35
Lattice Boltzmann Method Lattice Boltzmann Method and Its Applications in and Its Applications in Multiphase Flows Multiphase Flows Xiaoyi He Air Products and Chemicals, Inc. April 21, 2004

Lattice Boltzmann methhod slides

Embed Size (px)

Citation preview

Page 1: Lattice Boltzmann methhod slides

Lattice Boltzmann Method and Its Lattice Boltzmann Method and Its Applications in Multiphase FlowsApplications in Multiphase Flows

Xiaoyi He

Air Products and Chemicals, Inc.

April 21, 2004

Page 2: Lattice Boltzmann methhod slides

OutlineOutline

Lattice Boltzmann methodKinetic theory for multiphase flowLattice Boltzmann multiphase modelsApplicationsConclusions

Page 3: Lattice Boltzmann methhod slides

A Brief History of Lattice A Brief History of Lattice Boltzmann MethodBoltzmann Method

Lattice Gas Automaton (Frisch, Hasslacher, Pomeau,, 1987)

Lattice Boltzmann model (McNamara and Zanetti (1988)

Lattice Boltzmann BGK model (Chen et al 1992 and Qian et al 1992)

Relation to kinetic theory (He and Luo, 1997)

Page 4: Lattice Boltzmann methhod slides

Lattice Boltzmann BGK ModelLattice Boltzmann BGK Model

eq

aaaaa

fftxftttexf

),(),(

• fa: density distribution function; • : relaxation parameter• f eq: equilibrium distribution

aaa

aa

aaa

eqa

efuf

RT

u

RT

ue

RT

uef

,

2)(2

)(1

2

2

2

Page 5: Lattice Boltzmann methhod slides

Kinetic Theory of Multiphase FlowKinetic Theory of Multiphase Flow

BBGKY hierarchy

functionon distributi particle-two

potentialular intermolec

functionon distributi particle-single

:)r,,r,(

:)(

:

)()()(

2211)2(

12

22121

)2(

1 111

f

rV

f

drdrVf

fFft

fr

Page 6: Lattice Boltzmann methhod slides

Intermolecular InteractionIntermolecular Interaction

}:{

}:{

122

121

for theory fieldMean

for theory Enskog

drrD

drrD

-0.5

0

0.5

1

1.5

2

0 1 2 3

r/d

VLennard-Jones potential

Interaction models

Page 7: Lattice Boltzmann methhod slides

Model for Intermolecular RepulsionModel for Intermolecular Repulsion

uCuCCTCTu

fb

drdrVf

I

eq

D

)2

5(:2

5

2ln)

2

5(

5

3)ln()(

)(

222

0

22121

)2(

1

1

1

For D1 (repulsion core)

Page 8: Lattice Boltzmann methhod slides

Model for Intermolecular AttractionModel for Intermolecular Attraction

For D2 (attraction tail), by assuming

fVdrdrVf

I m

D1

2

1 22121

)2(

2 )(

)r,( )r,()r,,r,( 22112211)2( fff

We have

Page 9: Lattice Boltzmann methhod slides

Model for Intermolecular AttractionModel for Intermolecular Attraction

Vm is the mean-field potential of intermolecular attraction

dr

dr

drrVr

drrVa

)(6

1

)(2

1

2

22 aVm

where

Control phase transition

Control surface tension

For small density variation:

dr

m drrVrV )()(

Page 10: Lattice Boltzmann methhod slides

Kinetic Model for Multiphase FlowKinetic Model for Multiphase Flow

Boltzmann equation for non-ideal gas / dense fluid

functionon distributi particle-single:

)()( 1

f

fVIfFft

fm

Page 11: Lattice Boltzmann methhod slides

Kinetic Model for Multiphase FlowKinetic Model for Multiphase Flow

Mass transport equation

0)(

ut

20

220

)1(),(

2),(

)()(

abRTTp

Tpp

pFuut

u

Momentum transport equation

Chapman-Enskog expansion leads to the following macroscopic transport equations:

Page 12: Lattice Boltzmann methhod slides

Kinetic Model for Multiphase FlowKinetic Model for Multiphase Flow

Comments on momentum transport equation

1. Correct equation of state

2. Thermodynamically consistent surface tension

drT

2

2),(

3. Thermodynamically consistent free energy (Cahn and Hillary, 1958)

interfacein energy free excess : )(2 )W(dW

Page 13: Lattice Boltzmann methhod slides

Kinetic Model for Multiphase FlowKinetic Model for Multiphase Flow

Energy transport equation

ITpP

u

uTuPuet

e

]2

),([

)](2

1)([:

:)(:)(

220

Page 14: Lattice Boltzmann methhod slides

Kinetic Model for Multiphase FlowKinetic Model for Multiphase Flow

Comments on energy transport equation

1.Total energy needs include both kinetic and potential energies, otherwise the pressure work becomes:

2. Last term is due to surface tension and it is consistent with existing literature (Irving and Kirkwood, 1950)

upubRT )1(

Page 15: Lattice Boltzmann methhod slides

LBM Multiphase Model Based on LBM Multiphase Model Based on Kinetic TheoryKinetic Theory

Temperature variations in lattice Boltzmann models;Discretization of velocity space;Discretization of physical space;Discretization of temporal space.

