40

Kasra Nakhaee

Embed Size (px)

Citation preview

Page 1: Kasra Nakhaee
Page 2: Kasra Nakhaee

Contents

• Introduction………………………………………………………………………………. 3

• Principle of Heat Pipe operation………………………………………………… 4

• Heat Pipe Types…………………………………………………………………………. 10

• HPHXs & Applications………………………………………………………………… 28

• HPHX Types……………………………………………………………………………..... 31

• References…………………………………………………………………………………. 40

Kasra Nakhaee - November 2015 2

Page 3: Kasra Nakhaee

Introduction

• Heat pipe concept described in 1942

• ‘Heat Pipe’ term was used in 1963

• High heat transport characteristics due to Use of Latent Heat

• No Energy Required for its Operation

• It was developed originally for the gravity-free environment

• Increasing usage in many industrial applications

Kasra Nakhaee - November 2015 3

Page 4: Kasra Nakhaee

• HP consists:

• Closed container

• Working fluid

• Porous capillary wick

• One end functions as evaporator

• The other end functions as condenser

• P = Psat at its operating temperature

Kasra Nakhaee - November 2015 4

Principle of Heat Pipe operation

Page 5: Kasra Nakhaee

Kasra Nakhaee - November 2015 5

Principle of Heat Pipe operation

Page 6: Kasra Nakhaee

• Thermodynamic cycle:

• 1-2 Heat applied to evaporator through external sources vaporizes working

fluid to a saturated(2’) or superheated (2) vapor.

• 2-3 Vapor pressure drives vapor through adiabatic section to condenser.

• 3-4 Vapor condenses, releasing heat to a heat sink.

• 4-1 Capillary pressure created by menisci in wick pumps condensed fluid into

evaporator section.

• Process starts over.

Kasra Nakhaee - November 2015 6

Principle of Heat Pipe operation

Page 7: Kasra Nakhaee

• Thermodynamic cycle:

Kasra Nakhaee - November 2015 7

Principle of Heat Pipe operation

Page 8: Kasra Nakhaee

• Limits:

• Wicking

• Entrainment

• Sonic

• Boiling

• Flooding

Kasra Nakhaee - November 2015 8

Principle of Heat Pipe operation

Page 9: Kasra Nakhaee

Kasra Nakhaee - November 2015 9

Principle of Heat Pipe operation

MEDIUMMELTING PT. (° C )

BOILING PT. AT ATM. PRESSURE

(° C)

USEFUL RANGE

(° C)

Helium

Ammonia

Water

Silver

- 271

- 78

0

960

- 261

- 33

100

2212

-271 to -269

-60 to 100

30 to 200

1800 to 2300

Page 10: Kasra Nakhaee

a) Tow-Phase Closed Thermosyphon

b) Capillary-Driven Heat Pipe

c) Annular Heat Pipe

d) Vapor Chamber

e) Rotating Heat Pipe

f) Gas-Loaded Heat Pipe

Heat Pipe Types

Kasra Nakhaee - November 2015 10

Page 11: Kasra Nakhaee

g) Loop heat pipes (LHP)

h) Capillary Pumped Loop Heat Pipe

i) Pulsating heat pipes (PHP)

j) Micro and Miniature Heat Pipe

k) Inverted Meniscus Heat Pipe

l) Nonconventional Heat Pipe

Heat Pipe Types

Kasra Nakhaee - November 2015 11

Page 12: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 12

a) Two-Phase closed Thermosyphon:

• Gravity-assisted wickless

• Sonic and vapor pressure limit

• Flooding limit and boiling limit

• Thermosyphons are often several meters long

• prevent permafrost melting along pipelines, roads and train-rails

Page 13: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 13

• About 120,000 heat pipes were installed along the Trans Alaska Pipeline

Page 14: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 14

b) Capillary-Driven Heat Pipe:

• Wick provide capillary-driven pumping

• Capillary limit

• Using in almost all laptop computers

• Various commercial and aerospace applications

Page 15: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 15

c) Annular Heat Pipe:

• Similar to capillary-driven heat pipe

• Main difference in cross section of vapor space

Page 16: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 16

d) Vapor Chamber

• Capillary-driven planar

• Additional wick blocks

• Can be placed in direct contact with CPU

• Excellent candidate for electronic cooling applications

• Electronic cooling with heat fluxes higher than 50 𝑊 𝑐𝑚2

Page 17: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 17

e) Rotating Heat Pipe

• designed to cool machinery by removing heat through a rotating shaft

• rotating heat pipe uses centrifugal forces

• design in tow configuration: a) circular cylinder b) disk type

• a)Cooling rotating parts of electric motors and metal-cutting tools

• b)Cooling turbine components and automobile brakes

Page 18: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 18

e) Rotating Heat Pipe

Page 19: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 19

e) Rotating Heat Pipe

Page 20: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 20

f) Gas-Loaded Heat Pipe

• Same as capillary-driven heat pipe

• Difference : a noncondensing gas introduced into the vapor space

• Result: nearly constant evaporator temperature regardless of the heat input

• Using for an isothermal furnace and for electronic cooling

Page 21: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 21

f) Gas-Loaded Heat Pipe

Page 22: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 22

g) Loop Heat Pipe

• Compensation chamber

• 2 wick structure in evaporator

• Long thermal transport distance

• Attractive for spacecraft cooling

• Alternative for Thermal control device in scientific heat regulation

• and telecommunication satellites

Page 23: Kasra Nakhaee

Heat Pipe Types

g) Loop Heat Pipe

Kasra Nakhaee - November 2015 23

Page 24: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 24

i) Pulsating Heat Pipe

• Two type: a)looped, b)unlooped

• Self-excited oscillatory motion

• No wick structure

• Weighs less than conventional heat pipe

• Surface tension has a great role in the dynamics of PHP

• Space applications, thermal control of electrical devices

Page 25: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 25

k) Micro & Miniature Heat Pipes

• 10 μ < Dh <500 μ (micro) , 0.5 mm < Dh < 5 mm (miniature)

• Container from silicon

• Polygonal cross section

• Power Electronics, Electric Train, Air Conditioning(Rood Heating), Aerospace

Page 26: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 26

k) Micro & Miniature Heat Pipes

Page 27: Kasra Nakhaee

Heat Pipe Types

Kasra Nakhaee - November 2015 27

l) Nonconventional Heat Pipes

• Different geometries

• Examples:

• Polygonal: micro Heat Pipe

• Leading edge: future hypersonic aircraft

• Cover the leading edge of the wings and engine nacelles

Page 28: Kasra Nakhaee

HPHXs Applications

a) HVAC

b) Waste heat recovery from combustion gases

c) Data center cooling

d) Power plant dry cooling towers

e) Steam condensers

f) Latent thermal energy storage solar power generation

g) CPU cooling in laptop computers

Kasra Nakhaee - November 2015 28

Page 29: Kasra Nakhaee

HPHXs Applications

Kasra Nakhaee - November 2015 29

Page 30: Kasra Nakhaee

HPHXs Applications

Kasra Nakhaee - November 2015 30

Page 31: Kasra Nakhaee

HPHX Types

1. Conventional HPHX

2. PCM-HPHXs

3. Conventional HPHSs

4. PCM-HPHSs

5. Reflux heat exchanger (RHXs)

Kasra Nakhaee - November 2015 31

Page 32: Kasra Nakhaee

1. Conventional HPHXs and Applications

Kasra Nakhaee - November 2015

1.1. HVAC systems

1.2. Bakery

1.3. Metal forging

1.4. Automotive

1.5. Data center cooling

1.6. Power plant cooling tower

1.7. Nuclear spent fuel cooling

1.8. Solar water heating

32

Page 33: Kasra Nakhaee

1. Conventional HPHXs and Applications

Kasra Nakhaee - November 2015 33

Page 34: Kasra Nakhaee

1. Conventional HPHXs and Applications

Kasra Nakhaee - November 2015 34

Page 35: Kasra Nakhaee

1. Conventional HPHXs and Applications

Kasra Nakhaee - November 2015 35

Page 36: Kasra Nakhaee

• 2.1. General thermal energy storage

• 2.2. Solar thermal power generation

• 2.3. Data center cooling

• 2.4. Automotive

Kasra Nakhaee - November 2015

2. PCM-HPHXs and Applications

36

Page 37: Kasra Nakhaee

• 3.1. Electronics/CPU cooling using HPHSs

• 3.2. Permafrost stabilization

Kasra Nakhaee - November 2015

3. HPHSs and Applications

37

Page 38: Kasra Nakhaee

• 4.1. Electronics/CPU cooling using HPHSs

• 4.2. Spacecraft thermal management

Kasra Nakhaee - November 2015

4. PCM-HPHSs and Applications

38

Page 39: Kasra Nakhaee

• 5.1. Solar water heating

• 5.2. Nuclear rector cooling

Kasra Nakhaee - November 2015

5. Reflux Heat Exchangers and Applications

39

Page 40: Kasra Nakhaee

References

• Hamidreza Shabgard, Michael J. Allen, Nourouddin Sharifi, Steven P. Benn , Amir Faghri ,Theodore L. Bergman,

2015. Heat pipe heat exchangers and heat sinks: Opportunities, challenges, applications, analysis, and state of

the art. International Journal of Heat and Mass Transfer

• Leonard L. Vasiliev, 2005. Review Heat pipes in modern heat exchangers. Applied Thermal Engineering

• Faghri, Amir, 2012. Review and Advances in Heat Pipe Science and Technology. Journal of Heat Transfer

• Greg F. Naterer, 2008. Heat Exchangers and Heat Pipes. US: Taylor &Francis

• Faghri, Amir, 1995. Heat Pipe Science and Technology. US: Taylor &Francis

• Saunders, E. A. D, 1988. Heat exchangers : selection, design & construction. UK: Longman Scientific & Technical, Wiley

• http://www.1-act.com/rotating-heat-pipes/

• http://www.hexag.org/news/32/sterling.pdf

• http://dtic.mil/dtic/tr/fulltext/u2/a073597.pdf

Kasra Nakhaee - November 2015 40