22 7 137 0.3120 1.45 PBS Proteoglycan 4

Prkacb 5 2 68.24 0.1190 1.46 PBS cAMP-dependent protein kinase catalytic subunit beta (Fragment)

Prkar2a 5 1 94.08 0.0124 5.55 Flu Protein kinase, cAMP dependent regulatory, type II alpha

Prkar2b 4 3 36.52 0.4391 2.00 PBS cAMP-dependent protein kinase type II-beta regulatory subunit

Prkcd 4 1 73.22 0.0049 3.78 Flu Protein kinase C delta type

Prkch 3 1 72.12 0.6927 1.11 Flu Protein kinase C eta type

Prkd2 3 2 30.72 0.0193 2.44 PBS Serine/threonine-protein kinase D2

Prpf40a 4 0 38.29 --- Pre-mRNA-processing factor 40 homolog A

Prpf4b 9 0 83.63 --- Serine/threonine-protein kinase PRP4 homolog

Prph 19 2 429.78 0.0713 1.51 Flu Peripherin

Prpsap1 4 2 43.66 0.8211 1.13 PBS MCG6846, isoform CRA_c

Prss1 3 1 80.31 0.8017 1.01 PBS MCG124046

Prx 34 11 449.07 0.0201 1.55 PBS Periaxin

Ptbp1 7 4 299.47 0.7029 1.08 Flu Polypyrimidine tract-binding protein 1

Ptdss1 1 1 22.2 0.6118 1.14 PBS Phosphatidylserine synthase 1

Ptgis 4 1 33.43 0.6799 1.01 Flu Prostacyclin synthase

Ptk2 12 3 103.85 0.9353 1.10 PBS Focal adhesion kinase 1

Ptk7 8 3 57.41 0.5560 2.93 Flu Inactive tyrosine-protein kinase 7

Ptpn1 4 2 126.08 0.0017 5.11 Flu Tyrosine-protein phosphatase non-receptor type 1

Ptrf 20 11 1000.12 0.0929 1.63 PBS Polymerase I and transcript release factor

Pura 1 1 32.85 0.1052 1.22 Flu Transcriptional activator protein Pur-alpha

Pwp2 4 1 41.85 0.0330 2.34 Flu Periodic tryptophan protein 2 homolog

Pxdn 20 11 554.85 0.0639 1.35 Flu Peroxidasin homolog

Pxn 6 1 107.22 0.8149 1.33 Flu Paxillin

Pycrl 3 2 38.45 0.7239 1.28 PBS Pyrroline-5-carboxylate reductase 3

Pygb 4 1 37.26 0.0526 2.48 Flu Glycogen phosphorylase, brain form

Rab1 9 2 287.6 0.0496 3.30 Flu RAB1, member RAS oncogene family, isoform CRA_a

Rab10 4 1 172.5 0.2109 3.07 Flu RAB10, member RAS oncogene family

Rab11b 3 3 71.68 0.3184 1.44 PBS Ras-related protein Rab-11B (Fragment)

Rab13 2 0 51.22 --- Ras-related protein Rab-13

Rab14 7 4 350.4 0.0037 3.18 Flu Ras-related protein Rab-14

Rab18 5 2 106.43 0.0063 2.48 Flu RAB18, member RAS oncogene family, isoform CRA_a

Rab1b 5 1 222.85 0.0373 3.42 Flu RAB1B, member RAS oncogene family, isoform CRA_c

Rab2b 3 0 121.25 --- RAB2B, member RAS oncogene family, isoform CRA_a

Rab3b 3 1 69.79 0.8305 1.18 PBS Ras-related protein Rab-3B

Rab4b 2 0 126.73 --- Ras-related protein Rab-4B

Rab5c 5 5 203.18 0.0776 1.54 Flu RAB5C, member RAS oncogene family, isoform CRA_a

Rab7 4 0 162.4 --- MCG130610

Rab8b 4 1 119.64 0.5808 1.22 Flu RAB8B, member RAS oncogene family

Rac1 8 3 202.71 0.1627 1.27 Flu Ras-related C3 botulinum toxin substrate 1

Rac2 6 1 160.85 0.0031 5.68 Flu Ras-related C3 botulinum toxin substrate 2

Rac3 6 0 140.9 --- RAS-related C3 botulinum substrate 3

Rad21 3 2 82.43 0.0032 2.11 Flu Double-strand-break repair protein rad21 homolog

Rai14 27 16 766.18 0.7498 1.06 Flu Ankycorbin

Ralgapa2 3 0 23.32 --- Ral GTPase-activating protein subunit alpha-2 (Fragment)

Ranbp2 33 17 546.81 0.0160 2.47 Flu E3 SUMO-protein ligase RanBP2

Rap1a 8 1 270.85 0.2399 1.65 PBS Ras-related protein Rap-1A

Rap1a 6 0 174.81 --- MCG10748, isoform CRA_b

Rap1b 10 2 267.62 0.4343 1.34 PBS Ras-related protein Rap-1b

Rars 4 1 72.91 0.3002 1.39 Flu Arginine--tRNA ligase, cytoplasmic

Rasal3 9 2 112.19 0.9483 1.04 PBS MCG125477, isoform CRA_a

Rasip1 21 16 692.04 0.0220 1.60 Flu Ras-interacting protein 1

Rasl2-9 4 1 99.72 0.0113 10.05 Flu GTP-binding nuclear protein Ran, testis-specific isoform

Rbbp7 3 0 53.96 --- Histone-binding protein RBBP7

Rbm14 3 1 129.2 0.0572 16.19 Flu MCG8382, isoform CRA_c

Rbm39 7 3 212.61 0.0288 3.38 Flu RNA-binding protein 39

Rbmx 9 3 103.09 0.0167 3.04 Flu RNA-binding motif protein, X chromosome

Rbmxl2 7 2 71.59 0.0274 1.74 Flu Protein Rbmxl2

Rdx 11 0 273.85 --- Radixin

Reck 15 10 626.16 0.4434 1.22 PBS Reversion-inducing cysteine-rich protein with Kazal motifs

Rer1 1 1 48.77 0.9685 1.07 Flu Protein RER1

Rftn1 5 1 52.6 0.0100 3.68 Flu Raftlin

Rgs18 1 1 30.27 0.0115 3.84 Flu Regulator of G-protein signaling 18

Rhoa 2 0 69.8 --- Transforming protein RhoA

Rhog 6 1 179.66 0.3965 1.71 Flu Ras homolog gene family, member G

Rhot1 7 4 149.96 0.0753 1.43 Flu Mitochondrial Rho GTPase 1

Rhot1 9 0 90.88 --- Mitochondrial Rho GTPase 1 (Fragment)

Rmdn2 6 4 138.77 0.0420 1.64 Flu Regulator of microtubule dynamics protein 2

Rmdn3 4 3 147.17 0.0075 2.19 Flu Regulator of microtubule dynamics protein 3

Rnf112 4 1 37.62 0.9051 1.06 PBS RING finger protein 112

Rnf213 24 8 118.19 0.3652 1.24 PBS E3 ubiquitin-protein ligase RNF213

Rp2 4 1 123.96 0.3455 1.32 Flu Protein XRP2

Rpap1 5 1 37.81 0.1066 1.54 PBS RNA polymerase II-associated protein 1

Rpl10 13 6 336.98 0.0149 3.18 Flu 60S ribosomal protein L10

Rpl10a 9 0 203.51 --- 60S ribosomal protein L10a

Rpl10a 7 1 201.51 0.7621 1.11 Flu Ribosomal protein

Rpl12 6 2 80.22 0.3176 2.22 Flu 60S ribosomal protein L12

Rpl13 9 6 302.89 0.0016 3.79 Flu 60S ribosomal protein L13

Rpl13a 6 1 216.65 0.0159 2.86 Flu 60S ribosomal protein L13a

Rpl13a 6 0 135.44 --- 60S ribosomal protein L13a

Rpl14 5 3 233.52 0.0015 3.40 Flu 60S ribosomal protein L14

Rpl15 6 2 157.52 0.0314 2.23 Flu Ribosomal protein L15

Rpl17 4 3 36.01 0.1302 1.60 Flu 60S ribosomal protein L17

Rpl18 10 4 276.3 0.1212 1.84 Flu 60S ribosomal protein L18

Rpl18 4 0 52.93 --- 60S ribosomal protein L18 (Fragment)

Rpl18a 5 2 188.48 0.0143 2.04 Flu 60S ribosomal protein L18a

Rpl19 2 1 146.02 0.0119 2.53 Flu Ribosomal protein L19

Rpl21 3 1 40.74 0.0023 2.26 Flu 60S ribosomal protein L21

Rpl22 1 1 33.54 0.1642 1.78 Flu 60S ribosomal protein L22

Rpl23 6 2 198.75 0.0351 2.10 Flu 60S ribosomal protein L23

Rpl23a 4 2 27.85 0.0015 4.52 Flu 60S ribosomal protein L23a

Rpl24 5 2 185.27 0.0073 2.60 Flu 60S ribosomal protein L24

Rpl26 2 0 35.85 --- 60S ribosomal protein L26

Rpl27 3 0 39.92 --- 60S ribosomal protein L27

Rpl27a 3 3 75.52 0.0021 2.59 Flu 60S ribosomal protein L27a

Rpl28 3 3 78.42 0.1434 1.75 Flu 60S ribosomal protein L28

Rpl3 15 9 413.16 0.0004 2.16 Flu 60S ribosomal protein L3

Rpl30 4 2 142.65 0.1452 1.58 Flu 60S ribosomal protein L30

Rpl32 4 3 80.92 0.1859 1.33 Flu 60S ribosomal protein L32

Rpl35 2 0 41.41 --- 60S ribosomal protein L35

Rpl35a 3 1 69.68 0.0169 2.78 Flu 60S ribosomal protein L35a

Rpl36 2 2 73.11 0.0882 1.70 Flu 60S ribosomal protein L36

Rpl3l 3 0 55.52 --- Protein Rpl3l

Rpl4 11 9 418.54 0.0248 2.49 Flu 60S ribosomal protein L4

Rpl5 4 2 171.38 0.1911 1.58 Flu 60S ribosomal protein L5

Rpl6 11 7 417.44 0.0059 3.00 Flu 60S ribosomal protein L6

Rpl7 14 7 490.26 0.0605 2.74 Flu 60S ribosomal protein L7

Rpl7a 13 4 438.31 0.0087 2.70 Flu 60S ribosomal protein L7a

Rpl7l1 1 1 39.84 0.0711 5.61 Flu 60S ribosomal protein L7-like 1

Rpl8 5 3 130.56 0.0155 2.10 Flu 60S ribosomal protein L8

Rpl9 2 1 51.07 0.0036 4.36 Flu 60S ribosomal protein L9 (Fragment)

Rplp0 7 7 132.69 0.2335 1.54 Flu 60S acidic ribosomal protein P0

Rpn1 10 8 222.48 0.0775 1.62 Flu Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1

Rpn2 8 6 468.01 0.0193 1.77 Flu Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 2

Rps11 5 2 161.35 0.0092 2.24 Flu 40S ribosomal protein S11

Rps13 6 4 139.47 0.0056 2.78 Flu 40S ribosomal protein S13

Rps15a 8 1 156.42 0.1522 1.81 PBS 40S ribosomal protein S15a

Rps16 6 5 171.86 0.0100 2.32 Flu 40S ribosomal protein S16

Rps2 14 2 400.38 0.4250 2.76 Flu 40S ribosomal protein S2

Rps23 1 1 68.74 0.0021 3.47 Flu 40S ribosomal protein S23

Rps24 2 1 54.81 0.3949 1.59 PBS 40S ribosomal protein S24

Rps25 2 1 54.15 0.0839 2.89 Flu 40S ribosomal protein S25

Rps26 4 2 136.48 0.0027 2.82 Flu 40S ribosomal protein S26

Rps27 1 1 37.3 0.0154 3.41 Flu 40S ribosomal protein S27 (Fragment)

Rps3 17 11 405.08 0.4799 1.29 PBS 40S ribosomal protein S3

Rps3a 8 3 229.87 0.7401 1.03 Flu 40S ribosomal protein S3a

Rps4x 15 11 455.78 0.0068 2.99 Flu 40S ribosomal protein S4, X isoform

Rps5 3 1 74.77 0.0982 3.84 Flu 40S ribosomal protein S5 (Fragment)

Rps6 8 1 235.92 0.0154 5.61 Flu 40S ribosomal protein S6

Rps8 6 4 404.39 0.0031 3.12 Flu 40S ribosomal protein S8

Rps9 14 10 395.33 0.0149 2.36 Flu 40S ribosomal protein S9

Rpsa 3 1 83.33 0.0060 4.23 Flu 40S ribosomal protein SA

Rraga 1 1 49.71 0.0002 8.02 Flu Ras-related GTP-binding protein A

Rras 9 1 310.96 0.3528 1.15 Flu Harvey rat sarcoma oncogene, subgroup R

Rras2 8 3 276.46 0.1236 2.35 Flu Ras-related protein R-Ras2

Rrbp1 23 9 99.98 0.6152 1.18 PBS Ribosome-binding protein 1

Rsl1d1 4 1 43.44 0.1677 4.01 Flu Ribosomal L1 domain-containing protein 1

Rspry1 2 0 36.28 --- RING finger and SPRY domain-containing protein 1

Rtcb 2 1 30.3 0.0593 2.85 Flu tRNA-splicing ligase RtcB homolog

Rtn4rl2 4 1 65.71 0.0986 1.21 PBS Reticulon-4 receptor-like 2 (Fragment)

Rttn 7 2 68.32 0.0981 1.63 Flu Rotatin

Ruvbl1 3 3 68.99 0.0014 4.17 Flu RuvB-like 1

Ruvbl2 7 2 115.12 0.0042 11.41 Flu RuvB-like 2

S100a11 3 3 138.72 0.0099 3.56 Flu Protein S100-A11

Safb 6 0 69.89 --- Scaffold attachment factor B1

Samhd1 6 4 148.95 0.0304 3.81 Flu Deoxynucleoside triphosphate triphosphohydrolase SAMHD1

Samm50 17 9 565.84 0.0042 2.20 Flu Sorting and assembly machinery component 50 homolog

Scaf4 7 4 34.49 0.0200 3.43 Flu Protein Scaf4

Scgb1a1 2 1 31.13 0.3633 1.91 PBS Uteroglobin

Scn7a 19 13 638.64 0.0051 1.68 PBS Sodium channel protein

Scrib 11 4 113.65 0.1512 1.77 Flu Protein scribble homolog

Sdha 2 1 82.22 0.3401 1.89 PBS Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial

Sdpr 9 3 188.27 0.2083 3.46 PBS Serum deprivation-response protein

Sec11a 2 1 28.7 0.3778 9.76 Flu Signal peptidase complex catalytic subunit SEC11

Sec14l3 10 3 60.73 0.0903 2.43 PBS MCG140354

Sec22b 3 2 80.54 0.1115 2.57 Flu Vesicle-trafficking protein SEC22b

Sec23a 3 1 125.3 0.0057 6.52 Flu Protein transport protein Sec23A

Sec23b 8 2 80.73 0.5570 1.22 PBS Protein transport protein Sec23B

Sec24c 12 8 147.99 0.8562 1.09 PBS Protein Sec24c

Sec24d 2 1 46.35 0.0125 14.71 Flu Protein Sec24d

Sec31a 8 5 167.75 0.3856 1.20 Flu Protein transport protein Sec31A

Sec61a1 2 1 29.32 0.0113 191.09 PBS Protein transport protein Sec61 subunit alpha isoform 1