Page 16: Lattice Boltzmann methhod slides

Temperature in Lattice Boltzmann Temperature in Lattice Boltzmann MethodMethod

Non-isothermal model model is still a challenge – Small temperature variations can be modeled

– Need for high-order velocity discretization

Isothermal model is well developed

0

2

20

2

00

2

0

2)(2

)()

2

3

2(1

)1(

RT

u

RT

u

RT

u

RTf

TT

aeq

Page 17: Lattice Boltzmann methhod slides

Isothermal Boltzmann Equation for Isothermal Boltzmann Equation for Multiphase FlowMultiphase Flow

)2

)(exp(

)2(

)()()(

2

RT

u

RTf

fVRT

ufffFf

t

f

Deq

eqm

eq

Page 18: Lattice Boltzmann methhod slides

Discretization in Velocity SpaceDiscretization in Velocity Space

Constraint for velocity stencil

Further expansion of f eq

3 2, 1, 0, n for , exactdf eqn

RT

u

RT

u

RT

u

RTf eq

2)(2

)(1)

2exp(

2

2

22

5 ..., 1, 0, n for ,)2

exp(2

exactdRT

n

Page 19: Lattice Boltzmann methhod slides

Discretization in Velocity SpaceDiscretization in Velocity Space

RT

u

RT

ue

RT

uef aa

aeq

a 2)(2

)(1

2

2

2

9-speed model 7-speed model

a: weight coefficients

Page 20: Lattice Boltzmann methhod slides

Discretization in Physical and Discretization in Physical and Temporal SpacesTemporal Spaces

Integrate Boltzmann equation

eqam

aeq

aaaaa fV

RT

tue

t

fftxftttexf

)(

/),(),(

• Discretizations in velocity, physical and temporal spaces are independent in principle; • Synchronization simplifies computation but requires

• Regular lattice• Time-step constraint:

RTtx 3/

Page 21: Lattice Boltzmann methhod slides

Further Simplification for Nearly Further Simplification for Nearly Incompressible FlowIncompressible Flow

Introduce an index function :

)()()(

),(),( uRT

uefftxftttexf a

eqaa

aaa

)]())0()(())(([

)(),(),(

uGFu

uegg

txgtttexg

s

a

eqaa

aaa

)(2

)(2

1

GFRT

geRTu

RTpugp

f

saa

a

a

Page 22: Lattice Boltzmann methhod slides

ApplicationsApplications

Phase SeparationRayleigh-Taylor instabilityKelvin-Helmholtz instability

Page 23: Lattice Boltzmann methhod slides

Phase SeparationPhase Separation

Van der Waals fluid

T/Tc = 0.9

Page 24: Lattice Boltzmann methhod slides

Rayleigh-Taylor Instability (2D)Rayleigh-Taylor Instability (2D)

Re = 1024single mode

Page 25: Lattice Boltzmann methhod slides

RT instability (2D)

Single mode

Density ratio: 3:1

Re = 2048

270.0/ AgWuT

Page 26: Lattice Boltzmann methhod slides

RT instability (2D)

Multiple mode

Density ratio: 3:1

hB /Agt2 = 0.04

Page 27: Lattice Boltzmann methhod slides

RT instability (3D)

single mode

Density ratio: 3:1

Re = 1024

61.05.0/ AgWuT

Page 28: Lattice Boltzmann methhod slides

RT instability (3D)

single mode

Density ratio: 3:1

Re = 1024

Cuts through spike

Page 29: Lattice Boltzmann methhod slides

RT instability (3D)

single mode

Density ratio: 3:1

Re = 1024

Cuts through bubble

Page 30: Lattice Boltzmann methhod slides

KH instability

Effect of surface tension

Re = 250

d1/d2 = 1

Ca = 0.29

Ca = 2.9

Page 31: Lattice Boltzmann methhod slides

Other Applications Other Applications

Multiphase flow in porous media (Rothman 1990, Gunstensen and Rothman 1993);

Amphiphilic fluids (Chen et al, 2000) Bubbly flows (Sankaranarayanan et al, 2001);Hele-Shaw flow (Langaas and Yeomans, 2000).Boiling flows (Kato et al, 1997);Drop break-up (Halliday et al 1996);

Page 32: Lattice Boltzmann methhod slides

Challenges in Lattice Boltzmann Challenges in Lattice Boltzmann Method Method

Need for better thermal models;Need for better model for multiphase flow

with high density ratio; Need for better mode for highly

compressible flows;Engineering applications …

Page 33: Lattice Boltzmann methhod slides

ConclusionsConclusions

Lattice Boltzmann method is a useful tool for studying multiphase flows;

Lattice Boltzmann model can be derived form kinetic theory;

It is easy to incorporate microscopic physics in lattice Boltzmann models;

Lattice Boltzmann method is easy to program for parallel computing.

Page 34: Lattice Boltzmann methhod slides

Thank You!Thank You!

Page 35: Lattice Boltzmann methhod slides

AcknowledgementAcknowledgement

Raoyang Zhang, ShiyiChen, Gary Doolen

Xiaowen Shan