36
Three-Dimensional Scaffold Direct Writer For Fabricating Fiber-Reinforced Materials Rohan Rath Industrial & Systems Engineering

Three Dimensional Scaffold Direct Writer for Fabricating Fiber-Reinforced Materials

Embed Size (px)

Citation preview

  1. 1. Three-Dimensional Scaffold Direct Writer For Fabricating Fiber-Reinforced Materials Rohan Rath Industrial & Systems Engineering
  2. 2. Unit Name Optional Presentation Title Objective Design an automated machine for fabricating fiber- reinforced materials: 3D Scaffold Direct Writer (SDW) Establish a manufacturing process for fabricating continuous-fiber tissue engineered scaffolds Student Technical Paper Competition May 31, 2015
  3. 3. Unit Name Optional Presentation Title Background Student Technical Paper Competition May 31, 2015 (d) Synthetic meniscus [4] (a) Synthetic ear [15] (c) Electrospun skin [17] (b) Printed heart [16] Customizable biomaterials are feasible raw material Greater customization through flexible manufacturing is necessary Engineered tissue + flexible manufacturing Bio-manufacturing
  4. 4. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 Meniscal injuries: 1.4 million surgical interventions annually (US & EU) Tissue supply chain: limited by donation (allograft) Menisci are not self-healing Background
  5. 5. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 Background Autograft, collagen meniscus implant (CMI) CMI + filament matrix (a) = RWJ implant (c) RWJ implant + SDW = Meniscus Bio-manufacturing (a) Internal filament matrix [4] (c) Freeze-dried final product [4](b) Manual substrate
  6. 6. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 MarkForged MarkOne [1] Microfluidic Direct Writer [3] Current Mass Customization Technology
  7. 7. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 (b) Prototype collagen tool (a) Writing tool (c) 80/20 frame (f) XY motion platform (e) Writing substrate(d) Z axis ball screw SDW System SDW = Writing Tool + Writing Substrate + XY Platform
  8. 8. Unit Name Optional Presentation Title (g) Spool pinch (a) Spring housing (e) Spring (d) Fiber spool (between frames) (b) Laser-cut acrylic frames (f) Syringe needle (c) Swivel spring anchors Student Technical Paper Competition May 31, 2015 SDW Subsystem: Writing Tool Replaces the human hand Pinch allows variable settings
  9. 9. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 Re-usable Vertically oriented pins One pin diameter Three discrete layouts Pin pre-configured scaffold support structure SDW Subsystem: Writing Substrate (a) ~3 [mm] pin (c) Removable, pin-inserted substrate (d) XY mount plate (b) Reinforcing filament
  10. 10. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 SDW System
  11. 11. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 (a) Present pin top vertex: SDW tool starting position Tool Path Terminology
  12. 12. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 (b) Ending pin top vertex: SDW tool ending position Tool Path Terminology (a) Present pin top vertex: SDW tool starting position
  13. 13. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 (c) Traces of tool positions Tool Path Terminology (a) Present pin top vertex: SDW tool starting position (b) Ending pin top vertex: SDW tool ending position
  14. 14. Unit Name Optional Presentation Title (d) Intermediate filament positions (c) Traces of tool positions Student Technical Paper Competition May 31, 2015 Tool Path Terminology (a) Present pin top vertex: SDW tool starting position (b) Ending pin top vertex: SDW tool ending position
  15. 15. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 (d) Intermediate filament positions (c) Traces of tool positions (e) Ending pin bottom vertex Tool Path Terminology (a) Present pin top vertex: SDW tool starting position (b) Ending pin top vertex: SDW tool ending position
  16. 16. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 (d) Intermediate filament positions (f) Permanent filament trajectory: (c) Traces of tool positions (e) Ending pin bottom vertex Tool Path Terminology (a) Present pin top vertex: SDW tool starting position (b) Ending pin top vertex: SDW tool ending position
  17. 17. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 (b) Layer two subgraph: (a) Layer one subgraph: (c) Layer three subgraph: Stacked 3D subscaffold: the filament matrix between any pair of pins has at most three distinct layers Tool Path Terminology
  18. 18. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 Tool Path Terminology
  19. 19. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 Red Partial = subscaffold of subgraphs - Subgraph layers 1 = sets of permanent filament trajectories Stacking subgraphs defines a 3D subscaffold, , (1, + 2) Subscaffold sequence defines the 3D scaffold S; explicitly: 6 = { ,1, ,1 , ( ,1, ,3),( ,3, ,4), ( ,3, ,3), ,3, ,3 , ( ,3, ,3)} 12 = 1 + 2 + + + + 14 = {1, , 10, , 4, 1} Tool Path Terminology
  20. 20. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 Partial = subscaffold of subgraphs - Subgraph layers 1 = sets of permanent filament trajectories Stacking subgraphs defines a 3D subscaffold, , (1, + 2) Subscaffold sequence defines the 3D scaffold S; explicitly: 6 = { ,1, ,1 , ( ,1, ,3),( ,3, ,4), ( ,3, ,3), ,3, ,3 , ( ,3, ,3)} 12 = 1 + 2 + + + + 14 = {1, , 10, , 4, 1} Tool Path Terminology Red Orange
  21. 21. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 Partial = subscaffold of subgraphs - Subgraph layers 1 = sets of permanent filament trajectories Stacking subgraphs defines a 3D subscaffold, , (1, + 2) Subscaffold sequence defines the 3D scaffold S; explicitly: 6 = { ,1, ,1 , ( ,1, ,3),( ,3, ,4), ( ,3, ,3), ,3, ,3 , ( ,3, ,3)} 12 = 1 + 2 + + + + 14 = {1, , 10, , 4, 1} Tool Path Terminology Red Orange Purple
  22. 22. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 Partial = subscaffold of subgraphs - Subgraph layers 1 = sets of permanent filament trajectories Stacking subgraphs defines a 3D subscaffold, , (1, + 2) Subscaffold sequence defines the 3D scaffold S; explicitly: 6 = { ,1, ,1 , ( ,1, ,3),( ,3, ,4), ( ,3, ,3), ,3, ,3 , ( ,3, ,3)} 12 = 1 + 2 + + + + 14 = {1, , 10, , 4, 1} Tool Path Terminology Red Orange Purple Green
  23. 23. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 Partial = subscaffold of subgraphs - Subgraph layers 1 = sets of permanent filament trajectories Stacking subgraphs defines a 3D subscaffold, , (1, + 2) Subscaffold sequence defines the 3D scaffold S; explicitly: 6 = { ,1, ,1 , ( ,1, ,3),( ,3, ,4), ( ,3, ,3), ,3, ,3 , ( ,3, ,3)} 12 = 1 + 2 + + + + 14 = {1, , 10, , 4, 1} Tool Path Terminology Red Orange Purple Green Blue
  24. 24. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 Partial = subscaffold of subgraphs - Subgraph layers 1 = sets of permanent filament trajectories Stacking subgraphs defines a 3D subscaffold, , (1, + 2) Subscaffold sequence defines the 3D scaffold S; explicitly: 6 = { ,1, ,1 , ( ,1, ,3),( ,3, ,4), ( ,3, ,3), ,3, ,3 , ( ,3, ,3)} 12 = 1 + 2 + + + + 14 = {1, , 10, , 4, 1} Tool Path Terminology Red Orange Purple Green Blue Black
  25. 25. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 Tool Path Terminology 3D subscaffolds: unique constant-tension filament matrices that define implant geometry http://patentimages.storage.googleapis.com/US20140031933A1/US20140031933A1-20140130-D00009.png : 1- 3 : 1- 6 : 1- 8 : 1- 10 : 1- 12 : 1- 14
  26. 26. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 System Complexity: 3D Stacking
  27. 27. Unit Name Optional Presentation Title Manual versus SDW Fabrication Student Technical Paper Competition May 31, 2015 Non-stop, no collision direct writing Reduces variability and human error Creates acceptable FDA process On-line optical quality control feasible (a) Manual product [4] (b) SDW product
  28. 28. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 Business Process: Current Random donor death Disease screening Tissue removal surgery Bio- preserving transport Storage (FDA regulated) Bio- preserving delivery Transplant/arthroscopy surgery ($11900 US avg.) JIT organ matching (limited supply) Extensive patient screening & assessment
  29. 29. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 Business Process: Proposed In-house, FDA approved, custom implant manufacture ($1k - $2k) Implant Surgery ($3k - $5k) Biomaterial batch production Extensive patient screening & assessment
  30. 30. Unit Name Optional Presentation TitleStudent Technical Paper Competition May 31, 2015 Impact on Business Process Relies on organ donation Two surgeries Live tissue possibility of disease transmission Complex transport logistics Size-matching complexities Unbound biomaterial supply One surgery Synthetic tissue no possibility of disease transmission In-house inventory no transportation needed Size-customizable implants Current Proposed
  31. 31. Unit Name Optional Presentation Title Conclusion Student Technical Paper Competition May 31, 2015 Create an efficient and controllable manufacturing process for fiber-reinforced scaffolds Utilize IE knowledge to build a machine, as a part of a design course, within budget, time and resource limitations Introduce new mass customization technology in a focused area of implant tissue engineering
  32. 32. Unit Name Optional Presentation Title Project members : J. Levy, K. MacKinnon, D. Vas Advising professors: E. Elsayed, K. Li RWJ Orthopedics: M. Dunn, C. Gatt, J. Patel Rutgers Makerspace laboratory: R. Anderson Student technical paper competition sponsor: John Deere Funding Sources: Rutgers ISE: M. Jafari Rutgers SOE: I. Rosen IIE South Jersey Delaware Valley: J. McGowan ISERC stipend: IIE National NSF student travel grant: S. Cetinkaya, J. Ryan Acknowledgements Student Technical Paper Competition May 31, 2015
  33. 33. Unit Name Optional Presentation Title Reference Student Technical Paper Competition May 31, 2015 [1] MarkOne". MarkForged. https://markforged.com/mark-one/ [2] Moutos, F. T., Freed, L. E., Guilak, F. (2007). A biomimetic three dimensional woven com- posite scaold for functional tissue engineering of cartilage. Nature Materials, 6(2), 162-167. [3] Ghorbanian, S., Qasaimeh M. A., Akbar, M., Tamayol, A., Juncker, D. (2014). Microfluidic Direct Writer with Integrated Declogging Mechanism for Fabricating Cell-Laden Hydrogel Constructs. Biomedical Microdevices, 16(3), 387-395. [4] Balint, E., Gatt C., J., Dunn M. G..(2011). Design and mechanical evaluation of a novel fiber- reinforced scaffold for meniscus replacement. Orthopaedic Research Laboratories. [5] Shybut, T., Strauss, E. J. (2011).Surgical Management of Meniscal Tears. Bulletin of the NYU Hospital for Joint Diseases, 69(1), 56. [6] Newman, A. P., Daniels, A. U., Burks R. T. (1993).Principles and Decision Making in Menis- cal Surgery. Arthroscopy Association of North America. The Journal of Arthroscopic and Related Surgery, 9(1), 33-51.
  34. 34. Unit Name Optional Presentation Title Reference Student Technical Paper Competition May 31, 2015 [7] Tovar, N., Bourke, S., Jae, M., Murthy S. N., Kohn, J., Gatt, C., Dunn, M. G. (2010). A Comparison of Degradable Synthetic Polymer Fibers for Anterior Cruciate Ligament Reconstruction. J. Biomedical Material Research Association, 93(2), 738-747. doi: [8] Tamayol, A., Akbari, M., Annabi, N., Paul, A., Khademhosseini A., Juncker, D. (2013) Fiber- Based Tissue Engineering: Progress, Challenges, and Opportunities.Biotechnol Adv., 31(5), 669-687. doi: 10.1016/j.biotechadv.2012.11.007. [9] Hong, Y.,Gong, Y., Gao, C., Shen, J. (2006). Collagen-coated polylactide microcarriers/chitosan hydrogel composite: Injectable scaffold for cartilage regeneration. Wiley InterScience (www.interscience.wiley.com). doi: 10.1002/jbm.a.31603. [10] Robert Jan Peter van der Wal.(2009) Long-term Clinical Outcome of Open Meniscal Al- lograft Transplantation. American Journal of Sports Medicine. November 2009. 37(11). Pp. 2134-2139. [11] Sun, W. (2013).Bio-3D Printing.National Science Foundation Workshop on Frontiers of Additive Manufacturing Research and Education.
  35. 35. Unit Name Optional Presentation Title Reference Student Technical Paper Competition May 31, 2015 [12] Akbari, M., Tamayol, A., Laforte, V., Annabi, N., Khademhosseini A., Juncker D. (2013) Continuous Manufacture of Robust Living Fibers That Withstand Common Textile Processing for Tissue Engineering Applications. International Conference on Miniaturized Systems for Chemistry and Life Sciences. [13] Richards, D. J., Tan, Y., Jia, J., Yao, H., Mei Y. (2013).3D Printing for Tissue Engineering. Israel Journal of Chemistry, 53, 805-814. [14] Nielsen AB, Yde J. (1991). Epidemiology of acute knee injuries: a prospective hospital investigation. J Trauma, 31(12), 1644-1648. [15] http://dailynewsdig.com/wp-content/uploads/2013/07/bionic-ear.jpg [16] https://www.asme.org/getmedia/f8c45f03-a1f7-4e94-8c7d-8772ff0b8c69/Creating-Valve- Tissue-Using-3D-Bioprinting_02.jpg.aspx?width=340 [17] https://s-media-cache- k0.pinimg.com/236x/08/d8/35/08d835697d6ed5fe1cbd9c03972bb74f.jpg
  36. 36. Unit Name Optional Presentation Title Questions? Student Technical Paper Competition May 31, 2015