395

[Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Embed Size (px)

Citation preview

Page 1: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)
Page 2: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

J. Njrvlt, J. Ulrich

Admixtures in Crystallization

Page 3: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

0 VCH Verlagsgesellschaft mbH. D-69451 Weinheim (Federal Republic of Germany), 1995

Distribution:

VCH, P. 0. Box 101161, D-69451 Weinheim, Federal Republic of Germany Switzerland: VCH, P. 0. Box, CH-4020 Basel, Switzerland United Kingdom and Ireland: VCH, 8 Wellington Court, Cambridge CBI lHZ, Great Britain USA and Canada: VCH, 220 East 23rd Street, New York, NY 10010-4606, USA Japan: VCH. Eikow Building, 10-9 Hongo I-chome, Bunkyo-ku, Tokyo 113. Japan

ISBN 3-527-28739-6

Page 4: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Jaroslav Nfvlt , Joachim Ulrich

Admixtures in Crystallization

Weinheim - New York Base1 Cambridge - Tokyo

Page 5: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Dr. Sc. Ing. Jaroslav Syvlt Institute o f Inorganic Chemistry of thc Academy of Scicnces of the Czech Republic I’ellCova 24 16000 Prague 6 Czech Kcpublic

Priv.-Doz. Dr.-Ing. Joachim Ulrich Universitat I3remen Vcrfahrenstechnik/I;B 4 Postfach 330440 D-28334 Bremen Germany

I 1 This book wascarefully produced. Nevcrthelcss, authors and publisher do not warrant the information contained therein to be frec of errors. Readers are advised to kecp in mind that statements. data. illustrations, procedural details or other items may inadvertently be inaccurate.

Published jointly by VCH Verlagsgesellschaft, Weinheim (Fcderal Republic of Germany) VCII Publishers, New York, NY (USA)

Editorial Director: D r . Barbara Bock Production Manager: Claudia Gross1

Library of Congress Card No. applied for

A catalogue record for this book is available from the British Library

Die Deutsehe Bibliothek - CIP-Einheitsaufnahmc N+vlt, Jaroslav: Admixtures in crystallization I Jaroslav NCvlt ; Joachim Ulrich. - Weinhcim : New York : Basel ; Cambridgk : Tokyo : VCH, 1995 ISBN 3-527-28739-6 KE: Ulrich. Joachim:

OVCH Verlagsgesellschaft mbH, D-69451 Weinheim (Federal Republic of Germany), 1995

Printed on acid-free and low-chlorine paper

All rights reserved (including those of translation intoother languages). No part of this book may be rcpro- duccd in any form -by photoprinting, microfilm, or any other means -nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Printing: bctz-druck GmbH. 11-64291 I1armstadt 13ookbinding: CJroDbuchbinderei Josef Spinner, D-77833 Ottersweier Printed in the Federal Republic of Germany

Page 6: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Industrial crystallization has been considered for many years to be

more a magic than a science. One of the reasons has certainly been the fact

that additives or impurities even in the smallest amounts have tremendous

effect on nucleation. crystal growth, crystal forms and dissolution rates.

In recent years, not only has the level at which impurities are detec-

table decreased dramatically, but also the understanding of the interaction

of substances has increased by the same extent. Although there is still not a

complete understanding of the functioning of additives and impurities in

crystallization, there are many interesting new approaches in this field

which should lead to helpful models soon.

The authors want to contribute by gathering every piece of informa-

tion together in this book to help to contribute for a better understanding of

the whole matter. Data of crystallizing substances are presented here

together with the examined admixtures and the found effects, extracted

from the literature databases of both of the authors.

The authors hope that the use of the tables presented wffl lead to a

better design and understanding of crystallization processes, especially of

the functioning of additives. and thus facilitate a proper choice of additives

in order to obtain the required product properties.

The authors would acknowledge the support of the Czech Grant

Agency (Grant No. 203/93/0814) and of the Volkswagen Stiftung.

J. Njrvlt. J. Ulrich December 1994

Page 7: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Classification of Admixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Influence of Admixtures on Nucleation . . . . . . . . . . . . . . . . . . . 9

3.1. Homogeneous Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2. Heterogeneous Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3. Secondary Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4. Influence of Admixtures on Crystal Growth . . . . . . . . . . . . . . . 16

4.1. The Role of the Solid Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2. 22 The Role of the Interphase Solid - Liquid . . . . . . . . . . . . . . . . . . . .

5. Influence of Admixtures on Crystal Shape . . . . . . . . . . . . . . . . 24

6. Influence of Solvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7. Distribution of Admixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.1. Solid Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2. Isomorphous Inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.3. Anomalous Mixed Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.4. Adsorption Inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.5. Mechanism of Internal Adsorption . . . . . . . . . . . . . . . . . . . . . . . . 43

7.6. Mechanical Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.7. Materials Balance for Crystallization in Presence of Impurities . . . 45

7.8. Cascade Purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1

Page 8: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Contents 3

8 . Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9 . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10 . Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Formula Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

11 . References to Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

12 . SubjectIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Page 9: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Admixtures in crystallization Jaroslav Njlvlt, Joachim Ulrich

0 VCH Verlagsgesellschaft mbH, 1995

1. Introduction

Crystallization is one of the oldest separation operations in chemical

industries. I t serves not only to separate and purify substances, but also to

produce crystals with a required shape. Both of these aspects are closely

connected with the presence of admixtures in the solution. Among the

many factors affecting the process of crystallization I1 72,2261, [e.g.,

temperature, supersaturation, agitation). admixtures often exhibit the most

pronounced effect. Even traces of admixtures can influence the nucleation.

crystal growth, shape and size of product crystals, and also other properties

(caking. hygroscopicity. etc.). On the other hand, they may be entrained into

crystals and lower their purity.

A few years ago, a largely empirical approach was used to quantify

the effect of admixtures and solvents. A theoretical description of the effect

of admixtures has been developed only rather recently. Nevertheless, a

consistent theory of the effect of admixtures on individual aspects of the

process of crystallization is sti l l missing. Various admixtures probably

operate with different mechanisms. Some of them are selectively adsorbed

on crystal faces and deactivate individual growth centers, others can

change the structural properties of the solution or of the interface; they may

be incorporated into the crystal lattice or pushed away by the growing

crystal and sometimes there exists a chemical interaction between the

micro- and macrocomponents. I t is obvious that this situation enables u s to

give subsequent explanations of individual effects but the prediction is

Page 10: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1. Introduction 5

still difficult. Computer simulations available in recent years [2.123.124]

facilitate the choice of tailor-made admixture but their use is sti l l limited.

Although the literature on crystallization in the presence of admix-

tures is very extensive, most papers exhibit just an empirical character.

Reasonably complete information on the effect of admixtures can be found

in monographies on crystallization and in surveys. At this point we have to

mention in particular the books by Buckley [32], Khamski [101.102]. Mug

[ 1121. Kuznetsov [120], Matusevich [133j. Matz 11341. Melikhov (1421. Mullin

[152]. Njrvlt [169.171.172] and Ohara and Reid 11791. and papers by Broul

[30]. Cabrera and Vermilyea (411. Chernov [46]. Davey [SO]. Garrett I711 and

Wirges [2421. The purity of crystals and distribution of impurities is dealt

with in many papers, e.g. by Melikhov (1421. Stepin et al. [211] or Slavnova

12061. More detailed information can be found in the literature which

exceeds 2000 papers; the aim of this book is to give a survey of the state of

the art of this subject and of a number of these papers in appended tables.

Before we continue we must mentlon the pioneering work of late Dr. Broul

who started the work on survey of the effects of admixtures 1291.

Page 11: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Admixtures in crystallization Jaroslav Njlvlt, Joachim Ulrich

0 VCH Verlagsgesellschaft mbH, 1995

2. Classification of Admixtures

Crystallization from aqueous solutions can be understood as a

physical process where a pure solid A precipitates from its solution in pure

solvent B. Systems met in practice are usually more complex and in

addition contain several non-crystallizing substances, often in low concen-

trations. Crystallization itself therefore proceeds in a multicomponent

system and the result may be affected by these foreign substances - ad-

mixtures.

An admixture may be defined I301 as a substance present in a crys-

tallizing system that itself doesn’t precipitate as a separated solid under

given conditions. Such a broad definition comprises the solvent as an

admixture as well. This affects the crystallization parameters in many cases

encountered in crystallization from various pure or mixed solvents. Besides

the general term admixture we shall use a more specific term impurity for

substances, unintentionaly present in the solution (e.g.. coming from the

raw materials. from dissociation and other reactions, from corrosion of the

equipment). and addftlue for substances that we add to the solution in order

to modify its crystallization properties. The amount of admixtures is very

different in individual cases. Substances whose concentration is comparable

to that of the crystallizing macrocomponents are called macroadmixtures.

whereas those present in a concentration lower by two orders than that of

the macrocomponent are called microadmixtures or microcomponents [ 10 11 .

Page 12: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

2. Classification of Admixtures 7

Additives are put into the solution with the purpose of affecting the

parameters of the process of crystallization and the product quality. Addi-

tives employed for aqueous solutions can be subdivided into several groups:

a) nee acids and/or bases, adjusting the pH value of the solution. The pH

modifies the nature and the concentration of ions in solution. particularly

when the latter contains salts of weak acids or bases 118). This pH value

has a dramatic effect on the shape (40,1291 or size I1681 of product crystals

and affects also the growth rate [148]. Acids or bases most frequently used

usually have a common ion with the crystallizing substance.

b) Inorganic additives can be subdivided into highly and less active ones.

High active additives include polyvalent cations such as Fe3+. Cr3+, A13+,

Cd2+, Pb2+, as well as certain anions like W0,2-. PO,3-. Very low

concentrations of these additives are sufficient to exhibit a dramatic effect

on crystallization (0.001 to 0.1 wt. %). In order to obtain a similar effect

with less active additives we have to use much higher concentrations (1 - 10

wt. 96). Inorganic additives affecting the crystal growth rate often exhibit a

similar influence on crystal dissolution 152.68.76.1991.

c) The most frequently used organfc addftfues exhibiting high effectiveness

are surface active substances and organic dyestuffs. I t has been observed

I461 that 1 molecule of such an additive per lo4 to lo6 molecules of an or-

ganic macrocomponent decreases its growth rate. The effect of big orga-

Page 13: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

8 2. Classifiatlon of Admixtures

nic molecules is usually not specific to that molecule: a substance can

modify the growth of several macrocomponents and a similar modification

can be obtained using very different organic additives 1411. This property

may be ascribed to the fact that big organic molecules can be adsorbed at

any site on the crystal surface s o that their size is a deciding feature. Like

in catalysis, the position of substituents in the molecule should also be

very important [32]. The influence of organic substances on the growth rate

of crystals is usually very dramatic but their effect on the dissolution rate

can usually be neglected [41.46.240]. In many cases, where the additive is

very active on crystal growth, even a 1000 fold concentration has no effect

on dissolution 1321.

The effectiveness of an admixture is closely bound to the given sys-

tem and cannot be simply generalized. For the activity of additives on the

crystal shape, Buckley 1321 defined the measure of the effectiveness of the

additive as the number of weight units of the crystallizing substance per one

unit of the additive that causes a certain shape modification. Another way

of measurement and evaluation of the effectiveness of admixtures has also

been described in the literature I2191. The influence of admixtures drops

with increasing temperature and growth rate 1321.

Page 14: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Admixtures in Crystallization Jaroslav Njlvlt, Joachim Ulrich

0 VCH Verlagsgesellschaft mbH, 1995

3. Influence of Admixtures on Nucleation

Several mechanisms of nucleation can be distinguished according to

conditions in a supersaturated solution 11781:

nucleation - primary - homogeneous

- heterogeneous

- secondary - originatedfrom solid phase

- originatedfrom the interphase solid-liquid

- collision breeding

A basic criterion for this distinction I1 781 is the presence or absence of a

solid phase. While primary nucleation occurs in the absence of solid particles

of the crystallized substance, secondary nucleation is dependent on the

presence of crystals. For homogeneous nucleation. no solid phase is required,

while heterogeneous nucleation is catalytically initiated by any foreign

surface. Many details on the mechanisms of secondary nucleation can be

found in the literature 1152,177,178,214,215,225j.

Strong effects of the admixtures can be observed with primary

nucleation and with secondary nuclcation due to mechanisms of the

interphase. There are several papers dealing with the theory of the effect of

admixtures on nucleation: in addition to those mentioned below, i.e. papers

(23.78.1571.

Page 15: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10 3. Influence of Admivtures on Nucleation

3.1. Homogeneous Nucleation

According to the theory of homogeneous nucleation. the nucleation

rate increases as the interfacial surface tension, asl decreases. As the sur-

factants dramatically lower the surface tension, their presence in solution

strongly increases the nucleation rate [44.55.83.176]. We may expect,

however, that other admixtures when present in higher concentrations raise

the surface tension and thus decrease the nucleation rate.

Very active inorganic admixtures characterized by a strong tendency

to form coordination complexes decrease the nucleation rate: the stronger

their influence, the higher the complex stability. One of the explanations

tells that heteroclusters are formed in the bulk solution with the centre

formed by the active ion 179.803. The number of these heteroclusters cor-

responds to the number of ions of the admixture, their size being given by

the ratio of the supersaturation and the admixture concentration. The effect

then consists in redistributing of the solute forming supersaturation to

these heteroclusters s o that the supersaturation is effectively decreased.

Clusters can grow only when the supersaturation is increased again. The

effect of admixtures can here be explained by the electric field of the ad-

mixture affecting the behaviour of the macrocomponent [ 1551.

The inhibiting effect of polyphosphates on the nucleation of sparingly

soluble carbonates and sulphates is well known 186,1923. It can be explai-

ned thus: due to the geometric similarity of the active ion and the surface

Page 16: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

3.1. Homogeneous Nucleation 1 1

structure of the macrocomponent. polyphosphate ions are adsorbed on the

surface of undercritical embryi of the macrocomponent so that these clus-

ters cannot continue to grow (33.55.1891. The static adsorption model as-

sumes that the embryo surface is covered by a monomolecular layer of

admixture molecules [62,146.147.180]: the dynamic model of adsorption

1144,160.1611 is based on the probability of collisions of the particles of the

macrocomponent with those of the admixture. Calculations of the Me time

of embryi and the time elapsed between two collisions of the embryi with

the admixture show that the collision mechanism prevails in the initial

periods of the nuclei formation, whereas later the adsorption mechanism

with adsorption of the admixture on active centres of the macrocomponent

prevails. The endothermic adsorption of the admixture decreases the

stability of the surface and raises the energetic barrier of critical nucleus

formation. For thts reason, the complex formed by adsorption dissociates

before it could form a critical nucleus. This leads to increased stability of

the system. Incorporation of admixture particles in the first period of

precipitation is not expected by thts model. Nevertheless, experiments have

shown 11801 that the first fractions of precipitated crystals contain much of

the admixture. so that the assumptions of thts model are not completely

realistic.

Admixtures belonging to the group of water-soluble wUoids (dextrin.

gelatlne) raise the solution viscosity: the diffusion and mobility of particles

are then decreased so that their growth to a critical size is more difficult

[ 133,1691.

Page 17: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

12 3. Influence of Admixtures on Nucleation

There are also examples described in the literature 1167,1691 where

the admixture accelerates the nucleation. This may be encountered in cases

where the admixture reacts with the macrocomponent to form less soluble

substances. Admixtures that have a common ion with the macrocomponent

can decrease its solubility, this leading to a rise in supersaturation and

thus to a decrease of induction periods of nucleation [ 10 1,102.2441.

Another reason can be given in the case of admixtures with a significant

hydration ability: they remove water from the hydration spheres of the

macrocomponent [82.170,1741 and in this way decrease the solution sta-

bility 11331.

3.2. Heterogeneous Nucleation

Using a droplet technique for investigations of the induction time of

nucleation, Wen (2391 was able to differentiate between homogeneous and

heterogeneous nucleation mechanisms. With pure NaCl solutions he found

both the mechanisms but in the presence of Pb2+ ions the induction time

measurements indicated no effect on the homogeneous nucleation. H e

therefore concluded that impurities affected nucleation by working on the

substrate rather than the nucleating crystal. Nevertheless, measurements

carried out on only one system does not allow such a generalization. The

additive may adsorb onto the heteroparticles making them either more or

less active as catalysts [55]. This would either increase or decrease the

nucleation rate. Alternatively, the additive molecule may itself act

Page 18: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

3.2. Heterogeneous Nucleation 13

as a heteroparticle providing a template 11961 for the precipitating sub-

stance. This would lead to an increase in nucleation rate proportional to the

additive concentration.

The heterogeneous nucleation can be treated as secondary nuclea-

tion with the mechanism of interphase layer. At the solid surface there are

more or less oriented clusters that may be removed by fluid shear back into

the bulk of solution 120.43.97.188.2161. These clusters, if they are of the

critical size, can survive and form new nuclei.

S@me mtlve substances deactivate heterogeneous particles and thus

increase the width of the metastable region 1165,1831. The extent of this

action is given by the amount and catalytic activity of foreign particles. An

opposite influence [203.204] can be explained by the fact that surface active

substances decrease the surface energy so that the nucleation rate can

increase. The shape of the curve of nucleation rate vs. the admixture

concentration resembles the adsorption isotherms of surface active

substances on solid surfaces so that there may be expected a direct link of

the nucleation rate rise with the adsorption of the admixture on the surface.

Page 19: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

14 3. Infruence of Adrnivtures on Nucleation

3.3. Secondary Nucleation

One of the mechanisms of secondary nucleation is the mechanism of

interphase layer. At the solid surface there are a more or less oriented

clusters that may be removed b y w d shear back into the bulk of solution

143,188,2161. These clusters, if they are of the critical size, can survive and

form new nuclei.

Some admixtures call forth formation of rough surfaces or even

dendrltes [loo]. Due to fluid dynamic forces or due to partial dissolution

these dendrites can be removed back to the bulk of solution, where they

serve as new nuclei [6 1.1401.

Active inorganic admixtures dilate the metastable zone in super-

saturated solutions. In absence of admixtures, the probability of formation

of stable aggregates at the solid surface is higher than that in the bulk of

solution [177]. This is due to the physical adsorption of the particles of the

macrocomponent and thus due to higher local supersaturation. In analogy

with heterogeneous chemical reactions, adsorption occurs preferentially a t

energetically advantageous active sites on the surface. If these advanta-

geous sites are blocked by the admixture, however, then the probability of

formation of a critical cluster diminishes and the nucleation rate decreases

1203,2041. In addition, adsorption of ions of an admixture that possesses

higher charge than those of the macrocomponent damages the balance of

electric charges on the surface [156] and this leads also to a decrease in the

nucleation rate 1203,2041.

Page 20: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

3.3. Secondary Nucleation 15

In systems where the admixture can easily be incorporated into the

growing crystals' lattice. the so-called impurity concentration gradient can be

effective I22.611. Nucleation in the bulk of solution is hindered due to

presence of the admixture at high concentration. Incorporation of the ad-

mixture into the crystal lattice leads to a decrease of its concentration close

to the surface so that spontaneous nucleation In the intermediate layer

becomes possible again. Presence of growth-restrainers also exhibits an

effect on nucleation I1261 (they enlarge the metastable zone width [ZlO]).

Page 21: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Admixtures in Crystallization Jaroslav Njlvlt, Joachim Ulrich

0 VCH Verlagsgesellschaft mbH, 1995

4. Influence of Admixtures on Crystal Growth

There exist a number of books and papers dealing with the theory of

crystal growth [ 100,112.130.152.178,179,184.185.202.243]. Quantities,

necessary for the application of these theories, are often not known so

several simplifications have to be adopted. Fundamental physical quantities

then lose their physical meaning and become adjustable parameters. I n

addition, experimental methods 172,1781 provide data of limited accuracy so

that the fit of experiments and theory often becomes a matter of statistics.

This must be kept in mind when discussing the effect of admixtures on the

growth rate of crystals.

Due to the different structures and energetical situations growth rate

of individual crystal faces is also different. This also holds for the effect of

admixtures on the growth rate of crystals and this is why individual crystal

faces must be considered separately. The effect of growth rate dispersion

can lead to different values on individual crystals, however, and this may be

one of the reasons why the literature data are scattered and differ from

those obtained by measurements in suspension [ 116. 2261.

4.1. The Role of the Solid Surface

Kossel 1114.1 151 and Stranski 1212.2131 recognized the importance

of atomic inhomogeneities of crystalline surfaces and its relevance to growth

processes. They distinguished three different regions on a crystal

Page 22: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

4.1. The Role of Solid Surface 17

surface: a) frcct surfaces. which are atomically smooth: b) steps, which

separate flat terraces: c) kinks. which are formed in incomplete steps. Kinks

present the most probable position for solute integration because the

highest bonding energy associated with integration occurs here. Flat

surfaces are the least energetically probable sites for incorporation. Never-

theless. admixtures. according to their nature, can adsorb on different sites

on the surface: they can affect the relative interfacial energy of individual

faces or block the active growth centres [30,38J. The effect of admixtures is

different if they are adsorbed on different sites 1531.

Fig. 4.1: Surface growth sites

According to growth rate equations and considering that adsorption

lowers the edge or surface energies and the size of the critical two-dimen-

Page 23: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

18 4. Infruence of Admixtures on Crystal Growth

sional nucleus, we see I181 that the expected result of adsorption is an in-

crease in the crystal growth rate. Other parameters must then act in the

opposite direction in order to explain the decrease of the growth rates

generally observed in habit change phenomena: the slow down of the flux

towards to the steps 1371, the decrease of the lateral advancement velocity

of growth layers due to step pinning [41.66.186.187.1981. a decrease of

number of kinks available for the growth [48,491.

In general, admixtures can be subdivided into strongly adsorbed and

weekly adsorbed ones. One can suppose that physical adsorption is

characteristic for weekly adsorbed admixtures whereas chemical bonds are

typical for strongly adsorbed substances 1491. Mechanism of strongly

adsorbed admixtures [41.158.179,234] assumes that immobile particles of

the admixture are spread over the crystal surface. When a moving growth

step hits such a particle, its edge becomes deformed. In the case where the

distance of two neighbourlng adsorbed particles is smaller than the size of

two-dimensional critical nucleus, the movement of the step will cease [67],

otherwise the step will be deformed and pushed through the slot between

adsorbed particles and continue in its movement but with a reduced rate l'i

[9.41,186,187].

(4.1)

where l', represents the growth rate in absence of an admixture and n is

Page 24: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

4.1. The Role of the Solid Surface 19

assumed to be the average density of admixtures on the ledge ahead of the

step 1411. This equation indicates that the velocity of steps is reduced by an

amount proportional to the concentration of adsorbed admixtures on the

terrace. If such a foreign particle is incorporated into the crystal lattice, it

causes some deformation of the lattice. Joining of another particle of the

macrocomponent to such a deformed lattice may be difficult (1691. The re-

tardation of growth takes place only if the height of the adsorbed particle

can be compared with that of the moving step 1461. Some inorganic admix-

tures can form complex substances (double salts) in combination with the

macrocomponent: such complex nuclei are formed at the sites with strongly

adsorbed admixture. These complex nuclei are not stable, they may

redissolve but the admixture remains adsorbed on the surface [34].

Another mechanism is encountered with weakly adsorbed admixtures.

Here, the retarding action is due to blocking of the active growth centres.

The strength of bonds between the lattice particles and the admixture

determines the mobility of the admixture. Weakly adsorbed admixture can

diffuse two-dimensionally on the surface and can be expelled by the movlng

step, but at the cost of growth rate reduction. If the growth is sufficiently

slow and the amount of admixture is not too high, adsorption equilibrium

can be attained at the surface. The relationshlp between the linear growth

rate of the face r' and the concentration of admixture wi can be described

I12.151 by Wl 1' = 1 6 - ( 1 6 -1'- ) . - B +w,

(4.2)

Page 25: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

20 4. Infruence of Admixtures on Crystal Growth

where lv0 and l ' , represent respectively the growth rates in absence of

admixture and in presence of admixture when all of active growth centres

are occupied 12341. The surface fraction covered by the admixture can be

determined using, for example, the Langmuir adsorption isotherm with the

constant B. The linearized form of this equation I531 allows us to obtain the

value of free enthalpy of adsorption [ 13.16.171. The Langmuir isotherm has

been used also by other authors I581 considering surface diffusion to be the

rate-determining step. The equation above holds even here if we take l'=- 0

130.1 121.

Another model is based on a n estimate of the probability of occur-

rence of free growth active sites and uses the Freundlich adsorption iso-

therm to predict the movement rate of a growth step 14,661. All of the

models mentioned above have been experlmentally verified with a satisfac-

tory result [53]. A survey of adsorption models is given in several papers

153.55.58.1 121.

When the growth of a crystal face is governed by the mechanism of

two-dimensional nucleatton, then the effects of admixtures on nucleation that

are mentioned in the preceding chapter may come into consideration. The

size of a two-dimensional nucleus is [10.411

2a Q

kTS 21, =- (4.3)

Page 26: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

4.1. The Role of Solid S@me 21

where a is the lattice constant, o the surface energy and S relative super-

saturation. Since the size Zc , which can be compared with the admixture

spacing on the surface, determines whether the step can advance or not,

this equation indicates a critical supersaturation that must be exceeded in

order to allow growth.

According to Glasner I79.801 the crystal growth is executed by

deposltlon of heteronuckl on the crystalline surface. The effective supersatu-

ration is then given by the product of the number of heteronuclei (i.e. of the

amount of molecules of the admixture) and of the average size of a

heteronucleus as expressed by the number of molecules of the macrocom-

ponent forming an average heteronucleus.

Su.@atants and organic dyesbgs usually exhibit a very sensitive effect

on the crystal growth rate; their big molecules are attached to the crystal

surface through their polar I301 or hydrocarbon Ill21 portions and prevent

the access of the macrocomponent molecules to the surface 1361. Complexlng

agents, e.g. EDTA. remove certain ionic admixtures from the solution and

therefore act in an opposite direction I116.2101.

Certain admixtures. when present in low concentrations. can accek-

rate the growth of crystals [121.148]. First, this are admixtures lowering the

surtace energy; one can expect those crystal faces possessing higher specific

surface energy adsorb more admixtures and thus grow faster (141. In some

cases, when the admixture has a similar structure parameters or forms

complexes with a structure close to the lattice of the macrocompo

Page 27: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

22 4. Infieme of Admixtures on Crystal Growth

nent. adsorbed admixture molecules can form new active growth sites on

the surface that are energetically more advantageous for further growth

I 12,1691.

Available data thus clearly substantiates the necessity for geometric

simflarlties between the additive and the crystal surface 1551. Whether ad-

sorption occurs due to surface interaction between ionizable groups on the

additive molecule and ions in the crystal surface or due to a surface

replacement mechanism is unresolved 1551 and will probably be different in

different cases. In the case of crystal growth such adsorption mechanisms

are easily visualized to involve the blocking of key sites on the surface and

hence reduction in growth rates.

The effect of admixtures can be combined with other factors, like pH

(acid or base can be considered as a second admixture) or, if a higher

amount of admixture affects the solubility of macrocomponent. we can

speak of the combined effect of admixture and supersaturation I10 1,1341.

4.2. The Role of the Interphase Solid - Liquid

The growth of a crystal can be represented as three successive steps:

a) Transport of the substance from the bulk of solution to the crystal; b)

transport of the substance through the layer close to the crystal surface: c)

incorporation of the substance into the crystal lattice, either by surface

diffusion a t the kink or by formation of a two-dimensional nucleus. The first

step is largely affected by the fluid dynamics of the system

Page 28: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

4.2. The Role of the Interphase Solid - Liquid 23

and its role is usually not too important. The last step has been discussed

in detail in the preceding chapter; we shall thus pay attention to the second

step.

The interphase or the "interface phase" 1511 is understood to be the

region between the "perfect" solid phase and the "perfect" liquid phase. It

can be diffuse (1.e. there are layers at the phase interface and it is

impossible to say clearly whether they belong to the solid or to the liquid;

the changes of physical quantities occur within the distance of several

lattice constants) or it can consist of a quasi-liquid layer, which usually has

a higher concentration of the solute in the bulk of solution 128,1751. The

structure of the interphase has been studied using the theory of fractals

[42.127.128.194] with the result that different growth models led to the

formation of clusters in the interphase with different fractal dimensions.

These characterize the shape of clusters or the roughness of the interphase.

Transport of molecules through the layer adsorbed on the crystal

surface is reallzed through diffusion. The admixture can play different roles

in this step. It can affect the viscosity of the solution. in particular at higher

concentrations. It has been shown 11 131 that even small amounts of surface

active substances can dramatically raise I1 13.1181 or decrease I1 191 the

viscosity.

Page 29: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Admixtures in Crystallization Jaroslav Njlvlt, Joachim Ulrich

0 VCH Verlagsgesellschaft mbH, 1995

5. Influence of Admixtures on Crystal Shape

Under conditions of extremely slow growth, the shape of a crystal is

determined by thermodynamics: the crystal tends to grow to a shape of a

polyhedron having rnfnirnum surface energy 1751: for i faces holds

a, A, = min. (5.1)

Such equilibrium shape can be affected by admixtures in the case that they

change the specific surface energy of individual faces in a different way.

This condition is. however, met only exceptionally, as crystals usually grow

under highly non-equilibrium conditions.

Crystal shape is usually determined by the growth rates of individual

crystal faces. According to the principle ofouerlapplngfaces [ 1691 the faces

that grow more slowly remain in the final crystal shape whereas the

I

Fig. 5.1: Principle of overlapping faces

Page 30: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

5. Influence of Admixtures on Crystal Shape 25

rapidly growing faces disappear 165,701. The condition necessary for

changing the crystal shape is thus to change the relation in growth rates of

individual faces. As was pointed out earller. additives may influence the

crystal growth rate. If they are preferentially adsorbed on certain

crystallographic faces, the mode of growth is altered 1501. Parameters

influencing the occurrence of adsorption include the steric arrangement of

molecules in the additive and their charge and dipole moment, as well as

the electric field on the crystal surface [l69]. The rather pronounced effect

of oxygen anions on the crystallization of oxy-salts shows that not only

dimensional similarities but also similarities of the fields of force are of

importance here. The Hartman-Perdok I89.90.9 11 technique based on

calculations of the attachment energy reduces crystal structures to chains

of strong bonds: the slowest growing faces are those lying parallel to a t least

two bond chains. The faces most likely to be influenced by a n additive are

those for which the change of bond energy due to additive is minimized.

Some assumptions have to be made for the conformation of the additive

molecule in the lattice. so best results can be obtained with tallormade

addltlues [63.123.124.228,235] or lf crystallographic data is known for the

substance with additive [232]. Such organic additives are active in relatively

large concentralons > 1% 12421.

As the interatomic spacings and electric fields are different for dif-

ferent crystal surfaces [82], selectlue adsorption of individual admixtures

occurs on the most favoured ones [ 11.31.35.163.195]. I t is therefore often

Page 31: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

26 5. I n t n c e of Admixtures on Crystal Shape

possible to predict the effect of individual additives on the shape of crystals

[ 18,168,2231 if relevant structural parameters are available. As calcu-lation

of the fields of force is generally possible only in the simplest cases, and

even then as a rule only with difficulty, it is advisable to base calculations of

structural analogies not on the absolute sizes of the ions but on epitaxial

considerations. i.e. on the crystallographic parameters of the lattices of the

crystallizing and the admixed substances [55.168,193.217]. Whetstone

12411 suggested that the charge centres of the polar groups should coincide

accurately with sites for similarly charged ions in the crystal surface and

any such group should not cause a disturbance of the lattice about the sites

in question. One may here consider both substances as having a common

ion 1162,1681 or as forming a complex compound [120.168], The closer the

lattice dimensions of the crystallizing and the admixed substances are the

more effective will the admixture be. As a condition for the incorporation of

the admixture into the lattice it is generally considered that the lattice

dimensions of the two substances should not differ by more than 5 to 15 %

[32.73,74.94,111.149.150.193.220].

Example: How would the addition of A13+ affect the habit of ammonlum sulphatc

crystals? The lattice dlmensions of ammonium sulphate are a = 0.595 nm. b - 1.056 nm, c - 0.773 nm. and that of aluminium ammonium sulphate is a = 1.22

nm. Each basal surface of arnmonlum sulphate cells contains two molecules. Their

mean distances are as follows:

Page 32: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

5. Influence of Admixtures on Crystal Shape 27

(100) corresponds to (a+c)/2 - (0.77 + 0.59)/2 - 0.68 nm or 0.34 nm per

molecule

(001) corresponds to (a+b)/2 - (1.06+ 0.59)/2 - 0.82 nm or 0.41 nm per

molecule

(010) corresponds to @+c)/2 - (1.06 + 0.77) /2 - 0.91 nm or 0.46 nm per

molecule

The mean for (110) planes is (h2 + k2 + l2)-l i2 and is proportional to the particle

density. Its value I s thus given by its relation to (001)

One thus obtains for the dimensions in nm

Alum Ammonium sulphate Difference %

0.61 1 (1 10) 0.58 4.9

(100) 0.68 9.3

(001) 0.82 34.0

(0 101 0.91 49.0

The results show that one should expect (110) and (100) faces to be retarded in

growth so that flatter needle-like habits should result. This has been confirmed

experimentally I168l.

A more quantitative way I1221 consists in determination of atoms in the

upper layer of each crystal face from the crystallographic data of the sub-

stance. These layers are then plotted in the scale of Stuart-Brlgleb mole-

Page 33: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

28 5. Infruence of Admixtures on Crystal Shape

cule models. The additive molecules are also modelled with these models. I n

this way, we get a two-dimensional model of the upper layers of the crystal

and a three-dimensional model of the additives. Assuming, that the growth

of a face may be influenced by an adsorbed additive, we try to find a well

fitting position of the admixture on the surface. A well fitting position is

characterized as a position, where the additive has as much ease to build

attractive interactions to the surface as possible. One possibility is to make

these fi ts with a computer program. If we find an additive. which has a well

fitting position on one specific face of the crystal. we may expect it will be

an effective habit modifier.

Another mechanism described in literature 12221 assumes that the

effectivity of the admixture depends only on its properties. The electric field

of the admixture 11561. given by the ionic charge, diameter [191 and

deformation ability of its electron envelope are responsible for the effec-

tiveness of the admixture. Ions present In the interphase accelerate the

orientation of nuclei or clusters, prevent their agglomeration and thus con-

tribute to a regular crystal growth. There exists also a possibility of

formation of complexes I1201 of various stability, contributing to a change in

properties of the interphase as well as of the bulk solution. Another factor

that can play a role is the hydratron of ions 11531: hydrated ions come into

the adsorbed layer, "dilute" the interphase. slow down the diffusion and so

retard the crystal growth. The reverse flow of the hydration water also acts

against the growth.

Page 34: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

5. Infzuence of Admixtures on Crystal Shape 29

Another theory 12011 supposes that admixtures can affect the shape

of crystals only when they are incorporated into the crystalline body. An ad-

mixture particle adhering to a crystal face acts on the deposition of the

macrocomponent independently of its position; if it is incorporated into the

lattice, it can affect just particles lying very close to it. As the admixtures

are adsorbed on different faces in a different amount, they affect the growth

of these faces in a different degree.

An important class of additives are the so-called "tallor-made" addlti-

ues 1112.2361, which are designed to interact In very specific ways with

selected faces of the crystals. These compounds contain groups that are

similar to the crystallizing substance and are thus readily adsorbed at

growth sites of the crystal surface. These additives then expose the opposite

side, which chemically or structurally differs from the macrocomponent

molecule, thereby disrupting or retarding the growth of the affected face [ 11.

The design of these molecules can be achieved (45,601 with knowledge of the

stereochemisb$ and structure of the substrate crystal. In particular.

existing studies have relied on hydrogen bonding and chirality as powerful

recognition factors.

Page 35: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Admixtures in Crystallization Jaroslav Njlvlt, Joachim Ulrich

0 VCH Verlagsgesellschaft mbH, 1995

6. Influence of Solvents

Close to the interface, transport is restricted to diffusion through the

diffusion boundary layer. The width of the boundary layer is a function of

the fluid dynamics, viscosity and other mass transport-related properties.

After the solute molecules diffuse from the bulk liquid phase to the

interfacial region, they adsorb onto the surface and/or diffuse two-dimen-

sionally on the surface before being integrated into the crystal lattice I1 121.

During the surface diffusion step, bonds between the solute and solvent

molecules are broken. Depending on the ease in which desolvation occurs,

this step can be rate-determining to crystal growth.

A more quantitative approach is to analyze the solvent effect on the

molecular level 11591 . The solvent molecule can be divided into segments,

where its group similar to the solute is adsorbed and becomes part of one of

the crystal surfaces, while its other part emerges from that surface. Then,

the energy calculated as a sum of van der Waals and electrostatic

interactions and these calculations are then repeated for a number of low-

index faces.

Besides the structural conditions imposed by the crystal, it. is known

1181 that the affinity of solvents for a given face may vary considerably

1125,2371. The higher the number of PBC vectors piercing a face, the

stronger is the adsorption of the solvent [109.110]. Like admixtures,

strongly adsorbed solvents may cause noticeable changes in the crystalli-

Page 36: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

6. ZnJuence of Solvents 3 1

zation behaviour of the macrocomponent 12301. Hydrogen bonding fre-

quently plays a dominant role in the action of solvents on the growth of

both inorganic and organic crystals. Especially illustrative is the importance

of these interactions in the action of polar and nonpolar solvents on

crystallization of many substances 12381. One may expect that polar sol-

vents that form a hydrogen bond with polar faces of the crystal reduce

growth rate of that face, thus increasing its relative area: conversely, non-

polar solvents do not exhibit such effects. Thus, large solvent effects are

expected in crystalline systems having faces of significantly different pola-

rlty 18.1 121. This general rule may be one of the best indicators of the abllity

to change crystal habit by the use of an alternative solvent. An example of a

solvent enabling laboratory investigation of the polarity effect is an

acetone/toluene mixture [ 1121. The knowledge of dielectric constants of

various solvents can be extremely helpful 12241.

It follows from the preceding paragraph that solvents which modify

the hterJbce structure can also alter the growth kinetics of the particular

crystal face. One of the most important results of growth theories has been

the quantification of the effect of solvents on crystal interface structure. A

parameter, called the surface enb-opy a-factor. now allows identtfication of

likely growth mechanisms based only on solute and solution properties

[ 1 12.1781. Precise values of a cannot be determined, but estimates may be

made from enthalpies or entropies of solution or of surface and edge

energies 154,1511. Increasing deviations from solution ideallty tend to de-

Page 37: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

32 6. Infruence of Soluents

press the a value. Such calculations have been made for the growth of

hexamethylene tetramine from the vapour and from water, water/ethanol

and water/acetone solutions by Bourne and Davey 125.261 who were able to

postulate the appropriate growth mechanisms for various experimental

conditions, e.g. the BCF dislocation growth from the vapour. surface nu-

cleation limited growth from aqueous solution and surface integration

controlled growth from mixed solvents [ 1511. Interfacial structures of crys-

tals were first related to thermodynamics by Jackson [95]. Bourne 1241.

Bennema 15.61. Temkin 12181 and Davey 154.56.591. If s-s designates the

bond between solid species, f-f bonds between liquid specles and s-f bond

between solid and liquid species, then in formation of an s-f bond. an s-s

and an frf bond must be broken. The energy contribution is given by [ 1781

The surface entropy factor is then

or

a = 4 ~ / k T

a = Y(AH '+AW) /RT

(6.2)

(6.3)

where F is the ratio of numbers of nearest neighbours on the surface and

Page 38: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

6. Infuence of Solvents 33

in the bulk 196,1121 and AHf and A k P are the enthalpies of fusion and of

mixing. respectively. Another equation relates the a factor to the solubility

xs 171 and communal entropyfsf:

2 a=( l -xs) . (q , - tnxs) (6.41

Results obtained from simulations permit determination of the mechanism

that will occur during growth [27.77,2051:

For a 2 4. the growth occurs by the dislocation mechanism alone and the

surface is very smooth.

For 3.2 5 a < 4.0, growth follows the nucleation mechanism (Nuclei Above

Nuclei or Birth and Spread) and the surface is somewhat rougher.

For a < 3.2, growth occurs through the mechanism of direct species incor-

poration and the surface is very rough.

This approach can eventually lead to methods of choosing optimal solvents.

Page 39: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Admixtures in Crystallization Jaroslav Njlvlt, Joachim Ulrich

0 VCH Verlagsgesellschaft mbH, 1995

7. Distribution of Admixtures

Increasing demands on the purity of product crystals, in particular in

the production of ultra-pure chemicals and in the separation of radio-

isotopes, led in recent years to an intensive study of the distribution of

impurities between the liquid and the solid phases. Nevertheless, first

studies on this subject have been published already at the end of the last

century. During this time. various mechanisms of impurity incorporation

have been described [30.85.166.202.211.221.2451:

1. Zsornorphous LncZusion - true isomorphism (solid solutions)

- isodimorphisrn

- isomorphism of second type

- anomalous mixed crystals

2. adsorption mechanisms - external adsorption

- internal adsorption

3. mechanical inclusions - of coUoids

- of liquid phase

7.1. Solid Solutions

Let us consider a three-component system: the macrocomponent A,

the admixture B and the solvent S . There exist three fundamental limiting

cases [171]: a) the macrocomponent and the admixture are completely

immiscible. b) the macrocomponent and the admixture are miscible in a

Page 40: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

7. I , Solid Solutions 3 5

limited range of concentrations. c) the macrocomponent and the admixture

are completely miscible. As the admixture concentration is usually low,

cases b) and c) can be discussed altogether, but if the solubility of the

admixture is below 1 %, the substances cannot usually be considered

isomorphous. The condition for isomorphous incorporation is the fit of ionic

or molecular diameters within 10 to 15 940 [30] .

These cases are schematically shown in Fig. 7.1.

I \ \ I immiscible in s.lid

I \ \ B I I \ solid solution

S - B

Fig. 7.1: Schematic representation of a ternary system with components

a) immiscible in solid phase

b) miscible in solid phase

In the system of immiscible components (right) the diagram indicates that

for any composition of the ternary system only pure component A can

precipitate. If both the components are miscible (on the left) then they form

Page 41: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

36 7. Distribution of Admixtures

solid solution. The relative amount of the impurity incorporated in the

crystalline phase is related to the energy change upon binding the admix-

ture relative to that upon binding the macrocomponent 181. 7Yu.e solid soh-

tions, t e . true isomorphous incorporation. are expected where the macrocom-

ponent and the admixture are similar in size and shape i93.1121: they form

a common lattice in a large interval of concentrations by mutual sub-

stitution in lattice centres - so they must have an identical lattice type and

very close lattlce dimensions. Isodimorphism is characterized by the ability of

two substances, having different modifications under given conditions, to

form a common crystal lattice identical with that of the macrocomponent:

their structures must be similar, however. I t is interesting to note that when

small mismatches in size occur, the solubility of small molecules in a host

lattice of larger ones is more probable than the solubility of large molecules

in a lattice of smaller ones [88,93,207]. The incorporation of ionic species

was directly related to the charge and molecular size and, for

isodimorphous substances, also to the distance from the transition

temperature of structures. There exist a number of studies quantitatively

describing the distribution of the admixture in the formation of solid solu-

tions 139.87.1 12,1901: the most frequent equations are

InK, =in[:]=>(---) AH' 1 1 R T TB (7.1)

Page 42: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

7.2. Isomorphous Inclusion 37

where KB is the distribution constant, x ~ , ~ and xBf are mole fractions of the

impurity in crystals and in the solution, AHH$ is the heat of fusion (or

crystallization) of the admixture and TB is its melting point. The product

purity can be improved from solvents in which the admixture has a high

solubility. This also explains the effect of temperature on some separations

through its direct effect on component solubilities I 1 121. There exists a close

simllarity between the criteria for habit modification and solid solution

formation 12,601.

7.2. Isomorphous Inclusion

According to Hahn’s 1851 precipitation rule, coprecipitation of micro-

impurities in crystals of the macrocomponent always occurs when the

microcomponent is included isomorphously into the crystal lattice of the

macrocomponent or if it contributes to normal lattice formation. Two basic

distribution laws have been formulated for isomorphous impurity in-

corporation I1 38.14 1,166,17 11:

Doerner and Hoskins I641 assume that an exchange reaction between

macrocomponent particles in the lattice and microcomponent particles in

the solution occurs on the surface of each newly formed layer. Assuming

that crystallization is very slow so that equilibrium is established. they

derived the so-called logmtthrnic disMbution law

log- X O = R log- Y O

x o - x Y o - Y (7.2)

Page 43: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

38 7. Distribution of Admixtures

where xo and yo are the initial concentrations of the microcomponent and

the macrocomponent, respectively, x and y are the precipitated parts of both

components and il is the logarithmic distribution coefficient.

If h > 1. the solid phase is enriched in the microcomponent during

the crystallization. otherwise, it is depleted in the microcomponent. In

addition, the logarithmic distribution law assumes that diffusion in solid

phase is negligible. Therefore, the admixture distribution in the solid phase

is inhomogeneous: for h > 1, the highest impurity concentration is in the

centre of the crystal and it decreases towards the surface, while for h < 1

this distribution is inversed.

The Nernst distribution assumes that the ions of the two components

are in equilibrium with the ions inside the crystal. The microcomponent

distribution is then homogeneous throughout the crystal and the ho-

mogeneous dIsMbution law holds [92.103,106.117.190~ in the form

X Y - - - D- x o - x Y o - Y

(7.31

where D is the homogeneous distribution coefficient. The homogeneous

distribution law states that, when two substances separate in the form of

isomorphous mixed crystals. the micro- and macrocomponents are dis-

Page 44: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

7.2. Isornorphous Inclusion 39

tributed between the solid and liquid phases in a constant ratio. For D > 1.

the solid phase is enriched in the microcomponent. while for D < 1 it is

depleted, compared with the microcomponent contained in the solution.

A general solution of the distribution law [99.138.141.154.1911

originates from a general form of the equation

d x - = R ( x , y) . f ( a ) dY

(7.4)

where x and y are amounts of the micro- and macrocomponent in crystals, 12

k y ) is the differential distribution coefficient in time t andflcJ is the ad-

mixture concentration in the interphase. The shape of the function above is

determined by the relation between the rates of three subsequent steps: a)

transport of the microcomponent from the bulk of solution to the crystal

(uR), b) passage of the admixture through the interphase (up) and c) trans-

port of the admixture through the solid phase (vT). For very different rates

simple solutions can be found:

1) Kinetic reglme where uR s up s uT -0: intensive stirring and diifusion

guarantee a regular distribution of the admixture in solution so that NcA - c

. If the concentrations of the admixture and of the macrocomponent remain

constant, statlonary copreclpltation is described by the equation

X - = js4.c Y

(7.5)

Page 45: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

40 7. Distribution of Admixtures

If the concentration of the macrocomponent remains constant whereas the

concentration of the admixture decreases (semistatbnary copreclpitatfon), an

exponential equation 123 11 is obtained

X

x o - = 1 - expCf(n,y)]

Finally, if both the concentrations of components change during the crys-

tallization (non-statbnury precipitation). one obtains the logarithmic distri-

bution law derived by Doerner and Hoskins (641.

2) Di_oirsional regime is characterized by the condition up >> uR >> uT -0.

Detailed analysis of this case 1391 confirmed that a homogeneous distri-

bution of the admixture in the solid phase is not necessarily contingent on a

multiple recrystallization.

3) Migration regime with vR >> up >> uT >> 0 assumes very slow crystal growth.

If the diffusion proceeds quicker than the growth, solution of these statio-

nary conditions leads 147.1411 to the logarithmic distribution law.

This general solution led to the following conclusions: a) Homogeneous

distribution holds for constant concentrations of the macro- and micro-

component in solution. b) Logarithmic distribution is obtained for constant

concentration of the macrocomponent and a variable concentration of the

microcomponent in solution. c) If neither the concentration of the macro-

component nor that of the microcomponent is constant, complicated ex-

Page 46: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

7.3. Anomalous Mived Crystals 4 1

pressions are obtained that can be solved for the condition of a very slow

crystallization; applying several simplifications. both equations for homo-

geneous and logarithmic distribution can be obtained: this explains, why

the logarithmic distribution has been found in several cases where the ex-

perimental conditions differed from those applied for the derivation of the

law.

A number of authors investigated the effect of temperature 1108.1451,

agitation I131.1321. and acidity of the solution 1841 on the isomorphous

distribution of impurities.

7.3. Anomalous Mixed Crystals

Sometimes (e.g.. in syncrystallization of heavy metal chlorides with

ammonium chloride 1971). true mixed crystals cannot be formed a s the mi-

cro- and macrocomponent are not isomorphous owing to their chemical

nature and crystal structure parameters. The ions must have a similar

diameter but their charges must be different (e.g., Bas04 and KMnO, or

CaCO, and NaNO,). True solid solution is not expected here. Adsorption is

also not involved, as the admixture is distributed homogeneously

throughout the crystals and the distribution coefficient is Independent of

external crystallization conditions and of the specific surface area of crys-

tals. With this type of system, like PbSO, - RaS04 , a so-called lower Umff

Page 47: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

42 7. Distribution of Admtvhues

of miscibiilty can often be observed [104.105.107.164]: on decreasing the

concentration of admixture in the solution below a certain limit, syncrys-

tallization of the two components suddenly stops. This phenomenon can be

explained thus: while in isomorphous inclusion the crystallizing units of

the macrocomponent are replaced with particles of the admixture in the

lattice being formed, here whole sections of the lattice are replaced. At very

low concentrations of the admixture, the formation of such lattice sections

on the crystal surface is improbable and hence a lower miscibility limit

appears.

7.4. Adsorption Inclusion

Coprecipitation of admixtures was first investigated by Paneth [ 1821

who formulated the following rule: The cation of a n admixture is the more

strongly adsorbed on the precipitate, the less soluble the component formed

together with the anion of the macrocomponent is. This rule was been later

modified by Hahn [55]. I t is thus required that the charge of the adsorbed

ion should be opposite to that of the adsorbing surface and that the

solubility of the component combined from the ions of both admixture

and macrocomponent should be low. In addition, the charge and the size of

the adsorbed ion are also of importance [19,70.81]: the polarisation of the

ion proportional to

lonix charge / (bnic dlameter)2

Page 48: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

7.5. Mechanism of Internal Adsorption 43

is decisive. Adsorption of positively charged ions of the admixture can oc-

cur on a neutral or even on an also positively charged surface [155]. how-

ever. In any event, a direct dependence between the amount of admixture

adsorbed and the specific surface of crystals has been found.

7.5. Mechanism of Internal Adsorption

Internal adsorption is intermediate between isomorphous inclusion

and adsorption inclusion. In a similar manner to adsorption. it is charac-

terized by the variability of the distribution coefficient with changes in the

crystallization conditions. These anomalous mixed crystals exhibit a regular

but discontinuous distribution of the admixture, owing to Selective

adsorption on certain faces of the growing crystal I209). When the distri-

bution of impurity in the crystal is monitored (e.g.. visually with coloured

admixtures, or by autoradiographic methods I1671). the crystal is found to

be subdivided into individual sectors, identical with bipyramids of faces that

exhibit selective adsorption. This phenomenon is therefore also called

sectorial crystalgrowth [11,166,171,195.2311. The existence of such selective

adsorption is also reflected in the change of crystal shapes.

The term internal adsorption is also used for the adsorption occur-

ring on the internal crystal surface, closely connected with various defects

in crystal structure like breaches or microcavities formed in the block

Page 49: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

44 7. Distribution of Admixtures

structure of real crystals. Admixtures trapped at such sites I2001 are cove-

red by new crystal layers so that they cannot be removed by washing with-

out substantial dissolution 1301. They can move, however, if a temperature

gradient is present across the crystal body 1197.2291.

Fig. 7.2: Sectorial crystal growth

Page 50: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

7.6. Mechanical Inclusions 45

7.6. Mechanical Inclusions

Under certain conditions. trace amounts of admixtures in solutions

can form colloids, the centres of which can contain various impurities like

dust particles. During crystallization of the macrocomponent. these sub-

stances can be deposited on crystal faces and covered by subsequent layers

of the growing crystal. Another extreme case is inclusion of the other liquor

inside the growing crystals which usually occurs when crys-tallization

proceeds rapidly in unstirred solutions [30]. This sort of crystal

contamination can be avoided by slower crystallization, removal of colloidal

particles from the solution and better stirring.

7.7. Materials Balance for Crystallization in Presence of Impurities

Recycling of mother liquors is a frequently used method in crystalli-

zation that serves a] for minimalization of the amount of discharged mother

liquors, b) for adjustment of an optimal suspension concentration. As the

feed usually contains impurities. these impurities may accumulate in the

crystallizer and it would be advantageous to know the maximum recycling

ratio, a t which the product would still contain impurities within allowed

limits. An answer can give a complex materials balance of the

Page 51: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

46 7. Distribution of Admixtures

crystallization and separation unit

unit is shown in Fig. 7.3.

Material balances of individual blocks can be calculated in a usual way; the

crystallizing macrocomponent and the solvent are considered. The impurity

is incorporated into crystals according to the Nernst law

11731. A simple block diagram of the

mcr Wor

mcl W O l - = D1f- (7.8)

where ma and m,., represent the mass of i-th impurity and that of the

macrocomponent in crystals, respectlvely. and war: and wOl are corres-

ponding concentrations in the solution. Another part of the impurity is

trapped on the surface of crystals with adhering mother liquor, proportional

to the liquid content withdrawn with the crystals of product crystals

(7.91

where the subscrlpt c represents crystals and f represents the mother

liquor. Percentage of the impurity in crystals is then

Page 52: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

7.7 Materials Balance 47

I vapour recyc I e

product si Fig. 7.3: Block diagram of the crystallization / separation

unit with recycle of mother liquor

(7.10)

Mother liquor is divided into recycled part and withdrawn part in a ratio

given by the recycling ratio R:

recycled mother liquor total mother liquor

R = (7.11)

Page 53: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

48 7. DLstribution of admixtures

An example of typical results 11731 is shown in Figs 7.4 and 7.5.

The following conclusions can be drawn from the simulations 11 731:

a) The time necessary to reach the steady state depends on the recycling

ratio.

b) The effect of the distribution coefficient of the admixture prevails in the

region D,, > 0.1, whereas the effect of adhering mother liquors becomes very

important a t D,, < 0.5.

c] The impurity content in the product from a cooling crystallizer is almost

independent of the mass of precipitated crystals and of the recycling ratio R.

In the products from evaporative crystallizers. the impurities increase with

the recycling ratio, in particular for admixtures with D,, c 0.5. whereas for

D,, - 1 the purity slightly increases.

Another paper 11431 deals with the optimization of conditions for

improving the purity of crystals.

Page 54: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

7.7. Materials Balance 49

1.0

0.8

0.6

0.4

0.2

0 0 1 2 3 4

log D,

Fig. 7.4: Dependence of the impurity contents in a product from a cooling

crystallizer as function of the distribution coefficient D,i and the

humidity of product crystals.

The curves correspond to the liquid content withdrawn with the

crystals wco (from the top) 0.20, 0.10, 0.05 and 0.01, respec-

tively

Page 55: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

50 7. Distribution of Admixtures

4 2.5

2.0

15

1.0

0.5

0 0.5 0.6 0.7 0.8 0.9 10

R

Fig. 7.5: Impurity contents in a product from an evaporative crystallizer as

a function of the recycling ratio R and the distribution coefficient

D,, (with a constant liquid content withdrawn with the crystals).

Values ofDI1:

6 ... 1.0 1 ... 0.005, 2 ... 0.01, 3 ... 0.05, 4 ... 0.1, 5 ... 0.5,

Page 56: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

7.8. Cascade M i a t i o n 5 1

7.8. Cascade Purification

Crystal contamination can arise from a number of causes. This is an

undesirable phenomenon when high-purity products are required. In spite

of the different mechanisms, the distribution of a microcomponent a t

equilibrium can frequently be approximated by the homogeneous

distribution law 11381 that can be written as

Y = k , X (7.12)

where X and Y are the relative masses of the microcomponent related to unit

mass of the macrocomponent in the liquid and solid phases respectively. If

the initial mass fraction of the microcomponent in crystals is yo and its final

value is yf then [ 1371 Y and X are:

(7.13)

Y O Y' Wf - - (Wf - weq)- 1-yo 1 - yi X =

From the point of view of economy in discharge of solutions, the multistage

counter-current recrystallization seems to be most advantageous (Fig. 7.61.

Page 57: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

52 7. Distribution of Admixtures

t ,,,k-I l c

m k t l sol

x k + l Q

Fig. 7.6: Definition of streams in the k-th stage of a cascade with

counter-current recrystallization

The balance of the microcomponent in the k-th stage can be written in the

form [ 135) :

m, Y k-l + mL x”-’ + m,, xk+l = m, Y + ( mL + mso, )xk (7.14)

where the subscripts c, L and sol represent the crystals, liquid adhering on

crystals and solutlon respectively, and the superscripts express the serial

number of the stage. The mass balance for the microcomponent over the

whoIe n-stage recrystalhation system can be written as:

Page 58: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

7.8. Cascade Puriatron 53

m, Yo + mL X o + mso, Xn+' = m, Y n + m, X" + mso, X' (7.15)

The aim in solving this equation is to find the microcomponent contents in

the product, Y". and in the exit mother liquor. X1. For the condition

and after introduction of the dimensionless concentration parameters

zk = Y k / Y o (7.17)

and the recrystallization factor WW ~- Ww WL-

m d m c - W L - W ~ 1 - w ~ ~ ~ K = - WLWeq

kH+---- 1 - WLWeq

kH +mL I me

the equations above can be solved 1137.1393 with the result

z; = ( l + K - k , K ) - l

l /Z , " = ( l + K - k , , K ) ( l + K ) - K

(7.18)

(7.19)

(7.20)

(7.21)

Page 59: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

54 7 . Distribution of Admixtures

Example: A saturated solution of KAl(SO4)z at 6OoC has been cooled down to 2OoC.

The original salt contained yo - 1.3 Na. After crystallization the Na content

dropped to 2 . lo-* Na. The respective solubilities are w1 - w (60) - 0.5585 , weq - w (20) - 0.1127. The distribution coefficient found in independent experiments was

kH - 0.035. Liquid content withdrawn with the crystals of separated crystals was

WL - 0.03. I t follows that the recrystallization coefflclent K - 6.50. We shall calculate

the number of stages necessary to obtain crystals with a Na content 100 tlmes

lower. We obtain:

Zf! - 0.1375

Zy - 0.0208

9.” - 0.0032 < 0.01

The required purification can thus be achieved in three stages.

An analogous solution has been found 11361 also for a cross-current

flow model with the result that this model requires higher solvent con-

sumptlon and is thus less advantageous.

In melt crystallization. additional purification steps like sweating and

washing can reduce the number of stages. Sweating is a temperature

induced process step which leads to a liquidizing of impurities in crystals

due to the temperature increase to the melting point of the major compo-

nent. Washing is a stripping of the crystals of the adhering residual mother

liquid by rinsing with pure product or by a so-called diffusion washing.

Dzfusion washing is a purification due to a liquid - liquid diffusion of

impurities out of the crystal (pores or cracks) into the surrounding purer

melt [181.197.227,228.2331.

Page 60: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Admixtures in Crystallization Jaroslav Njlvlt, Joachim Ulrich

0 VCH Verlagsgesellschaft mbH, 1995

8. Notations

A

a

B

C

D

K

KB

k

k

n

n

P

R

R

S

surface area

lattice constant

constant

concentration

homogeneous distribution coefficient

enthalpy of fusion

enthalpy of mixing

recrystallization factor

distribution coefficient

k-th stage

Planck constant

homogeneous distribution coefficient

growth rate of a face in presence of admixture

growth rate of a face in absence of admixture

growth rate of a face in full coverage by admixture

mass of crystals

total number of stages

average density of the admlxture on a surface

concentration (wt. %)

gas constant

recycling ratio

relative supersaturation

Page 61: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

56 8. Notatlons

-T

TB

UR

UP

UT

W

X

X

Y

Y

z

a

6

R

P C

0

a

temperature

melting point of the impurity

mass transport rate in the bulk of solution

mass transport rate through the interface

mass transport rate in the solid phase

concentration (mass fraction)

relative mass of microcomponent in liquid phase

mole fraction of microcomponent

relative mass of microcomponent in solid phase

mole fraction of the macrocomponent

dimensionless concentration parameter

surface entropy factor

energy

logarithmic distribution coefficient

crystal density

surface energy

ratio of number of nearest neighbours

Page 62: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Admixtures in Crystallization Jaroslav Njlvlt, Joachim Ulrich

0 VCH Verlagsgesellschaft mbH, 1995

9. References

111 Addadi. L.. Berkovitch-Yellin. 2.. Weissbach. I.: Angew. Chem.

Int. 24 (1985) 466

121 Addadi. L.. Berkovitch-Yellin, 2.. Welssbach. I.. Lahav. M..

Leiserowitz, L.: Topics in Stereochem. 16 (1986) 1

[3l Addadi. L., Berkovitch-Yellin. 2.. Weissbach, I., van Mil. J.. Shimon.

L.J.V.. Lahav. M.. Leiserowitz, L.: Angew. Chem. 97 (6) (1985) 476

141 Albon, N., Dunnlng. W.J.: Acta Cryst. 15 (1962) 474

151 Bennema. P.: Progress in crystal growth from solutions: Implications

for lndustrlal crystallization. in: IndusMal Crystallization ‘78 (eds. de

Jong. E.J.. JaneiC, S.J.), p. 115. North-Holland, Amsterdam 1979

I61 Bennema. P.. Gllmer, G.H.,in: Crystal Growth - anIntroductlon (ed.

Hartman, P.), p. 263. North-Holland, Amsterdam 1973

I71 Bennema, P.. van der Eerden, J.P.: J. Crystal Growth 42 (1977) 201

I81 Berkovitch-Yellln. 2.: J. Am. Chem. SOC. 107 (1985) 8239

[9] Black, S.N.. Davey. R.J.: J. Crystal Growth 90 (1988) 136

1101 Black, S.N., Davey. R.J.. Halcrow. M.: J. Crystal Growth 79 (1-3, Pt.

21(1986) 765

[ 111 Blank. A.B.. Komishan. N.I.: Stsintill. mater. 1 osobo chist. khim.

veshch. 3 (1979) 124

1121 Bliznakov, G.: Izv. Bulg. Acad. Nauk. Ser. Fiz. 4 (1954) 135

1131 Bliznakov, G.: 2. physik. Chem. 209. 5/6 (1958) 372

1141 Bliznakov, G.: Kristallografiya 4 (1959) 150

1151 Bliznakov. G.. Kirkova, E.: 2. physik. Chem. 206. 3 / 4 (1957) 271

Page 63: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

58 9. References

1161 Bliznakov. G.. Kirkova. E.. Nikolaeva. R.: Z. physik. Chem. 228.

1 / 2 (1965) 23

I171 Bliznakov. G.. Nikolaeva. R.: Krist. Technlk 2 (1967) 161

1181 Boistelle. R.: Survey of crystal habit modification in solution. in:

Industrial Crystallization (ed. Mullin. J.W.). p. 203, Plenum Press,

New York 1976

1191 Bollmann. W.: Crystal Res. Technol. 16 (4) (1981) 521

I201 Botsaris. G.D.: Secondary nucleation - A Review, in: Industrial

Crystallization (ed. Mullin. J.W.), p.3, Plenum Press, New York

1976

I211 Botsarls, G.D.: Effects of impurities in crystallization processes, in:

Industrial Crystallization '81 (eds. JanCiC. S.J.. de Jong, E.J.). p. 109.

North-Holland, Amsterdam 1982

[221 Botsarls, G.D.. Denk, E.G., Chua. J.O.: AICHE Symp. Ser. 68 (121)

(1972) 21

1231 Botsaris, G.D., Pagounes, J.O.: AICHE Symp. Ser. 83.1253) (1987) 19

1241 Bourne, J.R.: AIChE Symp. Ser. 76,193 (1980) 59

I251 Bourne, J .R . , Davey, R.J.: J. Crystal Growth 36 (1976) 278. 287

1261 Bourne, J.R.. Davey. R.J.: J. Crystal Growth 39 (1977) 267

[271 Bourne, J.R.. Davey. R.J.. McCulloch. J.: Chem. Eng. Sci. 33

(1978) 99

I281 Brice, J.C.: M e Growth ofCrystalsfrom Uqdds. North-Holland,

Amsterdam 1973

Page 64: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

9. References 59

1291 Broul. M.: Res. Report Res.Inst.1norg.Chcm. osti n.L.. VUAnCh VZ-E-

612 (1972)

1301 Broul. M.. Nplt. J.: Chem. Listy 74 (1980) 362

1311 Buckley H.E.: 2. Krist. 85 (1933) 58

(32) Buckley, H.E.: Crystalgrowth, Wiley. New York 1951

1331 Buehrer. T.F., Reitmeier. R.F.: J. Phys. Chem. 44 (1940) 552

1341 Bunn. C.W.: Proc. Royal SOC. London A 141 (1933) 567

I351 Bunn, C.W.: Disc. Faraday SOC. 5 (1949) 287

(36) Bunn, C.W., Emmett, H.: Disc. Faraday SOC. 5 (1949) 119

I371 Burrill. K.A.: J. Crystal Growth 12 (1972) 239

1381 Burton, W.K.. Cabrera. N.. Frank, F.C.: Phil. Trans. Roy. SOC. A243

(1951) 299

1391 Burton, J.A.. Prim. R.C.. Slichter. W.P.: J. Chem. Phys. 21 (1953)

1987

(401 Byteva, I.M.: Rost kristallov 3 (1961) 296

[41] Cabrera. N.. Vermilyea, D.A.: in: Growth and Perfection of Crystals,

(eds. Doremus. R.H.. Roberts, B.W.. Turnbull, D.), p. 393, Wiley.

New York 958

[42] Cannel. D.S., Aubert. C.: Fractal Patterns in Physics, in: Growth and

Form (eds Stanly. H.E.. Ostrowski, N.), Nijhoff. Dordrecht 1986

1431 Cayey. N.W.. Estrin. J.: Ind. Eng. Chem. Fundam. 6 (1967) 13

(441 Chatterji. A.C.. Rastogi, R.P.: J . Indian Chem. SOC. 29 (1952) 458

Page 65: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

60 9. References

1451 Chen. B.D., Polts. G.. Davey. R.J., Garside. J., Bergmann, D..

Nieh6rster. S . . Ulrich. J.: J. Crystal Growth (in press)

1461 Chernov. A.A.: Uspekhi fiz. nauk 73 (1961) 277

147) Chernov. A.A.: Rost kristallov 3 (1961) 52

I481 Chernov. A.A.: in: Growth of Crystals (Shubnikov. A.V.. Sheftal. N.N.) .

3 (1962) 31. Consultants Bureau, New York 1962

I491 Chernov, A.A.: in: Adsorption et croissance CristaZline. p. 265. C.N.R.S.

Paris 1965

I501 Chernov. A.A.: Krlst. Tech. 6 (5) (1971) 577

I511 Chvoj 2.: J. Non-Equilib. Thermodyn. 18 (1993) 201

1521 van Damme - van Weele. M.A.: in: Adsorption et croissance

cristaZUne. p. 433, C.N.R.S.. Paris 1965

I531 Davey, R.J.: J. Crystal Growth 34 (1976) 109

1541 Davey. R.J.: The control of crystal habit, in: Industrial CrystalUzation

'78 (eds. de Jong. E.J.. JanCiC, S.J.). p. 169. North-Holland,

Amsterdam 1979

1551 Davey, R.J.: The role of additives in precipitation processes, in:

Industrial Crystallization 81 (eds. Janeie. S.J.. de Jong. E.J.). p. 123.

North-Holland,, Amsterdam 1982

1561 Davey R.J.: in: Current Topics InMateriaZs Science, vol. 8 (ed.

Kaldis. E 1, p. 431, North-Holland, Amsterdam 1982

1571 Davey. R.J., Mllosavljevic, B.. Bourne, J.R.: J. Phys. Chem. 92

(1988) 2032

Page 66: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

9. References 61

1581 Davey. R.J.. Mullin. J.W.: J. Crystal Growth 26 (1974) 45

(591 Davey. R.J.. Mullin, J.W.. Whlting. M.J.L.: J. Crystal Growth 58

(1982) 304

1601 Davey. R.J.. Polywka. L.A.. Maginn. S.J.: The control of morphology

by additives, in: Advances in Industrial Crystallization. (eds. Garside,

J., Davey, R.J., Jones, A.G.). p. 150, Butterworth-Heinemann.

Oxford 1991

I611 Denk. E.G.. Botsaris. G.D.: J. Crystal Growth 13/14 (1972) 493

1621 Dhanasekaran, R.. Ramasamy. P.: Crystal Res. Technol. 16 (1981)

299

1631 Docherty, R., Roberts, K.J.: ModelUng the Morphology of Molecular

Crystals, Thesis, Univ. Strathclyde 1989

I641 Doerner. H.A., Hosklns, W.M.: J. Am. Chem. SOC. 47 (1925) 662

1651 Donnay. J.D.H.. Harker. D.: Am. Mineral. 22 (1937) 446

(661 Dunning, W.J., Jackson, R.W.. Mead, D.G.: in: Adsorption et croissance

cristalline. p. 303, C.N.R.S. Paris 1965

1671 van der Eerden. J.P.. Muller-Krumbhaar. H.: Electrochim. Acta 31

(1986) 1007

1681 Fabian. J.. Ulrich. J . : Dissolution like crystal growth - a two-step

process, presentation of experimental evldence, in: Industrial

CrystaUization '93 (ed. Rojkowski. 2.). p. 4-041, Warszaw 1993

1691 Fajans, K.. Erdey. Gruz. T.: 2. physik. Chem. 158 (1931) 97

(701 Frledel. G.: Bull. SOC. Franc. Miner. 30 (1907) 326

Page 67: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

62 9. References

I711 Garrett, D.E.: Brit. Chem. Eng. 4 (1959) 637

I721 Garside. J., Mersmann. A.. Nfil t , J. (eds.): Measurement of Crystal

Growth Rates, WPC-EFCE. Munich 1990

[73] Gaubert. P.: Bull. SOC. Franc. Mineral. 17 (1894) 121

[74] Gaubert, P.: Compt. Rend. 155 (1912) 649

I751 Gibbs. J.W.: On equilibrium of Heterogeneous Substances, in:

Collected works of J.W. Gibbs. Longman. New York 1878

1761 Gilman, J.J., Johnston, W.G., Sears, G.W.: J. Appl. Phys. 29 (1958)

747

1771 Gilmer. G.H.. Bennema, P.: J . Crystal Growth 13/14 (1972) 148

1781 Ginde. R.M.. Myerson. A.S.: J. Crystal Growth 126 (2-3) (1993) 216

1791 Glasner. A.: Israel J. Chem. 7 (1969) 633

1801 Glasner. A.. Skurnik. S.: J. Chem. Phys. 47 (1967) 3687

18 11 Goldschmidt. V.M.: Geochernische Verteilungsgesetze WI, Oslo

1926

1821 Goldschmidt. V.M.: Kristallokhirniya, ONTI, Leningrad 1937

I831 Gopal, R.. Rastogi, R.P.: J. Indian Chem. SOC. 27 (1950) 401

I841 Grebenshchikova, V.I.: Zhur. Neorg. Khim. 3 (1958) 20

I851 Hahn, 0.: Applied Radfochernistry. Cornell Univ. Press, Ithaca. New

York 1936

I861 Hall, R.E.: USP 1 956 515 (1934)

I871 Hall, R.N.: J. Phys. Chem. 57 (1953) 836

Page 68: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

9. References 63

(881 Harano. Y., Yamamoto. H.: Impurity effect of some amino acids on

formation and growth of L-glutamic acid nuclei by secondary

nucleation in agitated solution, in: Industrial Crystallization 81 (eds.

JanCid. S.J.. de Jong. E.J.). p. 137. North-Holland, Amsterdam

1982

1891 Hartman, P.: 2. Krist . 119 (1963) 65

1901 Hartman. P.. Kern, R.: Compt. Rend. 258 (19641 4591

1911 Hartman. P.. Perdok, W.G.: Acta Cryst. 9 (19551 49, 521, 525

(921 Henderson, L.M.. Kracek. F.C.: J. Am. Chem. SOC. 49 (1927) 738

[93] Hildebrand, J.H.. Scott, R.L.: The Solubility of NoneZectroZytes, 3rd

ed.. p. 300. Reinhold, New York 1950

1941 Hocart, R.. Vincent, E.: Bull. SOC. Franc. Mineral. Crist. 82 (1959)

398

1951 Jackson, K.A.: Liquid Metals and Solidi$cation, p. 174. Am. SOC.

Metals, Cleveland 1958

1961 Jetten. L.A.M.J.. Human, H.J. , Bennema. P., van der Eerden. J.P.:

J. Crystal Growth 68 (1984) 503

[971 Johnsen, J.: Neues Jahrb. Miner. ZZ (1903) 93

1981 de Jong. E.J.: Nucleation - a Review. in: Industrial Crystallization 78

(ed. de Jong. E.J.. Janeic. S.J.). p. 3. North-Holland, Amsterdam

1979

1991 Kliding. H.. Mumbrauer. R., Riehl, N.: 2. Physlk. Chem. 161

(1932) 362

Page 69: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

64 9. References

I1001 Karma, A.. Kotliar. B.G.: Phys. Rev. A 31 (5) (1985) 3266

11011 Khamski. E.V.: KrlstaULzatslya iz Rastvorou, Nauka. Leningrad 1967

11021 Khamski. E.V.. Podozerskaya. E.A.. Freidin, B.M., Bykova. A.N..

Sedelnikova. N.D. : KristaUizatsiya I Mb-Khirnicheskie Suoystua

KristaUicheskich Veschestv. Nauka, Leningrad 1969

11031 Khlopin. V.G.: Z. anorg. Chern. 143 (1925) 97

I 1041 Khlopin. V.G.: Izbrannye W y , Izd. AN SSSR, Moscow 1957

I1051 Khlopin. V.G., Merkulova. M.S.: Dokl. Akad. Nauk SSSR 65

(1949) 6

[lo61 Khlopin. V.G.. Nikitin. B.A.: Z. anorg. Chem. 166 (1927) 311

I1071 Khlopin. V.G.. Niki t in , B.A.: 2. physik. Chem. A 145 (1929) 137

11081 Khlopin. V.G.. Polessitski. A.E.. Tolrnachev. P.: 2. physik. Chem.

A145 (1929) 57

11091 Kleber. W.: 2. physik. Chem. 206 (1957) 327

Ill01 Kleber. W.: 2. Krist. 109 (1957) 115

I1111 Kleber. W.: 2. Krist. 111 (1959) 213

11 121 Klug. D.L.: The Influence of Impurities and Solvents on Crystal-

lization. in: Handbook of Industrial Crystallization, (ed. Myerson. A.S.),

p.65. Butterworth - Heinemann, Stoneham 1992

11131 Kiinig. A.. Emons. H.H.: Crystal Res. Technol. 23 (1988) 319

11141 Kossel. W.: Nachr. Ges. Wiss . Giittingen. Math. Phys. Kl. K1 (1927)

135

1115) Kossel. W.: Ann. Physik 21 (1934) 457

Page 70: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

9. References 65

[ 1 161 Kruse. M.: Zur Modellierung der Wachstumskinetik in der Lcisungs-

kristalllsatlon. Thesis, Univ. Bremen 1992. VDI Verlag. Dfisseldorf

1993

11 171 Kurganetskii. N.V., Bzovyi. M.G., Savulyak. V.V.. Popov. M.M..

Lopushanskaya, A.I.: Zhur. Fiz. Khim. 57 (1) (1983) 38

[ 1181 Kuschel. F.. Kbnig. A.. Herold. S.: Crystal Res. Technol. 18 (1983)

427

[ 1191 Kuszlik. A.-K.: Efnt,4 der Pulsation auf die Stomennung in Apparaten

zur statIschengerichteten KristaULsation, Thesis, Univ. Bremen 1990

[ 1201 Kuznetsov. V.D.: KristaUy 1 Kristallizatsiya, Gostekhizdat, Moscow

1953

[ 1211 Lacmann. R.: Crystallization with two components, in: Industrial

C y s t d h t i o n '90 (ed. Mersmann, A.), p. 627. Munich 1990

[ 1221 Lacmann, R., Herden. A.. Rolfs, J., SchrBder. W.: O n the influence of

impurities on crystallization. in: Indusbial Cystallizatlon '90 (ed.

Mersmann. A.), p. 671, Munich 1990

[ 1231 Lahav. M.. Leiserowitz. L.: Tailor-made auxiliaries for the control of

nucleation, growth and dissolution of crystals, in: Industrial

Crystallization '90 (ed. Mersmann, A.), p. 609. Munich 1990

11241 Lahav. M.. Leiserowitz, L.: J . Phys. D: Appl. Phys. 26 (8B) (1993) B22

[ 1251 Ledesert, M.. Monier. J.C.: in: Adsorption et croissance cristalllne, Coll.

Int. CNRS No. 152. p. 537. CNRS. Paris 1965

I1261 Leubner. I.H.: J. Crystal Growth 84 (3) (1987) 496

Page 71: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

66 9. References

[ 1271 Lin. S.M.: Fractals and their Applications in Condensed Matter

Physics, in: Solid State Physics, VoL 39. p. 207. Springer, Berlin

1986

[ 1281 Mandelbrot, B.B.: The Ractal Geometry of Nature. Freeman. San

Francisco 1982

I1291 MareEek. V.. Dobi&GovA. L.. NovBk. J.: Kris t . Tech. 4 (1969) 39

(1301 Matuchov6, M., Nplt , J.: Chem. Listy 69 (1975) 1

11311 Matusevich. L.N.: Zhur. Prom. Khim. 32 (1959) 536

I1321 Matusevich. L.N.: Zhur. Prom. Khim. 33 (1960) 316

11331 Matusevich, L.N.: Kristallizatsiya iz Rastuorou u Khimicheskoi

Promyshlennosti, Khimiya, Moscow 1968

[ 1341 Matz, G.: Kristallisation, Grundlagen und Technik. Springer,

Heidelberg 1969

[ 1351 Mayrhofer. B.. Mayrhoferov5. J.. NeuZfl. L.. Npl t , J.: Collect.

Czech. Chem. Commun. 51 (1986) 2481

I1361 Mayrhofer. B.. MayrhoferovA. J.. NeuZil. L.. Nplt . J.: Collect.

Czech. Chem. Comrnun. 51 (1986) 2486

(1371 Mayrhofer. B.. Neuifl, L., Nplt, J.. Mayrhoferovii. J.: Chem.

prdmysl36 (1 986) 232

11381 Mayrhofer. B.. Nplt. J.: Collect. Czech. Chem. Commun. 52

(1987) 1198

I1391 Mayrhofer, B.. Nplt , J.: Mathematical modelling of salt purification

by recrystallization, in: Industrial Crystallization '87 (eds. Nyvlt, J.,

ZaCek, S.) , p. 567. Academia Prague and Elsevier Amsterdam 1989

Page 72: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

9. References 67

11401 Melia, T.P., Moffltt, W.P.: Ind. Eng. Chem. Fundam. 3 (1964) 313

11411 Melikhov. I.V.: Radiokhimiya 2 (1960) 509

I1421 Melikhov. I.N.. Merkulova. N.S.: Sokrlstallizatsiya, Khimiya, Moscow

1975

I1431 Melikhov, I.V., Mikhin. E.V.. Pekler, A.M.: Some aspects of optimi-

zing purification by crystallization, in: Industrial Crystallization '78

(eds. de Jong. E.J., JanEid, S.J.). p. 573. North-Holland, Amsterdam

1979

11441 Mel'nikov, B.I.. Tsygankov. G.T.. Krutov. V.N.: Zhur. Prikl. Khim. 61

(1) (1988) 79

[1451 Merkulova, M.S.: Trudy gos. rad. inst. III (1937) 141

I1461 Miura. M.. Otani, S., Kodama. M., Shinagawa, K.: J. Phys. Chem. 66

(1962) 252

11471 Miura, M.. Otani. S., Abe. Y.. Fukumura. C.: Bull. Chem. SOC. Japan

36 (1963) 1091

11481 Mohameed. H.A.. Ulrich. J.: Influence of the pH value on the growth

rate of potassium chloride, in: BIWIC '94 (ed. J. Ulrich), p. 112.

Verlag M a i m , Aachen 1994

I1491 Monier. J.: Compt. Rend. 236 (1953) 2089

11501 Monier. J., Raymond, H.: Bull. SOC. Franc. Mineral. Crist. 77

(1954) 1029

11511 Mullin, J.W.: Crystal growth in pure and impure systems, in:

Industrial Crystallization '78 (eds de Jong. E.J.. JanEiC, S.J.), p. 93,

North-Holland. Amsterdam 1979

Page 73: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

68 9. References

11521 Mullln. J.W.: Crystallization. 3rd. ed.. Butterworth - Heinemann,

London 1993

11531 Mullln. J.W.. Amatavivadhana A.. Chakraborty M.: J. Appl.

Chem. 20 (5) (1970) 153

11541 Mumbrauer, R.: 2. Physik. Chem. A 156 (1931) 113

11551 Mumbrauer, R.: 2. Physik. Chem. A 163 (1933) 142

11561 Murat. M., El HaJjouji. A.: J . Chim. Phys. - Chim. Biol. 84 (2) (1987)

209

[ 1571 Murat, M.. Sadok el Habib: Compt. rend. Acad. Sci. Ser. 2, 310 (12)

(1990) 615

11581 Mutaftschiev. B.: Chem. Phys. Solid Surf. (1977) 73

(1591 Myerson. A.S.. Weisinger. Y.. Ginde. R.: Crystal shape, the role of

solvents and impurities. in: Industrial Crystallization '93, VoL I (ed.

Rojkowskl. 2.). p. 3- 135. Warsaw 1993

11601 Naono, H.. Mlura. M.: Bull. Chem. SOC. Japan 38 (1965) 80

[I611 Naono, H.: Bull. Chem. SOC. Japan 40 (1967) 1104

11621 Neuhaus, A.: 2. Krist. 103 (1941) 297

11631 Neuhaus, A.: Angew. Chem. 64 (1952) 158

11641 Nikitln. B.A.: Izbrannye tnrdy, Izd. AN SSSR. Moscow 1956

11651 Novlkov, A.N., Panov. V.I., Prisyazhniuk, V.A.: Prornyshlennaya

KristalUzatsfya, Trudy NIOKHIM 20 (1969) 89

[ l66] Novobilsky. V.. N@lt. J., Jager. L.: Chem. prfimysl 18 (1968) 14

[ 1671 Novobilsky. V.. N@lt. J,.. JBger. L.: Chem. prfimysl 18 (1968) 180;

ibid. 459

Page 74: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

9. References 69

I1681 N j v l t , J.: Chem. prhmysl 12 (1962) 170

[ 1691 Njvlt, J.: IndusLTLal Crystallizationfrom solutions. Butterworth. London

1971

11701 Njvlt. J.: Chem. prhmysl29 (1979) 238

[ 1711 Nyvlt, J.: Solid - Lquid Phase Equilibria, Elsevier Amsterdam and

Academia Prague 1977

[ 1721 Njvlt. J.: Industrial Crystallization - Me Present State of the Art.

2nd. ed.. Verlag Chemie, Weinheim 1982

I1731 Njvl t . J.. Broul, M.: Chem. p r ~ m y s l 27 (1977) 597

I1741 Njvlt . J.. Eysseltovh, J.: Collect. Czech Chem. Commun. 59 (1994)

191 1

[175] Njvl t . J.. Gotffried, J.: Collect. Czech. Chem. Commun. 32 (1967)

3459

[ 1761 N j v l t , J., Gotffried. J., KilCkova. J.:Chem. prhmysl 14 (1964) 242

I1771 Njvl t . J.. Gottfried. J., KflEkova., J . : Collect. Czech. Chem.

Commun. 29 (1964) 2283

[ 1781 Njvlt . J., Sdhnel. 0.. MatuchovB. M.. Broul, M.: The Kinetics of

Industrial Crystallization, Elsevier Amsterdam and Academia Prague

1985

[ 1791 Ohara, M., Reid, R.C.: Modeling Crystal GrowthRatesfrom Solution.

Prentice Hall, Englewood Cliffs, N.J. 1973

I1801 Otant, S.: Bull. Chem. SOC. J a p a n 33 (1960) 1549

[ 18 11 ozoguz, Y: Zur Schichtkristalllsatn als SchmeIzkristalllsatio~ve~a~en,

Thesis. Unlv. Bremen 1991, VDI Verlag. Diisseldorf 1992

Page 75: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

70 9. References

[ 1821 Paneth. F.: Radio-Elements as Indicators. New York 1928

[ 1831 Panov, V.I., Novikov. A.N., Prisyazhniuk, V.A.: Promyshlennaya

KristalUzatsia, Rudy MOKHLM 20 (1969) 72

11841 Potapenko. S.Yu.: Poverkhnost 8 (1988) 28

[185] Potapenko, S. Yu.: Rost Krist. 18 (1990) 31

[I861 Potapenko. S.Yu.: J. Crystal Growth 133 (1-2) (1993) 141

(1871 Potapenko. S.Yu.: J. Crystal Growth 133 (1-2) (1993) 147

11881 Powers, H.E.C.: Ind. Chemist 39 (1963) 351

[ 1891 Raistrick. B.: Disc. Faraday SOC. 5 (1949) 234

(1901 Ratner, A.P.: J. Chem. Phys. 1 (1933) 789

(1911 Riehl. N.. Kading. H.: 2. Physik. Chem. A 149 (1930) 180

11921 Rosenstein. L.: USP 2 038 316 (1936)

[193] Royer. L.: Bull. SOC. Franc. Mineral. 51 (1928) 7

11941 Sander, L.M.: in: Kinetics ofAggregatlon and Gelation, (eds. Landau,

D.P.. Family, F.). p.13. North-Holland, Amsterdam 1984

11951 Sangwal. K.. Owczarek. I.: J. Crystal Growth 129 13-41 (1993) 640

11961 Sarig. S., Ginio, 0.: J. Phys. Chem. 80 (1976) 256

I1 971 Scholz. R.: Die Schichtkristallisation als thermisches Trennuerfahren,

Thesis, Univ. Bremen 1993. VDI Verlag, Dfisseldorf 1993

[ 1981 Sears, G.W.: J. Chem. Phys. 29 (1958) 1045

(1991 Sears, G.W.: J. Chem. Phys. 33 (1960) 1068

(2001 Senol. D.. Myerson, A.S.: AICHE Symp. Ser. 78 (215) (1982) 37

12011 Sheftal. N.N.: Rost kristallov 1 (1957) 5

Page 76: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

9. References 7 1

[202] Sheftal, N.N.: Protsessy Realnogo Kristalloobraz. 101 (1977); CA 91

047479

I2031 Shor. S.M.: Thesis. Iowa State Univ., Ames. Iowa 1970

I2041 Shor, S.M.. Larson. M.A.: Chem. Eng. Progr., Symp. Ser. 67

(110) (1971) 32

12051 Simon. B., Boistelle. R.: Crystal Growth from Low-Temperature

Solutions, ZCCG-6, Moscow 1980

12061 Slavnova, E.N.: Rost kristallov 2 (1959) 223

12071 van der Sluls. S . . Witkamp, G.J., van Rosmalen, G.M.: J. Crystal

Growth 70 (1 986) 620

12081 Spangenberg, K.: Z Krist. 59 (1924) 383

12091 Stelnike. U.: Krls ta l l u. Technik 6 (1971) 7

12 101 Stepanski. M.: Zur Wachstumskinetik in der LlfsungskristaUisation.

Thesis, Univ. Bremen 1990

I2 1 11 Stepin, B.D.. Gorshtein. I.G.. Blyum, G.Z., Kudryumov, G.M..

Ogloblina. V.P.: Metody poluchenia osobo chistykh neorganicheskikh

ueshchesiu. Khlmia, Leningrad 1969

I2121 Stranski. I.N.: 2. Physik. Chem. B11 (1931) 342

I2131 Stranski. I.N.: Naturwiss. 19 (1931) 689

(2 141 Strickland-Constable, R.F.: Ktnetics and mechanism of crystafiation,

Acad. Press, London 1968

I2151 Strickland-Constable, R.P.: AIChE, Symp. Ser. 121 (1972) 1

12161 Sung, C.Y.. Estrin. J.. Youngquist. G.R.: AIChE J. 19 (1973) 957

Page 77: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

72 9. References

12171 Tadros, M.E.. Mayes. I.: J. Colloid Interface Sci. 72 (19791 245

[2 181 Temkin. D.E.: in: CystalUzatIon Processes. p. 15. Consultants Bureau,

New York 1964

12191 Terkhin. S.N. . Zherebovich. A.S.. Volkova. N.A.: Vysokochlst.

Veshchestva 1 (1989) 20

12201 Thomson. G.: Proc. Phys. Soc. 61 (19481 403

I2211 Tiller, W.A.: J. Crystal Growth 75 (1) (1986) 132

[222] Tilmans. Yu. Ya.: KristaUizatsiya Solei iz Vodnykh Rastoorov v Prisutstvii

PrimeseiRaznykhZonov, Izd. AN Kirg. SSR. Frunze 1957

[223] Titiloye, J.O., Parker, S.C., Dsuguthorpe, D.J.. et al.: J. Chem. Soc..

Chem. Commun. 20 (1991) 1494

12241 Treivus. E.B.: Kristallografiya 27 (1) (1982) 165

12251 Ulrich. J.: Zur Kristallkeimbildung durch mechanischen Abrieb, Thesis,

RWTH Aachen 1981

(2261 Ulrich, J.: Kristallwachsturnsgeschwfndigkeiten bei der KomkristaUisa-

tion. Einfihrl ikn und Mepechniken. Reihe Verfahrenstechnik,

Shaker, Aachen 1993

(2271 Ulrich, J., Kallies. B.: Developments in crystallization processes from

the melt, in: Current Topics in Crystal Growth Research, Research

Trends, Trivandrum (India) (1994)

12281 Ulrich. J.: Chem.-1ng.-Tech. 66 (1994) 1341

[229] Ulrich. J., Scholz. R.. Wangnick. K.: J. Phys. D: Appl. Phys. 26 (1993)

B168

Page 78: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

9. References 73

12301 van der Voort. E.. Hartman. P.: J. Crystal Growth 104 (1990) 450

12311 Walter, L.. Schlundt, N.: J. Am. Chem. SOC. 50 (1927) 3266

1232) Wang. J.L., Berkovltch-Yellin, 2.. Leiserowitz. L.: Acta Cryst. B41

(1 985) 34 1

12331 Wangnlck, K. : Das Waschen als Nachbehandlungsprozesse der Schicht-

kristallisation, Thesis, Univ. Bremen 1994, VDI Verlag, Dnsseldorf

1994

12341 Weijnen. M.P.C.. van Rosmalen. G.M.. Bennema, P.: J. Crystal

Growth 82 (3) (1987) 528

[235] Weissbuch. I.. Shlmon. L.J.W.. Addadi. L.. Berkovitch-Yellin, 2..

Weinstein. S.. Lahav. M., Leiserowitz. L.: Israel J. Chem. 25 (1985)

353

12361 Weissbuch. I., Shimon, L.J.W., Landau, E.M., Popovitz-Biro. R..

Berkovitch-Yellin, 2.. Addadi. L.. Lahav. M.. Leiserowitz. L.: Pure

Appl. Chem. 58 (61 (1986) 947

12371 Wells, A.F.: Phil. Mag. 37 (1946) 184

12381 Wells, A.F.: Disc. Faraday SOC. 5 (19491 197

(2391 Wen, Fu-Chu: Kinetic study of crystal growthfrom supersaturated

droplets, PhD Thesis, Georgia Inst. Technol. 1975

I2401 Westwood. A.R.C.. Rubln. H.: J. Appl. Phys. 33 (1962) 2001

(2411 Whetstone, J . : Nature 168 (1951) 663

12421 Wirges. H.P.. Scharschmldt. J.. Karbach. A., Reichel, F.: The lnfluen-

ce of addltives on crystallization processes, in: B M C ’ 94 (ed.

J.Ulrlch1, p. 82, Verlag Mainz, Aachen 1994

Page 79: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

74 9. References

[2431 Yanson, Yu. A., Stekol'nikov. A.V.: Teplofiz. Krist. Veshch.1 mater.,

Novosibirsk (1987) 66

[2441 Yuan, J.J.. Stepanski, M., Ulrich. J.: Chem.-1ng.-Tech. 62 (8) (1990)

645

[2451 Zharikov. E.V.. Zavartsev. Yu.D.. Laptev. V.V., Samoilova. S.A.:

Crystal Res. Technol. 24 (1989) 751

Page 80: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

TABLES

Page 81: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Admixtures in Crystallization Jaroslav Njlvlt, Joachim Ulrich

0 VCH Verlagsgesellschaft mbH, 1995

Crystal system

cubic

tetragonal

hexagonal

trigonal

rhombic

monoclinic

triclinic

10. Tables

Characteristics

a - b - c . a-B- t . -90°

a - b s c , a - / j - = y - 9 0 °

a l - a 2 = a 3 s c , a - ? - 9 0 0

a - b - c , a-b-y t :9O0

a s b g c , a - , 6 - r - 9 0 °

a s b s c , a - y - 9 0 ° / i s 9 0 °

a L b sc , a ,/1 ,y s 90°

I t is almost impossible to record all the papers dealing with the effect of

admixtures on the crystallization of substances from aqueous solutions. The aim of

this compilation is to give a qualitative survey of literature, providing the

possibility of finding references dealing with individual systems. In order to give a

uniform presentation, every table is divided into two parts: the first part gives

fundamental crystallographic information that might be useful for structural

considerations. The data include the molecular weight (g/mol), density (kg/m31,

crystal system with lattice parameters a, b, c (pm). a, b. y, number of particles per

unit cell of the crystal 2. The crystallographic characterization is limited to the

crystal system; more detailed information can be found in specialized literature or

in solubility tables I1931.

Page 82: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 77

In the lower part of the tables are listed admixtures with a qualitative description

of their effect:

N - nucleation, G - crystal growth. H - crystal habit, S - crystal size. D - distri-

bution of admixture and corresponding reference number.

In addition. there exists a number of reviews and survey papers I7.58.59.

137,139,147.153.156.222.234.250,284,285,286,346,377.414.626,682,777.779,

799.8 16.856.9 19,920.925.932.948.1 123.1 129,1158.1 166.1223.1224,1257,1302.

1305,14051. Those dealing with the effect of various solvents are [136,154.155,

158.287.758,932.953.1216,1310,1338].

Page 83: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

78 10. Tables

t MBr SILVER BROMIDE Molecular weight: 187.80

System: cubic

a - 0.5755

Admixture

3D-, 4D-element complexes

Cd2+

K+

NH, . KBr

NH,OH 10Y0. pyridine

Pb2+

Pb2+. Cd2+

solvation

I- and gelatine

pH

p H . I-

dyes tuffs

Methylene blue

S-containing agent

surfactants

urea, tetraalkylammonium salts,

gelatine, Methylene blue

Density: 0470

Z = 4

Effect

D

coagulation

H

favourable

lower S and recryst. rate

G

H

H

G . H

H

Reference

I8911

17 12,13 131

15651

I11191

14721

[109,110.111]

I2581

12581

12561

(257,2591

12581

[ 10921

I4391

[ 13831

18491

I2581

Page 84: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 79

4m SILVER CHLORIDE Molecular weight: 143.34

System: cubic

a - 0.5545

Density: 5660

2 - 4

Admixture

Ac/Cl ratio

3D-. 4D-element complexes

HgCI, 0.005-0.25%

NH,OH, pyridlne

C1-. CH,COOH. pH

benzvlalcohol

dyestuffs

Methylene blue

Na-dodecylsulphonate. benzylal-

Na-dodecylsulphonate, eosfne

polyvinylalcohol

S-containic agent

surfactants

Effect

G

G

favourable

favourable

G

H

G

G

G

Reference

12931

I8911

18 11

14723

I6661

12631

I10921

I4391

16041

I2941

19933

I13831

18491

Page 85: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

80 10. Tables

Admixture

&2cr04

SILVER CHROMATE

Effect

Molecular weinht: 331.77

Ag+/ Cr0,2- ratio

glutamate, cltrate, tartrate,

G 15633

N I10151

Reference

&I

SILVER IODIDE Molecular weight: 234.79

System: cubic

a - 0.647

Admixture

Mg2+

Na'. I-

3D- . 4D-element complexes

Methylene blue, sodium dodecyl-

sulphate

surfactants

surfactants

surfactants

surfactants

Density: 6670

2 - 4

Effect

recryst.

G

H

N

S

Reference

I6091

I1 2791

I89 11

I1 3321

1303.369.3701

13021

I30 1.13 151

18491

Page 86: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

AgNOS

SILVER NITRATE

Molecular weight: 153.874 Density: 4350

System: rhombic 2 - 8

E - 0.697 b - 0.734 c - 1.014

Admixture Effect Reference

ethylene glycol IN I I12371

- Admixture Effect Reference

AlC~(S0412 * 12 H2O

ALUMINIUM CESIUM SULPHATE dodecahydrate

Molecular weight: 668.185 Density: 1870

System: cubic I a - 1.2363

2 - 4

Bismarck brown, dyestuffs H - cube 117871

Page 87: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

82 10. Tables

Admixture

AlCl, 6 HZO

ALUMINIUM CHLORIDE hexahydrate

Molecular weight: 241.432 Density: 1664

System: hexagonal 2 1 6

a - 1.1827 c - 1.1895

Effect Reference

Admixture

H F

~ 0 ~ 3 -

surfactants

electrolytes I G I 1551.5521 I I

Effect Reference

N 16451

1759,8261

1120.12 11

electrolytes I D I 15531

Ale, 3 HZO

ALUMINIUM FLUORIDE trihydrate

Molecular weight: 138.022

System: tetragonal 2 1 2

a - 0.7734 c - 0.3665

Page 88: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 83

AlK(SO& 12 HZO

ALUMINIUM POTASSIUM SULPHATE dodecahydrate I Molecular weight: 474.377

System: cubic

a - 1.2130

Admixture

Ag', Cd2+, Au3+. Cu2+

N3+. Fe3+

cationic admixtures

Cr3+

Cr3+

Fe2+

KC1. KBr, KI. (NH,),SO,. NaC1,

NaBr. NaNO,

Na,B,O,

Na,CO,

Na,SO,. CuSO,, H2S04, KOH,

Na,B,O,, NaOH

NH4+, T1'

rare earth elements

admixtures

Density: 1760

2- 4

Reference

retard N. not G

salting out, purification

G

G. dissolution

G

H, G reduces growth

H - cubeloctahedron

G

D

D

12991

14531

16221

19231

[1500.1502]

16231

17251

192.14891

I891

I10511

1581

16141

(1187,141 11

139,684,685,

725.951

Page 89: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

84 1O.Tables

UK(S04)2. 12 HZ0

continued)

Admixture

admixtures

admixtures

admixtures

HCl

Bismarck brown

Bismarck brown

Bismarck brown

Diamine sky blue

Direct blue 3B

Metanil yellow, Brilliant Congo

red. Bordeaux blue, Orange 1 and

other dyestuffs

methanol, ethanol

methanol, ethanol, propanol

polyvinylalcohol

Qulnollne yellow

saccharides, dyestuffs

H I +--- H - face /210/

I,,,

Reference

[ 10521

110511

1921

11 141

1198.7873

[4731

I13071

18961

[ 10521

[2 13.2 151

[1510.15111

I 14001

11041

[ 11331

Page 90: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 85

Admixture

Cr3+, Fe3+, K+. TI+

Fe3+, Fez+, Mn2+, Zn2+

K+

Na,CO,

NaCl

NH,Fe(SO,l,

NH,Fe(SO,),. NaC1. H,SO,

admixtures

admixtures

Oxamine blue B. Diamine sky blue

AlNH,(SO,), . 12 HZO

ALUMINIUM AMMONIUM SULPHATE dodecahydrate

Effect Reference

D 1581

D I4931

D [ 1500,15021

H - cube/octahedron I891

D - C1- 18571

D - Fe3+ (8571

D - Fe3+ [4873

D I 1 187.74.10541

S I 13931

H - face / l o o / 1215,7873

Molecular weight: 463.317

System: cubic

a - 1.2220

Density: 1640

Z = 4

Page 91: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

86 10. Tables

Al(N03), - 9 H 2 0

ALUMINIUM NITRATE nonahydrate

Molecular weight: 375.133

System: monoclinic * Admixture Effect

alkali metals + HNO,

Also3 M,O n SiO, m H 2 0 I ZEOLITES

Reference

12831

Admixture Effect Reference

NaOH

propyl-substttuted amines

surfactant

triethanolamine

N. G 19961

N , G 18981

11011

111931

Page 92: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 87

I3 - 85O26’ ~~~~ ~~~~~~~

Effect

N inhibition

H - pseudoboehmite

S. defects

D. solub.

G

G

G , N S

modif.

N

Density: 2420

2 - 8

c - 0.9699

Reference

1681

I1961

I4091

I5741

I 11851

[ 14491

[360.1390,353]

11441

111781

[ 14071

I 12761

Admixture

co,2-

cu2+

Li+

I,1C1

admixtures

admixtures

admixtures

pH

citrate

oils ; - recryst. I I151 I8281

Page 93: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

88 10. Tables

Admixture

admixtures

KF, NaOH

Effect Reference

H 12261

[ 10491

HC1. HNO, I 1 [ 10491

Admixture

Diamine Sky blue FF

AlRb(S04), 12 H20

ALUMINIUM RUBIDIUM SULPHATE dodecahydrate

Molecular weight: 520.747 Density: 1867

System: cubic 2 - 4

B = 1.2246

Effect Reference

H - /loo/ 12 151

Page 94: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 89

Admixture

AlTl(S04)2 12 H 2 0

ALUMINIUM THALLIUM SULPHATE dodecahydrate

Molecular weight: 483.19

System: cubic 2 9 4

a = 1.221

Effect Reference

Admixture

K,SO,

Al2(SO& . 10 H2O

ALUMINIUM SULPHATE hexadecahydrate

Molecular weight: 630.379

System: rhombic

Effect Reference

N, H [ 14931

Page 95: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

90 10. Tables

Admixture

NaCl

Ba(BO2l2

BARIUM BORATE

Effect Reference

G I1451

Admixture

BaBr, - 2 H 2 0

BARIUM BROMIDE dihydrate

Molecular weight: 333.178 Density: 3872

Syetem: monoclinic 2 = 4

a - 1.0449 b - 0.7204 c - 0.8385

- 113O29' ~ ~~~ ~ ~~

Effect Reference

Page 96: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 91

BaC20,

BARIUM OXALATE

BaCO,

BARIUM CARBONATE

Molecular weight: 197.37

System: rhombic

a - 0.529 b * 0.888

Molecular weight: 225.382

Density: 4350

2 = 4

c - 0.641

Admixture

Ce4+, Th4+

Admixture

Effect Reference

D 12251

pH

polyglutamic acid, polyvinylsul-

phonate

polyglutamlc acid. polyvinylsul-

phonate

G [ 11651

11 1671

Ra(COO), I [lo651

Page 97: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

92 1O.Tables

Admixture

Mn2+. Co2+, N@+, c$+ Mn2+, Co2+, N12+, Cu2+, Na+

RaC1,

admixtures

BaC12 2 H 2 0

BARIUM CHLORIDE dihydrate

Molecular weight: 244.276 Density: 3106

System: monoclinic 2 - 4

L - 0.6738 b - 1.0860 c - 0.7136

3 - 90°67'

Effect Reference

G

G. N. H [1254]

D

N

13743

I50 9.66 51

I5281

(C$35)$JI

TETRAETHYLAMMONIUM IODIDE

Molecular weight: 267.166

Admixture Effect Reference

solvents H, G D321

I

Page 98: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 93

BaCrO,

BARIUM CHROMATE Molecular weight: 253.33

System: rhombic

Density: 4498

I Admixture

Ce3+. Sr2+, pH, EDTA

RaCrO, I RaCrO,

RaCrO, + HNO,

Sr2+

pH

pH

CH2COONH4

EDTA

gluconate, tartrate, citrate.

glutamate. EDTA

Effect

D - Ce3+. Sr2+

D decreases with tempera-

ture rise

D - mixed crystals

D - Ra2+

D - Sr2+

G. H. S

N

G. H. S

N

Reference

1971 .- - . I8821

[ 10651

16651

1951

1961

[lo141

1951

1961

[lo151

Page 99: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

94 10. Tables

Admixttlre

Fe2". Fe3+

polyphosphonates

BaF2

BARIUM FLUORIDE Molecular weight: 175.36

System: cubic

a - 0.6184

Effect Reference

D 11 1801

dissol. I5 171

Density: 4830

2 - 4

Admixture

Ra(IO&

Effect Reference

D - mixed crystals [lo651

Page 100: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 95

Ba(NO&

BARIUM NITRATE Molecular weight: 261 . S O

Syetern: cubic

a - 0.8110

Density: 3222

2 - 4

AdmiXilWe

inorg. a d d i t i v e s

MnO;, Fe(CNIe4-. Fe(CN),3-

Ni(NO,I,. Fe(NO,),, HNO,. LiNO,

NP+

N12+. Fe3+. Li+

pH

amine

Methylene blue

Methylene blue

Effect

H - /loo/ + /lOl/ + /210/

N. G

N

D

G , H - / loo/ +/810/

D

Reference

[ 10421

12001

16571

I6431

[lo411

18611

1663,665,

10841

[ 13391

16431

12001

Page 101: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

96 10. Tables

1 Admixture

Methylene blue

Methylene blue

Methylene blue, Malachite green

New blue

quinine nitrate

Effect

D. H - cube

G. H. D

H

N

H - / l o o /

H - tetraeder

Reference

[43 1.432.437.

438.44 1.442,

961,1402,

14221

11238.12391

I6421

16431

I2 151

12001

Ba(OH), 8 H 2 0

BARIUM HYDROXIDE octahydrate Molecular weight: 315.476 Density: 2180

Syetem: monoclinic 2 - 4

n - 0.9350 b - 0.9280 c - 1.1870

Admixture Effect Reference

C1- 0.5 Yo S

Page 102: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10.Tables 97

N, G

~ ~~ ~~ ~ ~~

BaSO,

BARIUM SULPHATE

Molecular weight: 233.40 Density: 4600

System: rhombic 2 - 4

a - 0.885 b - 0.644 c - 0.713

[ 11051

Admixture

D - mixed crystals

H - spheric crystals

I Effect I Reference

1504,14231

19021

additives, Ba2+/S0,2- ratio

K+

D

D

D - logar. distr.

D

D

D

H - regular rounded cryst.

G. dissol.

K+. C1-

17031

111761

13101

[6651

194,7763

[ 12921

18461

18131

KMnO,

N a citrate

Na+ . K+

D

Pb2+

18681

Pb2+. Sr2+

S . H

N. G

RaSO A

13441

1794.7951

RaSO, + H N 0 3

Sr2+

Th4+

admixtures

admixtures

admixtures

admixtures

admixtures

S 18151 I I

Page 103: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

98 10.Tables

BaSO,

I Admixture

HQSO,

pH

pH - 12.3

gelatine + pH

inhibitor

nitrilomethylenephosphonate

DhosDhonate

polycarboxylic acids. polyphos-

Effect

G accel.

H . S

S

G - maximum growth rate

G, scales

G

N

agglomeration. S

G

G retard.

G, N

N

Reference

[ 11051

I 14241

[7601

18631

I14651

11127,11281

14201

[ 10641

17971

[ 186.796.1 1261

[ 11051

[805]

17981

19731

I3271

Page 104: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 99

Admixture

(NaPO,),

(NH4),S04

BaCI,

Ca2+. OH-

Ca2+ / c 0 ?2- ratio

Fe2+. Fe3+

CaCO,

CALCIUM CARBONATE - calcite Molecular weight: 100.09 Density: 2710

System: trigonal 2 - 2

a 9 0.6361

-

Effect

S

N. G

H

H

G

Molecular weight: 100.09

System: rhombic

a - 0.494 b = 0.794

Density: 2930

z = 4

c ~0 .572

CALCIUM CARBONATE - vaterite Molecular weight: 100.09

System: hexagonal 2 - 2

a - 0.4120 c - 0.8556 ~~ ~

Reference

110301

[ 14293

[ 14341

I8511

1668,6901

15291

Page 105: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

100 10. Tables

I CaCO, I (continued)

I Admixture

KHVPO,

Mg2+

Mg2+

Mg2+

Mg2+

Mg2+

Mg2+

Mg2+. Mn2+. Cr3+, Ni2+

Mg2+. Ni2', Co2+, Fe2+. Zn2+, Cu2+,

Mn2+, Cd2+. Ca2+, Sr2+, Pb2+. Ba2+

Mg2+, Sr2+, Ba2+, Pb2+

G

lnhibition

polymorph.

D. N

G

transformation

N.G

G. H

modlf.

G

N - inhibited nucleation ol

calcite

G, H

H

Reference

1560.56 11

[ 10881

[998.13301

Ill811

131 1.348.562,

1088l

[611,630,6941

110311

I10681

[ 12591

11 1301

17491

[ 119,5051

I12591

[ 14341

113851

Page 106: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 101

CaCO, I (continued)

I Admixture

NH4+

NH,C1

NH4NOq

Pb2+, Mn2", Mg2+, Co2+, NOq-

Sr2+

Sr2+

Sr2+, Ba2+, Pb2+

uo,2+

Zn2+

Zn2+

admixtures

admixtures

admixtures

admixtures

admixtures

Effect

N - stabilized supersatura-

tlon

modif.

G

N - low scale formation

N

H

D - aragonite/calcite

D

modif.

modif.

D

N. D

D, H - aragonite

H, G - aragonite

Reference

I4231

[2181

I12581

I2461

13661

[6891

1674.7 101

[1503]

[ 14661

11 164.13 111

I13481

I4791

16731

[ 11481

I6101

[ 14261

(503,8841

[ 10301

Page 107: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

102 10. Tables

CaCO, I (continued)

I Admixture

hexametaphosphate. pyro-

phosphate

hexametaphosphate.

pyrophosphate. dihydrogenphos-

phate. borate, tetraborate,

vanadate

inhibitor

inhibitor

lanthanides, Cd2+

metaphosphates N a

oxalate

aH

pH

DhosDhates

Pod3-

S042-

tripolyphosphate, surfactants

acetate, gluconate. EDTA. tripoly-

phosphate

Effect

modif.

G

scale

G. D

N - stabilized supersat.

G inhib.

N. G

H

G inhib.

modif.

N

G. N

Reference

“2181

110931

I63 11

[ 13331

114151

[lo721

[4701

[ 11861

[682]

1903.9761

15601

11 2361

[ 140 11

13 11,3481

110171

Page 108: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 103

CaCOs

(continued) c albumine

benzenepolycarboxylic acid

citrate, stearic acid

Congo red, other dyestuffs

fatty acid

gluconate. borogluconate. tartrate,

polyacrylate

glycerophosphate. PO,3-

organic colloids

organic polymers

organophosphonic acid

phenol. resorcinol, hydroquinone

phosphonates

phosphonates

polyethylene oxide

polyglutamic acid, polyvinylsul-

Dhonate

polyglutamic acid,

DolwinvlsulDhonate

Effect

G

G

G - retardation

G

inhibition G

G

N - low scale formation

G

G

Reference

[ 12461

1251

I1 0681

I7141

I491

I14141

[ 10861

[lo121

[1406]

[ 10481

12461

1 187,10871

I10871

I3941

[ 11651

[ 11671

Page 109: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

104 10. Tables

Admixture

polymers

stearic acid

surface active substances

surfactants

tetrakis(phosphonomethy1)tetra-

azacyclododecane

CaCO,

(continued)

Effect Reference

S 114061

N [829,8301

H [ 14341

modif. [ 1280l

G 114301

~~ ~~ ~ ~~

Admixture

KF

Nb,O,. Ta,O,, Sb,O,, Bi,O,

Ba'NO,

BARIUM TITANATE

Molecular weight: 233.26

System: cubic

R 0.397

Effect Reference

H [ 1416,14171

114211

Page 110: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 105

CaC20,. H 2 0

CALCIUM OXALATE monohydrate

Molecular weight: 146.12

N a citrate I Na pyrophosphate

Na,P20,. trlpolyphosphate.

phosphonates. EDTA, KH2P0,.

K,P,O,

admixtures

admixtures

admixtures

admixtures

admixtures

Effect

G

H

G. N

G, aggreg.

N

N. G

inhibition

H

G

N

Reference

[SO 1,802,12833

I4251

I551

11 171

[72.8851

11 1421

[841.994.1142,

12831

173,513.84 1.964.

10991

14191

19651

[ 11731

1511

[499.12343

1413,12961

Page 111: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10 6 10. Tables

1 CaC204 H 2 0 I (continued)

I Admixture

phosphorus derivatives

p o p

% pyrophosphate

pyrophosphate, citrate

pyrophosphate, phosphonate

amino acids

amino acids

amino acids

carboxyglutamic acid

chondroitin sulphate, macro-

molecules

chondroitinsulphate.

j en tosansulphate

citrate

citrate, pyrophosphate

dodecylammonium chloride

dutamic acid

hcparinc, polyglutamic acid

Effect

G

G inhibition

G

N, G

G. aggreg.

transformation

G , transform.

S . G . N

transformation

G

G

G, N

G

G

modif., G. aggreg.

N

[73.419,512,1108,

I4181

I 1681 I

I1 1101 I1 1101 I I161.365.4981

Page 112: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

I

L!aC,04 H,O

'continuedl

N. G

G

Admixture

[364.1107,11081

18181

181

15001

I12331

heparine

inhibitors in urine

Methylene blue

p H + adenosine phosphates

phosphonate

phosphonates

Dolvacrvlate N. G

polyacrylic acid

polyacrylic acid, heparin, organic

copolymers

polyhydroxycarboxylic acids

pyrophosphate, Methylene blue

pyrophosphate, Methylene blue

sodium dodecyl sulphate

urea

1269,12831

uric acld

N, G, S

N

inhob.

N

mect I Reference

13 141

I3 141

[ 12981

[6591

11 1721 I 12691

Page 113: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

108 10. Tables

7 ~~ ~ ~~

Admixture Effect

CaS04 N - unfavourable. scaling

admixtures G

nucl. catalysts N

polyethylene oxide N

_ _ ~ ~ ~

ZaCl, - 2 H 2 0

ZALCIUM CHLORIDE dihydrate

Molecular weight: 147.016 Density: 835

3ystem: rhombic

L - 0.7190 b - 0.585

Reference

19761

16711

1764,14351

110701

Admixture Effect

Nd3+ G

CaC4H406

CALCIUM TARTRATE

Reference

1461

Page 114: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 109

Effect

D

dissolution

S

CaF,

CALCIUM FLUORIDE

Reference

11 1801

I5 161

I1 0451

Molecular weight: 78.08

system: cubic

i - 0.5451

Admixture

Fe2+, Fe3+

NaCl + additives

polyelectrolytes

~ 0 ~ 3 -

polycarboxyllc acids.

polyphosphates

polyphosphonate

G

Density: 3180

2 - 4

I351

G I641

G I [ 12261 I

Admixture

glucose. arabonate

Effect Reference

I7551

G I34.9421

Page 115: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 10 10. Tables

CaHP04 2 H,O

CALCIUM HYDROGEN PHOSPHATE dihydrate lYoleeular weight: 172.09

System: trigonal

Admixture

M @2+

Mg2'

Mg2'

Mg2+

Na'. NH.+

SnF,, SnCl,, NaF

F-

I?-

P,O,

pH

pyrophosphate

U0,2+. SiF,2-. polyphosphates. F-.

sio

1 carboxvlic acids

chondroitin sulphate. urinary I macromolecules

citrate

di- and trlcarboxylic acids

Density: 2306

Effect

N, G

N

G

N

S

N - retardation

modif.

G

S

H

G, aggregation

Reference

I3621

1946.1 1501

121

I1 1501

I8 171

19471

I54 11

111691

12481

I3991

1844.94 11

11 1751

I12021

11 1101

~~ ~~

[ 10041

11671

Page 116: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 111

I

(continued)

1

ICaHPO, 2 H,O

CaHPO, 3/2 H,O

CALCIUM HYDROGEN PHOSPHATE sesquihydrate, BRUSHITE

Molecular weiaht: 163.09

Admixture

organic acid

Admixture

P containing complexons

Effect Reference

polycarboxylic acids

surfactants

tricarbo Uc acid JI urine inhibitors

Effect

H

N. G

Reference I I3291 I

I6921 I I1671 I I4861 I

casein I II6361

Page 117: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

112 10. Tables

Admixture Effect

A13+, Fe3+, Mg2+

Mg(N0Jp

NH,NO, lower hygroscopicity

Reference

19151

I4561

I9761

Admixture Effect

Feso,. Ca Salt H

NaC1. NaC10,. KCl G

ethyleneglycol. glycerol H

Reference

15911

I13311

I5911

Page 118: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 113

Ca8H2(P0& - 5 H,O

OCTACALCIUMPHOSPHATE

Molecular weight: 982.581

Admixture Effect Reference

Mg2+ G 11 1501

I

Effect

transform.

transform.

transform.

Ca,(PO,),

TRICALCIUM PHOSPHATE

Reference

112101

16671

11651

I1661

Molecular weight: 310.20

Admixture

Be2+

Mg2+

citrate. pyrophosphate

gelatine

polyacrylic acid

Page 119: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

114 10.Tables

Effect Reference

di- and tricarboxylic acids 1261

1321

1301

Admixture Effect

Mg2+

Ca,(P04), CaFz

FLUORAPATITE

Reference

I361

Admixture

organic admixtures

CaS03

CALCIUM SULPHITE

Effect Reference

S 18641

Molecular weieht: 120.15 I

Page 120: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 1 15

Molecular weight: 384.30

F

polyphosphates, polycarbaxylic acids

biophosphonic acids

glucose

, hydrolryhydroxyphosphonyl-ethane

Admixture

Zn2+

NaC1. LiCl. NH,Cl. CsCl. HCl

c1-

F

F-

I DH

G

G

G

H

precip. rate

fluorapatite

G

G

G

G

Reference

12781

I7461

1361

1946.11501

12791

19451

I7451

I5411

17441

19 101

1542.8861

I271

19431

12771

I2791

Page 121: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

116 10. Tables

Ca3(PO4I2 Ca(OW2

Admixture Effect Reference

mellitic acid G I241

proteins G I9101

Casios

CALCIUM SILICATE

Molecular weight: 116.17

System: monoclinic

a = 1.531 b = 0.735 c = 0.708

p = 950 25' 1

Admixture Effect

sr2+ D

BaSO,. BaF,. BaCl, N. G

Reference

I1 5031

19241

Page 122: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 117

Effect

H

N S

solubility

G

S, G. aggregation

N. D

G . H

N

D

G

S

D

G

~~ ~ ~ ~~

ZaSO, - 2 H20

XLCIUM SULPHATE dihydrate

Reference

114721

I1 1711

112811

I1 5041

12 161

I1 1711

18451

1635,8471

[ 13291

[ 1 1021

I1 1021

114611

[ 14401

14 151

dolecular weight: 172.168

jystem: monoclinic

L = 1.047 b= 1.515

L = 151° 33

Admixture

M3+, Cr3+

~ 1 3 + . F

M3+, Fe3+. Mg2+

A13+. Fe*, SPG2-

A13+, Na maleate

AlF,

AIF,

Ca2+/so42- ratio

Cd2+

Cd2+

Cd2+

CdF,. AlF,

Cu2+. Zn2+

F-modifiers, N3+

Fe3+. Fe2+

Density: 2310

2 = 4

c =0.659

[7351

Page 123: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

118 10. Tables

Admixture

H+. Sr2+, Ag+. HSO;. NO3-. Na+ .

OH-

CaSO, - 2 H,O

[continued)

Effect Reference

H 13411

NaCl

NaNO,

NH,, CG+, PO,^-. co,2-, ~ 0 0 ~ 2 -

G 11641

G 114601

G 16081

Page 124: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 119

I CaSO, 2 H,O

(continued)

1 HPSOA

HaSO, + H,P04

HQSO,. H,PO,

HqPOA

I Admixture

admixtures

admixtures

admixtures

admixtures

admixtures

admixtures

Cd2++I-. Br-, S1032-

F-. A13+

H3P04

pH

DH

p H

pH

pH, impurities

Effect

G

hvdration. G

H

G. H

N. hydration

scaling

D

S

N, S . G

hydration

G. H

affects hydration

N

G

S. H

G

H. D

Reference I I [ 11981

18 141

I5101

11851

[ 14621

I12291

I4801

B24.98 11

I5081

[ 15041

[ 11841

[ 12491

17181

Page 125: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

120 10. Tables

CaS04 2 H,O

[continued)

Admixture

polyelectrolytes

surfactants + HNO, + H,PO,

tripolyphosphate

acrylates

acrylates

alkylbenzenesulfonic acid

aminomethylene phosphonic acid

anionic organic polymers, tri-

polyphosphate

calcium acetate and formiate,

pentaerythritol

carboxylic acids, phosphonates

carboxylic acids, phosphonic acids

citrate

citric acid, tartaric acid, gelatine

citric, succlnic. tartaric, polyacry-

lic. polymethacrylic acid, gelatine

Effect

D

D. S

G

G

H

caking

G

N

precipitation

N. G -accelerate

H, s G. H

S. H

G - retarding

precipitati on

Reference

15761

I5821

1371

114581

1441

I1 1151

112551

Ill20l

111511

I1 2481

1675)

113031

113031

110791

12381

12381

Page 126: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 121

CaS04 - 2 H,O

(continued)

Admixture

gelatine. saponlne

gelatine. sulphite liquor

gelatinc. waste liquor of cellulose

sulphate

gluconate. borogluconate. tartrate

hydroxyethylidenbiphosphonic

acid

hydroxyethylidene. diphosphonic

acid. polycarbonates

hydroxypropylene diamine

impurities, alcohols

naphtenate

organic phosphonates

organophosphonic acid

phosphonates

phosphonates, phosphates, orga-

nic polymers

phosphonic acid, acetate

polyacrylamide

H. S

N. G - retardation

N - retarding

precipitation

G

~

G

N,G

H

N

G

G

N

Reference

[ 1204)

I6751

1255,7371

I14141

[ 11251

[ 1122.14401

[ 11521

I7191

I13971

I326.3281

[ 1155.1 156,

11571

[14391

1311

I 1153,11541

19601

Page 127: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

122 1O.Tables

CaSO, 2 H,O

(continued)

I Admixture

polyacrylic acid

polycarboxylates. hydroxyethy-

lene bisphosphonic acid

polymers

polyvinylsulphonate. polyglutamic

acid

succinic acid. polyacrylic acid

sulfonate

surfactant ~ ~~ ~

surfactants

surfactants

surfactants

xylenediamintetraphosphonic acid

Effect

N

N. S

G

H. S

S . H

H - short Drlsms

N

H

fflterabilitv

N. G

G

precipitation

N

Reference

I285.12481

I 14401

~~ ~

[1168]

1291

Ill681

11 121

I423.790.9761

13501

12851

I13861

I10051

I6371

I11911

I11911

I3271

Page 128: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 123

Admixture

pH

Ca(C5H3N4031,

CALCIUM URATE

Molecular weight: 374.27

I I

Effect Reference

modif. I471

Admixture I Effect I Reference I I

Mg2+. K+ I N I [1308]

CaWO,

CALCIUM TUNGSTATE

Molecular weight: 288.00

System: tetragonal 2 1 4

a - 0.524 c - 1.128

Page 129: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

124 10. Tables

I

Admixture

Fe2+, Cu2+, Co2', Ni2+. Cr3+,

WOd2-. Mn2+

CdCO,

CADMIUM CARBONATE

Molecular weight: 172.42

System: trigonal

a - 0.6112

a = 470 24'

Effect

D

Density: 4250

z = 2

Admixture Effect

Mn2+ D

Reference

158,601

Reference

14911

Cd(HCOO), 2 HZO

CADMIUM FORMATE dihydrate

Page 130: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 125

Admixture Effect

LlCl anhydr.

COCl, hydrate

CdS

CADMIUM SULPHIDE

Reference

I1391

I1391

Uolecular weight: 144.48

System: cubic

L - 0.582

Admixture

anionic polymers

polymer, pH

proteins

Density: 4820

2 - 4

Effect

coagulation

N. G, S

G

Reference

[ 10291

[ 10321

I6031

Page 131: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

126 10. Tables

Admixture Effect

Mg2+. Mn2+ D

Reference

158.601

Co(CH,COO), 4 H2O

COBALT ACETATE tetrahydrate

Molecular weight: 249.09 Density: 1705

Admixture I Reference I I

Mg2' I1581

Page 132: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 127

Admixture

Fe2+. Cu2+

Ni2+. Fe2+, Zn2+. Cu2+

Co(NH,&(SO& 6 H2O

AMMONIUM COBALT SULPHATE hexahydrate

Molecular weight: 395.216 Density: 1901

System: monoclinic 2 - 2

a - 0.923 b - 1.249 c - 0.623

B = 106O 56'

Effect Reference

D [488,4891

D (581

Admixture

inorganic ions

Fe2+

COSO,. 7 H,O

COBALT SULPHATE heptahydrate

Molecular weight: 281.097 Density: 1948

System: monoclinic 2 - 16

a - 1.545 b - 1.308 c - 2.004

B = 104O 42'

Effect Reference

H. adsorption potential 12751

D (488,4891

Page 133: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

128 10. Tables

Admixture

CrK(SO,), 12 H,O

POTASSIUM CHROMIUM SULPHATE dodecahydrate

Molecular weight: 499.43 Density: 1830

System: cubic 2 - 4

a - 1.214 Effect Reference

Cr(V1) N. G 19581

rl admixtures D 1581

Admixture

Cr3+

K+

A13+. Fe3+

CrNH,(SO,), 12 H20

AMMONIUM CHROMIUM SULPHATE dodecahydrate

Molecular weight: 478.362

Effect Reference

D. G I15071

D 1581

D [581

I Svstem: cubic

Page 134: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 129

L

CsH&O,

CESIUM DIHYDROGEN ARSENATE

Molecular weieht: 273.836

Admixture Effect Reference

CSI

CESIUM IODIDE

Molecular weight: 259.810 Density: 4510

System: cubic Z=1

a - 0.4562

Admixture

Cu2+, Co2+, Mn2+, Ni2+

Effect Reference

H [ 12531

Page 135: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

130 10. Tables

Admixture

admixtures

polyethylene oxide

CSNO,

~~ ~

Effect Reference

16971

N I10711

CESIUM NITRATE

Molecular weight: 194.910

System: hexagonal

a - 1.074 c - 0.768

Density: 3685

2 - 9

CUCl, 2 HZO

CUPRIC CHLORIDE dihydrate

Molecular weight: 170.482 Density: 2514

System: rhombic 2 0 2

a - 0.744 b - 0.8126 c = 0.3764

Page 136: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 131

Admixture Effect

gluconates. citrate. tartrate, EDTA N

Reference

[ 10 151

Cu(HC0O)Z 2 HSO

CUPRIC FORMATE dihydrate

Admixture Effect

Co2+, Cd2+ D, structure

Reference

I12751

Admixture Effect

sulfanilic acid, metanilic acid H

Reference

I3901

Page 137: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

132 10. Tables

Admixture

CUPRIC HYDROXIDE

Effect Reference

CU~(OH)~CO,

BASIC CUPRIC CARBONATE

Molecular welght: 221.107 I

H,O, filtrability [1399] .

Admixture

Zn2+

Ni2+, Zn2+. Fe2+, Co2+, Mg2+

Molecular weight: 399.829 I System: monoclinic

Effect Reference

D I488.4891

D 1581

Density: 1926

Page 138: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 133

CuSO, 5 H,O

CUPRIC SULPHATE pentahydrate

Molecular weight: 249.680

syetem: Mclinic I Density: 2286

2 - 2

b - 1.070 c - 0.597

a - 82O 16' j3 - 107O 26' y 11020 40'

Reference

[487,852.854]

[8571

112121

19851

I9861

I621

I7161

[8531

[ 12871

19881

1423,9761

16321

[ l066]

I13411

Page 139: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

134 10.Tables

Admixture

M3+. Cr3+

rare earth elements

Zn2+

Zn2+. Co2+, Mg2+. Cu2+. Ni2+

admixtures

Effect Reference

D I581

D 16141

D [ 488,4891

D 1581

D 1741

I

Admixture

c1-

I I17111

Effect Reference

1265.3 121

Page 140: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 135

Admixture Effect

Cu2+, Ag+. Au3+. Ge4+. Sn4+. Pt4+, D

Mn2+. Ca2+

EDTA. diaminocyclohexanetetra- intermediates

Fe(OH13

FERRIC HYDROXIDE

Molecular weight: 106.87

Reference

I1971

I701

I System: hexagonal

Admixture

Ni2+

oxidizing agent

HC1

dioxyethylglycine, urea

organic anions

Density: 3400 - 3900

2-1

Effect Reference

conversion of hydroxide I2661

N. S [ 1 1401

L9671

I9671

12671

Fe203

FERRIC OXIDE (GOETHITE)

Molecular weight: 159.70

System: cubic

a - 0.830

Density: 5250

Page 141: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

136 1O.Tables

Admixture

Fe304

FERROUS-FERRIC OXIDE (MAGNETITE) Molecular weight: 231.55

System: cubic Z = 8

a - 0.837

Density: 5100 - 5200

Effect Reference

admixtures I

FeSO, - 7 H20

FERROUS SULPHATE heptahydrate I Molecular weight: 278.011

Syetem: monoclinic

a - 1.4020

f i - 105O 34'

b - 0.6600

I Cd2+, Cu2+

I TiOSO,

admixtures

Density: 1899

2 = 4

c - 1.1010

Reference

S I6501

Page 142: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 137

I H2O ICE Molecular weight: 18.016

System: hexagonal

a - 0.462 c = 0.734

Density: 917

2 - 4

I Admixture

Ag halogenides

AgI

impurities

LiCl

LiI. CsF. KF I NaCl

NaCl, Agl. CuS

admixtures

admixtures

a-fenazine, floroglucine

alcohols, org. acids

aliphatic alcohols

amino acids

CXHROX. CliHgq011

glycopro teins

Effect

N

N

N - retardina

N. H

G

G

D

G , D

N

H - dendrites

N

N

N

N

N

G. D

l i

Reference

17431

I342.12511

[lo241

13761

11 1431

15211

I 14781

I11901

1355.41 11

I 1 1 13.1 1141

110911

13541

[4473

[lo501

[4481

I1 1901

I6401

Page 143: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

138 10. Tables

Effect

N

H2O

[continued)

Reference

[355,411]

Admixture

N

H

G

N

organic substances

[396.397.9921

[822l

18231

111211

starch

sucrose

sucrose

ternene

HSPO4

PHOSPHORIC ACID

Molecular weight: 98.00 Density: 1870

Admixture Effect Reference

organic impurities 16911

I

Page 144: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 139

H3BO3

BORIC ACID Molecular weight: 61.832

System: triclinic

a - 0.704 b - 0.704

a - 9 2 O 30' 0 - 1010 10'

Density: 1435

2 - 4

c - 0.658

Y - 1200 00'

Admixture

H,SiO,

KMnO,

s o p

flaking agents

gelatine. caseine

polyacrylamide.

polymethacrylamlde

polyelectrolytes

Effect

D

G

H. S - favourable

S. N. G

H - flakes

S

Reference

(13141

191

I2151

16161

11 1821

1423.9763

[ 13881

I2201

Page 145: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

140 10. Tables

Admixture

HgBr2

MERCURIC BROMIDE

Effect Reference

Molecular weight: 360.398 Density: 6053

Admixture

System: rhombic 2 - 4

a - 0.4624 b - 0.6978 c - 1.2445

Effect Reference .

H€!(CN),

MERCURIC CYANIDE Molecular weight: 252.625 Density: 3996

System: tetragonal Z = 8

a - 0.9670 I c - 0.8920

Page 146: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 141

Admixture

pH

KBSO, 4 Ha0

POTASSIUM PENTABORATE te trahydrate Molecular weight: 293.26

Syetem: rhombic 2 = 4

a - 1.108 b - 1.114 c - 0.897

Effect Reference

N 19401

I

Molecular weight: 166.228 Density: 2155

Syetem: monoclinic I Admixtare Effect

admixtures G

polyethylene oxide N

Reference

112871

[ 10701

Page 147: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

142 10. Tables

-~

Admixture

KBr

POTASSIUM BROMIDE Molecular weight: 119.002

System: cubic

a - 0.0660

' inorganic anions , Pb2+

Dh2t

admixtures

c1-

OH-

alifatic carbon acids

Brilliant Cr o cein 9 B

phenol I

Density: 2750

2 - 4

Effect

G - decrease

D ~

D

G

H - cube/octahedron

D

D

N

G - retard growth of / l o o /

H

G

Reference

I3401

12611

I3 181

- t3223

1274,3191

I2 15.4723

[1161]

I391

I3231

I10231

"7041

I1311

14101

[126.127,128.

Page 148: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 143

Admixture

NaNO,. Pb2+, Th4+. Te(1V). V

Pb(NO,),. NaNO,

Cr3+, Pb2+. Ca2+. Na+. K+,

admixtures

KBrO,

POTASSIUM BROMATE Molecular weight: 167.000

System: trigonal

L - 0.4403

3 - 8 6 O 00'

Effect Reference

favourable I4721

G [669l

N [628l

N El91

Density: 3270

Z = 1

KCN

POTASSIUM CYANIDE Molecular weight: 65.1 1 Density: 1520

System: cubic 2 - 4

R - 0.656

Admixture I Effect I Reference

K,Fe(CN), N(CH,CONH,), H. caking

Page 149: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

144 10. Tables

Admixture

admixtures

K2C2O4 * H a 0

POTASSIUM OXALATE monohydrate

Molecular weight: 184.231 Density: 2145

System: monoclinic 2 - 4

a - 0.9320 b - 0.6170 c - 1.0650

Effect Reference

G I7821

Admixture

admixtures

Effect Reference

G I7821

Admixture

KC1

Effect Reference

D - C1- I8571

Page 150: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 145

Admixture

A13+, Ba2+, Cd2+. Cu+. Cu2+, Fe2+,

Fe3+, Hg2+. KCN. K3Fe(CN)6.

K,Fe(CN)6, Mg2', Mn2+ , NH,+.

Ni2+, Pb2+, Sn2+, Sr2+, Zn2+

Ba2+

Ca2+, Sr2+, Ba2+

.

KCl

POTASSIUM CHLORIDE Molecular weight: 74.551

System: cubic

a = 0.0293

I Cd2+

I Cd2+

C02+

Density: 1989

2 - 4

Effect

N. H. D

~

N, G. H

D

D, G. hardness, el. c o n d u -

2uvity

n d

D

hardness

D

D

D. melt

Reference

I7801

I7341

13 181

[ 12671

[32 11

113201

I12681

11264.12651

[ 1265,1269,

12701

12711

Page 151: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

146 10.Tabbs

G, D

D

G - strong retardation

H

N

G

D

H

H - favourable

H - favourable

G

N. G

K,Fe(CN),

K,Fe(CNIR. Pb2+. Co2+, Cu2+

K,Fe(CN)6. PbCl,, BeCl,, MgCl,,

LiC1, ZnCl,.. CdCl,. NiC1,. SnC1,

112631

12963

18031

18661

11 2881

113531

I13211

I12201

19261

19273

I1481

I 14571

K,Fe(CNl,. K,Fe(CN),

KNO,

KPbCl,

Effect Reference

G, H 1956,9571

G - retarding effect 13401

H, caking [ 1036,10551

G

H I 1881

Page 152: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 147

KCl

(continued)

Admixture

NaCl

NaC1. MgC1,

NaC1. NH,Cl. MgC1,. AlCl,

NaCl

NH4Cl

NH,Cl + KBr [+K$X),)

N@+, C O ~ + . C U ~ + , 29'. Mn2+.

Sn2+, Cr3+, Fe3+, Cl-, NO,., sod2-

0-containing ions

Pb2+, Fe3+

I pb2+

Effect

G

~

D

D for creep crystallization

D

D

G. D

D. G. N - retards nuclea-

tion ~~ ~~

G.H - change growth rates

of faces

N

Reference

I73 11

I11831

17301

I727.7293

I7321

17201

I 1269,1270)

[1461

I11611

I149.150.15 1.

1521

i474.475.476,

4781

16071

1638,9831

I4771

Page 153: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

148 10. Tables

Admixture

I Pb2+ I pb2+

PbC12 I PbC12

PbC1,

PbCl,,, BaC1,. K,Fe(CN),

PbCl,. K,Fe(CN),, Cu2+, Cd2+.

Zn2+, Hg2+

Effect

G. H

S - favourable

S - favourable

D

favourable

N - retarding

N. H

H, caking

G - retards /loo/

H , D

N. D

N

Reference

[917.1260,

12321

[149,1408.

1474.3203

1541

19761

[4231

14771

14723

19551

19541

[ 1036,1055.

1095l

111951

I1 1961

I7811

[7781

Page 154: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 149

Admixture

phosphate

ZnC1,

Rb+

RbCl

Sr2+

admixtures

admixtures

admixtures

admixtures

admixtures

admixtures

admixtures

admixtures

admixtures

Br-

HC1

HC1. KOH

irn p urities

Effect

caking

G

D

D. recrvstallization

D

N

H

agglomeration

D

N , G

Lf. H

n La

s

r 7 J

D

Reference

[ 10471

17801

1102.488.4891

18791

11 1 1 1,7681

1528.771

I705.7171

11287,12741

I11701

13231

114121

1868.5 141

[11.121

11 1121

[lo231

15641

[go51

[50.5921

17041

[695.721]

Page 155: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

150 10. Tables

caking

KCl

(continued)

AdmiXtUre

aliphatic amines (2OC)

aliphatic amines

amaranth

13851

amines

N. G. S

N. H. D

bromobenzole, phenole. aniline

I14941

17801

dyes

ethyl-hexanoic acid, octanoic acid.

monochloracetic acid

ethylenglycol. diethylenglycol

laurylaminoacetate

N(CH2CONH2)3, octadecylamine

acetate

octadecylamine

octadecylamine hydrochloride, pH

caking

H - cube + octahedron

G - retardation

H

N, D, yield

caking

I organic substances with free

I13951

17401

14101

17811

113801

Effect Reference I

H I I3871 I I

I 110361 I H. caking H. caking 110361

caking I10551

H.G 110671

I10551

110671

caking I I10471 I I

caking I45 1 I

D I16811 I

Page 156: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tabks 151

~~

Effect

Ostwald ripening

KC1

(continued)

Admixture

surfactants

surfactants

~ ~~~~~

Reference

[ 14561

I 123,102 1,

1022,14551

Effect

H - /Oll/ + /001/

H

H

H

H - /011/

H

D. H

t

Reference

DO41

[205.2 121

[2151

12141

14391

[207.2 10,2 14.

2151

13 15.8351

KC103

POTASSIUM CHLORATE Molecular weight: 122.549

System: monoclinic

a - 0.4647

R - 10QO 38' b - 0.5585

Density: 2320

2 - 2

c - 0.7086

I Admixture

s,o,~-, CrO,2-, Cr,0,2-

Biebrich scarlet

organic dyestuffs

Ponceau red

Page 157: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

152 10.Tables

KCIO,

POTASSIUM PERCHLORATE Holecular weight: 138.549

System: rhombic

a - 0.8834 b - 0.6660

sop Bordeaux B. Chromotrope 8B.

Wool scarlet, Solochrome black.

Fast red extra

Brilliant Congo red, Chlorazol fast

orange, Brilliant &urine. Trypan

red, Bordeaux B

Chromotrope 2B

Chromotrope 2R. Chromotrope 2B.

Acid magenta, Alizarin Delphinol,

Alizarin cyanine

Erio fast fuchsin. Cr,0,2-

Ponceau red

sulphonated dyestuffs

Density: 2520

2 - 4

c - 0.7240

Effect

D

H - /001/

H - / l l O /

H - / O l l /

H - /102/

~~ ~

H - / loo /

H - / l o o /

~~

H - /001/

H - /Oil/, /102/

Reference

I8921

I211.2151

I2141

I2 11,2151

~

121 1.2151

12 11.2 151

I2141

12141

11281

12141

Page 158: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 153

7

Admixture

(NH,J2Cr04 + K 2 S 0 4 . %SO4 + KC1.

(NH4),Cr04 + K,S04 + KC1

1

s,o,2-

Trypan red, Acid green DD extra

Water blue, Methyl blue, Wool

green, Naphthol red S, Scarlet

GR. Past acid magenta, Tartrazine

azo acld red. Acid yellow, and

other dyestuffs

K,CrO,

POTASSIUM CHROMATE Molecular weight: 194.190

System: rhombic

a - 0.6920 b - 1.0400

Density: 2732

2 9 4

c - 0.7610

Reference

H - /001/ [ 2 13.2 14.2 151 + H - /010/ - /Oll/ I213.214.2 15)

Page 159: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

154 10. Tables

KH2As04

POTASSIUM DIHYDROGEN ARSENATE

Molecular weight: 180.033 Density: 2867

Syetem: tetragonal Z = 4

a - 0.7610 c - 0.7150 A

qCr2O7

POTASSIUM DICHROMATE

Admixture Effect

pH G . H

Molecular weight: 294.184

System: triclinic

a - 0.7340

a 0 82O 00'

b - 0.7490

I3 - 97" 56'

Reference

I1221

Density: 2690

z = 4

c 11.3390

y =90° 30'

I Admixture

KMnO,

Scarlet 2R. Naphthol black B.

Bordeaux S, Ponceau S extra, and

other dyestuffs

Methyl orange, Chloramlne yellow

Effect

H - /010/

H - /010/. /111/

Reference

1213.214.2 151

213.2 14.2 15

19761

Page 160: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 155

System: tetragonal

a - 0.7430 c - 0.6940

Admixture

AlWO,):,

Al(NO,),, KOH

Al3+

Al3+

I POTASSIUM DIHYDROGEN PHOSPHATE

Fe3+

~ r 3 + -

Cr3+

Fe3+

Fe3+

Density: 2338

2 - 4

Effect

dissolution

G

G

H. D ~~

N, G

G

G . H, N. D

H - dendrites

optical properties

-~ ~

Reference

1911

[lo531

[931

15371

1535,5393

[ 1344.13451

I1 691

1171

12801

15401

12151

18391

16211

17751

I12711

Page 161: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

156 10. Tables

I Admixture

FeCl,, pH

KAI(SO,),. A3+

KCIO,

KOH. Ni2+, Fe3+

Na,B407

Na,B,07

Pb2+, KNO,

pH > 4, Cr3+, Fe3+. A3+ < 50 ppm

admixtures I admixtures

Effect

H

G. H

optical properties

favourable

G . H

H - prisms without

pyramids

G

G. H

D

Reference

I8401

18393

13951

15381

1 12081

1449,7751

14721

I 1207.12 151

[281.989.1206,

14821

[536.1081]

12981

13431

Page 162: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

IO.Tables 157

Admixture

pH

KIOS

POTASSIUM IODATE Molecular weight: 214.001

System: cubic

a - 0.8920

Effect Reference

N I9401

Density: 3930

Z = 1

Page 163: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

158 10. Tables

H - /111/

G

G

H - /010/

G

POTASSIUM HYDROGEN TARTRATE

Molecular weight: 188.184 Density: 1956

System: rhombic 2 - 4

a - 0.7614 b - 1.070 c - 0.780

1213,2141

[ 10851

17131

12 13.2 141

[ 10851

Admixture

cu2+

K g S 0 4

admixtures

dyes

tannin, red polyphenol. pectin

D

G

G. H

Effect I Reference

15591

14541

[557.5581

19951

~~

KHC8H404

POTASSIUM HYDROGEN PHTHALATE

Kolecular weight: 204.23

Admixtove

Fe3+, Ce3+

admixtures

admixtures

glycerine, polyethylene glycol

Density: 1630

I Effect 1 Reference

Page 164: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 159

Admixture

KBr

N a + , Rb', Cs'. Cl-, Br-. NOR-

Pb2+

Pb2+. Ti4+, Sn4+. Bi3+, Pe3+

admixtures

KI

POTASSIUM IODIDE

Molecular weight: 166.002 Density: 3123

System: cubic 2 - 4

D = 0.7062

Reference Effect

D - mixed crystals 1421

D 1401

H - octaeders D151

favourable 14723

I3231

OH-

Fast acid magenta, Brilliant yellow

surfactants

G 17041

H I4 101

G-retard 17401

LiNH,C,H,O,

AMMONIUM LITHIUM TARTRATE

Molecular weight: 173.056

Admixture

A3+, Mg2+. Ca2'. Pb2+, Si. pH

Effect Reference

H I8401

Page 165: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

160 10. Tables

_ _ _ _ _ ~ ~ ~~

Admixture

Fe2+

mo2 POTASSIUM NITRITE

Effect Reference

favourable 14721

Molecular weight: 85.104 Density: 1915

Syatem: monoclinic 2 = 2

R = 0.4450 b - 0.4990 c = 0.7310

0 - 114O 50'

KMnO,

POTASSIUM PERMANGANATE

Molecular weight: 158.034 Density: 2738

System: rhombic 2 = 4

a - 0.9099 b = 0.5707 c - 0.7411

Admixture Effect Reference

Cr,O,2- H - /001/ I20 1,2021

CrO,2-. Se0,2-. CO,~- H - / l o o / 12151

H3.P04- H - /loo/ + /011/ I2 151

HP042-. HA SO,^-, As0,3- H - /011/ + /loo/ 12151

HQAsOd-

pH, CO, H, S I979.9841

Page 166: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 161

KNO,

POTASSIUM NITRATE Molecular weight: 101.103

System: rhombic

a - 0.5430 b - 0.9170

Density: 2110

2 - 4

c - 0.6450 I Admixture

Cr3+

Cr3.’, Na+

cs+

Fe3+, Ni2+. Li+

isomorphous admixtures

K2Cr,0,. Cu(N0219

KC1

Pb2+

Pb2”, Th4+. Bi3+

Sr2+

admixtures

admixtures

I CH,NH,Cl, C, ?,H,f;NH,.HCl

Effect

D

N. G . S

clusters

N

D

diel. permeability

G , D

D

D - c1-

H

favourable

D

H

G

N. G

Reference

16791

11222.12241

18251

[12141

[ 12951

[6431

[6781

(6491

18571

(6421

[4721

[6831

16981

I163.1116.

11 171

r 12221

Page 167: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

162 10. Tables

Admixture

C9+

mo3 continued)

Admixture

dy estufs

Fast red extra, Bordeaux S.

Tartrazine. and other dyestuff's

Fast red extra, Naphthol red S,

Tartrazine. 1.4-diaminoanthra-

quinon-2-sulphonate

methylamine hydrochloride,

dodecylamine hydrochloride,

fluorocarbon

surfactant

surfactant

Effect

D

Effect

H - /001/ platelets

H, caking

N. G. S

N

Reference

110981

12241

I14481

[ 12241

I8601

11231

KTiOPO,

POTASSIUM TITANYL PHOSPHATE

Molecular weight: 197.975

Reference

I1431

Page 168: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 163

CNaC,H,O,

SODIUM POTASSIUM TARTRATE

Nolecular weight: 210.167

Admixture

A P . cuco,

Cu2+. H,BO,

cuco ,

cuso ,

MnCI,

(NH&M004. Na2Mo04. NH4Cl.

H2B01, CuSO,, Cu acetate, MgSO&

Na+

Na3B4O7

NH4+

Effect

H

H - /210/

H - retards /001/, shortening.

decreases with decreasing pH

H - retards /001/, effect rises

with raising pH

H - retards /210/, stronger

effect with decreasing pH

H -retards /111/ and /Oil/,

alkalis - stronger effect

H

H - /LOO/

G - retards, H - /210/

Reference

[ 12931

12 13.2 151

I901

1901

I901

I901

13473

I2 13.2 151

I891

I213.2151

Page 169: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

164 10. Tables

Admixture Effect

C103-, B,0,2- H

OJaC4H,0,

continued)

Admixture

admixtures

Crocein scarlet 3B. Diamine sky blue

Reference

12151

effect

H

H, D

ref.

1 1334.13351

18961

Page 170: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 165

K2S04

POTASSIUM SULPHATE

Molecular weight: 174.254

System: rhombic

a = 0.5731 b = 1.0008

Admixture

N3+

Ca2+, Sr2+. Ba2+. &+, Pb2+, C s + .

Ni2+

Ce3+

K,Cr04 + KC1

Density: 2662

2 = 4

c = 0.7424

2, dissol.

v

D . retards reaystalliza-tion

N

G

dissol.

G

D

D

H. caking

N.G

D

D - creep cryst.

Zeference

11791

12131

52,874,875,876l

762)

767.918.14971

13571

I 13561

[5201

12401

[182,1036]

I1 1311

[680,1499.1500.

15021

17201

Page 171: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

166 10. Tables

I Admixture

K,Cr04. Pb2+

K,Fe( CN)

KCIO,, K9Cr0,

KCr(S04)?

Li +

Mn2+. U 0 2 2 + . V 0 2 2 + . Cd2+.

Fez+, CS+. Cu2+, A13+, Mg2+,

sio,2-

(NH,),SO,

Ni2+, Cu2+, Co2+, Mn2+

NiSO,, MnSO,

PbCl,

admixtures

2 inor anic anions

Effect

G. dissol.

H, I)

G ~

N

favourable

D

D

D

N, H

D

N

G

D

Reference

16 171

114.95)

12211

[ 14951

[ 14331

14721

I2961

I3 171

12391

19541

15721

[11001

1424.14321

1757,766,906.

1273,1274,1355,

1357.14981

18731

Page 172: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 167

I K2s04

(continued)

Admixture Effect

s,o,2-. s,o,2- H - platelets /001/

Alizarin yellow H - /loo/

Amaranth H, caking

Crystal Ponceau D

dyestuffs H

solvents

surfactants G

Reference

1203.2 14.2 153

12081

[182.1036]

[6001

1209,210,214, 215.

391.14471

[ 12731

18341

19301

[ 23 7,7 721

LiCl H2O

LITHIUM CHLORIDE monohydrate

Molecular weight: 60.409 Density: 1762

System: tetragonal 2-8

a - 0.7669 c = 0.7742

Admixture Effect Reference

Mn2’. Cd2+. Sn2+, Sn4+, Co2+, favourable 14723

Ni2+, Fe3+. Ti4+. Cr3+. Th4+

Page 173: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

168 10. Tables

Admixture Effect Reference

M gF2 D I8081

FeF, G, N 111971

Molecular weight: 26.94 Density: 2300

System: cubic 2 = 4

a - 0.401

LiI 3 HzO

LITHIUM IODIDE trihydrate Molecular weight: 187.891 Density: 2290

System: hexagonal 2 x 2

a - 0.7460

Admixture Effect Reference

admixtures D. H [ 11371

c - 0.6460

Page 174: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 169

~ ~~

Admixture Effect

MnO; H

admixtures D, G

pH G

LiIO,

LITHIUM IODATE

Molecular weight: 181.85 Density:

System: hexagonal 2 = 2

a - 0.5469 c - 0.5155

Reference

I9901

I3631

I2471

- ~ ~~ ~

Admixture Effect Reference

Mg(CH,C00)2 . 4 H2O

MAGNESIUM ACETATE tetrahydrate

Molecular weight: 214.47 Density: 1450

Page 175: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

170 10. Tables

Effect

D

H

H

lower pH - better crystals

H - shorter crystals

H - longer crystals

LizSO, HZO

LITHIUM SULPHATE monohydrate

Reference

[ 13501

[ 10801

I1 1091

[959]

[ 10571

110571

Molecular weight: 127.955

Syetem: monoclinic

a - 0.5430

B - 107O 35'

b - 0.4830

Density: 2051

2 1 2

c - 0.8140

Admixture

H,SO,

pH

pH - 5.0

pH 6.0 - 6.5

DH 6.5 - 6.7 favo urab le 1 I4721

M@,&SO& 6 HzO POTASSIUM MAGNESIUM SULPHATE hexahydrate

I Molecular weiaht: 402.742

I Admixture Effect I Reference

D [1189]

Page 176: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10.Tables 171

Effect

Mgcos MAGNESIUM CARBONATE

ldolecular weight: 84.33

System: trigonal

L - 0.561

L - 48O 12'

Reference

Deneity: 2980

2 - 2

S

H. precipitation

G

N

p H

complexons

hydroxyethylenediphosphonic

acid, EDTA

DhosDhonates

[1035.1167]

IlO2Ol

I6531

I8121

[ 11671 polyglutamic acid, polyvinylsul-

Admixture

surfactants

Effect Reference

G 19441

I

Mgc204

MAGNESIUM OXALATE

Page 177: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

172 10. Tables

Molecular weight: 160.388 I I

MgF2

MAGNESIUM FLUORIDE Molecular weight: 62.32

System: tetragonal 2-2

1

a - 0.466 c - 0.308

Admixture

Mn2+. Zn2+, Co2+, N12+

Admixture

Effect Reference

D 158,603

Ni2+. Co2+

admixtures

Effect

D

G

7

Reference

I 14961

131

Page 178: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 173

Effect

D

Molecular weight: 360.688 Deneity: 1723

Reference

1621

System: monoclinic 2 - 2

a - 0.9324 b - 1.2597 c - 0.6211

p - 107O 08'

Admixture Effect Reference

Ni(N134)2(S04)2 D [9281

Ni2"-, Fe2+, Cu2+ D 1581

Page 179: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

174 10. Tables

Admixture

admixtures

pH

saccharides. glycerine

Molecular weight: 58.34 Density: 2400

Effect Reference

periodic crystallization 1201

S 17881

G - retarding 113091

System: hexagonal z=1 a - 0.311 c - 0.474

Admixture

Sod2-. Se0,2-. Ni2+, Cu2+, c02+,

Effect Reference

D 18381

MnCOS

MANGANOUS CARBONATE Molecular weight: 114.95

System: trigonal

a - 0.584

a - 470 45'

Density: 3400

2 5 2

Page 180: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Table.s 175

MgSO, 7 HzO

MAGNESIUM SULPHATE heptahydrate I Molecular weight: 246.469

System: rhombic

a - 1.1940 b - 1.2030 Density: 1680

2 - 4

c - 0.6870

Admisture

cationic admixtures

Co2+, Fe2+, Cu2+

Na2B407 I

Ni2+, Zn2+

H,BO, + NaOH

pH

methanol, ethanol

p- phenylendiamine

tensides

Effect

G

H. D

D

H - shortening, H2S0,

decreases this effect

G - retarding, H - shortening

H - needles

D

G

D

H - shortening

G

N

G

Reference

16221

1571

1621

191

I90.524.9761

[907.908]

12331

1488,4891

19293

1581

1901

1728.7331

Page 181: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

176 1O.Tables

MnS04 H,O

MANGANOUS SULPHATE monohydrate

Molecular weight: 169.011 Density: 2950

System: monoclinic (rhombic)

a - 0.6740 b - 0.8100 c - 1.3300

Admixture I Effect I Reference I I

Mn(HC00)2 - 2 H 2 0

MANGANOUS FORlMATE dihydrate

Molecular wefPht: 181.007

Admixture Effect

Page 182: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 177

UH,Br

WMONIUM BROMIDE dolecular weight: 97.942 Density: 2429

bystem: cubic 2-1

L = 0.4047

Admixture

Cr3", Fe3+, Cu2+, Nl2+, Co2+, Fe2+.

Zn2+. Mn2+. Cd2+. Be2+

Cu2+ + Fe3+

Cu2+, Cd2+

Fe2+, Na+

admixtures

aliphatic monoamines

hydrazlne and guanidine

derivatives

lactame oil

0- and p-vinylphenylmethan

sulfoaclds

H

D

caking

H

caking

caking

caking

caking

Reference

11322.1323,

13241

I6021

I60 11

110431

[ 11701

I5901

I4021

110431

[13721

1221.10971

Page 183: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

178 10. Tables

NH,Cl

AMMONIUM CHLORIDE Molecular weight: 53.491

System: cubic

B - 0.3866

Density: 1527

Z = 1

Admixture

Be2+

Cd2+, Fe3+, A13+

Cd2+

Cd2+

CdCl,. K4Fe(CN)6. pectine.

N(CH,CONHY)?

Co2+, Mn2+. Fe2+, Cr3+, NaSCN,

CH3COONH4, (NaPO,),

Co2+, N12+, Mn2+, Cu2+

Cu2+, Co2+, Ni2+

c U 2 + , Co2+, Ni2+, Zn2+, Mn2+, Sn2+

CUCI,

c u s o ,

Fe3+, Cr3+, Cu2+, Mn2+, ~ p + , c02+,

Cd2+

Effect

H

D. H

H. caking

G , N

D

D

D

D

H - cube

D

Reference

[ 1322.1323.

13261

16021

[5991

[ 1324.13261

I10361

[1427j

112691

15811

[ 1264,1269,

12701

13 161

I1 131

I600.1322,

1323.13263

Page 184: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

I

NHaC1 I (continued)

I Admixture

Fe3+. Cu2+

Fe3+. Ni2+, Co2+, CuSO,

FeCl,, CuSO,. CuC1,

KC1 + KqSO,

Mn2+, Mg2+, phosphatcs

Mn2+. Zr4+, Cd2+. Fez+. Cuz+,

Co2+, Ni2+, Fe3+. Cr3+

Mn2+, Fe2+, Co2+, Ni2+. Cu2+

Cd2+. Mn2+. Co2+, Cu2+,

Ni2+, Fe3+. Sod2-. NO3-.

ammonium acetate and formate

NaCl

NiCl,

Pb2+

C032-. SO,2-. F-. I-. I

Effect

H

H - dendrites/cubes

H - transparent cubes

D for creep cryst.

H - favourable

favourable

H , anomalous mixed

crystals

H

H

S - favourable

H - dendrites/cube

favourable

Reference

16421

1773,7741

16601

17201

19261

14721

12601

14401

I12911

18201

[4231

14231

Page 185: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

180 10. Tables

m,c1

(continued)

I Admixture

ZnC1,. AICl,, NiC1,. CoC1,. MnC1,.

FeCl,. CdC1,. (NH4),S0,. CuC1,.

(NH,),MoO,. HgCl,

admixtures

C0,2-. HCOR-.Na+.NH,

HC1

inorganic anions

phosphates

phosphates. CO,,-. SO,,-

alkylarninoacetate and -chloride

dyes

extract of peanuts

laurylaminoacetate

murexide

octadecylamine hydrochloride

pectine. pectinlc acid

pectine

phenolsulphonic acid

I solvents

Effect

H

N

H

caking

H ~~ ~

G

H - dendrites/cube

caklna

~ ~

favourable

H

H ~~ ~~

caking

H - prolongated trans-

parent crystals

N. S

S. caklna

Reference

[ 10961

I12181

I8041

13871

I440.6421

I3391

13451

18811

15871

I12051

Page 186: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 181

Admixture

urea

urea

urea

urea

urea, lactose

urea, pectin

NH,CI

[continued)

Effect Reference

H 122 1 I

H - cube aggregates 1773.7743

H - dendrites/octahedron 19761

H - cubes

G 112191

G . N 114271

I 1096.1 0971

Admixture

Cu2+, Ca2+, Fe2+, Th4+

Zn2', Cd2+. Mn2+. Ca2+. Mg2+,

Sc3+, Co2+, Ni2+

Effect Reference

favourable 14721

"7231

Page 187: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

182 10. Tables

Admixture Effect

Ca,(PO,), caking

so,2- H - /llO/ dyes H - /Oil/, /102/

surfactants

NH4ClOs

AMMONIUM CHLORATE

Reference

114131

[ 2 14.2 151

1214,2151

15323

Molecular weight: 101.50

Admixture

admixtures H [ 11701

surfactants inclusions

Page 188: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 183

System: rhombic 2 1 8

a - 0.7290 b = 1.0790 c = 0.8760

Admixture

dehydrating substances

NaHSO,. MgCl,, CaSO,

admixtures

hydrocarbons

oil, sugar

Effect Reference

stabilization 14631

caking 14573

I781

stabilization 14631

13. favourable 14591

Admixture

dyes

glycerine. Na,B40,. sucrose

Effect Reference

I-I [2 14.2 1 51

favourable 14721

Page 189: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

184 10. Tables

Admixture

NH4HC4H40,

AMMONIUM HYDROGEN TARTRATE I Effect Reference

1lKolecdar weinht: 167.124

(NH,),HPO4

AMMONIUM HYDROGEN PHOSPHATE I I Molecular weight: 132.056 Density: 1619 I Svetem: monoclinic

lAd*ture I meet I Reference I I H - platelets/cubes I

Page 190: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 185

NH4H2P04

AMMONIUM DIHYDROGEN PHOSPHATE Molecular weight: 116.026

System: tetragod

a - 0.7610 c - 0.7630

Density: 1803

z = 4

Admixture

Al3+

AlCI,, FeC1,. Cr3+

Ba2+, Sod2-

Co(NO2)q

cr3+

I Cr3+, N 3 + . Fe3+

Cr3', Fe3+ I CrCI,

Effect

G.H

higher electric conduct.

G. D

green prismatic faces

H

H

G - retarding, N - wider

metastable zone

N. G

G

H. G - lower growth rate of

prismatic faces

H

If - wedges

Reference

I5351

[289.2901

14231

[ 14431

14233

1176,13361

15783

P763

"2893

I5791

13751

14231

ll6l

19743

Page 191: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

186 10.Tables

NH,H,PO,

(continued)

lAd*e

pH. FeC13. CrPO,

I pH-3.9. Fe3+, Cr3+, A3+. Sn2+.

NH,

Sn4+. Cr3+, Fe3+, Ti4+, Au3+. H3+,

Be2+

admixtures

admixtures

admixtures

admixtures

Effect

G. H

G. H

H, G

G fluctuations

D. H - wedges

H - thicker crystals

D. H - rhombic shape

H - prisms

G. H

favourable

H - wedges

D - purity

ti

G. H

H -platelets

Reference

12641

12951

17711

I15141

I15141

1161

I161

I12943

1161

I9211

1227,228,229,

2301

I4721

I7221

19341

1249,14823

ll08ll

Page 192: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 187

Admixture

H,P04

PH

pH

p H

p H > 3.6

pH. gel

PH. NH,OH. H3P04

EDTA

surfactant

surfactants

(continuedl

Effect

N - slowning

H - at higher pH regular

growth

G

S , H

H - shortening

G

H

H

N

G - lower rate

Reference

17221

11 1091

19521

I14181

16061

Page 193: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Molecular weight: 80.043

system: rhombic

b - 0.7660

Density: 1652

Z = 4

c - 0.5800

I

' D

S. decreases

caking

safety

H. caking

lower hygroscopiclty. tight

hygroscopicity

coarsening of dendrites

caking

stability

Reference

' 16521

1 ' [ 13 16.13 171

' [?I861

16701

(10361

13521

16481

13241

[2971

Page 194: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 189

acid

sodium ethylsiliconate

sulphonates

toluidine, azobenzole, anthranilic

acid w

NH4NO3 I (continued1

Admixture

admixtures

admixtures

Acid magenta, Bordeaux S.

Azofuchsine. Chromaeol yellow

Acid magenta, N(CH2COONa)3.

Bordeaux S

alkylamines, Sod2-. sulphonates

amine

aminoalcane salts

dyes

dyes

glycole. glycerine

laurylaminoacetates

hosphate solids

salts of p-rosaniline disulphonic I

~~ ~

Effect

N

H. stability

caking

H. caking

H

H - /010/ platelets

noncaking platelets

caking

H

S

caking

caking

hygroscopicity

~~

Reference

I 13641

13251

[ 14481

[ 10361

I13471

16431

I3881

[224.1098]

W63

14621

13871

I6611

I4001

I13941

[ 1 3 76.1 3 771

if3581

Page 195: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

190 10. Tables

Admixture

toluidine. resorcin. azobenzene.

malelc acid

urea

wax. dves

NH4NOs

[continued)

Effect Reference

hygroscopicity 16431

[1391]

cakina I2971

“H412BeF4

AMMONIUM BERYLLIUM FLUORIDE

Molecular weight: 121.263

System: rhombic

m - 0.58 b - 1.020 c - 0.75

Admixture I Effect I Reference

(NH4)&rO4 D

Page 196: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 191

dolecular weight: 132.134 Density

System: rhombic 2 = 4

L = 0.5951 b = 1.0560 c = 0.771

Admixture Effect

M,(SO,), H

M2(S04)3 150-200 ppm H, decreasing mois-

ture

M3+ caking

A13+. Cr3+, Fe3+ S. H. N

A13+. Fe3+ S decreasing

M3+. Fe3+, Cd2+, K+

M3+. Mg2+. Fe2+, pH, urea

A13+. Mn2+. Cu2+

A13+, p H H, noncaking flakes

As5+ H - needles

H. S

H - rice corn

N. G . S . H

As5+ 0.03 % yellow crystals

Ca2+. Fe2+

cakin

S. H. favourable

1769

b

I

1 Reference

1114633

I 18831

15831

(1365,13661

I79 11

13041

1977,9821

11881

14641

I48 11

15731

15271

1481

14811

Page 197: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

192 10. Tables

I Admixture

cr3+

Cr3+

Cr3+

cr3+

Cr3+ + H,SO,

Cr3+ >50 ppm

Cr3+. Fe3+

Cr3+, H,PO,

cu2+

Cu2+, A13+. Mn2+

Fe2+

Fez+. A13’

Cu2+, Na+. pH

Effect

caking

H

G

N. G. S

N

H - prisms

H - longer,

decolorUed

G

S. colouring

N. G. S , H

D

N. H. S

Reference

I181

14031

I7151

I6931

17861

17631

I661

I661

[ 14731

15881

I1951

192

113181

1378,379,3801

972

[ 977,9821

Page 198: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 193

Fe3+, A13+. Cr3+, H,S04. P,O,

Fe3+, As+, Cr3+, Mn2+

Fe3+, A3+, Mg2+. CaC,04

Fe3+. C1-

Fe3+, Co2+, Cr3+, Cu2+

Fe3+. Fe2+

Fe3+. Fe2+. Na,S,03

Fe3++, Fe2+. pH

Fe3+, organic admixtures

Effect

H. S. caking

favourable

at high conc. unfa-

vourable

H - prisms

D ~

H - needles

H. S - needles

G. H - needles

H. S

S. caking

H

D

D

S

D. H. N

H. colourlng

Reference

12761

14821

I830al

[ 170.17 11

19711

(84,4291

I482.5431

I14711

[105.106.107]

[ 13611

I14381

[ 13961

14901

[969.970.9711

13001

19721

1706.7071

Page 199: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

194 10. Tables

sulphonlc acids

Mg2+. Mn2+, Zn2+, organic

sulphonic acids

MgS04 + HqC,04

Mn2+

Mn2+

Mn2+, Cu2+, Al3+

Admixture I Effect

H. S

H - shortening

G, S

N. G, S

H. S

H,C,04. Na3S,03. Mg2+ H - shortening

HqSO, 2g/L1 A1903 8g/L

H,S04. A13+. Fe3+, Mg2+. Na,S,O,

H,S04, Fe3+. Cu2+, Mn2+, Na,S,03

isomorphous sulphates

K 3 S 0 4 . K2Cr04

Mg2+

Mg2+, Mn2+. Zn2+. Cr3+, NaC1.

H - hexagonal rice

corn

H - rice corn

H - rice corn

H - rice corn

H

H. D

H, S

N, H, S

Reference

13511

i3511

1651

13821

13811

14551

12211

14651

151

19751

11941

11911

Page 200: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 195

(NH4)2s04 I fcontinuedl

pH, urea, A13+, Fe3+. Mg2+, Cu2+,

admixtures

Effect

N. 13. S . D

caking

G

D

H - rice corn

G . H

H _____ ~~

H - rice corn

H. S

H. S

D

G. I3

S

Reference

[189,1901

I977.9821

(13041

r9771

[1200]

[ 10271

19761

15201

[ 14701

[307.1211,

14281

[7651

I40 11

Page 201: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

196 1O.Tables

Bordeaux S, Azofuchsine.

Tartrazine. Diamine sky blue

cyclohexanone oxime. hydroql-

amine sulphate. caprolactame i

“H,),SO, I [continued]

I Admixture

CN-. SCN-

H,S04

H 9 S 0 4

HSPOI

P,05 + 0.5 Yo H,SO,

PnOc. HnSO,

pH

p H 6 - 7

pH. C1-

alkylarylsulphonates ’

amines

Bordeaux S

Effect

unfavourable

minimum

H - favourable

€1. s

S

G. H

H. S

G. S

cakinr!

caking

II - noncaking long

brittle crystals

H. caking

Reference

17911

[2701

[ 172.5851

[ 9 7 7.98 2,19 51

I2331

I13591

I10341

[ 12873

113631

I3041

[ 10691

14231

I2411

[2241

[ 14481

18331

Page 202: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 197

I13671 I

I 15061

748 I

I Admixture

dyes

I dyes

glucose, molasses

glycerine. urea, pectine

glycol, glycerine

imidazoline salts

impurities from caprolactam

nonionic surfactants

I

organic admixtures

organic dyes

organic substances

organic sulphonic acid

pectine. wood extract

phenol, pyridine

phenol, pyridine

polyacrylamide

polyvinylalcohol

surfactant. dye

I Effect

I

1 caking

‘ H . S

H. S

caking

caking

N

H

H

G - higher

H. S

S. H

G. H

H

S

caking

Reference

1706,7071

13911

1661

14651

14601

15271

[ 14381

I14041

I13961

[ 13601

Page 203: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

198 10. Tables

~~

Effect Admixture

surfactants

tar

urea

urea, phenol, glycerine, starch,

glue

Reference

caking

H

S - favourable

[789,1289]

(4811

1461.1 1921

[ 9 7 7.9 821

I

Admixture Effect

H,S04. (NH4),S04

H2S04. (NH4)2S04. Nb205, Ta205

N. G

N. G Nb retards, Ta

I accelerates

- Reference

[6541

1655,6561

Page 204: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 199

Admixture Effect Reference

UO,Fq, F- S , N. G I2541

“H,),W04

AMMONIUM TUNGSTATE

Molecular weight: 283.998

pods-, ~ ~ 0 , 3 - . sio,2- I yield I I3561

Page 205: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

200 10. Tables

Admixture Effect Reference I

Na,AlF6

SODIUM HEXAFLUOROALUMINATE (CRYOLITE)

Molecular weight: 209.941 Density: 2900

Syetem: monoclinic 2 - 2

a - 0.5460 b - 0.6610 c - 0.7800

I B - 900 12'

~~~~~~ ~ ~

Effect

G

Reference

133 1,3331

1184,236,251.

253.330.3921

I I 114831

YaBOs 4 H,O

SODIUM PERBORATE tetrahydrate

blolecular weight: 153.87

Admixture

surfactants

surfactants

Page 206: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 201

Admixture

ionic impurities, surfactants

admixtures

admixtures

admixtures

surfactant

surfactant

surfactant

NaBO, H202 3 H,O

SODIUM PEROXOBORATE trihydrate

Molecular weight: 153.875

Effect Reference

I3931

G I7821

13941

N I12501

N I3321

G I3331

N, G. H I2521

Admixture Effect Reference

Page 207: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

202 10. Tables

Na2B407 10 H 2 0

SODIUM TETRABORATE decahydrate

Molecular weight: 381 367 Density: 1692

System: monoclinic 2 - 4

a - 1.1820 b - 1.0610 c = 1.2300

B - 106O 35'

I Admixture

CUCI,, c u s o ,

admixtures

H,BO,

pH = 9.7

Azoflavine RS, Chrome fast yellow.

Ponceau 4. Acid brown R. Alizarin

yellow, Orange 1, Naphtol black,

Ponceau S extra, and other dyes

oleic acid

sodium oleate, dodecylbenzene

sulphonate

surfactant

Effect

H - /010/

N. H

caking

H - cubes

H

S, H - favourable

N. G, S

H. N

Reference

[213,214,2151

142 I, 10771

113701

[423,976]

[213,214.2151

1422,423,9761

[ 10771

[123, 10781

Page 208: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 203

NaBr - 2 H,O

SODIUM BROMIDE dihydrate Molecular weight: 138.924 Density: 2176

System: monoclinic

a = 0.6590 b - 1.0200 c = 0.6510

p = 1120 05'

Admixture Effect Reference

Na,Fe(CN16, CdBr2, PbBr2, H, caking 110361

NaBrO,

SODIUM BROMATE

Molecular weight: 150.892 Density: 3325

System: cubic 3 - 4

a - 0.6705

Admixture I Effect I Reference

pH G

Page 209: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

204 10. Tables

Admixture

N a pyrophosphate

Na2HP04

Na2PO,

admixtures

cyclo hexane

NaCHsCOO 3 H 2 0

SODIUM ACETATE trihydrate

Molecular weight: 136.080

Effect Reference

N [ 14191

N [1420,1436]

N (14371

G [ 11381

H I3091

Admixture Effect

CaO, pH

admixtures H

lysine H - prisms

H - prisms. cubes

Reference

I13751

[1159]

[ 13741

Page 210: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 205

Admixture Effect

admixtures N

olecular weight: 286.141 Density: 1460

b = 0.9009 c = 1.2597

Reference

[3051

Page 211: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

206 10. Tables

NaCl

SODIUM CHLORIDE Molecular weight: 88.443

System: cubic

a - 0.5627

Density: 2163

3 - 4

Admixture

admixtures forming double salt

AgCl

A@C1

Al3+

Ba2+

Ca2+, Sr2+. Ba2+. Cd2+

Ca2+. Sr2+, Ba2+, Mg2+. pH

Ca2+, Sr2+, Cu2+, Ba2+, Zn2+, Fe2+

+ polyvinylalcohol

CaC1,

CaC1,

CaCl,, Fe(CNIe4-

Cd2+, Pb2+, Mn2+, Mg2+, Hg2+,

Effect

H

D - ultrasound

D, Ostwald ripening

caking

H

D

D

H - fibers

H - octahedrons

dissolution

caking

H

H

Reference

I l O O l l

I7411

I877.8781

14061

[ 10391

[ 14101

1381

[ 10741

I5221

I8001

[ 12251

15471

1141.1421

Page 212: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 207

I NaCl

(continued) : 1 Admixture

Cd2+. Zn2+, Mn2+

CH2NH2CH2COOH, Cd2+, Mn2+,

Hg2+

cu2+

CllC1,

Fe2+, Mg2+. alkaline carbonates

and hydroxides

Fe3+, A13+, Zn2+

HgC1,

25 inorganic cations

1n3+

K,Ti0(C904),

K,Fe(CN),

K,Fe(CN),

K4Fe(CNI6 5 ppm

K4Fe(CNI6, K,Fe(CN),

K4Fe(CN)6, Mg2+

KCaCl,

Effect

G, H

D

G , H, D

caking

S - favourable

H

G - decrease

D

caking

N, S

H

caking

caking

n

Reference

[ 11361

I53 I1

I13201

[699.700.70 11

14041

19761

1138,10901

I3401

18721

I5891

I7831

12821

11751

11401

[I 15,6721

1411

Page 213: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

208 10. Tables

Na,Fe(CNj6, Na3Fe(CNjG

I

dendrites

H. noncaking

NaCl

(continued1

Reference

i2731

1391

[ 13531

[1481]

[5481

I13811

(569,132 11

14051

161

[ 10371

I423.9761

[1362]

11 1601

11741

Page 214: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 209

NaCl

I continuedl

Admixture

NaOH

NaOH

NaOH. Na2C03

Pb2+. Cd2+, Ca2+, Mg2+

Pb2+, H,S04

Pb2+, K,Fe(CNIG

Pb2+, Mn2+, Bi3+, Sn2+, Ti3+, Cd2+.

Fe2+, Hg2+

Pb2+. urea I Pb2+, urea, Cd2+ I

Effect

H

H. electrical

properties

caking

S - favourable

N, G. D

D

D

N, G , H, solubility

favourable

D on /111/ and

/loo/

H

- Reference

[lo101

111941

[ 11391

113731

(423,9761

I4771

I9361

18271

Ill611

14771

[1349]

"2601

14721

16201

[ 14 1,142,190.

530.53 11

Page 215: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

2 10 10. Tables

Admixture

PbC1,

PbC1,

PbCl,, CdClQ

PbC1, , K,Fe( CN),

ZrOC1,

Rb+. Cs+

small ion admixture

s o p

NaCl

Effect

D

G

D

G

caking

D

G - rise

H

Ti K oxalate

T1+

caking

D

water-containing substances

admixtures

admixtures

admixtures

admixtures

1869,8711

[ 14951

(13711

(12471

12731

I1 771

decrease caking

H, low attrition

H

N

D

I8481

[870,87 11

(37 11

I1801

11 170,1221,

14801

Page 216: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 2 1 1

Effect

H

caking

caking

G

H

D

H. caking

G. H. lower attrition

N. G. S

H - cube +

octahedron

caking

I NaCl

Reference

I7363

I5451

I5461

I7041

I13361

I7211

110361

I12621

I 14941

I7401

14061

I (continued)

Admixture

CH,COO-. CdCl,, CaCl,+MgCl,

complex cyanides, sfloxanes

complex cyanides, urea

OH-

pH

26 admixtures

alanine , glycine , CH,CO 0 H

aliphatic amines

brornobenzene. phenol, aniline

citric acid. tartaric acid

cysteine. creatinine. pepsine,

sodium glutamate, sodium

phosphate

glycine

laurylaminoacetate

I1 16,138.10891

Page 217: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

212 10. Tables

(continued)

Admixture

Methylene blue, Erythrosine

N a salt of carboxymethyl-cellulose

organic acids

phenol

golysaccharides

polyvinylalcohol

golyvinylalcohol

sodium dodecylsulphate

sodium sulphonaphtalate

surfactants

surfactants

surfactants

surfactants

surfactants

synth. polyelectrolyte

urea

Page 218: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 2 13

~ ~~~ ~

Admixture

urea, aliphatic acids

urea, CrCIR

urea, formamide, glycine

urea, pyridine. formamide

~ ~~

Effect Reference

~

Effect

Na,SO,

NO,-. Cl-, Br-. COS2-.

H

N - accelerates 13721

G - accelerate I3721

caking

H

H

H - octahedrons

Reference

IlOOO. 1002.

11 18.1244.

1261,1487.

14711 I

NaC,H,O,N,

SODIUM PICRATE

Molecular weight: 251.096

Page 219: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

214 10.TabZes

Admixture

cu2+

Na dithionate

Na,B,07

Na2B,0,

Na2Cr0,

Na,S, 0

Na,SO,

Na,SO,

Na,SO,. NaClO,

NaBO,

NaBO,

S2062-, B4072-, S2032-. SO,^-,

Cr,.0,2-. CrO,2-, C10,2-

NaClO,

SODIUM CHLORATE

Molecular weight: 106.441

System: cubic

a - 0.6570

Effect

H - /llO/ - /111/

H. G

H. G

N

D

H - /loo/ - /111/

G. H

N. H

H - /111/

H, G

N

H - /111/

admixtures

admlxtures

Reference

113361

[1103,1104]

I4851

11531

16871

[ 1991

[124.125.132]

18621

15231

17261

I14091

12151

114901

I12821

19761

Page 220: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 2 15

Admixture Effect

Na,S04 G

Reference

11281

~~~~

SODIUM FLUORIDE

Molecular weight: 41.988

System: cubic

Admixture Effect

Ponceau 4GB. Solochrome black, H - cube/octahedron

Alizarin red S

polyacrylic acid

Density: 2790

Z = 4

Reference

[4101

[4521

Page 221: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

2 16 10. Tables

N. G

N

N. G - accelerate

N

S

H

G

NaHCO,

SODIUM HYDROGEN CARBONATE Molecular weight: 84.007 Density: 221 1

System: monoclinic 2 - 4

a - 0.7510 b = 0.9700 c = 0.3530

B - 930 19'

17501

[ 18 1.3841

18421

1861

18421

19761

[ 13691

[1217]

[4071

I3671

I Admixture

Na,SO, + hexamethylenimine

NaCl

NaCl

NaC1, NaNO,, Na,SOd

admixtures

admixtures

admixtures

admixtures

benzenesulp honates

carbamate

surfactants

Effect 1 Reference

I I13921

Page 222: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 2 17

Admixture Effect Reference

Mg2+. K+ N [ 13081

I

_1

NaCsH3N,0S

MONOSODIUM URATE

Molecular weight: 190.11 I

Na3H(CO3I2

TRONA

Molecular weight: 190.448

Admixture Effect Reference

organic substances S - favourable I4211

benzenesulphonates I4071

surfactants G. H, S I1368.13791 ,

Page 223: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

2 18 10. Tables

Admixture

Pb(NO,),. Hg(NO,),

Ca2+

surfactants

NaI 2 H,O

SODIUM IODIDE dihydrate Molecular weight: 185.925 Density: 2448

System: triclinic 2 - 4

a - 0.6850 b - 0.5760 c = 0.7160

a - 98000' 0 = 119000' y ~68~30'

Effect Reference

H [3731

favourable I4721

hydrophobization [ 1464)

Admixture Effect

Cu2+, Fe2+. Pb2+, SO,2- D

NaNO,

SODIUM NITRITE

Molecular weight: 68.995 Density: 2144

System: rhombic 2 9 2

a - 0.3550 b - 0.6660 c = 0.5380

Page 224: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 219

NaNO,

SODIUM NITRATE Molecular weight: 84.995

System: trigonal

a - 0.6320

a 4 7 O 14'

Density: 2257

3-2

Admixture

Fe3+

I HN03, Na2C03, NaC1. NaN02,

Fe,O,

Pb2+, Ca2

solid impurities

aniline sulphonate, Wool scarlet,

Chloramine sky blue FF, Acid

green GG extra, Soluble blue,

Induline, Gallophenine D

Congo red, Oxamine blue B.

Magenta, Fuchsine. Methylene

bllie

Effect

Ostwald riDenina

N

n

S . H

N. G

unfavourable

H - /001/ faces on a

rhombohedron

H

caking

hydrophobization

Reference

[ 14531

14121

I57 11

[ 10271

[2721

19761

[2241

[ 1442)

Page 225: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

220 10. Tables

Admixture

CH,COOH

s10,2-, VO;

NaOH - H20 SODIUM HYDROXIDE monohydrate

Molecular weight: 58.012 Density: 1750

System: rhombic Z = 8

B - 0.6210 b - 1.1720 c - 0.6050

Effect Reference

N I8871

16341

NaOH

SODIUM HYDROXIDE

Molecular weight: 39.997 Density: 2020

System: rhombic

B - 0.3397 b - 0.3397 c = 1.1320

Admixture I Effect I Reference

Na,PO, 12 H 2 0

SODIUM PHOSPHATE dodecahydrate

Molecular weight: 380.123 Density: 1589

System: hexagonal 2 = 2

a = 1.2020 c = 1.2660

Page 226: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 22 1

Admixture

surfactants

Effect Reference

G 1549, 13461

~

Na2S20, 5 H20

SODIUM THIOSULPHATE pen tahydrate

Molecular weight: 248.174 Density: 1756

System: monoclinic 2 - 4

Admixture Effect

Na,S, pH > 8 D

a = 0.5944 b = 2.1570 c = 0.7525

Reference

1101

Page 227: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

222 10. Tables

Na,S04 10 H,O

SODIUM SULPHATE decahydrate

Molecular weight: 322.189

System: monoclinic

a - 1.1430 b = 1.0340

SODIUM SULPHATE

Molecular weight: 142.037

System: rhombic

a = 0.5860 b = 1.2300

Density: 1468

2 = 4

c = 1.2900

Density: 2665

2 - 8

c = 0,9820

Admixture I Effect I Reference

Na9B,O7 N I56.13121

admixtures I9141

admixtures N, G I5071

NOn-. sulphamate H. G I4831

impurities from caprolactam I5061

surfactants H - rounded crystals 1423,9761

surfactants I8581

Page 228: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 223

Admixture

Mg2+, Ca2+, N3+, H,PO,

Pod3-

Na2SiF6

SODIUM HEXAFLUOROSILICATE

Molecular weight: 188.056 Density: 2679

System: hexagonal 2 = 3

a - 0.8860 c - 0.5020

Reference

18991

Effect

G [lo591

Admixture Effect

Ca2+. M3+ D

Na2Si03 - 9 H 2 0

SODIUM SILICATE nonahydrate

Reference

[531

Page 229: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

224 10. Tables

Admixture

Ni(HC0O)Z 2 H2O

NICKEL FORMATE dihydrate

Molecular weight: 172.747

Effect Reference

Admixture Effect Reference

Mg2+ D I581

Mg2+. Mn2+ I D I[58.601 I

Ni(CH3COO)Z 4 H2O

NICKEL ACETATE tetrahydrate

Molecular weight: 236.831

Page 230: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 225

Admixture

Mg2+, Zn2+

Ni(NO& 6 H2O

NICKEL NITRATE hexahydrate

Molecular weight: 290.81 1 Density: 2050

System: triclinic z = 2

a - 0.5790 b - 0.7690 c = 1.1890

cc - 106" 38' B = SOo 32' y =lolo 27'

Effect Reference

D, H IS21

Admixture

H,O,

Ni[OH),

NICKEL HYDROXIDE I Effect Reference

filterability 113991

Molecular weight: 92,706

System: hexagonal Z = 1

a - 0.307 c - 0.4605

Page 231: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

226 10. Tables

Admixture

Fe2+

Ni(OH),CO,

BASIC NICKEL CARBONATE

Molecular weight: 152.717

Admixture Effect Reference

H,O, filterability [ 13991

Effect Reference

D [488,489]

NiSO, 7 H2O

NICKEL SULPHATE heptahydrate

Molecular weight: 280.874 Density: 1948

System: rhombic 2 - 4

a - 1.1800 b - 1.2000 c = 0.6800

inorganic ions

Zn2+, Mg2+ ,

gelatin

H. adsorption poten- [2751

tial

D 1581

H. dissolution [2231

Page 232: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 227

~~~~~ ~~ ~~ ~

Admixture

Ag+

PbBr2

LEAD BROMIDE

~

Effect Reference

[1235]

Molecular weight: 367.008 Density: 6667

System: rhombic z = 4

Admixture

uo,2+

polyglutamic acid, polyvinyl-

sulphonate

a = 0.4720 b = 0.8040 c - 0.9520

Effect Reference

transform. 11 1641

N [1167]

gum arabic H I I2151

PbCOs

LEAD CARBONATE

Molecular weight: 267.221

System: rhombic 2 = 4

Page 233: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

228 10. Tables

Admixture Effect

pH G. H

Pb(CH3COO)z 3 H2O

LEAD ACETATE trihydrate I Reference

I8071

PbC1,

LEAD CHLORIDE

Molecular weight: 278.106 Density: 5850

Syetem: rhombic Z = 4

a - 0.4520 b = 0.7610 c = 0.9030

I Admixture

KC1, NH,C1, CdCl,, HC1

Mn2+, Co2+, Ni2+, Cu2+

Mn2+. Co2+, Ni2+, Cu2+, Na+

PbFQ

admixtures

dextrine

Effect

H

e.

H, N. G

D

N

N, large metastable

zone

H - rounded crvstals

Reference

110191

I3741

I 12541

16761

I4131

1894,8951

Page 234: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10.Tables 229

Admixture

glutamate, gluconate,

citrate. tartrate, EDTA

acetate, gluconate. EDTA,

citrate. tripolyphosphate

PbCrO,

LEAD CHROMATE

Molecular weight: 323.22

System: monoclinic

x - 0.682

3 = 1020 33’

b - 0.748

Effect Reference

N I10151

N I10171

Density: 6100

2 - 4

c - 0.716

Admixture

pH

pH

Effect Reference

G [ 12773

modif. [1278]

Page 235: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

230 10. Tables

Effect

D

D

D

H

G, H

D - pleochroism

Pb"O,),

LEAD NITRATE

Molecular weight: 331.210

System: cubic

R 0.7810

Reference

(928.10461

I8571

[ 10841

I8671

I1241

[130.391,43 1,

597,598,664,

Density: 4535

2 = 4

H - cubes

G

G, D, H

Admixture

Ba(NO,),

Ba(NO,), + NaCl

RalNO,I,

[200,430,432,

437.44 1,442.

443,96 1,14021

I1331

[ 1238.1239,

1240.12431

Capri blue

Methylene blue

Methylene blue

Methylene blue

Methylene blue

Methylene blue

Page 236: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 231

Pb,(P04)2, PbHPO4, Pb2P20,

LEAD PHOSPHATES

Pb(N03)2

(continued)

Admixture Effect Reference

Methylene blue N 113411

Methylene blue, Bismarck brown D I3891

Methylene blue, Thionine blue S 18571

Thionine blue H. D [ 124 1.12421 i

1 Admixture Effect

uo,2+

Reference

[1164,13111

Page 237: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

232 10. Tables

I PbS

Admixture Effect Reference I

EDTA equilibrium, G 113511 _I

LEAD SULPHIDE

Molecular weight: 239.28

System: cubic

a = 0.597

PbS

LEAD SULPHIDE

Molecular weight: 239.28 Density: 7500

System: cubic

a = 0.597

PbSO,

LEAD SULPHATE

Molecular weight: 303.28

System: rhombic

a - 0.845 b - 0.538

Density: 6200

c = 0.693

Admixture

RaSO, + HNO,

admixtures

pyrophosphate, tetrameta-

acetate, gluconate, EDTA, citrate.

tripolyphosphate

alcohols

surfactants

Effect

D

G. H

precipitation

Reference

I6651

[ l O O S l

I8 101

[lo171

I10131

I8101

Page 238: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 233

Admixture

Pb2+. Sn2+, Zr4+, Ti4+

RbCl

RUBIDIUM CHLORIDE

Molecular weight: 120.921 Density: 2760

System: cubic 3 = 4

a - 0.6540

Effect Reference

favourable I4721

Admixture Effect

OH- I G I I7041

Reference

RUBIDIUM DIHYDROGEN PHOSPHATE

Fe3+, Mg2+, SiOS2-, Ca2+, Ag+, BiS+, I H 118401

Fe3+, pH H

Page 239: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

234 10. Tables

Admixture

p olyglutamic acid, polyvinyl-

sulphonate

SrCO,

STRONTIUM CARBONATE

Molecular weight: 147.64 Density: 3700

System: rhombic 2 = 4

a - 0.513 b 0.842 c = 0.610

Effect Reference

N [1165,1167]

Sr(HCOO), 2 H 2 0

STRONTIUM FORMATE dihydrate

Molecular weight: 213.686 Density: 2255 ~

System: rhombic 2 - 4

a - 0.7300 b - 1.1990 c = 0.7130

Admixture I Effect I Reference

cations G

Page 240: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10.Tables 235

Admixture

Fe2+, Fe3+

inhibitors, Mg2+, Zn2+

Mg2+

phosphonates

~

3rF,

STRONTIUM FLUORIDE

Holecular weight: 125.63

System: cubic

L - 0.586

Effect Reference

D I 11801

G. dissolution 13.41

G I5 151

G I1351

I uo,2+ I transform. I I1164.13111 I

SrHPO,, Sr,P,O,, Sr,(PO,),

Admixture Effect

F- G

Reference

I36 11

Admixture Effect

F- G

Reference

I36 11

uo,2+ transform. I 1 164,13 1 11

Page 241: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

236 10. Tables

System: cubic 3 6 4

a - 0.7763

Sr"O&

STRONTIUM NITRATE

Molecular weight: 21 1.630

Admixture Effect r

Density: 2930

Ba2+ D

- L

Admixture Effect Reference

Mn2+ D (1031

cu2+ D 1277,10261 /

I saphranine, wood extract 1 H . D

Reference

[ 11451

[12011

ZnC204 - 2 H20

ZINC OXALATE dihydrate

Molecular weight: 189.432

Page 242: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 237

Admixture

N a phosphates

N a phosphates

N a triphosphate

pH, phosphates, Fe3+, Cr3+

3rS0,

STRONTIUM SULPHATE Kolecular weight: 183.70

System: rhombic

I - 0.836 b - 0.536

Effect

H. G

N - retarding

N

H

p H

pH = 4.6

pyrophosphate

tripolyphosphate

tripolyphosphate

S

G - maximum

G

H, aggregation

N. G

z = 4

c = 0.684

Reference

[900,9011

[950.951,10061

[ 12481

[g041

18061

18631

13081

110071

CVHSOH

CH,OH

phosphonate

polyvinylsulphonate

polyvinylsulp honate

S

N

H. S

1904.949.950

1007.10 171

[ 12451

13411

(10631

[1163.11681

11 162,11731

Page 243: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

238 10. Tables

Admixture Effect

SrSO,

(continued)

Reference

Admixture Effect Reference

sodium cltrate. EDTA H (1006, 10091

surfactants. citrate. EDTA 110061

water soluble polymers H. inhibition N 11162, 11741

Fe2+

alcohol + surfactant

TITANIUM DIOXIDE (anatase) lmo2 W301

N, G I5931

Page 244: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10.Tables 239

Admixture Effect Reference

Mg2+, Mn2+ D [58,601

Zn(HCOO), 2 H 2 0

ZINC FORMATE dihydrate

Molecular weight: 191.447

Admixture Effect

gluconate. tartrate, EDTA. N

Reference

I10151

ZnC4H604

ZINC ACETATE

Molecular weight: 183.48

I I Admixture I Effect I Reference

I I I Co2+, Cd2+ D I [63l I

Page 245: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

240 10. Tables

Admixture Effect Reference

Ni2+ D [ 150 1, I5021

ZnK2(S04), 6 H20 I ZINC POTASSIUM SULPHATE hexahydrate

Zn(NH4)2(S04)2 6 H20 ZINC AMMONIUM SULPHATE hexahydrate I Molecular weight: 401.687

System: monoclinic

a - 0.920

!3 = 106O 52'

b = 1.247 c = 0.623

Admixture

Fe2+, Ni2+, Co2+, Cu2+

Effect

D

n

Reference

11499,1500,

15021

Page 246: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 241

Admixture Effect Reference

Zn(NO& - 6 H,O

ZINC NITRATE hexahydrate

Molecular weight: 297.481 Density: 2067

System: rhombfc z = 4 a = 1.2240 b - 1.2850 c = 0.6290

ZINC SULPHIDE

Molecular weight: 97.45

System: hexagonal

Page 247: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

242 10. Tables

~ ~~ ~~ ~

Admixture

co2+

ZnSO, 7 H,O

ZINC SULPHATE heptahydrate Molecular weight: 287.544 Density: 1957

System: rhombic 2 = 4

a - 1.1850 b - 1.2090 c - 0.6830

Effect

D

Admixture

CU2+ I D I

Effect

+ Cu2+, Fe2+, Co2+

Reference

[ 13431

162,9851

I9861

[57,611

f488.4891

~

ZnWO,

ZINC TUNGSTATE Molecular weisht: 313.3

Reference

11831

Page 248: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 243

H

ORGANIC SUBSTANCES

I

I991

Molecular weight: 60.06

System: tetragonal

caking

H

H - prisms

H

H

N

H

H

caking

H

G

G. H - cubes

admixtures, solvents

I9781

I991

[22 11

I4 161

[ 11411

I6291

I4 171

113481

[ 12891

I1001

12921

13831

[ 10821

alkylamines, HCOOH

biuret

biuret

- biuret 3-5 YO

biuret, cyanuric acid

biuret, formamide

Density: 1335

332

Effect I Reference

Page 249: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

244 10. Tables

Admixture Effect

dyes

solvents capping growth

solvents G

surfactants caking

Reference

I1781

I5661

113421

19781

CH4NZS

THIOUREA

Molecular weight: 76.12 Density: 1405

System: rhombic 2 - 4

a = 0.550 b = 0.708 c = 0.857

Admixture Effect Reference

NH,SCN I6273

CH,OH N I5191 I

Page 250: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 245

Molecular weight: 123.075

Admixture Effect Reference

Methylene blue D. H - prisms 1434.43 51

Admixture

Ca2+

Fe2+, Cu2+, Pb2+

C2H204 2 HZO

OXALIC ACID dihydrate Molecular weight: 126.04

System: monoclinic

a - 0.612

I3 - 106O 12'

b - 0.361

Effect Reference

D 13591

D 14941

Density: 1653

3 = 2

c - 1.203

Page 251: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

246 10. Tables

Z,HBO,N

WINOACETIC ACID

aolecular weight: 75.07

Admixture

Trypan Red, Chloramine Sky Blue

FF. Chromotrooe 2B

Methyl Blue MBJ

aminoacids

Effect

H - long needles

/(Ill/

H - suppresses

needles

N

Reference

12 151

[2151

1784,1444,

14461

CSH4O4N4

UREA OXALATE

Molecular weight: 160.097

I Admixture

Magenta , Fuchsine , Tartrazine ,

Eosine

Neutral red

Victoria blue, Brilliant green,

Malachite green, Gentiana blue

Effect

H - /010/

H - needIes

H - /201/

Reference

14441

(4441

I4441

Page 252: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 247

Admixture

C3H702N

AMINOPROPIONIC ACID (L-ALANINE)

Effect Reference

Brilliant yellow I G I I7781 I I I

admixtures I G , H I I7921 I

C4H604

SUCCINIC ACID

Molecular weight: 118.092

System: monoclinic

a = 0.506

B = 133O 37'

b - 0.881

2-2

c = 0.757

Admixture

solvents

isopropanol

Effect

H

G, solubility

Reference

129 11

[ 14501

Page 253: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

248 10. Tables

Admixture

Fe2+. Cu2+, Sb3+. S d + , Co2+,

so42-. c1-

cuso,

admixtures

C ~ H ~ O B HSO

TARTARIC ACID monohydrate Molecular weight: 168.09

System: triclinic

a - 0.809

a - 8 2 O 20'

b - 1.003

B - 1180 0'

Effect Reference

D I4921

H I6051

n I 1 1471

Density: 1697

2 = 2

c - 0.481

y =72O 58'

Admixture

solvents

Effect Reference

I3381

C4H808N8

OCTOGENE (TETRANITRO-TETRAZA OCTANE)

Page 254: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.Tables 249

Admixture

1-glutamlc acid

C4HQOSN

L-THREONINE

Molecular weight: 119.124

Effect Reference

D "7691

Admixture

Magenta, Fuchsine

Bismarck brown. Neutral red.

Safranlne, Methylene blue

C4HeO4N

y-AMINOBUTYRIC ACID

Molecular weirtht: 136.124

Effect

H - width prolonga-

tion

H - length prolonga-

tlon

surfactants IN, H I I8091

CsH4OsN4

URIC ACID I Molecular weight: 168.11 Density: 1893

I

Reference

I4461

I4461

Page 255: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

250 10. Tables

Admixture

amino acids

1-aspartic acid, 1-valine, 1-leucine,

I-p henylalanine

1- aspartic acid

C6H904N

L-GLUTAMIC ACID

Molecular weight: 147.14

Effect Reference

111141

N, G I5181

N. G [ 14751

Admixture

Ca formiate and acetate

CSH1006

XYLOSE Molecular weight: 150.13 Density: 1530

System: rhombic Z = 4

a - 0.921 b - 1.248 c = 0.556

Effect Reference

G - acceleration 19381

Page 256: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 251

Admixture

admixtures

Effect Reference

113891

Admixture

Ca[HCOO),

dipentaerythritol

dipentaerythritol

dipentaerythritol

Effect Reference

N. G [ 15121

N. S 115131

N I6181

G. N. S 16191

Page 257: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

252 10. Tables

CBH,OZNCl

m-CHLORONITROBENZENE

Molecular weight: 157.663

Admixture Effect Reference

admixtures I2441

structurally similar additives H I2451

COHO

BENZENE

Effect Admixture

Molecular weight: 78.12

System: rhombic I Reference

2 = 4

Page 258: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 253

Admixture

C6H602

RESORCINOL

Molecular weight: 110.12

System: rhombic

a - 0.966 b = 1.05

Effect Reference

Density: 1285

2 - 4

c = 0.568

Admixture

Magenta, Fuchsine, Toluidine blue

Effect Reference

H 14451

C6H603

PHLOROGLUCINE (1,3,5-TRIHYDROXYBENZENE) I IMolecular weight: 126.114 1

Page 259: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

254 10. Tables

Molecular weight: 134.146

I I t

C6HS06

ASCORBIC ACID

Molecular weight: 176.13

Admixture Effect Reference

methanol I8591

Admixture I Effect I Reference I I I

CITRIC ACID

Molecular weight: 192.13 Density: 1542

surfactant I I [9161 I

Admixture Effect Reference

H,SO, G I9871

Page 260: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 255

Admixture Effect

amino acids H

Reference

I6251

C6H 10°4N2

ETHYLENEDIAMINE TARTRATE

Molecular weight: 174.162

I Admixture Effect r

Ca2+. Mg2+. Cu2+, A13+ H

Fe3+. A13+, Ca2+, Mg2' H - wedge

pH H

9 H = 6.0

pH = 6.0

pH = 7.5

H, S favourable

H - needles

low sensibility to

Reference

18401

17091

18401

Page 261: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

256 10. Tables

G - decreasing

H - needles, thin

plates

physical properties

G Inhibition

N, G

H

C6H1004

ADIPIC ACID Molecular weight: 146.15 Density: 1366

System: monoclinic z = 2

a - 1.027 b - 0.516 c = 1.002

0 - 137O 5'

[888,889,

8901

[888,889.

8901

I4961

12881

19661

I9331

I Admixture I Effect I Reference trimethyldodecylammonium

chloride

sodium dodecylbenzenesulphonate

n-alkanoic acids

n-alkanoic acids

related compounds

succlnic acid, solvents, formic acid

Page 262: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 257

Admixture Effect Reference

' cyclohexanone D I13521

cyclo hexanone G I9621

' solvents H I981

trichlorethylene N, S . D [ 13021

C6H110N

CAPROLACTAM

Admixture

Fe3+, Pb2+, As3+, SiOS2-, T1+. Cu2+

Ni2+. Cu2+, Fe3+

Tl+. Li+. Na', K+. Rb+. Cs+

HqSO,

p H

1-alanine

Molecular weight: 113.162

Effect Reference

H [8401

H. D I9091

H [ 13821

H, G - retards 17241

H 18401

G I5961

C6H1104N3 ' H2S04

FRIGLYCINE SULPHATE

Yolecular weight: 287.26

Page 263: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

258 10. Tables

Admixture Effect Reference L

c6H1206

GLUCOSE Molecular weight: 180.17

System: rhombic

a - 1.040 b - 1.489

fructose

fructose

fructose

Density: 1544

2 = 4

c = 0.499

mutarotation 1751.7531

N [980.7531

H, G [752.753]

c6H1206

SORBITOL

Molecular weight: 182.13 I

Admixture Effect Reference

soap [7701 _i

Page 264: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 259

1 C6H12N4

HEXAMETHYLENETETMINE, (UROTROPIN)

Molecular weight: 140.20

System: cubic

Admixture Effect

z = 2

Reference

benzylalcohol + Si02

Ca and Mg stearates

solvents

caking 1831

caking [831

G [ 159.1 SO]

L-ISOLEUCINE

Molecular weight: 131.178

Admixture Effect Reference

surfactants H [ 1134,1508,

15091

Page 265: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

260 10. Tables

Admixture

admixtures

Effect Reference

D I6961

C7H602

BENZOIC ACID

I Molecular weight: 122.13 Density: 1266

Admixture Effect Reference

ethylalcohol G I7381

admixtures G I10581

.

System: monoclinic

a - 0.544 b = 0.518

D - 970 5'

2 = 4

c = 2.16

Page 266: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 26 1

Admixture Effect

derivates of benzoic acid N

I p-HYDROXYBENZOIC ACID

Reference

[ 14451

Admixture Effect Reference

tailor-made additive H 1

Page 267: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

262 10. Tables

~

Admixture Effect Reference

Li, Na. K, C s halides I7391

a-naphtylamine sulphonate, H - thin plates /010/ I2151

Bismarck brown, Fuchsine

diphenylamine. Methylene blue, H 14333

Malachite Preen

%*6O4

PHTHALIC ACID

Molecular weight: 166.14 Density: 1593

System: monoclinic 2 - 2

a - 0.933 b = 0.713 c = 0.510

B - 9 4 O 36'

Admixture Effect Reference

admixtures 193 11

I

Page 268: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10.Tables 263

Admixture Effect

dyes H - / l o o / >> /llO/

Reference

[215]

C1oHs

NAPHTHALENE Molecular weight: 128.17

System: monoclinic

a - 0.834

D * 122044'

b = 0.598

Admixture

fenantrene, anthracene

biphenyl

Density: 1145

Z = 2

c = 0.868

Effect Reference

G. H I10401

G I9633

Page 269: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

264 1O.TabZes

~~~

Admixture Effect

solvents N

C12HlO

ACENAPHTHENE Molecular weight: 154.21 Density: 1024

System: rhombic 3 = 4

a - 0.892 b = 1.415 c = 0.726 =

Reference

I8361

Admixture

solvents

solvents I G I I8371

Effect Reference

G. H I5671

ClZHlO

BIPHENYL

Molecular weight: 154.21 Density: 11 80

System: monoclinic 2 = 2

m - 0.811 b - 0.567 c = 0.957

Page 270: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 265

Admixture Effect Reference

acetone S D171

C12H1,OTNdP2S HCl

COCARBOXYLASE HYDROCHLORIDE

Molecular weight: 460.789 I

Admixture

CaCI, , AlCl,, FeCI,

Effect Reference

G I3131

Cl2H22Oll H2O

LACTOSE mono hydrate Molecular weight: 360.31

L

Page 271: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

266 10. Tables

C12H22O11

SUCROSE

Molecular weight: 342.31

System: monoclinic

a - 1.065 b 0.870

p = 105O 44'

Admixture

Ca2+, Na+, K+

CaCl,, Na,C03

inorganic salts

KC1, CaCl,, MnSO,. NH,NO,. CdI?

MnSO, I Na+. K+, Ca2+, Fe2+. Cu2+

NaCl, KCI, CaCl,, CaSO,, CaHPO,

admixtures

admixtures

admixtures

Density: 1588

2 = 2

c = 0.800

Effect

H

N. G, H. S

G

G.H

H

Reference

I14841

[ 14861

[6 131

13371

[1284.1285,

12861

W 4 1

19971

11 188,13401

1451

13061

Page 272: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 267

C,2€€2,0,, (SUCROSE)

(continued) ~

Admixture

amino acids

betaine

colouring impurities

dextrose

dextrose

impurities

impurities, colouring substances

raffinose I raffinose. glucose

I saccharides

starch, dextrine

Effect

c,

G, H

D

G

G

~

H

G. H

G. H

c,

Reference

12 191

I83 11

I14921

I131

[3361

(525.5261

11485,149 11

I14.334.335.

33 7,554.

12521

I337.568.

8321

[555,556]

I3371

[ 14861

Page 273: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

268 10. Tables

Admixture Effect Reference

i tolan D periodicity I7541

C14H14

DIBENZYL

Molecular weight: 182.266

System: monoclinic Z = 2

a - 1.282 b - 0.618 c = 0.774

0 = llSO 0'

Molecular weight: 252.277

Admixture Effect Reference

pop, ci- G 115061

I

.

C15H1202N2

PHENYTOIN I

Page 274: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 269

H. polymorphs

H

G . H

C16H3202

PALMITIC ACID Molecular weight: 256.432

System: monoclinic 2 = 4

a - 0.941 b = 0.500 c = 4.59

B - 50° 50'

14271

[4281

[761

[lo611

Admixture Effect

~~ ~ ~~~~~

C18H3602

STEARIC ACID Molecular weight: 284.49

System: monocIinic

a - 0.5546 b = 0.7381

3 = 63O 38'

Density: 941

2 = 4

c = 4.884

Admixture

solvents

surfactants

butanone + emulsifier

unsaturated homologues

solvents, sorbitone monostearate

Effect I Reference

G. H I I751

Page 275: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

270 10. Tables

Admixture

hydrocarbon solvents

CnH2n+2

PARAFFIN

Admixture Effect

admixtures

inhibltors G

polymers N, G

solvents H. G

Effect Reference

N I2431

15501

Page 276: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 271

Admixture

solvents

C27H460

CHOLESTEROL I Effect Reference

H [4261

Admixture

C32H60

N-DOTRIACONTANE

Effect Reference

Molecular weight: 450.88

polymers I I [801 I

Page 277: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

272 10. Tables

PROTEINS I I Admixture EXfect Reference

phospholipids 18651 L

%*74

HEXATRIACONTANE

Molecular weirrht: 506.988

Admixture Effect Reference

G , H I12311

Page 278: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

FORMULA INDEX

Inorganic substances

AgBr

AgCl

4 1

AgN0,

AlCs(S04)2 * 12 H2O

AlCl, . 6 H 2 0

AlF3 . 3 H2O

AlK(SO4)2. 12 H 2 0

AlNH,(SO4)2 * 12 H2O

Al(NO,), * 9 H2O

Al(OH),

A1203.M20.n SiO, m H20

AlPO,

AlRb(SO,), * 12 H2O

AITl(SO,), . 12 H 2 0

Alz(SO4)3 . 16 H20

Ba(B0&

BaBr2 - 2 H 2 0

BaC0,

BaC204

silver bromide

silver chloride

silver chromate

silver iodide

silver nitrate

aluminium cesium sulphate

aluminium chloride

aluminium fluoride

aluminium potassium sulphate

aluminium ammonium sulphate

aluminium nitrate

aluminium hydroxide

zeolites

aluminium phosphate

aluminium rubidium suIphate

aluminium thallium sulphate

aluminium sulphate

barium borate

barium bromide

barium carbonate

barium oxalate

78

79

80

80

81

81

82

82

83

85

86

87

86

88

88

89

89

90

90

91

91

Page 279: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

274 10. Tables

BaC12 - 2 H20

BaCr04

BaF,

Ba(I0312 . H20

Ba(N0312

Ba(OH), . 8 H,O

BaS04

BaTiOQ

Be(NH412F4

(C2H,I4NI

CaC03

CaCz04 - H20

CaC4H,0,

Ca(C&, 10712

CaC12. 2 H20

CaFz

CaHP04. 2 H20

CaHPOq. 3/2 H 2 0

Ca(N0312 . 4 H20

Ca(OH12

Ca3(P04)2

Ca2P20, - 2 H 2 0

Ca3(PO4l2 CaF2

barium chloride

barium chromate

barium fluoride

barium iodate

barium nitrate

barium hydroxide

barium sulphate

barium titanate

ammonium beryllium fluoride

tetraethylammonium iodide

calcium carbonate

calcium oxalate

calcium tartrate

calcium gluconate

calcium chloride

calcium fluoride

calclum hydrogen phosphate

calcium hydrogen phosphate

calcium nitrate

calcium hydroxide

tricalcium phosphate

dicalcium phosphate

ff uorapatite

92

93

94

94

95

96

97

104

190

92

99

105

108

109

108

109

110

111

112

112

113

114

114

Page 280: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 275

Ca3(PO4I2 - Ca(OHI2

CaSO,

CaS04 - 2 H20

CaSi03

Ca(C5H3N403),

CaWO,

Ca,H2(P04), - 5 H20

CdCOs

Cd(CHO2)2 * 2 H,O

CdS

C0C03

Co(CH02)Z 2 H2O

Co(CH,C02)2 * 4 H2O

CO(NH~)~(SO& * 6 H2O

C0S04 - 7 H 2 0

CrK(S04), - 12 H20

CrNH4(S04)2 . 12 H20

C~Al(SO4)121 * 12 H2O

CSH~ASO,

CSI

CsN0,

CUClz * 2 H2O

Cu(CH02)2 * 2 HZO

hydroxyapatite

calcium sulphite

calcium sulphate

calcium silicate

calcium urate

calcium tungstate

octacalcium phosphate

cadmium carbonate

cadmium formate

cadmium sulphide

cobalt carbonate

cobalt formate

cobalt acetate

ammonium cobalt sulphate

cobalt sulphate

potassium chromium sulphate

ammonium chromium sulphate

aluminium cesium sulphate

cesium dihydrogen arsenate

cesium iodide

cesium nitrate

cupric chloride

cupric formate

115

114

117

116

123

123

113

124

124

125

125

126

126

127

127

128

128

81

129

129

130

130

131

Page 281: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

276 10. Tables

cupric acetate

cupric chromate

ammonium cupric sulphate

cupric hydroxide

basic cupric carbonate

cupric sulphate

ammonium ferrous sulphate

ferric oxide hydroxide

ferric hydroxide

ferric oxide

magnetite

ferrous sulphate

ice

boric acid

phosphoric acid

mercuric bromide

mercuric cyanide

aluminiumpotassium sulphate

potassium pentaborate

potassium bromide

potassium bromate

potassium cyanide

potassium carbonate

13 1

131

132

132

132

133

134

134

135

135

136

136

137

137

138

140

140

83

141

142

143

143

141

Page 282: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1O.TabZes 277

QcZ04 ' H2°

KC1

KClO,

KCIO,

K2Cr04

%,cr207

KCr(S0412 - 12 H,O

K4Fe(CN16 * 3 H,O

KH2As04

KH2PO4

KHC,H,O6

KHCSH404

KI

uo3

K2Mg(SO,l2 * 6 H2O

KMn0,

KNO2

KNo3

KNaC4H40,

K2s04

K2s206

KTiOPO4

K2Zn(S04)2 6 H,O

potassium oxalate

potassium chloride

potassium chlorate

potassium perchlorate

potassium chromate

potassium dichromate

potassium chromium sulphate

potassium ferrocyanide

potassium dihydrogen arsenate

potassium dihydrogen phosphate

potassium hydrogen tartrate

potassium hydrogen phthalate

potassium iodide

potassium iodate

potassium magnesium sulphate

potassium permanganate

potassium nitrite

potassium nitrate

sodium potassium tartrate

potassium sulphate

potassium dithionate

potassium titanyl phosphate

zinc potassium sulphate

144

145

151

152

153

154

128

144

154

155

158

158

159

157

170

160

160

161

163

165

164

162

240

Page 283: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

278 10. Tables

lithium chloride

lithium fluoride

lithium iodide

lithium iodate

ammonium lithium tartrate

lithium sulphate

magnesium carbonate

magnesium acetate

magnesium fluoride

magnesium formate

magnesium oxalate

potassium magnesium sulphate

ammonium magnesium sulphate

magnesium nitrate

magnesium hydroxide

magneslum sulphate

manganous carbonate

manganous formate

manganous sulphate

aluminium ammonium sulphate

ammonium beryllium fluoride

ammonium bromide

ammonium oxalate

167

168

168

169

159

170

171

169

172

172

171

170

173

173

174

175

174

176

176

85

190

177

181

Page 284: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 279

ammonium chloride

ammonium chlorate

ammonium perchlorate

ammonium cobalt sulphate

ammonium chromium sulphate

ammonium cupric sulphate

ammonium ferrous sulphate

ammonium hydrogen carbonate

ammonium hydrogen oxalate

ammonium hydrogen tartrate

ammonium dihydrogen phosphate

ammonium hydrogen phosphate

ammonium lithium tartrate

ammonium magnesium sulphate

ammonium nitrate

ammonium nickel sulphate

ammonium sulphate

ammonium titanyl sulphate

ammonium uranate

ammonium tungstate

zinc ammonium sulphate

sodium hexafluoroaluminate

sodium perborate

178

182

182

127

128

132

134

183

183

184

185

184

159

173

188

190

191

198

199

199

240

200

200

Page 285: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

280 10. Tables

NaB02 . H20, - 3 H20

Na2B40, - 10 H,O

NaB508. 5 H20

NaBr . 2 H20

NaBr03

NaC2H302 - 3 H20

Na2C03 10 H 2 0

NaC5H804N - H 2 0

NaC6H20,N3

NaCl

NaClO,

NaC10,. H20

NaHCO,

NaC5H3N403

N a F

Na3H(CO3I2

NaI . 2 H20

NaKC4H406

N a N 0 2

NaN0,

NaOH

Na3PO4 I 12 H20

Na5P3OI0 a 6 H20

sodium peroxoborate

sodium tetraborate

sodium pentaborate

sodium bromide

sodium bromate

sodium acetate

sodium carbonate

sodium glutamate

sodium picrate

sodium chloride

sodium chlorate

sodium perchlorate

sodium hydrogen carbonate

sodium urate

sodium fluoride

trona

sodium iodide

potassium sodium tartrate

sodium nitrite

sodium nitrate

sodium hydroxide

sodium phosphate

sodium triphosphate

20 1

202

20 1

203

203

204

205

204

2 13

206

2 14

215

216

217

215

217

218

163

218

219

220

220

22 1

Page 286: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 281

sodium sulphate

sodium thiosulphate

sodium hexafluorosilicate

sodium silicate

sodium zincate

nickel formate

nickel acetate

ammonium nickel sulphate

nickel nitrate

nickel hydroxide

basic nickel carbonate

nickel sulphate

lead bromide

lead carbonate

lead acetate

lead chloride

lead chromate

lead fluoride

lead nitrate

lead phosphates

lead sulphide

lead sulphate

aluminium rubidium sulphate

222

22 1

223

223

205

224

224

190

225

225

226

226

227

227

228

228

229

229

230

23 1

232

232

88

Page 287: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

282 10.Tables

RbCl

RbH2P04

SrC03

Sr(CHO2I2. 2 H,O

SrFz

Sr(N0312

SrHP04

SrS04

7302

TlAl(S04)2. 12 H2O

Tio(NH&(S0412

ZnC204 2 H20

Zn(CHO2I2 - 2 H20

ZnC4H604

ZnCrO,

ZnK2(S0,), a 6 H 2 0

Zn(NH412(S0412 . 6 H20

Zn(N0312 . 6 H20

ZnS

ZnS04. 7 H20

ZnWO,

rubidium chloride

rubidium dihydrogen phosphate

strontium carbonate

strontium formate

strontium fluoride

strontium nitrate

strontium phosphates

strontium sulphate

titanium dioxide

aluminium thallium sulphate

ammonium titanyl sulphate

zinc oxalate

zinc formate

zinc acetate

zinc chromate

zinc potassium sulphate

zinc ammonium sulphate

zinc nitrate

zinc sulphide

zinc sulphate

zinc tungstate

233

233

234

234

235

236

235

237

238

89

198

236

238

238

238

240

240

24 1

24 1

242

242

Page 288: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 283

Organic substances

urea

thiourea

urea nitrate

oxalic acid

aminoacetic acid

urea oxalate

L-alanine

succinic acid

tartaric acid

octogene

L-threonine

y-aminobutyric acid

uric acid

L-glutamic acid

xylose

trimethylolethane

pentaerythritol

m-chloronitrobenzene

benzene

allopurinol

resorcinol

phloroglucine

243

244

245

245

246

246

247

247

248

248

249

249

249

250

250

25 1

25 1

2 52

252

254

253

253

Page 289: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

284 10. Tubks

C6H806

C6H807

C6H902N3

C6H 10'4

C6H 1 0°4N2

loN

C6H1104N3 ' HzS04

C6H1206

C6H1206

C6H12N4

C6H 1 3°2N

C6H16N2

C7H602

C7H603

C7H7ON

C8H604

C8H604

C9H9'3N

'loH,

C12HlO

C12H10

C1,Hl,O,N4P,S * HCl

ascorbic acid

citric acid

L- histidine

adipic acid

ethylenediamine tartrate

caprolactam

triglycine sulphate

glucose

sorbitol

hexamethylenetetramine

L-isoleucine

hexame thylenediamine

benzoic acid

p-hydroxybenzoic acid

benzamide

phthalic acid

terephthalic acid

hippuric acid

naphthalene

acenaphthene

biphenyl

cocarboxylase hydro-

chloride

254

2 54

255

256

255

257

257

258

258

259

259

260

260

26 1

26 1

262

262

263

263

264

264

265

Page 290: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

10. Tables 285

C12H22Oll * H2O

c 12H22O 1 1

C14H14

C15H1202N2

C16H3202

C18H3602

CnH2n+2

C24H50

C27H460

C32H66

C36H74

lactose

sucrose

dib enzyl

phenytoin

palmitic acid

stearic acid

paraffin

tetracosane

cholesterol

N-dotriacontane

hexatriacontane

proteins

265

266

268

268

269

269

270

270

271

27 1

272

272

Page 291: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)
Page 292: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Admixtures in Crystallization Jaroslav Njlvlt, Joachim Ulrich

0 VCH Verlagsgesellschaft mbH, 1995

11. References to Tables

[ 11 Abakumov. V.I., Diarov. M.D., Kardashina. L.F., Kalacheva. V.G.: Izv.

Akad. Nauk Kaz. SSR. Ser. Khim. 4 (1988) 3

[2] Abbona. F.. Madsen. H.E.L., Boistelle. R.: J. Crystal Growth 74

(1986) 581

[31 Abdul-Rahman, A.: Unlv. Microfilms No. DA8824030 :CA 110 (26)

40426

[4] Abdul-Rahman, A.. Hamza. S.M.. Nancollas. G.H.: AICHE Symp. Ser.

83, 253 Fundam. Aspects Cryst. Precip. Processes (1987) 36

[51 Abram, T.: G a s World 136, No. 3559 (1952) 71

[6] Acharya. C.S., Tandon. S.P.: J. Sci. Ind. Res. (India) 200 (1961) 464

[7] Addadi. L.. Berkovitch-Yellln, 2.. Weissbuch. I., Lahav. M..

Leiserowitz, L.: Mol. Cryst. Liq. Cryst. 96 (1-4) (1983) 1

[81 Ahmed, K.. Tawashi. R.: Urol. Res. 6 (1978) 77

[9] Akakumov, V.I.. Kardashina. L.F.. NedopeMna. V.A.: Obogashch.

Rud (Leningrad) 5 (1989) 16

[lo] Akhmetov. T.G., Kuznetsov-Fetisov. L.I.: Tr. Kazan. Khim.-Tekhnol.

Inst. 34 (1965) 25

1111 Akl. M.M.. Nassar. M.M.. Sayed. S.A.: Chem.-1ng.-Tech. 63 (1991)

935

I121 Akl. M.M.. Nassar. M.M.. Sayed. S.A.: Chem.-1ng.-Tech. 63 (1991)

939

[13] Albon, N., Dunning. W.J.: Proc. Int. Conf. Growth and Perfection of

Crystals, p. 450. New York 1958

Page 293: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

288 11. References to Tables

[14] Albon. N.. Dunning, W.J.: Acta Cryst. 15 (1962) 474

I151 Aldcroft. D.. Bye, G.G., Hughes, C.A.: J. Appl. Chem. 19 (1969) 167

[16] Alemaikin. F.M.: Uch. Zapiski Mordovsk. Gos. Univ., Saransk 16

(1962) 20

I171 Alfimova. L.D.. Velikhov. Yu.N.. Demirskaya. O.V.: Vysokochist.

Veshch. 5 (1991) 153

I181 Alkashi, H., Kagaku. N.R.: J. Japan Chem. Soc. 2.(1948) 212

[ 191 Alybakov. A.A.. Umurzakov, B.S.: Tezisy Dokl. Vses. Soveshch.

Rostu Krist. 5th 1 (1977) 206

1201 Ambrose. S., Kanniah. N.. Gnanam, F.D., Ramasamy. P.: Crystal Res.

Technol. 17 (1982) 299

I2 11 Amelina. E.A., Vaganov. V.P., Shchukin. E.D.: Kolloidn. Zhur. 42 (4)

(1980) 611

1221 Ameneiro Perez, S.: Rev. Cubana Fis. 4 (1) (1984) 129

1231 Amin, A.B., Larson. M.A.: Ind. Eng. Chem., Process Des. Devel. 7 (1)

(1968) 133

1241 Amjad, 2.: Roc. Symp. Adsorpt. Surface Chem Hydroxyapatite (1984)

1-11; CA 100 18347.7

I251 Amjad. 2.: Langmuir 3 (2) (1987) 224

[26] Amjad, 2.: J. Colloid Interface Sci. 117 (1) (1987) 959

I271 Amjad, 2.: Langmuir 3 (6) (1987) 1063

I281 Amjad, 2.: J. Colloid Interface Sci. 11 7 (1987) 98

I291 Amjad, 2.: Can. J. Chem. 66 (6) (1988) 1529

1301 Amjad. 2.: Can. J. Chem. 66 (9) (1988) 2181

Page 294: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 289

I311 Amjad. 2.: J. Colloid Interface Sci. 123 (1988) 523

I321 Amjad. 2.: Langmuir 5 (5) (1989) 1222

1331 Amjad. 2.: Colloids and Surfaces 48 (1990) 95

I341 Amjad. 2.: Langmuir 7 (3) (1991) 600

1351 Amjad. 2.: Langmuir 7 (10) (1991) 2405

I361 Amjad. 2.. Koutsoukos, P.G.. Nancollas. G.H.: J. Colloid. Interface

Sci. 101 (1) (1984) 250

I371 Amjad, Z., Mooley. J.: J. Colloid Interface Sci. 111 (2) (1986) 496

I381 Andreev, G.A.: Rz. Tverd. Tela 7 (1965) 1653

I391 Andreev, G.A.: Kristallografiya 12 (1967) 104

I401 Andreev. G.A.: Kristallografiya 13 (1968) 872

l411 Andreev, G.A.. Buritskova. L.G., Hartmanova. M.: Krist. Tech. 13

(1978) 805

I421 Annede Cugnac. H.J.. Pouradier. J.: Compt. rend. 264 (1967) 1149

I431 Antinozzi, P.A.. Brown, C.M.. Purlch. D.L.: J. Crystal Growth 125

(1-2) (1992) 215

I441 Aoki. S.. Yoshida. M.. Aral, Y.: Gypsum Lime 178 (1982) 129

I451 Aquilano, D.. Rubbo. M.. Vaccari, S.. Mantovani, G.. Squaldino, G.:

Growth mechanisms of sucrose from face-by-face kinetics and

crystal habit modifications from impurities effect, in: Industrial

Crystallization '84 (eds. JanW, S.J.. de Jong. E.J.), p. 91, Elsevier,

Amstardam 1984

I461 Armington, A.F., et al.: U S Govt Res. Dev. Rept 68 (1968) 100

Page 295: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

290 11. References to Tables

1471 Atademir. M.R.. Kitchener, J.A., Shergold, H.L.: J. Colloid Interface

Sci. 71 (1979) 466

(481 Austrian Pat. 248 479 (1963)

1491 Austrian Pat. 343 597 (1978)

1501 Autenrieth. H., et al.: Chem. Ing. Tech. 29 (1957) 709

1511 Azoury. R.. Garside. J.. Robertson. W.G.: J. Crystal Growth 76 (2)

(1986) 259

1521 Babayan. S.G.. et al.: Radiokhimiya 4 (1962) 521

(531 Babayan. S.G.. Isakhanyan. S.S.: Armen. Khim. Zhur. 22(2) (1969)

119

1541 Babich. S.A.. Soifer, L.M., Chubenko, A.I., Shakhnovich, M.I.: Sb.

Nauch. Tr. VNII Monokr., Otd. Mater. i Osobo Chist. Khim. Veshch.

1, 80

1551 BabiC- IvanEiC, Ftiredi-Milhofer. H.. PurgariC, B.. BrniceviC, N..

Despotovie. 2.: J. Crystal Growth 71 (1985) 655

I561 Babin. L., Clausse, D., Sifrini. I., Broto. F.. Clausse, M.: J. Phys.

Lett. (Paris) 39 (201 (1978) 359

1571 Balarew, Khr.: Effect of isodimorphously included Co(II), Fe(I1) and

Cu(I1) on the crystal structures of ZnSO4 and MgS04, in: Industrial

Crystallization (ed. Mullin, J.W.), p. 239, Plenum Press, New York

1976

I581 Balarew. Khr.: Inclusion of isomorphous admixtures in crystal

hydrate salts, in: Industrial Crystallization '81 (eds. S.J. JanEiC. E.J.

de Jong), p. 117, North-Holland, Amsterdam 1982

Page 296: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1 . References to Tables 29 1

I591 Balarew. Khr.: Zukonornernosti nu ruvnovinogo polucuvune nu srneseni

kristuli u dvojku soli iz trikornponentni vodno-solevi sisterni, Thesis, Univ.

Sofia 1983

I601 Balarew, Khr.. Stoilova, D.. Vassileva. V.: Inclusion of isomorphic

admixtures in co-crystallization of metal formiates. in: Industrial

CrystnllizutSon '81 (eds. Jan&, S.J.. de Jong. E.J.), p. 331, North-

Holland, Amsterdam 1982

I611 Balarew, Khr.. Karaivanova V.: Krist. Tech. 10 (1975) 1101

[62l Balarew. Khr.. Karaivanova. V., Stefanov. I.: Effect of isodimorphic

guest component on the host crystal structures and habits, in:

ZndustrialCrystuZlizution '84 (eds. JanEiC, S.J., de Jong. E.J.), p. 335,

Elsevier. Amsterdam 1984

I631 Balarew, Khr.. et al.: Izv. Inst. Obsch. Neorg. Khim. Bulgar. AN, 4

(1966) 31

[641 Balarew. Khr., Karaivanova, V.G.: Dokl. Bulgar. Akad. Nauk 28

(1975) 1497

[651 Bamforth, A.W.: Chem. Proc. Eng. 33 (1952) 367

I661 Bamforth. A.W.: Chem. Proc. Eng. 46 (1965) 81

1671 Barbarin. B.V., Koshchurnikov. I.N.: Sbor. Nauch. Tr., Kat. Mat . 31

(1960) 159

I681 Bardossy. G. . White, J.L.: Hung. Alum. Corp. Budapest, Hung. Sci.

(Washington, D.C.) 203 (4378) (1979) 355

I691 Barsukova. M.L.. Kuznetsov, V.A.. Okhrimenko. T.M.. Naumov. V.S.,

Kachalov, O.V.. Klimova. A.Yu.. Kolybaeva, M.I.. Salo. V.I.:

Kristallografiya 37 (4) (1992) 1003

Page 297: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

292 11. References to Tables

[70] Barton, T.F., Price, T., Dillard. J.G.: J. Colloid Interface Sci. 141 (2)

(1991) 553

I711 Basak. B.. Glasson, D.R., Jayaweera. S.A.A.: in: Particle Growth in

Suspensions (ed. A.L. Smith), p. 143, Acad. Press, New. York 1973

I721 Baumann. J.M., Ackermann. D.: Urol. Res. 17 (1989) 153

I731 Baumann. J.M., Wacker. M.: Urol. Res. 7 (1979) 183

[74] Bazhal, I.G., Dzyubenko. E.P.. Mikhalik, V.A.. Trebin. L.I.,

Shtangeeva. N.I.: Radiokhimiya 20 (4) (1978) 481

I751 Beckmann, W.: Growth mechanism of the B and C modifications of

stearic acid from pure and impure solutions, in: IndusMal

CrystalUzation '87 (eds. Nfi l t , J.. ZriEek, S. ) , p. 481, Academia

Prague and Elsevier Amsterdam 1979

I761 Beckmann, W., Boistelle, R.: J. Crystal Growth 72 (3) (1985) 621

I771 Beckmann, W.. et al.: Zur Fremdstoffbeeinflussung von Kristalli-

sationsvorgiingen. in: Int. Arbeitssitz. Kristallisatlon, GVC-VDI.

Luneburg 1988

[78] Beglov. B.M.. et al.: Uzbek. Khim. Zhur. 8(6) (1964) 5

I791 Behrens. M.. Schriider. W., Lacmann. R.: Growth of potassium

chloride in batch cooling crystallization experiments and influence

of potassium hexacyanoferrate(I1). in: Arbeitssitz. Kristallisation

GVC-VDI. Delft 1992

[80] Beiny, D.H.M., Mullin. J.W., Lewtas. K.: J. Crystal Growth 102 (4)

(1990) 801

[Sll Belg. Pat. 639 180 (1964)

Page 298: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 293

I821 Belg. Pat. 657 346 (1965)

1831 Belg. Pat. 658 160 (1965)

I841 Bell, J.: Gas World, Cok. See. 15 (1938) 2838

I851 Belopolskii. A.P.: Gips i Fosfogips 1933, 45

1861 Belopolskii. A.P.. Margolis. F.G.: Zhur. Prikl. Khim. 20 (1947) 331

1871 Belov, V.N., SokolSkii. Yu. M., Khor’kova. N.Ya.: Tr. Leningr. Gos.-

Nauchno-Issled. Proekt. Inst. Osnov. Khim. Prom-sti 25, 33

I881 Belyshev. M.A.. Baranov. G.P.: Investigation of crystal rounding-off in

salt mass crystallization, in: Industrial Crystallization ’87 (eds.

Njvl t . J.. ZBEek, S.), p. 291. Elsevier Amsterdam and Academia

Prague, 1989

[891 Belyustin. A.V.. Dvoryankin. V.F.: Rost Krist. 1 (1957) 174

[901 Belyustin. A.V.: Rost Krist. 4 (1964) 10

1911 Belyustin. A.V., Levina, I.M.. Stepanova, N.S., Kolina. A.V.. Maslova,

T.M.: Tezisy Dokl. Vses. Soveshch. Rostu Krist. 5th, 2 (1977) 73

I921 Belyustin. A.V.. Portnov, V.N.: Rost Krist. 4 (1964) 36

I931 Belyustin. A.V.. Portnov, V.N.: Acta Cryst. 21 (1966) 266

1941 BeneS. J.. Vobecky. M.: Collect. Czech. Chem. Commun. 31 (1966)

4398

1951 BeneS, J.. KyrS. M.: Collect. Czech. Chem. Commun. 33 (1968) 2822

[96l BeneS. J.: Collect. Czech. Chem. Commun. 34 (1969) 1514

I971 BeneS. J.. Vobecky, M., BBrta, K.: Collect. Czech. Chem. Commun. 34

(1969) 1523

I981 Bennema. P.: J. Phys. D: Appl. Phys. 24 (2) (1991) 123

1991 Bennett, A.E.. et al.: Chem. Proc. Eng. 48 (1967) 43

Page 299: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

294 11. References to Tables

[loo] Bennett, R.C., van Buren. M.: Chem. Eng. Progr. 95, Vol. 65 (1969) 44

[loll Berak, J.M.. Borowiak. M.A., Sznajder, J.: Chem. Stosow. 23 (2)

(1979) 129

I1021 Berdonosova. D.G., et al.: Radiokhimiya l O ( 2 ) (1968) 145

[ 1031 Berdonosova, D.G., Pencheva. Zh., Melikhov. I.V.: Radiokhimiya 26

(2) (1984) 153

[ 1041 Berezhkova. G.V.. Rozhenskil, V.N.: Kristallografiya 8 (1963) 420

[lo51 Berkhoff, G.: Chem. Weekbl. 32 (1935) 186. 190. 195

I1061 Berkhoff. G.: Chem. Apparatur 23 (1936) 104. 118, 125

I1071 Berkhoff, G.: Chem. Met. Eng. 44 (1937) 366

[ 1081 Berkovich-Yellin, 2. Addadi, 2.. Idelson, M.. Lahav. M.. Leiserowitz,

L.: Angew. Chem. 94 (8) (1982) 640

I1091 Berry, C.R., Sklllman, D.C.: J. Phys. Chem. 68 (51 (1964) 1138

(1101 Berry, C.R.. Skillman. D.C.: J. Phys. Chem. 70 (1966) 1871

11111 Berry, C.R.. Skillman. D.C.: Photogr. Sci. Eng. 11 (1967) 411

I1 121 Bertoldi. G.A.. 2em.-Kalk-Gips (Austria) B 31 U Z ) (1978) 626

[113] Beudant, F.S.: Ann. Mines 3 (1818) 259

11 141 Beudant. F.S.: Ann. Mines 3 (1818) 293

[115] Bhatt , M.P., Datar. D.S.: Salt Res. Ind. 5 (3-4) (1968) 57

[116] Bienfait. M.. Boistelle. R.. Kern, R.: in: Adsorptionet Croissance

Cristalline, Colloq. Int. Centre Nat . Rech. Sci. 152 (1965) 577

11 171 Bijvoet. O.L.M.. Blomen. J.M.J.. Will, E.J., van der Linden, H.: J.

Crystal Growth 64 (1983) 316

I1181 Birchall. J.D., Davey. R.J.: J. Crystal Growth 54 (2) (1981) 323

Page 300: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 295

(1191 Bischoff. J.L.: J. Geophys. Res. 73 (lo) (1968) 3315 [ 120) Blaszczak. J.. Krysztafkiewlcz. A.. Maik, M.: Wplyw zwiazkow

powierzchniowo czinnych na krystalizacje fluorku glinowego, In:

11. Symp. Industr. C r y s t , Jaszowiec 1986. p. 71

[ 12 11 Blaszczak, J.. Krysztafkiewicz, A., Maik. M., Rager. B.: Przem.

Chem. 67 (7) (1988) 345

I1221 Blaszkiewlcz. B.: Poznan. Tow. Przyj. Nauk, Wydz. Mat . - Przyr. Pr..

Kom. Mat. Przyr 4 (1968) 165

11231 Blinova, N.P., Matusevich. L.N.. Postnlkov. V.A.: Teor. Osn. Khim.

Tekhnol. 6 (21 (1972) 169

[124] Bliznakov. G., Kirkova, E.: 2 physik. Chem. 206 (1957) 271

[ 1251 Bliznakov, G.: 2. physik. Chem. 209 (1958) 372

(1261 Bliznakov, G., et al.: Dokl. Bulgar. AN 12 (2) (1959) 121

(1271 Bliznakov. G.. et al.: Godish. Soffl. Univ.. Khim. Fak. 47 (1962-

1963) 63

[l28] Bliznakov. G.: Colloq. Int. Centre Nat. Rech. Sci. 152 (1965) 291

11291 Bliznakov. G.. et al.: 2. physik. Chem. 228 (1965) 32

(1301 Bliznakov. G., e t al.: Krist. Tech. 1 (1966) 503

11311 Bliznakov, G., Nikolaeva, R.: Krist. Tech. 2 (1967) 161

11321 Bliznakov. G.. Kirkova. E.: Krist. Tech. 4 (1969) 331

(1331 Bliznakov, G.. Kirkova. E.: 2. physik. Chem. 206 (1957) 271

[ 1341 Blomen, L.. Bijvoet, 0.. Blomen-Kuneken, W.: Fortschr. Urol.

Nephrol. 22 (1984) 354

(1351 Bochner, R.A., Abdul-Rahman. A.. Nancollas, G.H.: J. Chem. SOC..

Faraday Trans. 1 80 (1) (1984) 217

Page 301: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

296 11. References to Tables

[ 1361 Boistelle, R.: NATO Adv. Study Inst. Ser., Ser. C 87, 531; CA 97

227660

[ 1371 Boistelle. R.: Impurity effects in crystal growth from solution, in:

NATO Adv. Study Inst. Ser.. Ser. C 87. 621

I1381 Boistelle, R.: Thesis, University Nancy 1966

I1391 Boistelle. R.: Survey of crystal habit modification in solution, in:

Industrial CrystalZizatbn (ed. Mullin. J.W.). p. 203, Plenum Press,

NewYork 1976

I1401 Boistelle. R.. et al.: Bull. SOC. Lovraine Sci. 2 (3) (1962) 62

I1411 Boistelle. R., Mathieu. M.. Simon, B.: Surface Sci. 42 (1974) 373

I1421 Boistelle. R.. Simon, B.: J. Crystal Growth 26 (1974) 140

I 1431 Bolt, R.J.: J. Crystal Growth 126 (2-3) (1993) 175

I1441 Bongiovanni, R.. Castellano, M., Borgarello, E., Minero. C . , Maurino,

V., Pelizzetti. E.: J. Dispers. Sci. Technol. 11 (2) (1990) 169

11451 Bordui, P.F.. Calvert, G.D., Blachman, R.: J. Crystal Growth 129

(1-2) (1993) 371

[ 1461 Borodulln, E.E., Erofeev. V.N.: Izv. Akad. Nauk SSSR. Neorg. Mater.

19 (6) (1983) 1030

[ 1471 Botsaris, G.D.: Effects of impurities in crystallization processes, in:

Industrial Crystallization '81 (eds. JanB6. S.J.. de Jong. E.J.). p. 109,

North-Holland, Amsterdam 1982

(1481 Botsarls, G.D.. et al.: U S Atomic Energy Comm. MIT-2909-4 (1965)

462

Page 302: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 297

I1491 Botsaris, G.D.. Mason, E.A., Reid, R.C.: J. Chem. Phys. 45 (1966)

1893

I1501 Botsaris. G.D.. et al.: Brit. Chem. Eng. 12 (1967) 331

[151] Botsaris, G.D., et al.: AICHE J. 13 (1967) 764

I1521 Botsaris, G.D.. Reid, R.C.: J. Chem. Phys. 47 (1967) 3689

I1531 Botsaris, G.D.. Sutwala. G.: AICHE Symp. Ser. 72 (153) (1976) 7

I1541 Bourne, J.R.: AICHE Symp. Ser. 76 (193) (1980) 59

I1551 Bourne, J.R.: Chimia 32 (21 (1978) 47

I1561 Bourne, J.R., Davey. R.J.: J. Crystal Growth 36 (1976) 287

11571 Bourne, J.R., Davey, R.J.: J. Crystal Growth 43 (1978) 224

I1581 Bourne, J.R., Davey, R.J.: J. Crystal Growth 44 (5) (1978) 613

[159] Bourne, J.R.. Davey, R.J.: Solvent effects in the growth of

hexamethylenetetramine crystals. in: Industrial CrystaZZizatIon (ed.

Mullin, J.W.). p. 223. Plenum Press, New York 1976

I1601 Bourne, J.R., Davey, R.J.. McCullach, J.: Chem. Eng. Sci. 33 (1978)

199

I16 11 Bowyer, R.C.. Brockis. J.G.. McCulloch, R.K.: Clin. C u m . Acta 95

(1979) 23

I1621 von Brachel. G., Offermann, H., Farelo, F.: Zur Beeinflussung der

Kristallwachstumsgeschwindigkeit von NaCl Kristallen durch die

Anwesenheit von KCI in hohen Konzentrationen, in: fnt. Arbeitssitz.

Kristallisation GVC-VDI. Aachen 1989

I1631 von Brachel, G.. Offermann. H.. Farelo. F.: Beeinflussung der

Kristallwachstumskinetik von NaCl und KNO, Kristallen durch

Page 303: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

298 1 1 . References to Tables

weitere gelBste Fremdsalze in hohen Konzentratlonen. In: Int

Arbeftssltz. KrlstaZUsatlon GVC-VDI. Delft 1992

I1641 Brandse. W.P.. van Rosmalen, G.M.. Brouwer. G.: J. Inorg. Nucl .

Chem. 39 (19771 2007

1 1651 BreCevId, L.. Ffiredi-Milhofer, H.: The transformation of amorphous

calcium phosphate into crystalline hydroxyapatite. in: Industrial

Crystallization (ed. J.W. Mullin). p. 277, Plenum Press, New York

1976

[ 1661 BreEevie, L.. Hlady. V., Fiiredi-Mflhofer. H.: Colloids and Surfaces 28

(1987) 301

I1671 BreEevle. L.. Sendijarevie. A., Fiiredl-Milhofer, H.: Collolds Surf. 11

(1-2) (1984) 55

[I681 BreCevid. L.. Kralf. D.: J. Crystal Growth 79 (1-3, Pt. 1) (19861 178

11691 Bredikhin, V.I.. Ershov, V.P.. Korolikhin. V.V.. Lizyakina, V.N.:

Kristallografiya 32 (1) (1987) 214

I1701 Brit. Pat. 330 945 (1929)

I1711 Brit. Pat. 330 947 (1929)

11721 Brit. Pat. 569 918 (19431

11731 Brit. Pat. 649 240 (1951)

11741 Brit. Pat. 667 101 (1951)

11751 Brit. Pat. 752 582 (19541

I1761 Brit. Pat. 765 946 (1954)

I1771 Brit. Pat. 811 468 (1959)

11781 Brit. Pat. 812 476 (19591

Page 304: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 299

I1791 Brlt. Pat. 822 893 (1959)

11801 Brlt. Pat. 848 328 (1960)

11811 Brit. Pat. 895 690 (1960)

[182] Brit. Pat. 917 567 (1963)

(1831 Brit. Pat. 1 126 615 (1968)

11841 Brit. Pat. 1 383 655 (1975)

[1851 Brit. Pat. 1 412 938 (1975)

[1861 Bromley, L.A., Cottier. D.. Davey, R.J.. Dobbs. B., Smith. S..

Heywood, B.R.: Langmuir 9 (12) (1993) 3594

I1871 Brooks, R.. Clark, L.M., Thurston, E.F.: Phil. Trans. Roy. SOC.

(London) A243 (1950/51) 145

I1881 Broul, M.: Kinetics ofcrystallization of ammonium sulphate in presence

of admiutures, PhD Thesis, Univ. Chem. Technol. Prague 1979

11891 Broul. M.. et al.: Rept. Res. Inst. Inorg. Chem.. Usti n.L., No. 575

(1971)

I1901 Broul, M.: Influence of impurities on the (NH,),SO, crystallization, in:

Conf. on Industrial Crystallization. Proc. p. 41, U s t i n. L. 1971

I1911 Broul. M.: Influence of Mn(II), Cu(I1) and Al(II1) on the size and habit

of ammonium sulphate crystals, in: Industrial Crystallization (ed.

Mullin, J.W.), p. 253. Plenum Press, New York 1976

(1921 Broul M.: Kinetics of crystalllsatlon In the presence of lmpurltles.

in: IndustrialCystallization’Bl (eds. JanEle. S.J.. de Jong. E.J.), p.

325, North-Holland, Amsterdam 1982

Page 305: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

300 11. References to Tables

(1931 Broul. M., N*lt, J.. Sdhnel. 0.: Solubility in Inorganic Two-

Component Systems, Elsevier. Amsterdam 198 1

1194) Broul, M., Provaznik, L.. Nfilt, J.: Chem. prhmysl23 (1973) 605

(1951 Broul, M., Provaznik. L.. Nfilt. J.: Chem. prhmysl25 (1975) 587

(1961 Brown, N.: J. Crystal Growth 87 (2-3) (1988) 281

(1971 Bruninx. E.: Phflips J. Res. 33 (1978) 264

I1981 Buckley. H.E.: 2. Krist. 73 (1930) 443

11991 Buckley, H.E.: 2. Krist. 75 (1930) 15

(2001 Buckley. H.E.. 2. Krist. 76 (1930) 147

1201) Buckley, H.E.: 2. Krist. 78 (1931) 412

I202l Buckley. H.E.: 2. Krist. 80 (1931) 238

12031 Buckley. H.E.: 2. Krist. 81 (1932) 157

I2041 Buckley, H.E.: 2. Krist. 82 (1932) 37

12051 BucMey. H.E.: 2. Krist. 82 (19321 46

I2061 Buckley. H.E.: 2. Krist. 82 (19321 285

12071 Buckley. H.E.. Cocker, J.M.: 2. Krist. 85 (1933) 58

12081 Buckley, H.E.: 2. Krist. 88 (19341 122

12091 Buckley. H.E.: 2. Krist. 88 (1934) 248

12101 Buckley. H.E.: 2. Krist. 88 (1934) 381

12111 Buckley, H.E.: 2. Krist. 91 (1935) 375

12121 Buckley, H.E.: 2. Krist. 97 (1937) 370

[2131 Buckley. H.E.: Mem. Proc. Manchester Lit. Phil. SOC. 83 (1939) 31

[214] Buckley, H.E.: Disc. Faraday SOC. 5 11949) 243

12151 Buckley, H.E.: Crystal Growth, Wiley, New York 1951

Page 306: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1. References to Tables 30 1

I2161 Budz, J., Jones, A.G., Mullin, J.W.: J. Chem. Technol. Biotechnol. 36

(1986) 153

I2 171 Budz. J.. Karpinski, P., Mydlarz. J . , N*lt, J.: Ind. Eng. Chem..

Product Res. Devel. 25 (1986) 657

I2181 Buehrer, T.F.. Reitemeier. R.F.: J. Phys. Chem. 44 (1940) 551

I2191 Buket. F., Akyav. O.C., Cakaloz, T.: Construction of a crystallizer

and measurement of crystallization rate of sucrose in the presence

of some amino acids, in: Process TechnoL Roc. 2, Ind. Cryst., (1984)

32 1

I2201 Bulutcu. N., Sayan, P., Yavasoglu. N.. UIrich, J.: The effect of

additives on growth and dissolution rates of boric acid, in: Industrial

Crystulllzation '93 (ed. Rojkowski. Z . ) , 1-3-129, Warsaw 1993

I2211 Bunn. C.W.: Proc. Roy. SOC. LondonA141 (1933) 567

[2221 Bunn. C.W.. Emmett, H.: Disc. Faraday SOC. 5 (1949) 119

I2231 Burt, H.M.. Mitchell, A.G.: Int. J. Pharm. 5 (3) (1980) 239

I2241 Butchart. A., Whetstone, J.: Disc. Faraday SOC. 5 (1949) 254

I2251 Bykhovskii. D.N., Petrova, I.K.: Radiokhimiya 10 (1968) 520

I2261 Byrappa, K.. Srikantaswamy, S . . Gopalakrishna. G.S. . Venkatachala-

pathy. V.: J. Mater. Sci 21 (€9 (1986) 2202

[2271 Byteva. I.M.: Rost Kristallov 3 (1961) 296

[2281 Byteva, I.M.: Rost Kristallov 4 (1964) 22

I2291 Byteva. I.M.: Rost Kristallov 5 (1965) 219

I2301 Byteva. I.M.: Kristallografiya 10 (1965) 130

I2311 Byteva. I.M.: in: Crystallization Processes (eds Sirota, N.N.. Gorskii.

F.K.. Varikash. V.M.) , p. 199, Consultants Bureau, New York 1966

Page 307: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

302 1 1 . References to Tables

12321 Cadoret. R., Monier, J.C.: in: Adsorption et Croissance CristaUine, ColL

Int. CNRSNo. 152 (1965) 559

I2331 Caldwell. H.B.: Ind. Eng. Chem. 53 (1961) 115

[234] Canselier. J.P.: Comun. Jorn. Com. Esp. Deterg. 22 (1991) L

I2351 Canselier. J.P.: Dispers. Sci. Technol. 14 (6) (1993) 625

I2361 Canselier. J.P., Chianese. A.: Jorn. Com. Esp. Deterg. 23. p. 261.

CED. Barcelona 1992

12371 Canselier. J.P.. Frances, C.: ref. 39 in: Canselier. J.P.: Dispers. Sci.

Technol. 14 (6) (1993) 625

I2381 McCartney. E.R.. Alexander, A.E.: J. Colloid Sci. 13 (1958) 383

I2391 Caven, R.M.. Johnston, W.J.: J. Chem. SOC. 129 (1926) 2628

I2401 Caven, R.M.. Johnston, W.J.: J. Chem. SOC. 131 (1928) 2506

I2411 Chem. Eng. News 37 (1959) 52

l2423 Chem. prbmysl9 (19591 258

12431 Chen. B.D., BreCeviC. L., Garside. J.: Nucleation of tetracosane in

hydrocarbon solvents, in: Industrial Crystallization '93, VoL II (ed.

Rojkowski. 2.). p. 4-059. Warsaw 1993

I2441 Chen. B.D.. Garside. J.: Morphology control in melt crystallization:

a study of m-chloronltrobenzene, in: D+BIWIC 1993, p.100. Delft +

Bremen 1993

I2451 Chen, B.D., Garside. J.. Davey. R.J.. Maginn, S.J.: m-chloronitro-

benzene: the description and prediction of polar morphologies, in:

Industrial Crystallhation '93, VoL I (ed. Rojkowski. 2.). p. 3-069,

Warsaw 1993

Page 308: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 303

I2461 Chen. N.G.. Kurando. N.N.: Zhur. Prikl. Khim. 39 (1966) 2417

12471 Chen. W.C.. Ma, W.Y., Liu, D.D., Xie. A.Y.: J. Crystal Growth 84

(1987) 303

I2481 Chepelovski, M.L.: Zhur. Fiz. Khim. 13 (1939) 561

I2491 Chernov, A.A.. Malkin. A.I.: Kristallografiya 33 (6) (1988) 1487

I2501 Chernov, A.A.. Parvov, V.F.. Kliya. M.O.. Kostomarov. D.V..

Kuznetsov. Yu.G.: Krlstallografiya 26 (5) (1981) 1125

I2511 Chianese. A.. Di Cave, S., Mazzarotta. B.: Encrustation throughout

sodium perborate crystallization, in: Industrial Crystallization '80 (ed.

Mersmann. A.), p. 453, Munich 1990

I2521 Chianese. A.. Condo, A.. Di Bernardino. F.. Mazzarotta. B.: Effect of

a surfactant on the crystallization of sodium perborate from

aqueous solutions. in: Industrial Crystallization '87 (eds. NFlt. J..

Zrieek. S.1, p. 261, Academia Prague and Elsevier Amsterdam 1979

I2531 Chianese. A.. Mazzarotta. B.. Biscans. B.: Ink Colloid and Surface

Chem Symp., Roc. Symp. B1 , p. 55. Compiegne 1991

I2541 Chiang, P.T.: AICHE Symp. Ser. No. 240. 80 (1984) 123

I2551 Chudakov, M.I.. et al.: Gidroliz lesokhim. prom. 4 (1955) 20

I2561 Claes. F.H.. Peelaers. W.: Photogr. Korresp. 103 (1967) 161

12571 Claes. F.H., Peelaers. W.: Compt. rend. 265 B (1967) 323

I2581 Claes. F.H.. Peelaers, W.: Photog. Sci. Eng. 12 (1968) 207

I2591 Claes, F.H.. Peelaers. W.: Photogr. Korresp. 104 (1968) 12

I2601 Clendinnen. Rivett: J. Chem. SOC. 119 (1921) 1329: ibid. 121 (1922)

801: ibid. 123 (1923) 1344,1634

Page 309: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

304 11. References to Tables

12611 Collins, P.R.. Fredericks, W.J.: J. Crystal Growth 71 (1985) 739

I2621 Cooke. E.G.: Krist. Tech. 1 (1966) 119

[263] Cooper, W.D., Jones, P.. Parfitt, G.D.: Kolloid-2. u. 2. Polymere 246

(1971) 704

I2641 Comer, J.J.: J. Colloid Sci. 14 (1959) 175

12651 Cornell. R.N., GiovanoIi, R.. Schneider. W.: J. Chem. Technol.

Biotechnol. 46 (1989) 115

12661 Cornell, R.N., Giovanoli. R., Schneider. W.: J. Chem. Technol.

Biotechnol. 53 (1) (1992) 73

I2671 Cornell. R.M.. Schwertmann, U.: Clays Clay Miner. 27 (6) (1979) 402

I2681 Couling. S.B.. Mann. S.: J.Chem.Soc., Chem. Commun. 23 (1985)

1713; CA 104 (16) 139464

12691 Crawford. J.E., Crematy. E.P.. Alexander, A.E.: Aust. J. Chem. 21

(1968) 1067

[2701 Cunnings: Gas J. 172 (1925) 358

I2711 Czapelski. M.: Crystal Res. Technol. 27 (1992) K83

[2721 Czech Pat. 109 611 (1964)

12731 Czerwinski, 2.. Rynski, B.: Przemysl Chem. 12 (1956) 678

[2741 Czerwinski, 2.. et al.: Studia SOC. Sci. Torun B2 (4) (1960) 1

I2751 Czerwinski. 2.. et al.: Studia SOC. Sci. Torun B6 (1) (1966) 1

12761 Dal. V.I.. et al.: Koks i khim. 1957 (3) 38

12773 Dalas. E.. Koutsoukos. P.G.: J. Chem. SOC.. Faraday Trans. 1 85 (8)

,

(1989) 2465

[2781 Dalas. E.. Koutsoukos. P.G.: J. Chem. SOC., Faraday Trans. 1 85 (10)

(1989) 3159

Page 310: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1 . References to Tables 305

12791 Dalpi, M.. Karayianni, E., Koutsoukos. P.G.: J. Chem. SOC.. Faraday

Trans. 89 (6) (1993) 965

[280] Dam, B.. van Enckevort, W.J.P.: J. Crystal Growth 69 (2-3) (1984)

306

[281] Dam, B.. Polman. E., van Enckevort. W.J.P.: In situ observation of

surface phenomena on / 100/ KDP related to growth kinetics and

impurity action, in: Industrial Crystallization '84 (eds. J a n W S.J.. de

Jong, E.J.), p. 97. Elsevler. Amstardam 1984

12821 van Damme-van Weele, M.A.: PhD Thesis, Technical Univ. of

Twente. Netherlands. 1965

I2831 Danilova. A.G.. Abdullaeva, A.B.. Ismatov. Kh. R.: Deposited doc.

VINITI 331 1-81 (1 98 1)

12841 Davey, R.J.: The control of crystal habit, in: Industrial Crystallization

'78 (eds. de Jong. E.J., JanW, S.J.). p. 169, North-Holland,

Amsterdam 1979

12851 Davey. R.J.: The role of additives in precipitation processes, in:

Industrial CrystaUizQtion '81 (eds. JanCie, S.J.. de Jong, E.J.). p. 123.

North-Holland, Amsterdam 1982

12861 Davey. R.J.: Curr. Top. Mater. Sci. 8 (1982) 429

I2871 Davey. R.J.: J. Crystal Growth 76 131 (1986) 637

[288] Davey. R.J.. Black, S.N.. Logan, D., Maginn, S.J.. Fairbrother J.E..

Grant, D.J.W.: Chem. SOC., Faraday Trans. 88 (23) (1992) 3461

I2891 Davey. R.J.. Mullin. J.W.: J. Crystal Growth 26 (1974) 45

Page 311: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

306 11. References to Tables

I2901 Davey. R.J.. Mullin, J.W.: The effect of ionic impurities o n the

growth of ammonium dihydrogen phosphate crystals, in: Industrial

CrystaZUzation (ed. Mullin, J.W.). p. 245, Plenum Press, New York

1976

12911 Davey, R.J., Mullin, J.W.. Whiting, M.J.L.: J. Crystal Growth 58 (2)

(1982) 304

[2921 Davey, R.J., Fila. W.. Garside, J.: J. Crystal Growth 79 (1-3, Pt. 2)

(1986) 607.

12931 Davies. C.W., Nancollas. G.H.: Trans. Faraday SOC. 51 (1955) 818

[294] Davies. C.W.. Nancollas. G.H.: Trans. Faraday SOC. 51 (19551 823

I2951 Debskci-HoreckB, A.. Wagler, H.. Flachovslj . J.: Radiochem.

Radioanal. Lett. 44 (61 (1980) 369

12961 Dejewska, B.: Crystal Res. Technol. 27 (1992) 385

12971 Delfosse. P.: Fertiliz. Feed. Stuffs J. 45 (1956) 333

I2981 Demirskaya, O.V.. Kislomed. A.N., Velikhov, Yu.N.. Glushkova, L.V..

Vlasova. I.D.: Vysokochist. Vestch. 1 (1989) 14

12991 Denk, E.G.: Growth of aluminium potassium crystalsfrom aqueous

solutions. M.S. Thesis. Tufts University 1968

[300] Deshalit. G.I., et al.: Koks i Khim. 1958 (8) 33

[301] DespotoviC, R.: Croat. Chem. Acta 45 (1973) 163

[302] Despotovie, R., Filipovi&Vincekovik. N.. Mayer, I) .: Heterogeneous

nucleation in surfactant solutions, in: Industrial Crystallization’78

(eds. de Jong. E.J., JaneiC. S.J.), p. 509. North-Holland. Amsterdam

1979

Page 312: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

12. References to Tables 307

I3031 Despotovie, R.. Filipovie-VincekoviC. N., Subotie, B.: in Roc. 50th Int.

Con3 on Cottoid Inte@zce Sci. fed. Kerker, M.), vol. 4. p. 293. Academic

Press, New York 1976

13041 Desvignes. J.M., et al.: Krist. Tech. 6 (i971) 203

I3051 Dmitrenko. V.E.. Zubov. M.S.. Baulov. V.I.: Zhur. Prikl. Khim. 58 (2)

(1985) 408

I3061 Doehl. B.. Follner. H.: Crystal Res. Technol. 27 (1992) 3

[3071 Dombalov. I., Pelovski. I., Bozhinova. D.: Godish. Vissh. Khim.-

Tekhnol. Inst. , Sofia 29 (1) (1984) 177

[3081 Doremus. R.H.: Croat. Chem. Acta 42 (1970) 293

13091 Doxsee, K.M.. Stevens, R.C.: J. Inclusion Phenom. Mol. Recognit.

Chem. 9 14) (1990) 327

I3101 Dijrner. H.A.. Hoskins, W.M.: J. Am. Chem. SOC. 47 (1925) 662

I3111 Douglas, H.W.: CEPAS 78 Abstract Book (ed. A.E. Nielsen). p. 128,

Univ. Copenhagen 1978

I3121 Dousma, J.. de Bruyn, P.L.: J. Colloid Interface Sci. 64 (1978) 154

13 131 Drabent, 2.. Piotrowski. S.: Zeszyty Nauk Wyszej Szkoly Rolniczej w

Olstynie 21 (1966) 2 13

I3141 Drach. G.W.. Randolph, A.D., Mffler, J.D.: J. Urol. 119 (1978) 99

I3151 Draganova. D.: Godish. Sofii Univ., Khim. Fak. 59 (1966) 171

13161 Draganova, D.: Godish. Sofii. Univ.. Khim. Fak. 60 (1968) 169

13171 Draganova. D., Kovacheva. P.: Godish. Sofii. Univ., Khim. Fak. 60

(1968) 169

[318] Draganova. D.: Godish. Sofii. Univ.. Khim. Fak. 69 (1974-1975)

22 13

Page 313: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

308 11. References to Tables

13191 Draganova, D.: Godish. Sofii. Univ.. Khim. Fak. 73 (1983) 157

I3201 Draganova. D.: Izv. Khim. 14 (2) (1981) 229

I3211 Draganova. D., Koleva. R.: Izv. Khim. 13 (4) (1981) 631

13221 Draganova. D., Koleva. R.: Godish. Sofii. Univ.. Khim. Fak. 74 (1984)

300

I3231 Draganova. D. Koleva. R.: ICCG-A. Sendai (1989) 21A C 0 8

(3241 v a n Driel. C.A., v a n der Heijden. A.E.D.M.. v a n Rosmalen. G.M.:

Granule structure formation by isothermal coarsening of dendritic

ammonium nitrate phase 11, in: Industria2 Crystallization '93, Vol. f

(ed. Rojkowski, 2.1, p. 3-117, Warsaw 1993

I3251 v a n Driel. C.A.. v a n der Heijden, A.E.D.M.. Tjioe, T.T.:

Polymorphism a n d mechanical stability of ammonium nitrate

granules: the influence of additives, in: D+BIWIC 1993. p. 51. Delft +

Bremen 1993

(3261 Driker. B.N., Protsakov. S.M.. Rempel. S.I., Vakulenko. V.A..

Samborskii, I.V.: Zhur. Prikl. Khim. 54 (1981) 1006

13271 Driker, B.N., Belyaeva. N.A., Vakulenko. V.A., Prostakov, S.M.:

VINITI Depos. Doc. 2991 (1983); CA 101 046479

13281 Driker. B.N.. Prostakov. S.M.. Rempel. S.I.. Vakulenko. V.A..

Samborskii. I.V.: Kompleksn. Ispol'zov. Miner. Syr'ya 12 (1981) 22

I3291 Druker. B.N.. Belyaeva. N.A.: Zhur. Prikl. Khim. 61 (1988) 610

I3301 Dugua, J.: Thesis, Univ. Aix-Marseille 1977

13311 Dugua, J.. Simon, B.: CEPAS 78, Abstract book (ed. A.E. Nielsen).

p.5. Univ. Copenhagen 1978

Page 314: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1 . References to Tables 309

I3321 Dugua. J.. Simon, B.: J. Crystal Growth 44 (3) (1978) 265

13331 Dugua, J.. Simon, B.: J. Crystal Growth 44 (3) (1978) 280

I3343 Dunning. W.J.: Acta Cryst. 15 (1962) 474

[335] Dunning, W.J.: Ind. Saccar. Ital. 60 (1967) 225

I3361 Dunning, W.J.. Albon. N.: in: Growth and Perfection ofcrystals (eds.

Doremus. R.H.. Roberts, B.W.. Turnbull. D.), p.446, Wiley. New

York 1958

I3371 Dunning, W.J., Jackson, R.W., Mead, D.G.: Colloq. Int CentreNat.

Rech Sct 152 (1965) 303

I3381 Duverneuil. P.. et al.: Solvent effect on the crystallization of HMX

(octogene). in: Japan-French Working Party on Industr. Cryst ,

Toulouse 1988

I3391 Dvornichenko, K.I.. Zubkova, E.M.: Khim. Prom. 43 (1967) 51

13401 Dybwad, J.P., Engelhardt. W.V.: 2. Krist. 124 (1967) 161

I3411 Edinger. S.E.: J. Crystal Growth 18 (1973) 217

[342] Edwards, G.R., Evans, L.P.: Trans. Faraday SOC. 58 (1962) 1649

I3431 Efremova, E.P.. Zaitseva, N.P.. Klimova. A.Yu., et al.: Neorg. Mater.

27 (12) (1991) 2600

I3441 Egel. Hess: Fremdstoffeinflfisse auf Grbsse und Form gefwter

Bariumsulfat- Partikeln, Ink Arbeitssitz. Kristallisation GVC-VDL

Heidelberg/Ludwigshafen 1990

I3451 Ehrlich, F.: 2. anorg. allg. Chem. 203 (1931) 26

(3461 Eldelman. N., Azoury, R.. Sarig, S.: J Crystal Growth 74 (1986) 1

Page 315: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

3 10 1 1. References to Tables

I3471 Eisner, Ya.: Mineral. Sb. Lvov. Geol. Obshch. 11 (1957) 329

I3481 Elliot. M.N.: Desalination 6 (1969) 87

I3491 Enfistfin. B.V.. Turkevich, J.: J. Am. Chem. SOC. 82 (1960) 4502

I3501 Estefan. S.F.. Awadalla. F.T.. Felix. N.S.. Yousef, A.A.: Aufbere1t.-

Tech. 21 (9) (1980) 463

I3511 Ettle. G.W.: Proc. Fertilizer SOC. 5 (1949) 47

I3521 Europ. Chem. News 8 (1965) 33

I3531 Eur. Pat. Appl. 465 055

I3541 Evans, L.F.: J. Appl. Phys. 38 (1967) 4930

I3551 Evans, L.F.: Trans. Faraday SOC. 63 (12( (1967) 1

I3561 Evstlgneev. E.D., Makarov, A.N., Shapiro, K.Ya.. Rumyantsev, V.K.:

Tsvet. Met. (12) (1979) 59

I3571 Fabian, J.. Ulrich. J.: Dissolution - a two step process - Presen-

tation of experimental evidence, in: Industrial Crystallfzation '93 (ed.

2. Rojkowski). vol. 2, p. 4-041, Warszawa 1993

I3581 McFadyen. P., Matijevie, E.: J. Inorg. Nucl. Chem. 35 (1973) 1883

I3591 Falin, V.A.. Tatarenko. N.P.. Serebrennikova. G.M.: Massov. Krist. 3

(1977) 121

[360] Fedorova. L.L.. Volokhov, Yu.: Depos. Doc. VINITI 3995 (1984)

I3611 Feenstra, T.P.. van Straten, H.A.. de Bruyn, P.L.: J. Colloid Interface

Sci. 80 (1981) 255

I3621 Feenstra. T.P.. Hop, J., de Bruyn. P.L.: J. Colloid Interface Sci. 83 (2)

(1 98 1) 583

13631 Feliksinski, T.. Szewczyk. J.: Mater. Res. Bull. 16 (1981) 1505

Page 316: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 3 1 1

13641 Felix. R., Monod, A.. Broge. L., Hansen, N.M.. Fleisch, H.: Urol. Res.

5 (1977) 21

I3651 Fellstroem. B., Danielson, B.G.. Linsjoe, G. et al.: Fortschr. Urol.

Nephrol. 23 (1985) 24

I3661 Fillpescu, L.. Cretu. M.. Mocioi. M.. Zaharia. A.: Rev. Chim.

[Bucharest) 32 (4) (198 1) 347

I3671 Fillpescu, L., Meghea. A., Mociol. M.: Rev. Chim. (Bucharest) 34

(1983) 1000

I3681 Filipescu, L.. Meghea. A., Zaharia. A.: Rev. Roum; Chim. 37 (8)

(1992) 927

13691 FilipoviC-VincekoviC. N.: Tensides, Surfact., Deterg. 26 (6) (1989)

417

I3701 Filipovie-VincekovlC, N.. Despotovie. R.: h-oc. 34th Meeting SOC. Chim.

Phys., p. 197, Paris 1981

I3711 Finch, G.I.: J. Sci. Ind. Res. A 15 (1956) 539

I3721 Fisher, V.M.: Issledovania nad peresyshchennymi rastvorami solei.

Riga 1913

I3731 Fock. A.: 2. Krist. 17 (1890) 177

I3741 Font-Altaba. M.. Solans-Huguet, J.: Acta Cryst. 21 (1966) 267

13751 Fontcuberta. J., Rodriguez. R.. Tejada. J.: Mossbauer studies of the

Fe(II1) effect on the morphology of ADP, in: Industrial CystaZliza-

tion’78 (eds. de Jong. E.J.. Janeiie, S.J.), p. 523, North-Holland,

Amsterdam 1979

I3761 Fornazero. J.. El Hachadi. A.. Dupuy-Phflon. J.: J. Non-Cryst.

Solids 150 (1-3) (1992) 413

Page 317: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

3 12 1 1 . References to Tables

13771 Fox, D.K., Mazelsky. R.: J. Crystal Growth 106 (1) (1990) 1.

I3781 Fr. Pat. 637 977

[3791 Fr. Pat. 638 997

I3801 Fr. Pat. 663 105

I3811 Fr. Pat. 917 528 (1945)

[3821 Fr. Pat. 918 146 (1947)

I3831 Fr. Pat. 1 127 788 (1955)

I3841 Fr. Pat. 1 188 512 (1956)

[385] Fr. Pat. 1 344 890 (1965)

I3861 Fr. Pat. 1 466 070 (1966)

13871 Fr. Pat. 1 475 959 (1967)

13881 Fr. Pat. 1 540 860

I3891 France, W.: Coll. Symp. Ann. 60 (1930)

13901 France, W.. Wolfe. K.M.: J. Am. Chem. Soc. 63 (1941) 1505

I3911 France, W.: Coll. Chem. 5 (1944) 443

[3921 Frances, C.: Thesis, Polytechnique Toulouse 1991

[3931 Frances, C.. Blscans. B.. Laguerle. C.: Effect of ionic impurities and

surfactants on the crystallization of tetrahydrate sodium perborate,

IV. Congr. Chem Eng., Karlsruhe 1991

13941 Frances, C., Blscans, B.. Gabas. N.. Laguerle, C.: J. Crystal Growth

128 (1-4) (1993) 1268

13951 Franke. V.D.. Bubnova. R.S., Artamonova. 0.1.: Tezlsy Dokl. Vses.

Soveshch. Rostu Krist. 5th 2 (1977) 305

Page 318: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1. References to Tables 3 13

13963 Franks, F.. Mathias. S.F., Parsonage, P.. Tang, T.B.: Thermochim.

Acta 61 (1-2) (1983) 195

(3971 Franks, F.. Mathias. S.F.. Trafford. K.: Colloids Surf. 11 (3-4) (1984)

275

(3981 Franses. E.I.. Davis. H.T.. Miller, W.G.. Seriven, L.E.: J. Phys. Chem.

84 (1980) 2413

(3991 FrCche, M., Heughebaert, J.G.: J. Crystal Growth 94 (1989) 947

I4001 FRG Pat. 838 286 (1948)

14011 FRG Pat. 877 297 (1953)

14021 FRG Pat. 1 155 100 (1963)

I4031 FRG Pat. 1 197 858 (1965)

(4041 FRG Pat. 1 198 662 (1965)

I4051 FRG Pat. 1 216 858 (1966)

[406] FRG Pat. 1 217 936 (1966)

[4071 FRG Pat. 1 237 550 (1966)

I4081 FRG Pat. 1 265 151

[409] Frenkel, M.. Glasner. A.. Sarig. S.: J. Phys. Chem. 84 (1980) 507

14101 Frondel, C.: Amer. Mineral. 25 (1940) 91

I41 11 Fukuta, N.: J. Atmos. Sci. 23 (1966) 191

[4121 Fumes. W.T.. Larson, M.A.: Inst. Chem. Eng. Symp. Ser. 58, Sol.

Separ. Proc. 7/5/1-7/5/18 (1980)

[413] FQredi-Milhofer. H.. Babie-Ivan&?. V.. BreEevie. Lj., Fflipovi&

Vincekovie, N., Kralj. D., Komunjer. L.. MarkovfC. M., Skrtie:. D.:

Colloids Surf. 48 (1-3) (1990) 219

Page 319: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

3 14 1 1. References to Tables

I4141 Ftiredi-Mflhofer, H.. SkrtiC, D.. Markovie, M.: Croat. Chem. Acta 60

(3) (1987) 587

I4151 Gabryel, H.: Effect of fluorine modifiers on phosphogypsum

crystallization in wet process of phosphoric acid manufacture, in:

Mater. OgoZnopoL Syrnp. Zwiazki Fluorowe (198 1) 65

[4161 Gaedeke, R.. Wolf, F.. Bernhardt, G.: Crystal Res. Technol. 14 (1979)

913

I4171 Gaedeke. R., Wolf, F.. Bernhardt, G.: Crystal Res. Technol. 15 (1980)

557

I4181 Gardner. G.L.: J. Crystal Growth 30 (1975) 158

14191 Gardner. G.L.: J. Phys. Chem. 82 (1978) 864

I4201 Gardner. G.L.. Nancollas. G.H.: J. Phys. Chem. 87 (1983) 4699

[4211 Garrett, D.E., Rosenbaum, G.P.: Chem Eng. 65 (11) (1958) 127

I4221 Garrett, D.E.. Rosenbaum, G.P.: Ind. Eng. Chem. 50 (1958) 1681

[4231 Garrett, D.E.: Brit. Chem. Eng. 4 (1959) 673

[4241 Garside. J., Komarov, V.F.: Krist. Tech. 11 (1976) 699

I4251 Garside. J.. Nishio, S., Kavanagh, J.P., et al.: Brit. J. Urology 66

(1990) 351

I4261 Garti, N.. Karpuj. L.. Sarig, S.: Crystal Res. Technol. 16 (1981) 11 11

I4271 Garti, N., Wellner. E., Sarig, S.: Krlst. Tech. 15 (1980) 1303

[4281 Garti. N.. Wellner, E., Sarig, S.: J. Crystal Growth 57 (3) (1982) 577

[4291 Gas World, Cok. Sec. 1939 7. 12

[4301 Gaubert. P.: Bull. SOC. Franc. Mineral. Crlst. 17 (1894) 107

I4311 Gaubert, P.: Bull. SOC. Franc. Mineral. Crist. 17 (1894) 121

Page 320: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11 . References to Tables 3 15

(4321 Gaubert, P.: Bull. SOC. Franc. Mineral. Crist. 23 (1900) 211

[433] Gaubert, P.: Compt. rend. 142 (1906) 219

I4341 Gaubert. P.: Compt. rend. 143 (1906) 936

14351 Gaubert. P.: Compt. rend. 145 (1907) 378

(4361 Gaubert, P.: Compt. rend. 151 (1910) 1134

14371 Gaubert, P.: Rev. Sci. 48 (1910) 74

[438] Gaubert, P.: Compt. rend. 155 (1912) 649

14391 Gaubert. P.: Compt. rend. 157 (1913) 1531

I4401 Gaubert, P.: Bull. SOC. Franc. Mineral. Crist. 38 (1915) 149

I4411 Gaubert, P.: Compt. rend. 167 (1918) 491

14421 Gaubert. P.: Compt. rend. 180 (1925) 378

14431 Gaubert. P.: Bull. SOC. Franc. Mineral. Crist. 53 (1930) 157

I4441 Gaubert, P.: Compt. rend. 192 (1931) 965

I4451 Gaubert. P.: Compt. rend. 200 (1935) 1120

(4461 Gaubert. P.: Compt. rend. 202 (1936) 1192

14471 Gavish. M., Popovitz, R., Lahav. M.. Leiserowitz, L.: Science 250

(1990) 973

(4481 Gavish, M., Wang, J.L.. Eisenstein, M.. Lahav. M.. Leiserowitz. L.:

Science 256 (50581 (1992) 815

I4491 Gavrilova, I.V.. Kuznetsova, L.I.: Rost Krlstallov 4 (1964) 85

I4501 GDR Pat. 39 660 (1964)

(4511 GDR Pat. 55 969 (1966)

[4521 GDR Pat. 211 103; CA 102 027521

(4531 Gee, E.A.. et al.: Ind. Eng. Chem. 39 (1947) 1178

Page 321: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

3 16 1 1. References to Tables

14541 Gerasimov, Y.M., Distler. G.I., Kanevskii, V.M.. Kortukova. E.I.,

Suvorova, E.I., Okhrimenko, T.M.. Belikova, G.S.: Crystal Res.

Technol. 18 (1983) 1283

(4551 Gerhart. H.: Tschermaks Min. Petr. Mitt. 24 (1906) 359; ibid. 28

(1910) 347

I4561 Ger. Pat. 56 713 (1914)

14571 Ger. Pat. 336 100 (1918)

14581 Ger. Pat. 425 335

14591 Ger. Pat. 485 054 (1925)

14601 Ger. Pat. 519 597 (1927)

(4611 Ger. Pat. 612 744 (1935)

(4621 Ger. Pat. 621 739 (1935)

14631 Ger. Pat. 622 876 (1935)

14641 Ger. Pat. 636 057 (1936)

(4651 Ger. Pat. 648 539 (1937)

[4661 Ger. Pat. 651 311 (1937)

(4671 Ger. Pat. 666 546 (1938)

14fj81 Ger. Pat. 693 986 (1940)

14691 Getsinger: J. Agr. Food Chem. 5 (1955) 433

14701 Giannimaras, E.K.. Koutsoukos, P.G.: Langmuir 4 (1988) 855

14711 Gille, F., Spangenberg. K.: 2. Krist. Miner. Petrograd A 65 (1927) 204

(4721 Gilman, J.J.: The Art and Science ofGrowing Crystals:”Wiley, New 1

York 1963

14731 Girolami, M.W.. Rousseau, R.W.: J. Crystal Growth 71 (1985) 220

Page 322: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1. References to Tables 3 17

(4741 Glasner, A., Skurnik. S.: J. Chem. Phys. 47 (1967) 3687

(4751 Glasner, A., Skurnik, S.: Israel J. Chem. 6 (1968) 69

(4761 Glasner, A.. Kenat, J.: J. Crystal Growth 2 (1968) 119

(4771 Glasner. A.. Skurnik, S., Zidon. N.: Israel J. Chem. 7 (1969) 649

(4781 Glasner, A.. Kenat, J.: J. Crystal Growth 6 (1970) 135

(4791 Glasner, A., Weiss, D.: J. Inorg. Nucl. Chem. 42 (5) (1980) 655

(4801 Glazyrina, L.N., Savinkova. E.I., Desyatnik, V.N.. Cherepanova, I.S.

Zhur. Prikl. Khim. 56 (2) (1983) 241

[481] Gluud, W., Ritter, H.: Ber. Ges. Kohlentech. 3 (1931) 208

(4821 Gluud, W., et al.: Ber. Ges. Kohlemtech. 3 (1931) 371

1483) Goatln, C.: ICP 16 (11) (1988) 140

[484] Gomez, R.A.: Effect of some metallic impurities on sugar crystal

formation and growth, in: Industrial CrystaZlization'78 (eds. de Jong,

E.J., JanEiC S.J.). p. 519. North-Holland, Amsterdam 1979

(4851 Gonzales, M.A., de Andres. A., Balcazar, J.L.: Estud. Geol. (Madrid)

38 (3-4) (1982) 27

I4861 Gorecki, H., Hoffmann, J., Schroder, J.: Pr. Nauk. Akad. Ekon.

Wroclaw 200 (1982) 141

14871 Gorshtein, G.I.: Tr. Vsesoy. Nauch.-Issl. Inst. Khim. Reaktivov 20

(1951) 3, 44

(4881 Gorshtein, G.I.: Zhur. Neorg. Khim. 3 (1958) 51

14891 Gorshtein, G.I.: Radiokhimiya 1 (1959) 497

(4901 Gorshtein, G.I., Tyutyueva, N.N.: Radiokhimiya 5 (l( (1963) 11

14911 Gorshtein, G.I., Tyutyueva, N.N., Puzyreva, A.I.: Kristallizatsiya 2

(1976) 55

Page 323: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

3 18 1 1. References to Tables

14921 Gorshtein, G.I., Dmitrieva. N.S.: Zhur. Prikl. Khim. 36 (1963) 1725

I4931 Gorshtein, G.I.: Tr. Vsesoy. Nauch.- Issl. Inst. Khim. Reaktivov 25

(1963) 123

I4941 Gorshtein. G.I.. Bashkina. N.F.: Tr. Vsesoy. Nauch.-Issl. Inst. Khim.

Reaktivov 26 (1964) 369

I4951 Gracheva, R.A., Syzdykbaeva. M.B.. Kozhakova, A.A.: Depos. Doc.

SPSTL 865 KHP-D81 (1981)

I4961 Grant, D.J.W., Chow, K.Y., Chan. H.K.: AICHE Symp. Ser. 87 (284).

Part. Des. Cryst., 38

I4971 Grases. F., Genestar. C.. Palou, J.: Colloids Surf. 44 (1990) 29

I4981 Grases. F., Gil, J.J.. Conte. A.: Colloids Surf. 36 (1989) 29

14991 Grases. F., March, J.G.. Bibfloni, F., Amat. E.: J. Crystal Growth 87

(2-3) (1988) 299

[500] Grases. F., March, J.G.. Costa-Bauza, A.: J. Colloid Interface Sci. 128

(2) (1989) 382

15011 Grases. F., March. P.: J. Crystal Growth 96 (41 (1989) 993

15021 Grases. F., Millan. A., Garcia-Raso. A.: J. Crystal Growth 89 (1988)

496

[503] Gratz, A.J., Hfllner. P.E.: J. Crystal Growth 129 (3-4) (1993) 789

15041 Grimm, Wagner.: 2. physik. Chem. 132 (1928) 131

15051 de Groot, K.. Dyuvis, E.M.: Nature 12 (5058) (1966) 183

15061 Gufaro, G.. Goatin. G., Zanetti. R.: Process Technol. Proc. 2, Ind.

Cryst. (1984) 333

Page 324: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1. References to Tables 3 19

I5071 Gufaro. G., Goatln, C.. Petrone, A., Talamini. G.: J. Crystal Growth

66 (1984) 621

I5081 Haas. K.. Jager, L., N@lt. J.: Collect. Czech. Chem. Commun. 37

(1972) 744

15091 Hahn, 0.: Sltzung Preuss. Akad. 30 (1930) 3

I5101 el Hagouji, A., Murat. M.: Compt. rend. Acad. Sci.. ser. 2. 303 (8)

(1986) 657

I5111 Haley. V.. Mattloll, T.A., Wiles, D.R.: Can. J. Chem. 63 (1985) 2290

15121 Hallson. P.I.. Rose, G.A., Sulalman, S . : Urol. Res. 11 (1983) 151

I5131 Hallson. P.I.. Rose, G.A.. Sulaiman. S.: Urol. Int. 38 (1983) i 7 9

I5141 Hamidanl, A.U.. et al.: Res. Ind. 36 (4) (1991) 283

15151 Hamza, S.M., Abdul-Rahman, A., Nancollas, G.H.: J. Crystal Growth

73 (2) (1985) 245

I5161 Hamza. S.M.. Hamdona. S.K.: J. Phys. Chem. 95 (81 (1991) 3149

I5171 Hamza. S.M.. EIHamouly: J. Chem. SOC.. Faraday Trans. 1 85 (1989)

3725

I5181 Harano. Y.. Yamamoto. H.: Impurity effect of some amino acids on

formation and growth of L-glutamlc acid nuclei by secondary

nucleation in agitated solution, in: Industrial Crystallization '81 (eds.

J a n W S.J., de Jong. E.J.). p. 137, North-Holland, Amsterdam

1982

[519] Harano. Y.. Matsul. T.: Metastable zone width and nucleation rate

effects of agitation and impurity for KBr0,/H20 and (H,N),CS/

MeOH, in: Industrial Crystallization '84 (eds. JanEie, S.J., de Jong.

E.J.), p. 249, Elsevier, Amsterdam 1984

Page 325: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

320 11. References to Tables

[5201 Hariharan. S., Murthy, A.S.A.. Mahadevappa, D.S.: Curr. Sci. 49 (141

(1980) 547; CA 93 123747

[5211 Harriott, P.: AICHE J. 13 (1967) 755

15221 Hartmann, E.: Kristallografiya 14 (1969) 1120

15231 von Hauer. C.: Verhandl. Geol. Reichsanstalt Wien 4 (1877) 57

[524] von Hauer, C.: Verhandl. Geol. Reichsanstalt Wien 17 (1880) 296

15251 Havighorst, C.R.: Chem. Eng. 71 [7( (1964) 72

[526] Havighorst, C.R.: Chem. Eng. 71 (7) (1964) 162

[5271 HavrBnek, P.: Thesis, Techn Univ. Chem. Pardubice 1971

15281 Herden, A.. Lacmann, R., Mayer, C., Schriider. W.: J. Crystal Growth

130 (1-2) (1993) 245

[5291 Herzog, R.E.. Shi. 9.. Patil. J.N.. Katz. J.L.: Langmuir 5 (1989) 861

15301 Hille, M., Jentsch. Ch.: 2. Krist.118 (1963) 283

I5311 Hflle, M.. Jentsch. Ch.: 2. Krist. 120 (1964) 323

I5321 Hiquily, N., Canselier, J.P.: ref. 31 in: Canselier, J.P.: Dispers. Sci.

Technol. 14 (6) (1993) 625

[533] Hiquily, N., Couderc, J.P., LaguCrie, C.: Chem. Eng. J. 30 (1985) 1

I5341 Hiquily, N., Laguerie,, ,C,: Inclusion formation in the ammonium

perchlorate crystals - influence of surfactants. in: Industrial

crystallization '84 (eds. Jan&% S.J., de Jong. E.J.). p. 79, Elsevier,

Amsterdam 1984

I5351 Hirota, S.: Effect of aluminium ion on KDP, ADP crystallization.

ICCG-A, Sendai (1989) 21A C06

Page 326: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1. References to Tables 32 1

I5361 Hirota, S., Nakajima, M.: Chem. Eng. J a p a n Symp. Ser. 18 (1988)

151

[5371 Hirota, S.: Inclusion of aluminium ion and I t s effect on crystal

growth of KDP. Intern. Syrnp. o n Repar. of F'unct. Mat. and Crystall.. ,

Osaka 1988

[5381 Hirota. S., Fukui. K., Nakajima, M.: The effect of the additive on

potassium dihydrogen phosphate growth, in: Industrial Crystallization

'87 (eds. N@lt, J.. TaEek, S . ] , p. 257, Elsevier Amsterdam and

Academia Prague, 1989

15391 Hirota, S.: Kagaku Kogaku Ronbunshu 15 (6) (1989) 1195

15401 Hirota. S., Setoguchl, K.: Effect and incorporation of chromic ion

when KDP crystallizes. in: Industrial Crystallization '93, VoL I , (ed.

Rojkowski, 2.). p. 3-087. Warsaw 1993

I5411 van der Hoek. W.G.M.. Feenstra, T.P.. de Bruyn. P.L.: J. Phys. Chem.

84 (1980) 3312

15421 Hohl. H.. Koutsoukos, P.G., Nancollas, G.H.: J. Crystal Growth 57

(1982) 325

I5431 Hol. Pat. 43 094 (1938)

[5441 Hol. Pat. 88 978 (1956)

I5451 Hol. Pat. 296 567 (1965)

[5461 Hol. Pat. 6 414 181 (1966)

I5471 Hol. Pat. 6 502 043 (1966)

I5481 Hol. Pat. 6 515 934 (19661

I5491 Hol. Pat. 6 709 044 (19681

Page 327: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

322 11. References to Tables

15501 Holder, G.A., Thorne. J.: Polymer Prepar., Am. Chem. SOC., Div.

Polymer Chem. 20 (1) (1979) 766

[5511 Holldorf. H.. Menzel, N.: Freiberger Forschungsh. A 671 (1983) 120

15521 Holldorf, H., Menzel, N.. Neubauer, R., Schleicher, V.: Freiberger

Forschungsh. A 671 (1983) 130

I5531 Holldorf. H., Trapp, R., Petzold. D.. Schure. W.: Freiberger

Forschungsh. A 671 (1983) 103

15541 v a n Hook, A.: Ind. Eng. Chem. 38 (1946) 50

15551 v a n Hook, A.: Acta Cryst. 21 A (1966) 272

15561 v a n Hook, A.: Rost Kristallov 8 (2) (19681 45

[557] Hottenhuis, M.H.J., Lucasius, C.B.: J. Crystal Growth 78 (2) (1986)

379

[558] Hottenhuis, M.H.J.. Lucasius, C.B.: J. Crystal Growth 91 (4) (1988)

23

1559) Hottenhuis, M.H.J., Oudehampsek, A.: J. Crystal growth 92 (3-4)

(1988) 513

[560] House, W.A.: J. Colloid Interface Sci. 119 (2) (1987) 505

15611 House, W.A.. Donaldson, L.: J. Colloiod Interface Sci. 112 (1986)

309

(5621 House, W.A., Howson, M.R., Pethybridge, A.D.: J. Chem. SOC..

Faraday Trans. 84 (8) (1988) 2723

15631 Howard, J.R.. Nancollas, G.H.: Trans. Faraday SOC. 53 (1957) 1449

15641 Howe, P.M.: Crystal Growth and Habit Mod@ation, Thesis, J o h n

Hopkins Univ. 1968

Page 328: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 323

15651 Hrust. V., Teiak. B.: Croat. Chem. Acta 49 (1977) 15

[566] Huang, B.. Su, G.. Pan, F.: Crystal Res. Technol. 26 (6) (1991) K147

[5671 Human, H.J.. van der Eerden. J.P.. Jetten. L.A.M.J., Odekerken,

J.G.M.: J. Crystal Growth 51 (1981) 589

[5681 Hungerford. E.H.. Nees. A.R.: Ind. Eng. Chem. 26 (1934) 462; ibid. 28

(1936) 893

[569] Ikeno, S.. et al.: J. Crystal Growth 3-4 (1968) 683

[570] Ikornlkova. N. Yu.: in: Crystal Growth (Shubnikov, A.V.. Sheftal.

N.N.). 3 (1962) 297, Consultants Bureau, New York 1962

15711 Iskhakova. L.D.. Korotkevlch. I.B., Sorokina, R.I.. Bolotina. 1.1..

Bomshtein. V.E.: Issled. v Obl. Khimii i Tekhnol. Osobo Chist.

Veshch. M (1979) 38

15721 Ismailov, F.Kh., Osichkina, R.G.:Uzbek. Khim. Zhur. 35/60 (5) (1985)

252

I5731 Isobe, T.: Coal Tar (Japan] 7 (19551 269

15741 Isupov. V.P., Chupakhina, L.E., Kotsupalo, N.P., et al.: Dokl. Akad.

Nauk SSSR 316 (5) Phys. Chem. (1991) 1144

[5751 Ivanchenko, L.G.. Guller. B.D., Zinyuk, R.Y., Balykov. A.G.: Mezhvuz.

Sb. Nauch. Tr. Leningrad. Tekhnol. Inst. 4 (1980) 3

t5761 Ivanchenko, L.G.. Guller, B.D., Zinyuk. R.Y., Vashkevich, N.G.:

Zhur. Prikl. Khim. 54 (1981) 1001

I5771 Iwata. H.. Suzuki, S.. Sasaki, Y.: J. Crystal Growth 125 (3-41 (1992)

425

[5781 Jaffe. H., Kjellgren, B.R.F.: Disc. Faraday SOC. 5 (1949) 319

Page 329: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

324 11. References to Tables

15791 Jaffe, H.. Kjellgren. B.R.F.: Sb. Nouye Issled. PO Kristalbgrafii i

Kristalbkhim. II, p. 82.Izd. Inostr. Lit., Moskva 1950

[580] Jalava, J.P.: Ind. Eng. Chem. Res. 31 (1992) 608

I5811 Jancke, K.. Steinlke, U.: Krist. Tech. 3 [1( (1968) K9

15821 Jansen, M., Waller, A., Verbiest, J.. van Landschoot. R.C.. van

Rosmalen. G.M.: Incorporation of phosphoric acid in calcium

sulfate hemihydrate from a phosphoric acid process, in: Industrial

Crystallization '84 (eds. JanCie. S.J., de Jong. E.J.). p. 171, Elsevier.

Amsterdam 1984

I5831 Japan. Pat. 177 414 (1949)

15841 Japan. Pat. 1 258 (1951)

15851 Japan. Pat. 1363 (1953)

I5861 Japan. Pat. 9 965 (1955)

I5871 Japan. Pat. 4 965 (1958)

I5881 Japan. Pat. 18 459 (1962)

I5891 Japan. Pat. 11 934 (1963)

I5901 Japan. Pat. 25 351 (1963)

I5911 Japan Kokai Tokkyo Koho 85 86 066

15921 Jaschkel. R.: 2. Naturforsch. A 15 (1960) 171

I5931 Jean, J.H.. Ring, T.A.: Br. Ceram. Proc. 38 (1986) 11

I5941 Jesczensky, B., Hartmann. E.: Magyar Fiz. Folyoirat 10 (3) (1962)

183

15951 Jian J u n Yuan, Stepanski. M., Ulrich. J.: Chem.-1ng.-Tech. 62

(1990) 645

Page 330: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 325

[596] Jimenez. F.. del Cerro, J.: An Quim. 87 (4) (1991) 535

15971 Joffe. E.M.. Nikitin, B.A.: Izv. AN SSSR. otd. khlm. nauk 1 (1943) 15

[598] Joffe, E.M., Nikitln. B.A.: Izv. AN SSSR. otd. khim. nauk 1 (1943)

191

[599] Joffe, E.M.: Izv. AN SSSR, otd. khim. nauk 12 (1956) 1429

[SO01 Joffe. E.M.: Zhur. Neorg. Khlm. 3 (1958) 29

[601] Joffe, E.M.: Radiokhimiya 2 (1960) 381

16021 Joffe, E.M.: Radiokhimiya 4 (1962) 249

[603] Johnson, J.E., Matijevlc’. E.: J. Coll. Interface Sci. 138 (1) (1990)

255

[604] Jones, P., Parfitt. G.D.: Kolloid-2. u. 2. Polymere 250 (1972) 239

(6051 Joshi. N.D.. Shah, B.S.: J. Maharaja Sayajirao Univ. Baroda 1976-

1977. 25-26 (1978) 17

I6061 Jozefowicz, E., Sobierajska. K.: Rocz. Chem. 42 (1968) 761

I6071 KBding. H.: 2. physik. Chem. A 162 (1932) 174

[6081 Kagawa, M.. Sheeman, M.E., Nancollas. G.H.: J. Inorg. Nucl. Chem.

43 (1981) 917

(6091 Kallay, N., TeZak, B.: Croat. Chem. Acta 45 (1973) 169

[SlOl Kameyama. K.. Ueno. S . : Okayama-ken Kogyo Gijutsu Senta

Hokoku 17 (1991) 37

[S l l ] Kamiya. K.. Sakka. S.. Terada, K.: Mater. Res. Bull. 12 (1977) 1095

I6121 Kamkha. M.A.. Sibiryakov, P.B.. Bizyaev. V.L.: Kinet. Katal. 30 (1)

1989) 78

I6131 Kamoda, M.: Proc. Res. SOC. Japan Sugar Ref. Tech. 1957 660

Page 331: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

326 11. References to Tables

(6141 Kanno, H., Wakita, H., Hamaguchi, H.: Bull. Chem. SOC. Japan 51

(1978) 1557

(6151 Kapralis, I.P.. Krukle, H.: Eur. Pat. Appl. , CA96 191177

(6161 Karakaya. C.. Bulutcu, A.: Effect of sulphate ions on the crystal-

lization of boric acid, in: BIWIC 91. p. 12, Bremen 1991

(6171 Karel, M.. Njrvlt, J.: Collect. Czech Chem. Commun. 58 (1993) 1997

I6181 Karel, M., Njrvlt, J., Chianese, A.: Collect. Czech Chem. Commun. 59

(1994) 1261

(6191 Karel, M., N@lt, J., Chianese, A.: Collect. Czech Chem. Cornmun. 59

(1994) 1278

(6201 Karge, H.: Krist. Tech. 3 (1968) 537

(6211 Karniewicz, J., Posmykiewicz, P.. Wojciechowski, B.: The effect of

Fe(II1) ions upon the growth of potassium dihydrogen phosphate

monocrystals. in: Industrial Crystallization (ed. Mullin, J.W.). p. 285.

Plenum Press, New York 1976

[6221 Karpinski, P.H.. Budz, J., Larson, M.A.:Influence of cationic

admixtures on kinetics of crystal growth from aqueous solution, in:

Industrial Crystallization '84 (eds. J a n W S,J., de Jong, E.J.). p. 85.

Elsevier. Amsterdam 1984

(6231 Karpinski. P.H.. Larson, M.A.: Crystal Res. Technol. 20 (1985) 951

(6241 Karpinski. P.H.. Njrvlt, J.: Crystal Res. Technol. 18 (1983) 959

(6251 Kasatini, R., Miyazawa, T., et al.: Effect of amino acids on poly-

morphism of L-histidine. Intern Symp. on Prepar. ofFunct. Mat. and

CrystalL., Osaka 1988

Page 332: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 327

[626] Kashihara, 0.: Kemikaru Enjiniyaringu 30 (3) (1985) 170

16271 Kashlhara, 0.. Hibi, T., Harano, Y. : Kagaku Kogaku Ronbunshu 13

(5) 11987) 581

I6281 Kashihara. 0.. Nakata, T., Harano, Y . : Kagaku Kogaku Ronbunshu

12 (5) (1986) 513

I6293 Kashihara, 0, Yamaguchi, Ch., Harano, Y. : Kagaku Kogaku

Ronbunshu 14 14) (1988) 504

[630] Katz. A.: Geochim. Cosmochim. Acta 37 (1973) 1563

[63 11 Kavanagh, A.M., Rayment. T.. Price, T.J.: J. Chern. Soc., Faraday

Trans. 86 (6) (1990) 965

[6321 Kawakami, T., et al.: Nagoya Kogyo Gijuku Shikensho Hokoku 4

(1965) 97

[6331 Kazakov, A.P.: Tr. 2. soveshch. PO eksper. miner. i petrogr. 1937

137

[6341 Kazov. M.N.. Trebukhova. T.A., Kazova. R.A.: Depos. Doc. VINITI 523

(1979)

I6351 Keller. D.M., Massey, R.E., Hlleman, O.E.: Can. J. Chem. 56 (1978)

83 1

16361 van Kemenade, M.J.J.M., de Bruyn, P.L.: Colloids Surf. 36 (3) (1989)

359

16371 Kempe, G., Netimann, H., Winzer, A.: Mezhvuz. Sb. Nauch. Tr.

Leningrad. Teknol. Inst. 6 (1982) 146

16381 Kenat, J.: The crystallization ofKC2 in solutions containing small

amounts of lead, Thesis, The Hebrew Univ. Jerusalem 1962

Page 333: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

328 11. References to Tables

16391 Kern, R., Dassonvflle, R.: J. Crystal Growth 116 (1-2) (1992) 191

16401 Kerr. W.L., Osuga, D.T.. Feeney. R.E.. Yeh, Y.: J. Crystal Growth 85

(3) (1 987) 449

16411 Khamskii, E.V.: Zhur. Prikl. Khim. 32 (1959) 948

(6421 Khamskii, E.V.: Some problems of crystal habit modification, in:

Industrial CrystalUzation fed. Mullin. J.W.), p. 215, Plenum Press.

New York 1976

16431 Khamskii, E.V.: The role of impurities in crystallization, in: Industrial

Crystallization '78 (eds. de Jong, E.J.. JanEie. S.J.). p. 105, North-

Holland, Amsterdam 1979

16441 Khamskii. E.V.: Kristallizatsia t2 rastuorou, Nauka. Leningrad 1967.

I6451 Khamskii. E.V., Bogatyrenko. A.S.: Zhur. Prikl. Khlm. 54(21 (1981)

392

16461 Khamskii. E.V.. Bondarenko, S.I., Smirnova, O.M., Shkarupa. L.N.:

Ukr. Khim. Zhur. 51 (91 (1985) 920

16471 Khamskii. E.V., Bykova, A.N.: Zssledouania u oblasti khimii i tekhrwlogii

mineralnykh solei i okislou, p. 79, Nauka. Moscow 1965

16481 Khamskii, E.V., Kondrashenko. T.A.: Zhur. Prikl. Khim. 36 (1963)

263 1

16491 Khamskii, E.V., Kozina. Z.A.: Dokl. AN SSSR 149 (1963) 915

I6501 Khamskii, E.V., Maidurova. O.E.: Zhur. Prikl. Khim. 65 (8) (1992)

1681

16511 Khamskii, E.V., Marcenko, L.I.: Ukr. Khim. Zhur. 49 (3) (1983) 236

16521 Khamskii, E.V., Nazarova, E.G.: Zhur. Prikl. Khim. 35 (1962) 1206

Page 334: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1 . References to Tables 329

(6531 Khamskii. E.V., Panfilov, V.V., Shakitskaya, N.A.: Ukr. Khim. Zhur.

50 (1) (1984) 26

[654] Khamskii, E.V., Podozerskaya, E.A.: Zhur. Prikl. Khim. 41 (1968)

245

I6551 Khamskii. E.V.. Podozerskaya. E.A.: Zhur. Prikl. Khim. 41 (1968)

252

16561 Khamskii. E.V., Podozerskaya. E.A.: Krist. Tech. 3 (1968) 605

[657] Khamskii. E.V., et al.: KristaZUzatsfya f_fiziko-khirnicheskie suofstua

laistallichesklkh ueshchestu. Nauka. Leningrad 1969

(6581 Khamskii. E.V.. Yagodkina. G.N.: Zhur. Prikl. Khim. 36 (1963) 2620

16593 Khamskii. E.V., Zelenkova, L.V., Novikova, E.P.: Zhur. Prikl. Khim.

63 (9) (1990) 1976

(6601 Khartanovich, A.Z.: Kristallizatsiya i fazouye perekhody. p. 118, AN

SSSR, Minsk 1962

[661] Khausankhodzhaev. M.G., Khairullaev. Ch.K.. Tadzhiev. S.M.:

Uzbek. Khi. Zhur. 3 (1984) 23

[662] Khlopin. V.G., NiMtin. B. A.: 2. anorg. allg. Chem. 166 (1927) 311

(6631 Khlopin, V.G., et al.: 2. physik. Chem. A145 (1929) 57

[664] Khlopin. V.G.. Tolstaya, M.A.: Zhur. Fiz. Khim. 14 (1940) 941

(6651 Khlopin. V.G.: Izbrannye Trudy I, Izd. AN SSSR. MOSCOW 1957

I6661 Kholakova, I.: God. Vissh. Khim.-Tekhnol. Inst., Sofia, 23 (1) (1977)

297

16671 Klbalczyc, W.. Bondarczuk, K.: J. Crystal Growth 71 (1985) 751

[668] Klbov, V.K., Veselinov, I., Cherneva, 2.: Krist. Tech. 7 (1972) 497

Page 335: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

330 21. References to Tables

I6691 Kidyarov. B.I.. Nevyantseva, R.R., Dandaron. N.D., Zaitseva. L.F.: Izv.

Sibir. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 5 (1984) 51

I6701 Kil’man. Ya.1.. Usachev. V.A.. Vakhrushev. Yu.A.: Zhur. Prikl. Khim.

58 (1985) 7

[6711 Kimura. H.: J. Crystal Growth 73 (1985) 53

16723 McKinnon, C.E.: 2nd Symp. Salt, Cleveland 1965. 1 (1966) 365

I6731 Kinsman, D.J.J., Holland, H.D.: Geochim. Cosmochim. Acta 33

(1969) 1

16741 Kinsman. D.J.J.: Sediment. Petrology 39 (1969) 486

I6751 Kinzhalov. A.A.. et al.: Zhur. Prikl. Khim. 42 (1969) 2700

I6761 Kirgintsev. A.N.. et al.: Zhur. Neorg. Khim. 9 (1964) 1025

I6771 Kirgintsev, A.N., Nikashina. T.A.: Zhur. Neorg. Khim. 9 (1964) 1450

I6781 Kirgintsev. A.N.. Avyakumov, E.G.: Fiz. Tverdogo Tela 6 (1964) 1167

16791 Kirgintsev, A.N.. Avyakumov, E.G.: Zhur. Neorg. Khim. 10 (1965)

2187

[680lKirkova, E., et al.: Godish. Sofii. Univ.. Fiz. Mat. Fak. 53 (3) (1958/59)

37

I6811 Kirkova, E.. et al.: Godish. Sofii. Univ., Fiz. Mat . Fak.. 53 (3)

(1958/59) 43

[682] Kirkova, E., Bllznakov. G.. Nikolaeva, R.: Godish. Sofii. Univ., Khim.

Fak. 75 (1981) 193

I6831 Kirkova. E.: Krlst. Tech. 1 (1966) 155

I6841 Kirkova, E.. Nikolaeva, R.: God. Sofii. Univ., Khim. Fak. 65 (1973)

533

Page 336: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 33 1

I6851 Kirkova. E.. Nikolaeva, R.: Kristall u. Tech. 8 (1973) 463

(6861 Kirkova. E.. Pencheva. J.: On the mechanism of incorporation of

Cu(I1) in ZnC20,.2 H,O, in: Industrial Crystallizaffon ‘87 (eds. N p l t .

J., ZBEek, S.), p. 299. Academia Prague and Elsaevier Amsterdam

1989

I6871 Kirkova, E.. Yaneva. S.B.: Krist. Tech. 2 (1967) 21

I6881 Kirov. G.: Geokhlm. Mineral. Petrol. 12 (1980) 18

I6891 Kirov, G.K.. Filizova. L.: Krist. Tech. 5 (1970) 387

I6901 Kirov, G.K., Vesselinov. I.. Chernova. 2.: Krist. Tech. 7 (5) (1972) 497

I6911 Kir’yanova. E.V.: Neorg. Mater. 28 (6) (1992) 1236

I6921 Kir’yanova, E.V., Franke. V.D., Kopyleva, B.B.: Zhur. Prikl. Khim. 64

(11) (1991) 2233

L6931 Kitamura. M.. Ikemoto, K.. Kawamura, Y., Nakai. T.: Kagaku

Kogaku Ronbunshu 16 (2) (1 990) 232

I6941 Kitano. Y., Hood, D.W.: 0ceanogr.Soc. Japan 18 (1962) 35

I6951 Kiyoshi, S.: Rev. Phys. Chem. Japan 29 (1) (1959) 18

I6961 Klapshin. Yu. P.. Korshunov, I.A.: Vysokochist. Veshch. 1 (1987) 43

[6971 Kleber, W.. Steinike, U.: 2. Krist. 111 (1959) 213

I6981 Kleber, W., Verwoner. 0.: 2. Krist. 111 (1959) 435

I6991 Kleber. W., et al.: Naturwiss. 50 (1963) 222

I7001 Kleber. W.: 2. physik. Chem. 227 (5-6) (19651 289

[7011 Kleber, W., Schlemann. S.: Ber. Deutsch. Ges. Geol. Wiss. B 11

(1966) 187

(7021 Kleber. W., Schlemann. S.: Krist. Tech. 1 (1966) 553

Page 337: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

332 11. References to Tables

[7031 KIein, D.R., Fontal, B.: Talanta 12 (11 (1965) 35

17041 Klein. M.V., et al.: Mater. Res. Bull. 3 (1968) 677

17051 Kleinert. P.: Freiberger Foreschungsh. A 267 (1961) 281

I7061 Klempt. W.: Ber. Ges. Kohlentech. 4 (1933) 191

17071 Klempt. W.: Brennstoff-Ch. 33 (1952) 114

17081 Klepetsanis. P., Koutsoukos, P.G.: Crystal growth and inhibition of

calcium sulfate in aqueous solutions, in: Industrial Crystallization '90

(ed. A. Mersmann). p. 261, Munich 1990

17091 Klier, E.. Shaki. M.: eeskosl. Easop. fyz . 4 (6) (1954)

17101 Kloatzer, D., Levi. H.W.: Radiochim. Acta 6 (2) (1966) 81

I7111 Knight, R.J.. Sylva. R.N.: J. Inorg. Nucl. Chem. 36 (1974) 591

17121 Koch, E., Wagner, C.: 2. physik. Chem. 381 (1937) 295

17131 Koch, J., Schiller. H.: 2. Lebensmittel- Unters. Forsch. 124 (1964)

180

I7141 Kohlschfitter, V., Egg, C.: Helv. Chim. Acta 8 (1925) 697

17151 Kokubo. R., Sasaki. S.: Chem. Eng. Japan 28 (5( (1964) 386

17161 Kolarov. N.: Compt. rend. Acad. Sci. Bulgar. 3 (1950) 21

17171 Kolarov. N., Boncheva, 2.: Monatsh. 93 (1962) 1254

17181 Kolarov. N.. et al.: Zhur. Neorg. Khim. 9 (1964) 760

17191 Kolarov, N., Kolarova, M.: Godish. Khim.-Tekhnol. Inst. Sofia 13 (2)

(1966) 217

17201 Kolarov. N.. Dobreva. R.: Monatsh. 99 (1968) 409

[7211 Kolarov. N., Shopova, R.: Godlsh. Vissh. Khim. Tekhnol. Inst.. Sofia,

24 (1) (1981) 147

Page 338: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 333

17221 Kolb. H.J., Comer. J.J.: J. Am. Chem. SOC. 67 (1945) 894

I7231 Kolb, H.J., Comer, J.J.: J. Am. Chem. SOC. 68 (1946) 719

I7241 Koldobskaya. M.F.. Gavrilova, I.V.: Rost Kristallov 3 (1961) 278

I7251 Komarova. T.A.: Issledovanie kinetiki kristallizatsii solei iz rastvorov.

Thesis, Mosk. Gos. Univ.. Moscow 1953

[7263 Komatsu, H.. Shigematsu, K.: Koen Yoshibu-Jinko Kobutsu Koronkai

24th. (1979) 5-6

I7271 Konag, A., Emons, H.H.: Freiberger Forschungsh. A 683 (1983) 46

17281 Konig, A., Emons. H.H.: The influence of tensides on crystallization

kinetics and crystal habit of magnesium sulfate, in: Industrial

Crystallization '87 (eds. N p l t , J., ZaCek, S . ) , p. 281, Elsevier

Amsterdam and Academia Prague, 1989

(7291 Konig, A., Emons, H.H.. Njvl t . J.: The effect of electrolyte -

admixtures on the crystallization of potassium chloride, Internat.

Con!. on Industrial Crystallization. Liberec 1983

(7301 Konig, A.. Emons. H.H.. N@lt. J.: The effect of electrolyte

admixtures in high concentration on the crystal growth of highly

soluble salts, in: Industrial Crystallization '87 (eds. Nplt , J., ZaCek,

S.), p. 285, Elsevier Amsterdam and Academia Prague. 1989

I7311 Konig. A., Ernons, H.H.. Nyvlt. J.: Crystal Res. Tcchnol. 22 (1987) 13

[732] Konig, A., Emons, H.H., Troschitz, B.: Freiberger Forschungsh. A 690

(1984) 60

I7331 Konig, An., Emons, H.H.: Crystal Res. Technol. 23 (3) (1988) 319

I7341 Kononenko. V.G.. Heichler, W.: Ukr. Fiz. Zhur. 23 (8) (1978) 1261

Page 339: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

334 11. References to TabZes

17351 Kopylev, B.A., et al.: Zhur. Prikl. Khim. 42 (1969) 2429

17361 Korbe, A.: Beobachtungen iiber Variation der Kristalltracht des

Chlomatriurns , Leipzig 1 9 0 7

17371 Korolkov, I.I., Qgunova . Z.A.: Gidroliz. Lesokhim. Prom. 8 (1956) 8

(7381 Korovkina, E.K.. Komarova, T.A.: Vest. Moskov. Univ.. ser. I1 - khlm.

20 (5) (1965) 34

17391 Korovkina. E.K.. Komarova. T.A.: Vest. Moskov. Univ.. ser. 11 - kNm.

21 (2) (1966) 39

17401 Korshunov, G.S.. Mokievskii. V.A.: Zhur. Obsch. Khim. 18 (19481

569

17411 Korshunov, I.A., Polikarpov, J.S.: Radiokhimiya 3 (196 1) 50 1

I7421 Kosevich, V.M.. et al.: Dokl. AN SSSR 180 (1968) 341

17431 Koutsky, J.A., et al.: Surface Sci. 3 (2) (1965) 165

17441 Koutsoukos, P.G., Amjad. Z., Tomson, M.B., Nancollas, G.H.: J. Am.

Chem. SOC. 102 (1980) 1553

17451 Koutsoukos. P.G., Nancollas. G.H.: J. Crystal Growth 55 (2) (1981)

369

17461 Koutsoukos. P.G., Nancollas. G.H.: Colloids Surf. 17 (41 (1986) 361

I7471 Kozhevnikov. A.F., Maidanik. V.F., Ekimova, V.I.: Probl. Khimii i

Khim. Tekhnol. Dvuokisi Titana i Zhelezosoder. Pigmentov. M 69

(7481 Koziol. K.. Pujanek, M.: The dependence of nonionic surfactants on

the metastable zone, in: Industrial Crystallization '81 (eds. Janeii.,

S.J., d e Jong. E.J.). p. 319, North-Holland, Amsterdam 1982

17491 Kranz, M., Domka, L.: Cem.-Wapno-Gips 32 (3) (1978) 89

Page 340: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 335

[7501 Krashennikov. S.A.. Liyanage, N.. Hausman. A.. Hausman. R.:

Deposited Doc. VINITI 21 03 (1978)

[7511 Kraus, J.. NjWt , J.: Zuckerind. 119 (1) (1994) 24

17521 Kraus. J.. N p l t . J.: Zuckerind. 119 (4) (1994) 298

17531 Kraus, J., NJivlt, J.: Zuckerind. 119 (1994) 407

(7541 Krivandina. E.A.. Khaimov-Mal'kov, V. Yu.: Kristallografiya 25 (1980)

889

I7551 Krol. B.W.: Process Technol. Proc. 2. Ind. Cryst. (1984) 425

I7561 Kroupa, M.: Precipftation Study of calcium oxalate by thermometric

methods, Thesis. Univ. Pardubice 1994

17571 Kruse. M.. Stepanski, M.. Ulrich. J.: On the growth of small single

crystals with and without additives. B M C 1990, Bremen 1990

17581 Kruse, M.. Ulrich, J.: Chem.-1ng.-Tech. 65 (1) (1993) 60

I7591 Krysztafkiewicz, A., Maik. M., Miedzinski. M., Blaszczak. J.. Rager.

B.: Przem. Chem. 65 (4) (1986) 207

[760] Kubol. R., Harada. M., Winterbottom. J.M.. Anderson, A.J.S..

Nienow, A.W.: Roc. World Corgr. 111 Chem. Eng., p. 1040, Tokyo 1986

[761] Kubota. N., Akazawa, K., Shimizu, K.: Kinetics of BaCO,

precipitation in an MSMPR crystallizer, in: Industrial Crystallization

'90 (ed.A. Mersmann). p. 199. Munich 1990

[7621 Kubota, N.. Shimizu. K., Uchiyama, I., Nakai, T., Mullin. J.W.: The

effect of small amount of chromium (111) ion on the solubility of

potassium sulfate in water, World Congress UI. Chem. Erg., Tokyo

1986

Page 341: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

336 11. References to Tables

I7631 Kubota, N., Ito, K.. Shimizu, K.: J. Crystal Growth 76 (1986) 272

I7641 Kubota. N.. Oikawa, A.. Shimizu. K.: Chem. SOC. Japan Symp. Ser.

18 (1988) 14

17651 Kubota, N., Takahashi, H.: Ind. Eng. Chem. Res. 26 (9) (1987) 1936

17661 Kubota, N.. Uchiyama, I., Nakal, K., Shimizu. K.: Ind. Eng. Chem.

Research 27 (1988) 930

[767] Kubota, N.. Uchiyama, I., Shimizu, K., Mullin. J.W.: Anomalous

effects on the solubility of potassium sulfate, in: lndusfrial

Crystallization '87 (eds. N3fvlt. J.. ZkEek. S . , ) , p. 249, Elsevier

Amsterdam and Academia Prague 1989

I7681 Kullgina. V.P.. Ptitsyn, G.V., Rozenberg, G.Kh., Shakhnovich, M.I.,

Krasovitskaya, I.M.: Fiz. Tverd. Tela (Lenlngrad) 31 (6) (1989) 209

17693 Kumon, S., Tanegawa, T., Kawabata. Y., Kawakita. T.:

Incorporation of L-glutamlc acid to L-threonine crystals prepared

from solution, in: D+BIWIC 1993, p. 154, Delft + Bremen 1993

17701 Kunimi. Y.A., Tabata, A.. Fujita, Y.: Europ. Pat. EP 330352 (1989)

[771] Kunisakl: Nature 183 (4654) (1959) 105

17721 Kuschel, F., Kijnig, A., Herold, S.: Crystal Res. Technol. 18 (1983)

427

17731 Kuznetsov, V.D.: Zhur. Fiz. Khim. 6 (1935) 817

I7741 Kuznetsov. V.D.: Kristally i Kristallizatsiya. Gostekhizdat. Moscow

1953

I7751 Kvapfl. J.. et al.: Chem. prfimysl 18 (1968) 67

17761 KyrtS, M., et al.: Collect. Czech. Chem. Commun. 31 (1966) 34

Page 342: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 337

17771 Lacmann. R., Behrens, M.. Herden. A.. et al.: Experimentelle Unter-

suchungen. strukturelle Betrachtungen und Literaturauswertung zur

Fremdstoffbeeinflussung der Kristallisation, in: GVC JahrestreJ der

Verjhhrensing., Wien (1992) G3/105

I7781 Lacmann, R., Behrens. M.. Herden, A.. Mayer. C.. Schroder. W.: The

influence of additives on crystallization - experiments, structural

considerations and evaluation of literature, in: Industrial

Crystallization '93, VoL I. (ed. Rojkowski. 2.). p. 3-045. Warsaw 1993

[779] Lacmann, R., Behrens, M., Schroder. W.: Additive in der Losungs-

kristallisation, in: Ink Arbeitssitz. Kristallisation GVC-VDI, Heidelberg/

Ludwigshafen

I7801 Lacmann. R.. Herden, A.. Rolfs. J.. Schroder,W.: O n the influence of

impurities on crystallization. in: Industrial Crystallization '90 (ed.

Mersmann. A.), p. 671, Munich 1990

17811 Lacmann. R., Mittmann, M.. Walter, M.. Shaper, A.. Bozkurt. H.:

Influence of impurities on the crystallization of potassium chloride,

in: Industrial Crystallization '87 (eds. N*lt, J.. Z9Eek. S . ) , p. 239.

Elsevier Amsterdam and Academia Prague, 1989

[782] Laguerie, C.. Ratsimba, B., Frances, C.: Effect of impurities on

crystal growth, BIWIC 1990. Bremen 1990

I7831 van't Land, C.M.. Wienk. B.G.: Control of particle size in Industrial

NaCl crystallization, in: Industrial CrystaZZizaffon (ed. Mullin, J.W.), p.

51, Plenum Press, New York 1976

Page 343: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

338 11. References to Tables

I7841 Landau, E.M.. Levanon. M.. Leiserowitz. L.. Lahav. M.. Sagiv. J.:

Nature 318 (1985) 353

I7851 Landau, E.M.. Popovitz-Biro. R.. Levanon. M.. Leiserowitz. L.. Lahav,

M., Sagiv. J.: Mol. Cryst. Liquid Cryst. 134 (1986) 323

I7861 Larson. M.A., Mullln. J.W.: J. Crystal Growth 20 (1973) 183

I7871 Lash. M.E.. France, W.G.: J. Phys. Chem. 34 (1930) 724

I7881 LBska, M.. Valtyni, J., Fellner, P.: Crystal Res. Technol. 28 (1993)

93 1

I7891 de Launoit. J.: Proc. Int. Congr. Surface Activity. London 4 (1957) 83

17901 Lea, F.M., Nurse, R.W.: Disc. Faraday SOC. 5 (1949) 345

17911 Lebedeva. G.N., e t al.: Koks i Khim. 1965 (10) 39

17921 Lechuga-Ballesteros, D.. Rodriguez-Hornedo, N.: Part. Sci. Technol.

10 (1 -2) (1 992) 49

[7931 Ledesert. M.. Monier, J.C.: Colloq. Int. Centre Nat . Rech. Sci. 152

(1965) 537

I7941 van der Leeden. M.C., Kashchlev, D.. van Rosmalen, G.M.: J. Colloid

Interface Sci. 152 (2) (1992) 338

I7951 van der Leeden, M.C., Kashchiev, D., van Rosmalen, G.M.: J. Crystal

Growth 130 (1-2) (1993) 221

[7961 van der Leeden. M.C., Reedijk. E.E.. van Rosmalen, G.M.: Estudios

Geol. 38 (1982) 279

I7971 van der Leeden. M.C.. van Rosmalen, G.M.: The role of additives in

the agglomeration of barium sulfate, in: Industrial Crystallization '84

(eds. S.J. JanCie, E.J. de Jong), p. 325, Elsevier, Amsterdam 1984

Page 344: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 339

I7981 van der Leeden, M.C., van Rosmalen, G.M.: Effect of the molecular

weight of polyphosphinoacrylates on their performance in BaSO,

crystallization. ICCG-A, Sendai (1989) 21A C 0 5

17991 van der Leeden. M.C.. van Rosmalen, G.M., Devreugo. K.. Witkamp,

G.J.: Chem.- 1ng.-Tech. 61 (5) (1989) 385

I8001 Lehmann. 0.: Molekularphys. 1 (1888) 305

[8011 Leskovar. P., Harting, R.: Fortschr. Urol. Nephrol. 9 (1977) 30

18021 Leskovar. P.. Kratzer. M., Baustaedter. R.: Therapiewoche 30 (1980)

429 1

[803] Lessieux. J.C.. Svoronos. D.R.: Compt. rend. 263 (19) (1966) 1146

I8041 Leszczynski, S.: Krystalizaqja w przemysle chemicznym, PWT, Warszawa

1956

18051 Leung. W.H.. Nancollas. G.H.: J. Inorg. Nucl. Chem. 40 (1978) 1871

I8061 Lewin, S.Z.. Vance, J.E.: J. Am. Chem. SOC. 74 (1952) 1433

[8071 Liaw, H.M., Faust. J.W. Jr.: J. Crystal Growth 13/14 (1972) 471

(8081 Lilley, E., Newkirk. J.B.: J. Mater. Sci. 2 (1967) 567

[SO91 Lin, C.H., Gabas. N., Canselier, J.P.. Pepe, G., LaguCrie. C.:

Surfactant effects on y-aminobutyric acid crystallization, in:

Industrial Crystallization '93, VoZ. I (ed. Rojkowski, 2.). p. 3-051,

Warsaw 1993

[810] Little, D.M.S.. Nancollas, G.H.: Trans. Faraday SOC. 66 (1970) 3103

I8111 Lin, J., Cai, Zh.: Rengong Jingtl Xuebao 20 (2) (1991) 179

f8121 Liu, S.T., Nancollas, G.H.: Desalination 12 (1973) 75

[8131 Liu. S.T., Nancollas. G.H.: J. Colloid Interface Sci. 52 (3) (1975) 582

I8141 Liu. S.T.. Nancollas, G.H.: J. Colloid Interface Sci. 52 (3) (1975) 593

Page 345: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

340 11. References to Tables

I8151 Liu. S.T.. Nancollas. G.H.. Gasiecki, E.A.: J. Crystal Growth 33

(1976) 11

18161 Liu. Y.A., Botsaris. G.D.: Impurity effects in a continuous-flow

mixed-suspension crystallizer. in: 63-rd AICHE Ann. Meeting. Chicago

1970

18171 Lopez-Valero. I.. Gomez-Lorente, C.. Boistelle. R.: J. Crystal Growth

121 (3) (1992) 297

18181 Luptak. J.. Bekjensen. H.. Fornander, A.M. et al.: Scanning Microsc.

8 (1994) 47

I8 191 Lux, H.: Anorganisch-chemisehe Experimentierkunst. p. 227, Leipzig

1959

I8201 Lyubchenko, A.P.. Sherman. D.G.: Fiz. metal. metalloved. 16 (1963)

636

[821] Lyubchenko. T.V., et al.: Zhur. Prikl. Khim. 40 (1967) 2225

18223 Macklin. W.C., Ryan, B.F.: Phil. Mag. 14 (130) (1966) 847

18231 Macklin. W.C., Ryan, B.F.: Phil. Mag. 27 (1968) 83

[8241 MaCek, J.. ZakrajBek, S . . N-lt, J.: Crystal Res. Technol. 28 (1993)

847

18251 McMahon, P.M.. Berglund. K.A., Larson. M.A.: Raman spectroscopic

studies of the structure of supersaturated KNO, solutions, in:

Industrial Crystallization '84 (eds. JanEiC. S.J.. de Jong, E.J.), p. 229,

Elsevier, Amsterdam 1984

I8261 Maik. M., Krysztafkiewicz. A.. Blaszcak, J.: Wplyw fosforanow na

krystalizacji fluorku glinowego, in: II. Symp. Industr. Krfst.. Jaszowiec

1986, p.65

Page 346: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 34 I

[8271 Malitsko. L.. Jeszenski, L.: J. Crystal Growth 15 (1972) 243

I8281 Mal'tsev. G.Z.. Dyachenko. M.G.. Alekseev. A.I.: J. Appl. Chem.

USSR 50 (1977) 1851

I8291 Mann, S., Heywood, B.R., Rajan, S.. Birchall. J.D.: Nature 334

(6184) (1988) 692

(8301 Mann. S.. Heywood. B.R.. Rajan, S., Birchall. J.D.: Proc. Roy. SOC.

London A 423 (1 865) (1 989) 457

[830a] Mantel, W., Hansen. H.: Brenstoff-Chem. 33 (1952) 80

I8311 Mantovanl, G.: Zuckerind. 13 (1963) 559

I8321 Mantovanl, G.. Fagioli. F.: Zuckerind. 14 (1964) 202

[833] Maranidze, M.V.. et al.: Soobch. AN Gruzin. SSR 47 (1967) 581

I8341 Marc, R.: 2. physik. Chem. 68 (1910) 112

I8351 Marc, R.: 2. physik. Chem. 79 (1912) 71

I8361 Marciniak. B.: Characterization of acenaphtene nucleation in

organic solutions, in: Kryszt. MoL '91 OgolnopoL KO@ , Lodz 1992, 92

(8371 Marciniak, B.: Growth of acenaphtene crystals from organtc solution,

in: Kryszt. Mol '91 OgolnopoL KO$ , Lodz 1992, 89

I8381 Marcy, J.. et al.: Chem. Tech. 21 (1969) 627

[839] MareCek. V.. et al.: Krist. Tech. 4 (1969) 39

[8401 MareCek, V.. NovBk. J.: Kris t . Tech. 5 (1970) 109

I8411 Marimeto. S.: Nippon Hyniokita Gakkai Zasshi 76 (1985) 998

I8421 Markalous, F.. N p l t , J.: Chem. prdmysl 15 (1965) 618

18431 MarkoviC. M., Komunjer. L.. Fiiredi-Milhofer. H., SkrtlC, D.. Sarig. S.:

J. Crystal Growth 88 (1) (1988) 118

Page 347: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

342 1 1 . References to Tables

18441 Marshall, R.W.. Nancollas. G.H.: J. Phys. Chem. 73 (1969) 3838

18451 Martynowicz. E.T.M.J.. Witkamp, G.J.. van Rosmalen. G.M.: Control

of phosphogypsum crystallization in the presence of impurities, in:

Industrial CrystaUization '93, VoL 1 (ed. Rojkowski. Z.), p. 3-123,

Warsaw 1993

I8461 Masaji, et al.: J. Sci. Hiroshima Univ. A 19 (1956) 513

18471 Massey. R.E.. Hileman, O.E.: Can. J. Chem. 55 (1977) 1285

I8481 Masuzawa, T.: Nippon Senbai Kosha Chuo Kenkyusho Hokoku 106

(1964) 209

18491 Matijevie, E., Ottewill, R.H.: J. Colloid Sci. 13 (1958) 242

I8501 Matsuda. K.. Sumida. M.. Fujita. K.. Mitsuzawa. Sh.: Bull. Chem.

SOC. Japan 60 (1987) 4441

18511 Matsushita. T.. Sekita, T., Suzuki, T.. Moriga, T.. Ashida, T.,

Nakabayashi. I.: Zairyo 42 (473) (1993) 195

18521 Matusevich, L.N.: Tsvetnye metally 32 (11) (1959) 37

18531 Matusevich. L.N.: Tsvetnye metally 33 (9) (1960) 48

I8541 Matusevich. L.N.: Zhur. Prikl. Khim. 33 (1960) 316

18551 Matusevich, L.N., Blinova, N.P.: Zhur. Prikl. Khim. 38 (1965) 721

I8561 Matusevich, L.N., Blinova. N.P.. Postnikov, V.A.: Teor. Osn. Khim.

Tekhnol. 6 (2) (1972) 169

I8571 Matusevich, L.N.: Krist. Tech. 1 (1966) 127

I8581 Matynia, A.: Wlokna Chem. 10 (3) (1984) 257

I8591 Matynia. A.. Wierzkowska, B.. Kot, J.: Wplyw metanolu na

Page 348: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 343

krystalizacju kwasu I-askorbinowego, in: II. Symp. Industr. Cryst.,

Jaszowiec 1986. p. 56

I8601 Matynia. A.. Wonvag, W.: Inz. Chem. 9 (4) (1979) 739

I8611 Matz, G.: Symp. ZonenschmelzenKolonenkrist. .. Karlsruhe 1963, p.

345

18621 Matz. G.: Colloq. Int. Centre Nat. Rech. Sci. 152 (1965) 451

I8631 Matz, G.: Kristallisation - Grundlagen und Technik, Springer, Berlin

1969

[864] McCall. M.T., Tadros, M.E.: Colloids and Surfaces 1 (1980) 161

I8651 McPherson. A.. Koszelak. S.. Axelrod. H., Day, J. et al.: J. Biol.

Chem. 261 (4) (1986) 1969

[866] Mehmel. Nespital: 2. Krist. 88 (1934) 345

[867] Melankholin. N.M.. Slavnova. E.N.: Kristallografiya 4 (1959) 563

I8681 Melikhov. I.V.: Protsessy v Dispers. Sredakh. Mezhvuz. Sb. Nauch.

Tr. , p. 6

18691 Melikhov, I.V., et al.: Radiokhimiya 1 (1959) 3

[870] Melikhov, I.V., et al.: Radiokhimiya 2 (1960) 144

18711 Melikhov. I.V.: Radiokhimiya 2 (1960) 509

I8721 Melikhov. I.V.. et al.: Dokl. AN SSSR 133 (1960) 401

[8731 Melikhov. I.V., et al.: Radiokhimiya 3 (1961) 520

[8741 Melikhov, I.V., Kirkova, E.: Radiokhimiya 6 (1964) 5

[875] Mellkhov, I.V.. et al.: Radiokhimiya 6 (1964) 165

[876] Melikhov, I.V., Babayan, S.G.: Radiokhimiya 6 (1964) 153

I8771 Melikhov. I.V., et al.: Radiokhimiya 7 (1965) 377

Page 349: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

344 11. References to Tables

18781 Melikhov. I.V., Evald. G.: Radiokhimiya 10 (1968) 129

18791 Mellkhov. I.V.. Berdonosova, D.G.: Radlokhimiya 10 (1968) 137

I8801 Melikhov. I.V., Vukovich, Zh.. Nebylitsin. B.D.: Zhur. fiz. khim. 46

(1972) 1952

I88 11 Melik-Gaikazyan. V.I., Melik-Gaikazyan. I. Ya.: Krlstallografiya 4

(1959) 435

I8821 Merkulova, M.S.: Trudy Gos. Rad. Inst. 3 (1937) 141

18831 Messing, T.: Chem.-1ng.-Tech. 42 (1970) 1141

18841 Meyer, H.J.: J. Crystal Growth 66 (3) (1984) 639

[885] Meyer. J.L.. Bergert, J.H., Smith, L.H.: Colloq. Renal Ltthiasis, Proc.

Int. Colloq. (1975) 66

18861 Meyer, J.L.. Nancollas. G.H.: Archs. oral. Biol. 17 (1972) 1623

18871 Mezhidov, B.Kh., Guzhov. A.I.. Krasnobryzhev, V.G.: Zhur. Prikl.

Khim. 52 (1979) 2342

I8881 Michaels, A.S.. Colville. A.R.: J. Phys. Chem. 64 (1960) 13

18891 Michaels, A.S., Tausch. F.W.: Int Kongr. Grenzfliichenaktiue Stone,

Koln 1960, p. 221

18901 Michaels, A.S.. Tausch. F.W.: J. Phys. Chem. 65 (1961) 1730

18911 Mikhailov, O.V.. Polovnyak. V.K.: Izv. Akad. Nauk SSSR, Neorg.

Mater. 27 (21 (1991) 370

[8921 Mikheeva, L.M., et al.: 2. physik. Chem. 228 (1965) 246

18931 Mile, B.. Vincent, A.T., Wilding. C.R.: J. Chem. Technol. Biotechnol.

32 (1982) 975

I8941 Miles. F.D.: Proc. Royal SOC. London A 32 (193 1) 266

Page 350: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 345

18951 Miles, F.D.: Phil. Trans. Roy. SOC. LondonA 235 (748) (1935) 125

18961 Milligan, A.E.: J. Phys. Chem. 33 (1929) 363

18971 Milone. M., Ferrero. F.: Gazz. chim. ital. 77 (1947) 348

I8981 Mintova, S.. Vulchev. V.. Vulcheva, E.. Veleva, S.: Mater. Res. Bull.

27 (4) (1992) 515

18991 Mirkina. L.T., Gulyeva, T.Yu., Nikiforova, A.M.: Deposited Doc.

SPSTL 11 61 KHP-D82 (19821

I9001 Miura. M., et al.: J. Phys. Chem. 66 (1962) 252

I9011 Miura, M., et al.: Bull. Chem. SOC. Japan 36 (1963) 1091

19021 Miura. M.. et al.: J. Sci. Hiroshima Unlv. A-I1 26 (2) (1963) 151

19031 Miura. M., et al.: Kogyo Kagaku Zasshi 66 (1963) 597

I9041 Miura. M.. Naono, H., Hara, M.: Bull. Chem. SOC. Japan 39 (1966)

344

I9051 Mohameed, H., Ulrich, J.: Effect of the pH-value on the growth rate

of potassium chloride. in BIWIC 1994 (ed. J. Ulrich). p. 112, Univ.

Bremen 1994

19061 Mohamed-Kheir. A.K.M.. Tavare, N.S.. Garside. J.: Cryst. Precl-

pitation, Proc. Int. Symp. (1987) 61

19071 Mokievskii. V.A.. Mokievskaya, LA.: Zap. vsesoyuz. mineral. obsch.

79 (1950) 15

19081 Moklevskil. V.A.: Kristallografiya 1 (4) (1955) 3

I9091 Moravec, F., Novotnjr, J.: Krist. Tech. 6 (1971) 335

I9101 Moreno. E.C., Varughese, K.: J. Crystal Growth 53 (1981) 20

19111 Moreno, E.C., Varughese, K.. Hay, D.I.: Calif. Tiss. Int. 28 (1979) 7

Page 351: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

346 11. References to Tables

19121 Moriyama, T.: Asahi Garasu Kenkyu Hokoku 9 (1959) 66

19131 Moriyama. T., Sakayori. T.: Asahi Garasu Kenkyu Hokoku 11 (1961)

38

1914) Morond. C.: Thesis, Tech. Ecole Polytechn. Ziirich 1959

19151 Morozova, G.A., Kopylev, B.A., Dmitrievskii. B.A.: Zhur. Prikl. Khim.

51 (1978) 2420

I9161 Mortada, S.A.M., Boraie, A..: Alexandria J. Pharm. Sci. 3 (1989) 45

[917] Mukhopadhyay, S.Ch.: Univ. Microfilms No. DA8523209 (1985); CA 104

(20) 177897

19 181 Mullin, J.W.:Impurity effects and crystallization phenomena, in: Int.

Symp. on Separ. Process Eng. (1986) 67

19191 Mullin. J.W.: Crystal growth in pure and impure systems, in:

Industrial Crystallization ‘78 (eds. de Jong, E.J.. JanEie, S.J.). p. 93,

North-Holland, Amsterdam 1979

I9201 Mullin, J.W.: Chem.-1ng.-Tech. 47 (21) (1975) 882

19211 Mullin. J.W., Amatavivadhana, A., Chakraborty. M.: J. Appl. Chem.

20 (5) (1970) 153

19221 Mullin, J.W.. Ang. H.M.: Faraday Disc. Chem. Sac. 61 (1976) 141

19231 Mullin. J.W., JanCic’. S.J.: Trans. Inst. Chem. Eng. 57 (3) (1979) 188

19241 Muminov, AS.. Akhmedov, M.A., Ishakov, Kh.Sh.. Manapova. R.A.:

Izv. Akad. Nauk SSSR, Neorg. Mater. 21 (1) (1985) 155

(9251 Murata. Yo.: Kagaku Kogaku 41 (9) (1977) 478

19261 Murotani. H., et al.: Nippon Shio Gakkaishi 10 (1956) 278

19273 Murotani. H.: Bull. Tokyo Inst. Technol. 1963 141

Page 352: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1 . References to Tables 347

I9281 Murthy, A.S.A., Mahadevappa. D.S.: Austral. J. Chem. 22 (1969)

2017

[9291 Mydlarz J.: The effect of Ni(I1) on the growth of magnesium sulphate

from aqueous solution. in: Industrial Crystallization '90 (ed.

Mersmann. A.), p. 615, Munich 1990

19301 Mydlarz, J.. Jones, A.G.: Chem. Eng. Commun. 111 (1992) 29

I93 11 Myerson, A.S.. Brown: Crystal aging and precipitation of terephthalic

acid. Intern Symp. on Prepar. of Funct. Mat. and CrystalL..Osaka 1988

[9321 Myerson, A.S., Decker, S.E., Fan, W.: Ind. Eng. Chem. Process Des.

Dev. 25 (4) (1986) 925

19331 Myerson, A.S.. Weisinger, Y., Ginde, R.: Crystal shape, the role of

solvents and impurities, in: Industrial Crystallization '93, VoL I (ed.

Rojkowski. Z.), p. 3-135, Warsaw 1993

I9341 Myl, J., Kvapil, J.: Chem. prfimysl9 (1959) 28

19351 Nagalingam, S., Vasudevan. S . . Ramasamy. P.: Crystal Res. Technol.

16 (6) (1981) 647

I9361 Nagornyi, A.A.: Elektron. Protsessy Defekty Ionnykh Krist. (1985) 34

[9371 Nakai. T.. Miyake, K.: Kagaku Kogaku Rombunshu 4 (1978) 100; CA

90 40676

[9381 Nakhmanovich. M.I., et al.: Zhur. PriM. Khim. 23 (1950) 1331

19391 Nalbandyan, A.G., Grigoryan. S . Yu.. Kazaryan. A.B.: Neorg.

Materialy 21 (1 1) (1 985) 1945

[9401 Nalbandyan, A.G., Nalbandyan. H.S.: The effect of additives on

nucleation in aqueous solutions, in: Industrial Crystallization '87

Page 353: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

348 11. References to Tables

(eds. N p l t , J., ZBCek, S.) , p. 245, Academia Prague and Elsevier

Amsterdam 1979

(9411 Nancollas, G.H.: Croat. Chem. Acta 43 (1971) 261

(9421 Nancollas. G.H., Bochner, R.A., Liolios, E.. Shyu, L.J., Yoshlkawa. Y..

Barone, J.P., Svrjcek, D.: AICHE Symp. Ser. 78 (215) (1982) 26

(9431 Nancollas. G.H., Koutsoukos. P.G.: Prog. Crystal Growth Charact. 3

(1980) 77

(9441 Nancollas. G.H., Purdie, N.: Trans. Faraday SOC. 57 (1961) 2272

19451 Nancollas. G.H., TomaiiC, B.: J. Phys. Chem. 78 (1974) 2218

(9461 Nancollas. G.H.. TomaZiC, B.. Tomson, M.: Croat. Chem. Acta 48 (4)

(1976) 431

(9471 Nancollas, G.H.. Wefel, J.S.: J. Crystal Growth 23 (1974) 169

[948] Nancollas. G.H.. Zawecki. S.J.: Inhibitors of crystallization and

dissolution, in: Industrial Crystallization '84 (eds. JanEiie. S.J., de

Jong, E.J.). p. 51. Elsevier, Amsterdam 1984

19491 Naono, H.: Bull. Chem. SOC. Japan 40 (1967) 1104

I9501 Naono, H., Miura, M.: Bull. Chem. SOC. Japan 38 (1965) 80

(9511 Naono, H.: Bull. Chem. SOC. Japan 40 (1967) 1104

19521 Napijalo. M.I.. ZlZiC, B., Zegarac. S., DojEiloviC, J.: Fizika (Zagreb) 10

(Suppl. 2) (1978) 502

(9531 N a s s . K.K.: Ind. Eng. Chem. Res. 33 (1994) 1580, 2020

[954] Neels, H.: Fortschr. Mlner. 35 (7-8) (1957) 8

(9551 Neels, H.: Freiberger Forschungsh. A 123 (1959) 405

(9561 Neels, H.. Steinike, U.: Freiberger Forschungsh. A 267 (1961) 433

Page 354: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 349

19571 Neels. H.. