31
A Collaborative Modeling Approach to Assess Resiliency of Snowfed Arid Land River Systems: Results from an Organizational Survey of Water Managers Kelley Sterle 1 Karen Simpson 2 Loretta Singletary 3 Maureen McCarthy 4 Derek Kauneckis 5 Mike Dettinger 6 1 UNR Graduate Program of Hydrologic Sciences 2 University of Nevada, Reno (UNR) Department of Political Science 3 UNR Cooperative Extension 4 UNR Academy for the Environment 5 Desert Research Institute 6 United States Geological Survey Newlands Project, NV Oct 2014 70 th Annual SWCS, Greensboro, NC July,  2015

Enhancing Climate Resiliency and Agriculture on American Indian Land

Embed Size (px)

Citation preview

Page 1: Enhancing Climate Resiliency and Agriculture on American Indian Land

A Collaborative Modeling Approach to Assess Resiliency of Snow‐fed Arid Land River Systems: 

Results from an Organizational Survey of Water Managers

Kelley Sterle1

Karen Simpson2

Loretta Singletary3

Maureen McCarthy4

Derek Kauneckis5

Mike Dettinger61UNR Graduate Program of Hydrologic Sciences2University of Nevada, Reno (UNR) Department of Political Science3UNR Cooperative Extension4UNR Academy for the Environment5Desert Research Institute6United States Geological Survey

Newlands Project, NV Oct 2014

70th Annual SWCS, Greensboro, NC

July,  2015

Page 2: Enhancing Climate Resiliency and Agriculture on American Indian Land

Presentation Agenda

• Challenges to Snow‐fed Arid Land River Systems

• Place Based Research: Project Location

• Assessing Climate Resiliency

• Collaborative Modeling Approach

• Hydro‐climatic Model Integration/Scenarios

• Organizational Survey ‐‐ Preliminary Results

• Research Moving Forward

Page 3: Enhancing Climate Resiliency and Agriculture on American Indian Land

Climate Change Challenges in Snow‐fed Arid Land River Systems

• Warming temperatures cause more precipitation to fall as rain versus snow, decreasing snowpack– Snowmelt timing impacts runoff 

• Changes to timing and length of growing season• Changes in weather patterns may increase aridity• Warming temperatures may increase irrigation demand– Threatens agricultural based economies and food security

• Projected increases in intensity, frequency and duration of extreme weather events

Page 4: Enhancing Climate Resiliency and Agriculture on American Indian Land

Truckee‐Carson River System (TCRS)Population: c. 400,000

States: California (headwaters), Nevada (middle/lower reaches)

Urban Areas: Reno, Sparks, Carson City

Agricultural Areas:Newlands Project, Carson Valley, tribal agriculture

Tribal Governments:Pyramid Lake Paiute, Fallon Paiute‐Shoshone, Washoe

Page 5: Enhancing Climate Resiliency and Agriculture on American Indian Land

Place‐based Research • Climate: 

– Sierra Nevada temperature follows the global average• Water: 

– Sierra Nevada snowmelt supplies Great Basin water to agriculture, urban communities and environmental services

– System has both groundwater and surface water– Truckee River has high levels of upstream storage– Carson River has no upstream storage

• Policy and Economics:– Regulated by Prior Appropriation Doctrine – who uses how 

much, for what purpose, when and where– Highly litigated river system (over adjudicated during low flows)– High diversity of water uses, expected to increase

Page 6: Enhancing Climate Resiliency and Agriculture on American Indian Land

Irrigating the Arid Western US: The Newlands Project

Page 7: Enhancing Climate Resiliency and Agriculture on American Indian Land

• Understands, acknowledges, anticipates and absorbs changing conditions

• Capacity to adapt, respond effectively and to reorganize as necessary to maintain essential community functions and identity

Truckee Canal, Oct 2014.

What is a Climate Resilient Community?

Page 8: Enhancing Climate Resiliency and Agriculture on American Indian Land

Climate Change Uncertainty 

• High degree of uncertainty surrounding extent and impact of climate change– Issues of downscaling global models to regional levels– Changes in local environmental/meteorological conditions

– Impacts on local political, social and economic systems• Climate scenario development effective way to assess 

climate resiliency and uncertainty– Indicates reaction of system to a variety of changes– Discovers the subset of harmful or catastrophic scenarios

Page 9: Enhancing Climate Resiliency and Agriculture on American Indian Land

Interdisciplinary Collaborative Modeling

• Co‐develop climate‐stress scenarios with stakeholders

• Understand the impact of climate change on the hydrologic system

• Understand human decision‐making under climate extremes 

• Determine the efficacy of alternative water policies under climate extremes

Lahontan Reservoir, Oct 2014.

Page 10: Enhancing Climate Resiliency and Agriculture on American Indian Land

Water for the Seasons Methodology: Collaborative Modeling

ocal climate enarios

Local hydrologic models

Collaborative Modeling

ated hydro‐climatic narios

Local Stakeholder Input:‐Organizational Survey‐Producer Survey

Stakeholder Advisory Group (SAG)

Agent‐Based Modeling (ABM)

Page 11: Enhancing Climate Resiliency and Agriculture on American Indian Land

Climate Modeling

Collaborative Modeling and Participatory Research

Water for the Seasons

Model: CMIP5 Coupled Model Intercomparison Project Phase 5Purpose: Develop ~5 climate scenarios for the TCRS using interview thresholds, indicators and historical data

Climate Scenarios

Surveys and Interviews

Method: Organizational and Producer Level 

SurveyPurpose: Thresholds and indicators

Stakeholder Advisory Group (SAG)

Method: Collaborative Modeling

ydrologic Modelingydrologic Modeling

River Watershed

GSFLOWe: Coupled and water to streamflow er supply

Model: RiverwarePurpose: Operations 

Model: MODFLOWPurpose: Groundwater 

GSFLOWe: Coupled and water to 

predict streamflow and water supplyModel: MODSIMPurpose: Operations

River Watershed

wide Evapotranspiration

e: Account for the open water and ural evaporation loss from gic budget

Page 12: Enhancing Climate Resiliency and Agriculture on American Indian Land

Collaborative Modeling Team Timeline

nterview Water Managers

Survey Water Rights holders

Construct SAG

Collaborative modeling (SAG)

Agent‐based modeling

Report and distribute resilienceresults Year One Year Two Year Three Year Four

Page 13: Enhancing Climate Resiliency and Agriculture on American Indian Land

Water Management Organizations Survey

ocal climate enarios

Local hydrologic models

Collaborative Modeling

ated hydro‐climatic narios

Local Stakeholder Input:‐Organizational Survey‐Producer Survey

Stakeholder Advisory Group (SAG)

Agent‐Based Modeling (ABM)

Page 14: Enhancing Climate Resiliency and Agriculture on American Indian Land

Organizational Survey Methods (n=~70)

Face‐to‐face interviews with water managers– How do changing climate conditions stress water resources on the river system? 

– What information from climate and hydrologic models are most useful to water managers?

– What policy instruments are perceived as most useful for adapting to or mitigating water stress – and how feasible are they for implementation?

How will the responses to these questions aid in assessing community level climate resiliency?

Page 15: Enhancing Climate Resiliency and Agriculture on American Indian Land

Organization Interviews

INSERT JACOBS LATEST MAP OF ORG OFFICES with n = ?

Results to date illustrate n = 14

Page 16: Enhancing Climate Resiliency and Agriculture on American Indian Land

Priorities during Drought

Municipal use Agricultural water supply Ecological restoration and wildlife Domestic wells, cultural uses and hydro‐electric power 

Page 17: Enhancing Climate Resiliency and Agriculture on American Indian Land

Scenario Data: Drought Indicators

akeholders in different parts of the river system pointed to 

30’s  1977: Upper Carson

1987‐1994: Tahoe, Truckee, and Carson

1970s: Lake Tahoe (Truckee Headwaters)

2015: Truckee and Carson 

Page 18: Enhancing Climate Resiliency and Agriculture on American Indian Land

Hydro‐Climatic Modeling

Climate Scenarios

Surface Water Models

Groundwater Models

Operations Models

ET Models

Precipitation and Temp

Water use, rrigation, Crop type, Operational ules 

Water supply hresholds, ualitative mpacts

Develop Scenarios

takeholder Advisory Group (SAG)

Iterated Scenarios

Page 19: Enhancing Climate Resiliency and Agriculture on American Indian Land

Collaborative Modeling: Drought Impacts and Responses

ganizations reported varied reactions:NGOs doing ecological restoration not that concerned because they are planting drought tolerant native plantsrrigation district unable to tolerate more than 1‐2 years of drought; alternative crops not an option because insufficient water supplies to set themFernley (small town in lower reach) has both surface and groundwater supplies, but cannot use surface water because its treatment plant is designed for groundwater

Page 20: Enhancing Climate Resiliency and Agriculture on American Indian Land

Agriculture: Most impacted due to increased irrigation needs. Quality and quantity of the crop is jeopardized. Hydrologic losses: More storage good, but warmer temperatures increase evaporation losses. Many recommend storing excess water underground.Environmental: Warmer temperatures challenge environmental restoration projects and fisheries spawning from both increased water temperatures and less water flowing through the system.Economic: Recruit low water industries, but hotter temperatures increase cooling costs.

Does Temperature Matter?

Page 21: Enhancing Climate Resiliency and Agriculture on American Indian Land

Present and Future Stressors

Population growthUnsustainable development and water use

Is Climate Change Important

Nearly 100% say it is very important

Page 22: Enhancing Climate Resiliency and Agriculture on American Indian Land

Research Moving Forward: Agricultural Producer Survey

ocal climate enarios

Local hydrologic models

Collaborative Modeling

ated hydro‐climatic narios

Local Stakeholder Input:‐Organizational Survey‐Producer Survey

Stakeholder Advisory Group (SAG)

Agent‐Based Modeling (ABM)

Page 23: Enhancing Climate Resiliency and Agriculture on American Indian Land

Producer Survey Methods

Face‐to‐face interviews with stratified sample – Impact of temperature, soil moisture, seasonality– Drought/flood thresholds for agriculture– Feasibility of adaptation strategies – Policy, economic or physical barriers to adaptation– Interaction between producers and other parts of the system (BOR, tribal, state and local governments)

Mail survey to TCRS agricultural producers 

Page 24: Enhancing Climate Resiliency and Agriculture on American Indian Land

The Stakeholder Affiliate Group (SAG)

ocal climate enarios

Local hydrologic models

Collaborative Modeling

ated hydro‐climatic narios

Local Stakeholder Input:‐Organizational Survey‐Producer Survey

Stakeholder Advisory Group (SAG)

Agent‐Based Modeling (ABM)

Page 25: Enhancing Climate Resiliency and Agriculture on American Indian Land

SAG Methods (n=~12)

SAG – representatives of key local interests– Discuss/evaluate/respond to scenarios and models

Simulated modeling of the system as a whole, because it includes key local decision‐makersncreases communication among local stakeholders and across scientific disciplines

Page 26: Enhancing Climate Resiliency and Agriculture on American Indian Land

Integrated Modeling Methodology

ocal climate enarios

Local hydrologic models

Collaborative Modeling

ated hydro‐climatic narios

Local Stakeholder Input:‐Organizational Survey‐Producer Survey

Stakeholder Advisory Group (SAG)

Agent‐Based Modeling (ABM)

Page 27: Enhancing Climate Resiliency and Agriculture on American Indian Land

Modeling Complex Systems

ocal climate enarios

Local hydrologic models

Collaborative Modeling

ated hydro‐climatic narios

Local Stakeholder Input:‐Organizational Survey‐Producer Survey

Stakeholder Advisory Group (SAG)

Agent‐Based Modeling (ABM)

Page 28: Enhancing Climate Resiliency and Agriculture on American Indian Land

Unexpected Effects

Laws/policies/projects have at least two aspects– Formal (the text of a law, the goal of a policy, purpose of a project)

– Applied (implementation, actual effects, unintended consequences)

Gap between goal and implementation Collaborative modeling methods can fill this gap by seeking out and including local knowledge 

Page 29: Enhancing Climate Resiliency and Agriculture on American Indian Land

evada Water Law and Prior Appropriation

Water law in Nevada requires that water rights holders demonstrate “beneficial use”– Use all of their allocation every 5 years or lose it– Leads to inefficient water use‐‐distorts incentives

Water rights are tied to land parcels– During a drought this can prevent moving water to more productive land within an operation

– Irrigators who switch to pivot sprinkler risk losing water right allocated to the “corners” of a field

Page 30: Enhancing Climate Resiliency and Agriculture on American Indian Land

Agricultural Production andClimate Change Adaptations

Interaction between agricultural producers and:– Natural systems: temperature/transpiration, growing season, soil moisture

– Policy systems: rules for allocation, management of reservoirs, basin‐wide agreements

– Other competing users (ecological, recreation, M&I)Assess flexibilities and vulnerabilities of agricultural producers to:– Ability to adapt: changes in crops/crop rotation, irrigation practices, etc.

– Ability to change which land is irrigated and when– Management of local irrigation system

Page 31: Enhancing Climate Resiliency and Agriculture on American Indian Land

hank Your for the Seasons Team:

Greg Pohl, DRI

shadri Rajagopal, DRI

ch Niswonger, USGS

stin Huntington, DRI

Staci Emm, UNCE