Secisbp2 9 5 62.44 0.0227 1.84 PBS MCG1271

Selenbp1 9 5 276.15 0.0592 1.58 PBS Selenium-binding protein 1

Sema6d 6 2 32.87 0.8385 1.16 Flu Semaphorin-6D

Sema7a 17 11 620.49 0.0239 1.63 Flu Semaphorin-7A

Senp7 10 3 58.77 0.0765 1.32 PBS Sentrin-specific protease 7

Sept11 4 0 57.69 --- Septin-11

Sept2 7 0 163.7 --- Septin-2

Sept2 8 0 109.9 --- Septin-2

Sept7 8 6 184.37 0.6549 1.07 PBS Septin-7

Sept8 7 2 97.93 0.1972 1.50 PBS Septin-8

Serpina1d 9 4 101.81 0.0751 1.56 Flu Alpha-1-antitrypsin 1-4

Serpina1f 2 2 17.19 0.5152 1.21 Flu Alpha-1-antitrypsin 1-6

Serpina3k 7 4 98.03 0.1551 1.61 PBS Serine protease inhibitor A3K

Serpinb1a 3 0 38.45 --- Leukocyte elastase inhibitor A

Serpinb6a 9 2 99.41 0.5376 1.19 Flu Serpin B6

Serpinf2 4 2 111.49 0.0085 4.47 Flu Alpha-2-antiplasmin

Serpinh1 23 17 902.77 0.0010 2.98 Flu Serpin H1

Sf3a1 6 2 49.02 0.3040 1.70 PBS Splicing factor 3A subunit 1

Sf3b3 7 2 50.78 0.0053 6.65 PBS Splicing factor 3B subunit 3

Sfn 2 0 28.7 --- 14-3-3 protein sigma

Sfpq 10 4 56.32 0.2146 1.50 PBS Splicing factor, proline- and glutamine-rich

Sftpa1 7 5 117.71 0.0008 3.66 Flu Pulmonary surfactant-associated protein A

Sftpc 5 3 119.48 0.2116 1.41 Flu Pulmonary surfactant-associated protein C

Sfxn3 2 1 69.86 0.0076 1.47 Flu Sideroflexin-3

Sgcb 2 0 33.05 --- Beta-sarcoglycan

Sgcd 6 2 120.91 0.0809 2.12 PBS Delta-sarcoglycan

Sh3kbp1 4 1 48.51 0.5762 1.14 PBS SH3 domain-containing kinase-binding protein 1

Siglec1 5 4 79.12 0.1137 1.39 Flu Sialic acid binding Ig-like lectin 1, sialoadhesin, isoform CRA_a

Sipa1 10 6 225.08 0.0259 2.57 PBS Signal-induced proliferation-associated protein 1

Slc24a2 3 0 25.46 --- Protein Slc24a2

Slc25a1 5 0 112.76 --- Tricarboxylate transport protein, mitochondrial

Slc25a10 3 3 74.65 0.0064 2.57 Flu Mitochondrial dicarboxylate carrier

Slc25a11 8 1 183.79 0.0695 2.36 PBS Mitochondrial 2-oxoglutarate/malate carrier protein

Slc25a11 2 0 49.31 --- Mitochondrial 2-oxoglutarate/malate carrier protein (Fragment)

Slc25a12 11 4 292.04 0.1718 1.46 Flu Calcium-binding mitochondrial carrier protein Aralar1

Slc25a13 4 0 78.24 --- Calcium-binding mitochondrial carrier protein Aralar2

Slc25a3 6 3 157.04 0.4510 1.44 Flu Phosphate carrier protein, mitochondrial

Slc25a31 4 0 135.34 --- ADP/ATP translocase 4

Slc25a4 16 5 567.39 0.4240 1.15 PBS ADP/ATP translocase 1

Slc25a5 18 5 634.63 0.8720 1.03 PBS ADP/ATP translocase 2

Slc26a10 3 1 49.86 0.4380 9.52 Flu Solute carrier family 26 member 10

Slc34a2 4 2 38.27 0.0564 2.16 PBS Sodium-dependent phosphate transport protein 2B

Slc35b4 1 0 22.62 --- UDP-xylose and UDP-N-acetylglucosamine transporter

Slc4a1 12 7 336.2 0.0382 1.76 PBS Band 3 anion transport protein

Slc51a 2 0 32.98 --- Organic solute transporter subunit alpha

Slc9a3r2 2 1 88.38 0.5750 1.19 PBS Na(+)/H(+) exchange regulatory cofactor NHE-RF2

Slco2a1 3 1 30.75 0.0015 1.82 PBS Solute carrier organic anion transporter family member 2A1

Slmap 11 4 137.43 0.1164 4.84 PBS Sarcolemmal membrane-associated protein

Smarca1 4 1 92.62 0.0376 1.99 PBS Probable global transcription activator SNF2L1 (Fragment)

Smarca5 21 9 463.55 0.2088 1.37 Flu SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5

Smarcc2 9 2 71.54 0.6955 2.01 Flu SWI/SNF complex subunit SMARCC2

Smc1a 26 8 351.28 0.5724 1.17 Flu Structural maintenance of chromosomes protein 1A

Smc3 27 10 393.13 0.1235 1.42 Flu Structural maintenance of chromosomes protein

Smchd1 25 9 223.19 0.7941 1.00 PBS Structural maintenance of chromosomes flexible hinge domain-containing protein 1

Smpd4 6 2 193.91 0.0554 1.65 PBS Sphingomyelin phosphodiesterase 4

Smpd4 5 0 140.68 --- Sphingomyelin phosphodiesterase 4

Smpdl3b 2 1 77.52 0.0131 2.91 Flu Acid sphingomyelinase-like phosphodiesterase 3b

Smtn 12 7 218.71 0.0020 2.21 PBS Smoothelin

Smtn 3 0 139.31 --- Smoothelin

Snap91 6 2 90.83 0.0665 1.96 Flu Clathrin coat assembly protein AP180

Snd1 5 1 33.56 0.3839 4.85 PBS Staphylococcal nuclease domain-containing protein 1

Snrnp200 7 1 82.63 0.6151 1.27 Flu U5 small nuclear ribonucleoprotein 200 kDa helicase

Snrnp40 1 1 30.79 0.4743 1.78 PBS U5 small nuclear ribonucleoprotein 40 kDa protein

Snrnp48 2 0 28.65 --- U11/U12 small nuclear ribonucleoprotein 48 kDa protein

Snrpe 1 0 28.28 --- Small nuclear ribonucleoprotein E

Sntb2 17 9 584.05 0.1207 1.24 PBS Beta-2-syntrophin

Soat1 3 2 99.42 0.2189 2.04 Flu Sterol O-acyltransferase 1

Son 11 4 130.43 0.0065 3.03 Flu Protein SON

Sorbs1 13 2 229.49 0.3499 1.52 Flu Sorbin and SH3 domain-containing protein 1

Sorbs1 13 0 179.72 --- Sorbin and SH3 domain-containing protein 1

Sorbs1 10 0 153.31 --- Sorbin and SH3 domain-containing protein 1

Sorbs3 5 4 93.64 0.8802 1.15 PBS Vinexin

Sp100 12 0 299.49 --- Nuclear autoantigen Sp-100

Sp100 9 0 258.86 --- Nuclear autoantigen Sp-100

Sp100 7 0 210.41 --- Nuclear autoantigen Sp-100 (Fragment)

Sp100 7 0 119.17 --- Nuclear autoantigen Sp-100 (Fragment)

Sp110 2 0 92.86 --- Sp110 nuclear body protein

Spata18 7 4 251.03 0.5229 1.55 PBS Mitochondria-eating protein

Spata5 6 0 52.04 --- Spermatogenesis-associated protein 5

Spcs3 1 1 50.62 0.0020 4.82 Flu Signal peptidase complex subunit 3

Specc1l 13 4 140.13 0.4492 1.18 PBS Cytospin-A

Spock2 4 0 59.86 --- Testican-2

Spon1 7 0 48.6 --- Spondin-1

Spta1 37 21 1063.61 0.0481 1.73 PBS Spectrin alpha chain, erythrocytic 1

Sptan1 175 0 7767.6 --- Spectrin alpha chain, non-erythrocytic 1

Sptan1 175 1 7749.48 0.4451 1.31 PBS Spectrin alpha chain, non-erythrocytic 1

Sptan1 173 0 7699.07 --- Spectrin alpha chain, non-erythrocytic 1

Sptb 42 22 1439.17 0.0888 1.41 PBS Spectrin beta chain, erythrocytic

Sptbn1 156 97 7863.89 0.2769 1.26 PBS Spectrin beta chain, non-erythrocytic 1

Sptbn2 24 4 541.36 0.0960 1.87 Flu Protein Sptbn2

Sptbn4 13 3 225.25 0.0053 2.96 PBS Protein Sptbn4

Sqrdl 4 2 27.98 0.0629 2.79 Flu Sulfide:quinone oxidoreductase, mitochondrial

Srbd1 9 4 76.26 0.3299 1.44 PBS S1 RNA-binding domain-containing protein 1

Src 9 2 246.16 0.4515 1.25 PBS Tyrosine-protein kinase

Sri 7 2 78.12 0.1491 9.04 Flu Sorcin

Srp68 5 0 37.7 --- Signal recognition particle subunit SRP68

Srpx 3 1 46.12 0.3012 2.26 PBS Sushi-repeat-containing protein SRPX

Srsf3 3 1 75.63 0.2777 1.15 PBS Serine/arginine-rich splicing factor 3

Srsf5 5 3 69.26 0.1208 1.65 Flu Serine/arginine-rich splicing factor 5

Srsf7 6 3 82.88 0.2671 1.23 PBS Serine/arginine-rich splicing factor 7

Ssb 3 1 92.54 0.1437 5.12 PBS Lupus La protein homolog

Ssc4d 4 1 36.37 0.6599 1.27 PBS Scavenger receptor cysteine-rich domain-containing group B protein

Ssr3 1 1 80.85 0.8820 1.02 Flu Translocon-associated protein subunit gamma

Ssr4 1 1 58.37 0.0248 2.36 Flu Translocon-associated protein subunit delta

St3gal6 2 1 44.72 0.6374 1.22 PBS Type 2 lactosamine alpha-2,3-sialyltransferase

St5 19 7 144.3 0.0998 1.30 Flu Suppression of tumorigenicity 5 protein

Stab1 7 2 138.34 0.4862 1.09 Flu Stabilin-1

Stat1 12 9 382.37 0.3491 1.39 Flu Signal transducer and activator of transcription

Stat3 2 1 138.72 0.0423 3.22 Flu Signal transducer and activator of transcription 3

Stk25 5 0 26.04 --- Serine/threonine-protein kinase 25

Stom 9 4 432.25 0.0531 2.23 Flu Erythrocyte band 7 integral membrane protein

Stoml2 8 5 175.2 0.0051 3.48 Flu Stomatin-like protein 2, mitochondrial

Stoml3 5 1 77.15 0.5082 1.22 PBS Stomatin (Epb7.2)-like 3

Stx5a 3 1 39.67 0.0013 8.53 Flu Syntaxin-5

Stxbp2 11 4 95.65 0.8246 1.04 PBS Syntaxin-binding protein 2 (Fragment)

Sucla2 6 4 50.44 0.2336 1.25 Flu Succinyl-CoA ligase [ADP-forming] subunit beta, mitochondrial

Sumo3 2 1 57.84 0.0764 2.08 Flu SMT3 suppressor of mif two 3 homolog 3 (Yeast), isoform CRA_c

Sun1 27 14 949.71 0.8545 1.05 PBS SUN domain-containing protein 1

Sun1 10 1 236.3 0.7044 1.58 PBS SUN domain-containing protein 1 (Fragment)

Sun2 30 16 1675.96 0.0637 1.76 Flu SUN domain-containing protein 2

Surf4 3 1 111.47 0.3499 1.42 Flu Surfeit locus protein 4

Surf4 4 1 85.18 0.7732 1.16 PBS Surfeit locus protein 4 (Fragment)

Svep1 9 3 93.14 0.0002 4.30 PBS Sushi, von Willebrand factor type A, EGF and pentraxin domain-containing protein 1

Svil 31 1 853.44 0.1090 5.68 Flu Supervillin

Svil 30 0 784.15 --- Archvillin

Svil 3 2 46.61 0.1138 1.58 Flu Supervillin (Fragment)

Sync 2 0 38.55 --- Syncoilin

Syncrip 4 2 55.9 0.3980 1.51 PBS Heterogeneous nuclear ribonucleoprotein Q

Syne1 109 56 2746.97 0.7839 1.03 Flu Nesprin-1

Syne2 87 33 2181.95 0.0688 1.50 Flu Nesprin-2

Syne2 22 1 784.86 0.9896 1.00 Flu Nesprin-2 (Fragment)

Syne3 14 4 420.72 0.0007 2.62 Flu Nesprin-3

Synm 17 5 234.88 0.5120 1.08 Flu Synemin

Tada2b 2 1 23.98 0.7377 1.07 PBS Protein Tada2b

Tap1 9 5 160.93 0.0157 3.44 Flu Antigen peptide transporter 1

Tap2 8 5 312.69 0.0576 2.81 Flu Antigen peptide transporter 2

Tapbp 3 1 85.3 0.0085 10.84 Flu Tapasin

Tardbp 4 1 156.21 0.0216 4.21 Flu TAR DNA-binding protein 43

Tardbp 4 0 87.75 --- TAR DNA-binding protein 43 (Fragment)

Tbc1d31 7 2 45.96 0.6933 1.06 PBS TBC1 domain family member 31

Tbck 3 1 34.41 0.5320 1.57 PBS TBC domain-containing protein kinase-like protein

Tbl3 3 1 112.46 0.0364 2.60 Flu Transducin beta-like protein 3

Tcaf2 2 1 28.04 0.5265 1.26 Flu TRPM8 channel-associated factor 2

Tcf12 2 0 18.49 --- Transcription factor 12 (Fragment)

Tcirg1 11 6 336.54 0.0032 2.29 Flu V-type proton ATPase subunit a

Tcirg1 2 1 85.1 0.4048 1.48 PBS V-type proton ATPase subunit a (Fragment)

Tcp1 10 5 342.69 0.7328 1.08 Flu T-complex protein 1 subunit alpha

Tdrkh 3 1 27.78 0.4682 1.40 PBS Tudor and KH domain-containing protein

Tecr 7 2 109.47 0.2017 1.28 Flu Very-long-chain enoyl-CoA reductase

Tenm2 6 1 36.72 0.8299 2.42 PBS Teneurin-2

Tgfb1i1 6 4 187.35 0.7380 1.12 PBS Transforming growth factor beta-1-induced transcript 1 protein

Tgfbi 27 17 863.86 0.0274 2.84 Flu Transforming growth factor, beta induced

Tgm1 9 5 229.86 0.0010 5.66 Flu Protein-glutamine gamma-glutamyltransferase K

Tgm2 52 34 2789.5 0.0045 1.74 Flu Protein-glutamine gamma-glutamyltransferase 2

Tgm5 4 2 43.76 0.3428 1.49 PBS Protein-glutamine gamma-glutamyltransferase 5

Thbs1 7 5 163.71 0.0059 1.95 Flu Thrombospondin 1

Thy1 3 1 193.55 0.0003 4.76 Flu Thy-1 membrane glycoprotein

Timp3 3 3 83.64 0.1686 1.49 Flu Metalloproteinase inhibitor 3

Tinag 8 5 244 0.4306 1.22 PBS Protein Tinag

Tinagl1 12 10 533.52 0.0608 1.90 Flu Tubulointerstitial nephritis antigen-like

Tinagl1 2 1 75.89 0.0397 4.06 PBS Tubulointerstitial nephritis antigen-like (Fragment)

Tjp1 10 5 182.02 0.0757 1.62 Flu Tight junction protein ZO-1

Tjp2 17 5 119.83 0.3151 1.28 Flu Tight junction protein ZO-2

Tkt 7 3 60.15 0.6468 1.13 PBS Transketolase

Tln1 105 73 5052.07 0.4662 1.12 PBS Talin-1

Tln2 32 11 1115.49 0.0105 1.50 PBS Talin-2

Tmco1 3 1 26.65 0.1588 2.65 Flu Transmembrane and coiled-coil domain-containing protein 1 (Fragment)

Tmed10 2 2 78.45 0.2544 1.62 Flu Transmembrane emp24 domain-containing protein 10

Tmed9 4 1 54.84 0.0039 3.84 Flu Tmed9 protein

Tmem173 3 2 152.89 0.0081 99.50 Flu Stimulator of interferon genes protein

Tmem176a 1 0 40.25 --- Transmembrane protein 176A

Tmem201 3 2 50.03 0.7919 2.47 Flu Transmembrane protein 201

Tmem205 2 2 18.18 0.2913 1.22 PBS Transmembrane protein 205

Tmem209 4 4 154.64 0.0053 9.24 Flu Transmembrane protein 209

Tmem33 1 0 80.93 --- Transmembrane protein 33

Tmem43 21 16 808.76 0.3436 1.27 Flu Transmembrane protein 43

Tmod1 5 4 109.09 0.5609 1.12 PBS Tropomodulin-1

Tmod3 4 1 140.9 0.0414 2.01 Flu Tropomodulin-3

Tmod4 3 1 32.48 0.1979 2.91 PBS Tropomodulin 4

Tmpo 5 4 100.92 0.4925 1.15 Flu Lamina-associated polypeptide 2, isoforms beta/delta/epsilon/gamma

Tmx2 2 1 41.37 0.0189 5.23 Flu Thioredoxin-related transmembrane protein 2

Tnc 25 13 704.63 0.0003 8.65 Flu Tenascin

Tnks1bp1 11 3 182.84 0.3474 3.29 Flu 182 kDa tankyrase-1-binding protein

Tnnt2 4 1 42.91 0.1879 10.18 PBS Troponin T, cardiac muscle

Tnpo2 2 2 58.53 0.9315 1.01 Flu Transportin-2

Tns1 28 0 636.89 --- Protein Tns1

Tns1 27 0 601.71 --- Protein Tns1 (Fragment)

Tns1 3 0 44.56 --- Protein Tns1 (Fragment)

Tns2 21 13 550.06 0.3263 1.38 PBS Tensin-2

Tns3 16 6 229.13 0.9171 1.10 Flu Tensin-3

Tnxb 36 24 692.46 0.2943 1.41 PBS Protein Tnxb

Tomm22 3 1 70.82 0.1085 6.64 PBS Mitochondrial import receptor subunit TOM22 homolog

Tomm40 6 6 173.34 0.0068 4.62 Flu Mitochondrial import receptor subunit TOM40 homolog

Top2a 13 2 199.29 0.2204 1.20 PBS DNA topoisomerase 2-alpha

Top2b 38 15 919.77 0.1163 1.48 Flu DNA topoisomerase 2-beta

Top2b 6 0 84.18 --- DNA topoisomerase 2-beta (Fragment)

Tor1aip1 4 2 129.75 0.0296 2.39 Flu Torsin-1A-interacting protein 1

Tpi1 2 2 44.18 0.1891 2.50 PBS Triosephosphate isomerase

Tpm1 6 2 120.09 0.4399 1.26 Flu Tropomyosin 1, alpha, isoform CRA_k

Tpm2 5 1 60.81 0.2553 2.09 Flu Tropomyosin beta chain

Tpm3 9 1 105.91 0.4487 2.55 PBS Tropomyosin alpha-3 chain

Tpm3-rs7 8 1 138.13 0.8871 1.04 PBS Protein Tpm3-rs7

Tpp1 2 1 35.79 0.3877 1.71 Flu Tripeptidyl-peptidase 1

Tpr 8 0 69.47 --- Nucleoprotein TPR (Fragment)

Tra2b 2 2 80.02 0.8584 1.91 PBS Transformer-2 protein homolog beta

Trappc6a 2 1 19.49 0.4671 1.63 PBS Trafficking protein particle complex subunit 6A

Trim28 10 8 275.34 0.9516 1.03 Flu Transcription intermediary factor 1-beta

Trim3 7 0 77.92 --- Tripartite motif-containing protein 3

Trim34b 3 1 44.41 0.1122 2.56 Flu Protein Trim34b

Trip12 13 5 131.25 0.0528 1.97 Flu E3 ubiquitin-protein ligase TRIP12

Try10 5 2 76.06 0.2087 1.28 PBS MCG140784

Tsga10 6 1 206.39 0.0022 6.97 PBS Testis-specific gene 10 protein

Tspan9 2 1 42.54 0.7892 1.05 PBS Tetraspanin (Fragment)

Tspo 1 1 18.98 0.4450 35.24 Flu Translocator protein

Ttn 486 7 8487.13 0.8181 1.01 Flu Titin

Ttn 459 0 8258.19 --- Titin

Ttn 101 0 577.43 --- Titin (Fragment)

Tuba1a 27 1 1300.07 0.1499 3.61 PBS Tubulin alpha-1A chain

Tuba1b 27 0 1336.85 --- Tubulin alpha-1B chain

Tuba1c 25 0 1252.57 --- Tubulin alpha-1C chain

Tuba4a 19 0 886.3 --- Tubulin alpha-4A chain (Fragment)

Tubb1 7 0 198.29 --- Tubulin beta-1 chain

Tubb2b 30 1 1437.36 0.1376 3.99 Flu MCG1395

Tubb3 20 0 923.34 --- Tubulin beta-3 chain

Tubb4a 28 0 1315.53 --- Tubulin beta-4A chain

Tubb4b 36 1 1768.45 0.0541 1.54 Flu Tubulin beta-4B chain

Tubb5 34 6 1714.47 0.0130 2.63 Flu Tubulin beta-5 chain

Tubb6 19 0 866.12 --- Tubulin beta-6 chain

Tufm 3 2 53.04 0.0337 2.09 Flu Elongation factor Tu, mitochondrial

Twf2 1 0 7.24 --- Twinfilin-2

Tyro3 3 2 15.19 0.0487 4.07 PBS Tyrosine-protein kinase receptor TYRO3

U2af1 2 2 47.02 0.1722 3.05 PBS Splicing factor U2AF 35 kDa subunit

U2af2 3 2 76.49 0.2055 1.31 Flu Splicing factor U2AF 65 kDa subunit

Uaca 9 4 185.03 0.0876 1.95 PBS Uveal autoantigen with coiled-coil domains and ankyrin repeats

Uba1 5 1 88.7 0.1790 1.31 Flu Ubiquitin-like modifier-activating enzyme 1

Ubxn11 6 1 36.35 0.9383 1.18 PBS UBX domain-containing protein 11

Ugt1a8 2 0 34.04 --- UDP-glucuronosyltransferase

Upf1 8 4 73.83 0.0950 1.57 Flu Regulator of nonsense transcripts 1

Uqcrc1 3 2 68.04 0.2739 1.90 PBS Cytochrome b-c1 complex subunit 1, mitochondrial

Uqcrc2 2 1 65.23 0.0935 1.88 Flu Cytochrome b-c1 complex subunit 2, mitochondrial

Usp49 4 1 59.48 0.0828 1.99 Flu Ubiquitin carboxyl-terminal hydrolase 49

Usp7 9 1 77.85 0.0413 3.46 Flu Ubiquitin carboxyl-terminal hydrolase

Uspl1 4 1 47.66 0.0138 2.10 Flu SUMO-specific isopeptidase USPL1

Utrn 95 53 3265.62 0.7218 1.05 Flu Protein Utrn

Vamp2 1 1 26.36 0.7975 1.07 Flu Vesicle-associated membrane protein 2

Vapb 7 2 70.42 0.3273 1.53 PBS Vesicle-associated membrane protein-associated protein B

Vars 6 3 53.86 0.8205 1.32 Flu Valine--tRNA ligase

Vav1 8 3 173.92 0.6680 1.14 Flu Proto-oncogene vav

Vcam1 7 1 74.56 0.5366 1.41 Flu Vascular cell adhesion protein 1

Vcan 10 2 106.45 0.6691 2.11 Flu Versican core protein

Vcl 57 33 1642.01 0.0251 1.55 PBS Vinculin

Vcp 10 6 403.32 0.6198 1.21 Flu Transitional endoplasmic reticulum ATPase

Vdac1 10 8 571.22 0.5081 1.17 Flu Voltage-dependent anion-selective channel protein 1

Vdac2 11 7 620.06 0.0134 1.65 Flu Voltage-dependent anion-selective channel protein 2

Vdac3 9 7 355.66 0.0151 1.97 Flu Voltage-dependent anion-selective channel protein 3

Vill 4 2 105.79 0.0749 2.69 Flu Villin-like protein

Vim 73 47 4130.91 0.0013 2.75 Flu Vimentin

Vnn1 7 5 227.51 0.0418 4.73 Flu Pantetheinase

Vps35 4 2 141.5 0.0200 2.42 Flu Vacuolar protein sorting 35, isoform CRA_a

Vps8 4 1 20.19 0.0395 1.65 Flu Vacuolar protein sorting-associated protein 8 homolog

Vtn 5 4 202.51 0.0022 3.07 Flu Vitronectin

Vwa5a 5 3 49.69 0.0788 1.70 Flu von Willebrand factor A domain-containing protein 5A

Vwf 52 31 1516.03 0.4510 1.12 PBS von Willebrand factor

Vwf 6 0 125.68 --- von Willebrand factor (Fragment)

Vwf 3 0 35.87 --- von Willebrand factor

Wdr19 5 1 65.73 0.2263 1.41 PBS WD repeat-containing protein 19

Wdr36 4 1 43.79 0.1175 2.25 Flu Protein Wdr36

Wfikkn2 3 0 45.49 --- WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 2

Wisp2 1 1 17.78 0.3003 1.32 Flu WNT1 inducible signaling pathway protein 2, isoform CRA_a

Wrnip1 9 2 50.87 0.1814 9.98 Flu ATPase WRNIP1

Wwp1 9 3 256.08 0.1051 1.45 PBS NEDD4-like E3 ubiquitin-protein ligase WWP1

Wwp2 6 3 67.81 0.6874 1.09 Flu E3 ubiquitin-protein ligase

Xdh 8 3 57.45 0.1822 2.28 PBS Xanthine dehydrogenase/oxidase

Xpnpep2 17 12 799.34 0.4815 1.28 Flu Protein Xpnpep2

Xpo1 3 2 73.48 0.0875 2.21 Flu Exportin-1

Yes1 13 4 415.45 0.0596 1.79 Flu Tyrosine-protein kinase

Ywhae 4 1 47.3 0.2075 2.18 PBS 14-3-3 protein epsilon

Ywhag 4 1 51.14 0.1780 7.62 PBS 14-3-3 protein gamma

Ywhah 4 2 58.81 0.1642 1.47 Flu 14-3-3 protein eta

Ywhaq 3 2 139.68 0.0863 1.52 Flu 14-3-3 protein theta

Ywhaz 8 5 320.06 0.4888 1.62 PBS 14-3-3 protein zeta/delta

Zdhhc23 3 1 31.22 0.5891 1.07 PBS Palmitoyltransferase

Zfp318 15 6 94.27 0.6339 1.05 Flu Zinc finger protein 318

Zfp735 7 3 32.84 0.2902 2.15 Flu Protein Zfp735

Znf513 2 1 39.67 0.8680 1.05 PBS Zinc finger protein 513

Znf609 11 2 51.47 0.4435 1.21 Flu Zinc finger protein 609

Znfx1 7 0 41.85 --- NFX1-type zinc finger-containing protein 1

Zyx 7 7 37.11 0.6403 1.17 Flu Zyxin

Zzz3 13 3 72.67 0.3281 2.17 Flu ZZ-type zinc finger-containing protein 3


Recommended