40
TI’s Next Great Leap: Introducing the NexFET™ 100V Power MOSFETs!

TI’s Next Great Leap: Introducing the NexFET™ 100V Power MOSFETs!

Embed Size (px)

Citation preview

TI’s Next Great Leap:

Introducing the NexFET™

100V Power MOSFETs!

This webinar will be available afterwards at

www.designworldonline.com & email

Q&A at the end of the presentation

Hashtag for this webinar: #DWwebinar

Before We Start

Moderator Presenter

Miles BudimirDesign World

Rich NowakowskiTexas Instruments

TI’s Next Great Leap: Introducing the

NexFET™ 100V Power MOSFETs!

April 2014

Rich NowakowskiTexas Instruments

Agenda• NexFET Technology and Advantages

• Mid Voltage NexFETs for Power Supplies

• Synchronous-Buck Design Example

• Flyback Design Example

• Forward Converter with Active Clamp Design Example

• NexFET for Motor Control

• Stepper Motors

• Brush & Brushless DC Motors

• Tools and Resources

TI expands NexFET™ portfolio with mid-voltage MOSFETs

• Excellent thermal performance

• Supports high-current motor control

and power conversion applications

• Lowest on-resistance 80V & 100V

MOSFETs in TO-220

CSD19506 at 2.0 milliohm Rds(on) at 80V

CSD19536 at 2.3 milliohm Rds(on) at 100V

WEBENCH® design tool support

Evaluation modules: DC brushless motor

control, digital power, POL

New MOSFETs in TO-220 & SON packages support 40V, 60V, 80V and 100V!

MV NexFET Gate Switching Speed

TI Best Cdv/dt Immunity & ~ Twice Switching Speed

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500

Gate

Vol

tage

(V)

Time (ns)

Gate Switching Waveform

CSD18531Q5A

BSC031N06Competition

MV NEXFETTM Robustness / Avalanche Capability

0

20

40

60

80

100

120

140

UIS C

urre

nt (A

), 0.

1mH

Devices Tested

Avalanche Capability

CSD18501Q5A 25ºC

CSD18502Q5B 25ºC

BSC016N04 25ºC

125ºC25ºC

Leadership Ruggedness and Avalanche Capability

20% Higher Capability vs Leading Competitor

Devices tested

to failure

Competition

NexFET SON 5x6mm Devices

NexFET Dual SO-8 Devices

Part Number PackageBVDSS

(V)

VGS

(V)

RDS(ON)

Typ (10V)

(mΩ)

RDS(ON)

Max (10V)

(mΩ)

ID @

25ºC (silicon)

Qg(10)

Typ

(nC)

Qgd

Typ

(nC)

Qgs

Typ

(nC)

Qrr -

300A/µs

Typ

(nC)

Coss

Typ

(pF)

Alpha

SamplesRTM

CSD18509Q5B SON5x6 40 20 1.0 1.25 264 160 21.0 34.0 40 1100 30-Jan 14Q2

CSD18502Q5B SON5x6 40 20 1.8 2.3 204 52 8.4 10.3 88 900 Now Now

CSD18501Q5A SON5x6 40 20 2.5 3.2 155 42 5.9 8.1 70 725 Now Now

CSD18503Q5A SON5x6 40 20 3.4 4.3 145 27 4.3 4.5 52 510 Now Now

CSD18504Q5A SON5x6 40 20 5.3 6.6 75 16 2.4 3.2 39 310 Now Now

CSD18540Q5B SON5x6 60 20 1.6 2.0 188 58 11.0 12.8 120 498 15-Feb 14Q2

CSD18532Q5B SON5x6 60 20 2.5 3.2 169 44 6.9 10.0 111 470 Now Now

CSD18532NQ5B SON5x6 60 20 2.7 3.4 165 49 7.9 16.0 139 495 Now Now

CSD18531Q5A SON5x6 60 20 3.5 4.6 134 36 5.9 6.9 100 380 Now Now

CSD18533Q5A SON5x6 60 20 4.7 5.9 103 29 5.4 6.6 68 292 Now Now

CSD18563Q5A SON5x6 60 20 6.0 7.5 98 29 5.4 6.6 57 292 Now Now

CSD18534Q5A SON5x6 60 20 7.8 9.8 69 17 3.5 3.2 54 167 Now Now

CSD18537NQ5A SON5x6 60 20 11 14 55 14 2.3 4.7 54 136 Now Now

CSD19502Q5B SON5x6 80 20 3.4 4.1 138 48 8.6 14 275 925 Now Now

CSD19532Q5B SON5x6 100 20 4.0 4.9 130 48 8.7 13 249 706 Now Now

CSD19531Q5A SON5x6 100 20 5.3 6.4 110 37 7.0 11 226 540 Now Now

CSD19533Q5A SON5x6 100 20 7.8 9.4 75 27 4.9 7.9 163 395 Now Now

CSD19534Q5A SON5x6 100 20 12.4 15.5 53 15 2.7 4.5 97 228 Now 10-Feb

Part Number PackageBVDSS

(V)

VGS

(V)

RDS(ON)

Typ (10V)

(mΩ)

RDS(ON)

Max (10V)

(mΩ)

ID @

25ºC (silicon)

Qg(10)

Typ

(nC)

Qgd

Typ

(nC)

Qgs

Typ

(nC)

Qrr -

300A/µs

Typ

(nC)

Coss

Typ

(pF)

Alpha

SamplesRTM

CSD88537ND Dual SO-8 60 20 13 16 13 14 2.3 4.7 40 136 Now 5-Feb

CSD88539ND Dual SO-8 60 20 22 28 9.7 9 2.1 3.2 20 77 Now 5-Feb

TO-220 Devices

10

Part Number PackageBVDSS

(V)

VGS

(V)

RDS(ON)

Typ (10V)

(mΩ)

RDS(ON)

Max (10V)

(mΩ)

ID @

25ºC (silicon)

Qg(10)

Typ

(nC)

Qgd

Typ

(nC)

Qgs

Typ

(nC)

Qrr -

300A/µs

Typ

(nC)

Coss

Typ

(pF)

Alpha

SamplesRTM

CSD18502KCS TO-220 40 20 2.4 2.9 200 52 8.4 10.3 105 900 Now Now

CSD18503KCS TO-220 40 20 3.6 4.5 130 30 4.6 7.7 60 480 Now Now

CSD18504KCS TO-220 40 20 5.5 7.0 85 19 3.5 4.4 46 320 Now Now

CSD18532KCS TO-220 60 20 3.3 4.2 169 44 6.9 10.0 127 470 Now Now

CSD18533KCS TO-220 60 20 5.0 6.3 114 28 3.9 9.4 97 300 Now Now

CSD18534KCS TO-220 60 20 7.6 9.5 71 19 3.1 4.8 68 164 Now Now

CSD18537NKCS TO-220 60 20 11 14 54 14 2.3 5.2 77 136 Now Now

CSD19506KCS TO-220 80 20 2.0 2.5 250 125 23 37 800 1700 Now Now

CSD19505KCS TO-220 80 20 2.7 3.3 193 77 14 23 495 1050 Now 23-Jan

CSD19501KCS TO-220 80 20 5.6 7.0 113 36 6.6 11 233 497 Now 30-Jan

CSD19503KCS TO-220 80 20 7.6 9.2 94 28 5.4 9.8 161 555 Now Now

CSD19536KCS TO-220 100 20 2.2 2.8 238 125 23 37 800 1890 Now 27-Jan

CSD19535KCS TO-220 100 20 3.1 3.9 180 77 14 23 495 1170 Now 30-Jan

CSD19531KCS TO-220 100 20 6.3 7.9 102 37 7.0 12 270 560 Now Now

CSD19533KCS TO-220 100 20 8.7 10.5 86 27 5.4 9.0 151 395 Now Now

AC-DC

RectificationPFC

Load Sw

ORingDCAC

HV MOSFETS

500-800V

MV MOSFETS

40-100V

LV MOSFETS

25-30VSMPS TOPOLOGIES

• Non- Isolated Synchronous Buck

• Off-line Flyback <100W

• Forward with Active Clamp <250W

• Two-Transistor Forward TTF <500W

• Half Bridge with Synchronous Rectification <500W

• Resonant LLC/ Series Resonant SRC <500W

• Full-Bridge Phase-Shifted ZVS <1000W

Power Supply Architecture

MV NexFETs for Synchronous Rectification

FOM for Synchronous Rectification

• FOM = RDS(on) * (Qrr+1/2 Qoss)

- Qrr measured at transformer secondary side di/dt

- Qoss measured at transformer voltage on secondary side

MV MOSFETS Selection Criteria

• FET BV depends on Vout and Transformer Turns Ratio N ( N=Np/Ns)

• FET RDS(on) selection depends on SMPS topology, Iout and Pout

Non-Isolated Synchronous-Buck Example• VIN – 24V, 36V

• VOUT – 5V

• IOUT – 5A

• LOUT – 10µH (14mΩ DCR)

• Frequency – 100kHz

• Controller – TPS40170

• EVM Used

o TPS40170-578 EVM

• High Side FET

o CSD18537NQ5A

• Low Side FET

o CSD18563Q5A

• Ringing Reduction

o RBoot_Strap = 5.6Ωo CSnubber = 820pF

o RSnubber = 3 Ω

13

CSD18537NQ5A

CSD18537NQ5A

10A CSD18537NQ5A/CSD18563Q5A 60V, Industrial NexFET™ for Synchronous Buck Controllers

• Up to 10A low side buck converters

• >92% Peak Efficiency with 36VIN/5VOUT

• >93% Peak Efficiency with 24VIN/5VOUT

• Space saving SON5x6mm

package

• Low thermal resistance

• Ultra Low Qg and Qgd

• Low-side improved softness factor

• Small size and good thermal

performance

• Excellent light-load efficiency

• Minimized switch node ringing

• 63% de-rating with 36VIN

10A / 36Vin Switch-Node Waveforms36VIN , 5VOUT, 100kHz, 10A,

No Ringing Reductions

Peak Ring – 46.4V Peak Ring – 38.2V

36VIN , 5VOUT, 100kHz, 10A, w/

Ringing Reductions

Implementing Snubber and Bootstrap Resistor achieves 63% De-Rating

TI’s Most Popular Wide-Vin Buck Controllers

Visit www.ti.com/widevin for more information...

Recommended NexFETs for Buck Controllers

DC Solution HS FET LS FET Comments

60V Low-Current CSD19534Q5A CSD19534Q5A VIN 10 to 60V

IOUT up to 5A

Up to 600kHz

60V High-Current CSD19534Q5A CSD19533Q5A VIN 10 to 60V

IOUT up to 10A

Up to 600kHz

40V Low-Current CSD18537NQ5A CSD18537NQ5A VIN 10 to 40V

IOUT up to 5A

Up to 600kHz

40V High-Current CSD18537NQ5A CSD18563Q5A VIN 10 to 40V

IOUT up to 10A

Up to 600kHz

For higher currents, parallel the high-current high-side and low-side MOSFETs

Q2 Q1 Sync Rectifier

Q2 Primary Side FET

CrCM/ QR Flyback for AC-DC Applications

Choosing the FET Q1

• Low Rds(on) from 2-10mΩ

• Low Rds(on) affects Diode Emulation

• Use 60V FET for 5Vout

• Use 100V FET for 19.5Vout

• <40W, QFN package

• <125W, 1 to 2 FETs in a TO-220

Operating on Critical Conduction Mode

.

MOSFET VDS On-Resistance

Primary

FET Q2

650V – 800V ≤ 1Ω for 20W

≤ 300mΩ for 95W

Synchronous Rectifier FET Q160V for 5Vout

100V for ≤ 20Vout

2 - 10mΩ

60V CSD18531Q5A

60V CSD18533Q5A

100V CSD19531Q5A

100V CSD19531KCS

100V CSD19532Q5B

100V CSD19535KCS

AC Adaptors: Universal Input 85 - 265Vac , F = 50/60Hz

Fsw = 50 - 150kHz

Vout = 1.5V - 19.5V, Pout ≤ 150w

Suggested Mid-Voltage NEXFETs - Flyback

PMP8817 - Dual 2A/5V Off-Line Design

• UCC28700 Primary-Side Regulated Flyback

• CSD18533Q5A NexFET

• UCC24610 Synchronous Rectifier Controller

• TPS2561A / TPS2513 USB Interface

• 1.5” x 1.8” x 0.9” Volume

UCC24610

http://www.ti.com/tool/pmp8817

PMP8817 Efficiency Plot

Forward Converter with Active Clamp Example

Q3

Q4

Q1 Forward FET

Q2 Freewheeling FET

Q3 Active Clamp FET

Q4 Primary FET

Choosing the FETs Q1 & Q2

• Forward FET Q1 optimized for fast switching, low Qg &

low turn-off loss

• Freewheeling FET Q2 optimized for low conduction loss

and best SRs FOM (RDS(on) * Qrr)

• The number of paralleled FETs depends on the power

level and the efficiency target.

Features

• Gate drivers not needed

for Q1 & Q2. Easy to

control

• Higher efficiency operation

as reset energy is

conserved, not dissipated!

• Zero-Voltage Switching

achievable

• Transformer smaller than

regular Forward as it

utilizes more of the flux of

transformer core

Suggested NexFETs -Forward Converter with Active Clamp

SolutionPrimary

FET Q4

Active

Clamp

FET Q3

Forward

FET Q2

Freewheeling

FET Q3

DC-DC

36 – 75Vin

150V 150V

60V CSD18531Q5A

100V CSD19531Q5A

100V CSD19533Q5A

40V CSD18502Q5B

40V CSD18509Q5B

60V CSD18532Q5B

60V CSD18540Q5B

AC-DC Offline

85 – 265Vac

800V 650V

80V CSD19501KCS

100V CSD19531Q5A

100V CSD19531KCS

60V CSD18532Q5B

60V CSD18540Q5B

60V CSD18532KCS

Off-line AC-DC Isolated

• VIN = 85 – 265VAC, VOUT = 5 – 12V, POUT ≤250W

DC - DC Isolated Converter - Telecom, POE and Computing

• VIN = 36 – 75V, VOUT ≤ 12V, IOUT = 0 – 25A, FSW = 250kHz

PMP7499 12V/5A Active Clamp Forward

TI Devices

• UCC2897A Active Clamp PWM Controller

• CSD18533Q5A NexFET

• TPS2379 PD Controller http://www.ti.com/tool/pmp7499

PMP7499 Efficiency Plot

Resonant LLC DC-DC Converter

Resonant LLC

• Variable frequency converter

• Eliminates switching losses in

primary FETs

• No output inductor

Choosing the FETs S1 & S2

• Controls voltage stress on output

synchronous rectifiers. Use lower rated FETs

S1 & S2

• Turned on at Zero Current Switching –

reduces gate drive losses

• Driven by secondary-side controller

Resonant LLC DC/DC Converter

MOSFET MOSFET BV RDS(ON) Recommended FET

Primary FET Q1/Q2 500-650V 100-300 mΩ N/A

Sync Rectifier FET

S1/S2

40V for VOUT = 12V

60V for VOUT = 15V1 – 3mΩ

40V CSD18502Q5B

40V CSD18509Q5B

60V CSD18532Q5B

60V CSD18540Q5B

Vin = 350-400VDC, Vout = 12V, Iout = 0-50A, Fsw = 100 – 500kHz

PMP5967: 400VDC 12V @ 460W Design

TI Devices

• UCC25600 Resonant LLC PWM Controller

• CSD18501Q5A NexFET

• UCC24610 Secondary Side Controller www.ti.com/tool/pmp5967

PMP5967 Efficiency Plot

Motor Control

Solutions

• Current ratings and SOA are the selection criteria, not MOSFET On-

resistance

• Ruggedness and UIS (Unclamped Inductive Switching) avalanche

capability are important

• Survive rotor-stalled condition for extended intervals of time

MOSFET Selection for Motor Control

CSD88537ND & CSD88539ND60-20V, Dual N-channel NexFET™ Power MOSFETs

• Brushless DC Motor Control

3 Phase Topology

Up to 9A stall current

• Stepper Motor Control

Full Bridge Topology

(2 Phase)

• Space Saving Dual SO-8

Package

• 3V Standard Threshold

• Low Thermal Resistance

• Ultra Low Qg and Qgd

• 50% Footprint Reduction over Discrete

SON5x6 or SO-8

~4A per FET for CSD88539ND

~8A per FET for CSD88537ND

• Cost competitive solution

NexFETs for Stepper Motor Control

• TI Motor Controller DRV8711EVM Uses

CSD18531Q5A

• Textile Machines

• ATM Machines

• Vending Machines

• Industrial Automation

CSD18537NQ5A 60V BVDSS

SON5x6

11 mΩ Rds(on)

50A Capability

CSD88537ND 60V BVDSS

Dual in SO-8

~12.5 mΩ Rds(on)

8A Capability

CSD88539ND 60V BVDSS

Dual in SO-8

23 mΩ Rds(on)

4A Capability

NexFETs for DC Stepper Motor Operation

Recommendation for Dual Full-Bridge DC Stepper MotorPre-Driver Imotor NexFET ™ # FETs BVDSS Package

DRV8711 ≤3A CSD88539ND 4x 60V Dual SO-8

DRV8711 ≤6A CSD88537ND 4x 60V Dual SO-8

DRV8711 ≤15A CSD18531Q5A 8x 60V SON5x6

Power Tool Internal Circuit

NexFETs for Brush DC Motor Drive: Choppers

• Li-Ion batteries: 3.6V / 7.2V ... 22V

• Trigger speed ≥ 70%, FSW= 4 – 10kHz

MOSFET performance required in Power Tools:

Survive extended Stalled-Rotor condition

• Ton = 1s/ Toff = 10S Ipeak = 165A

VBATT MOSFET BV Silicon IDM Recommended FET

≤12V 30V 80-150A 30V CSD17556Q5B

18V 40-60V 100-180A40V CSD18502KCS

60V CSD18532KCS

24V 60-80V 100-240A60V CSD18532KCS

80V CSD19506KCS

42 – 48V 100V ≤100A 100V CSD19536KCS

NexFETs for 3-Phase BLDC Motor Control

• DRV8301

• DRV8302

• DRV3201-Q1

• DRV3202-Q1

• DRV3211-Q1

CSD18502Q5B 40V BVDSS

SON5x6 Package

1.8 mΩ RDS(on)

100A Capability

CSD18502KCS 40V BVDSS

TO-220 Package

2.4 mΩ RDS(on)

100A Capability

CSD18508Q5B 40V BVDSS

SON5x6 Package

1.3 mΩ RDS(on)

100A Capability

Key Mid Voltage Evaluation Modules

• Stepper motor pre-driver: DRV8711EVM evaluation module is based on the DRV8711 stepper motor controller paired with a NexFET device to drive a bipolar stepper motor or two brushed DC motors.

• Motor Drive BoosterPack: The BOOSTXL-DRV8301 kit is a 10-A, 3-phase brushless DC drive stage based on the DRV8301 pre-driver -- designed for those learning about sensor-less brushless control techniques and drive stage design.

• Digital power: UCD3138PSFBEVM-027 allows power developers to design a digitally controlled, phase-shifted off-line, 12-V, 360-W power converter application.

• Point-of-load control: TPS40170EVM-597 evaluation board features TI’s TPS40170 synchronous step-down controllers with two NexFET devices.

Thank You!

• TI Now Offers up to 100V NexFET™ Power MOSFETs for Switching Applications and Motor Control

• Opening up new range of 40-100V FETs thru 1Q and 2Q2014

• Visit our NexFET™ landing page: www.ti/com/nexfet

Questions?

Miles BudimirDesign [email protected]

Phone: 440.234.4531

Twitter: @DW_Motion

Rich NowakowskiTexas [email protected]

Phone: 214-480-1667

Thank You

This webinar will be available at

designworldonline.com & email

Tweet with hashtag #DWwebinar

Connect with Design World

Discuss this on EngineeringExchange.com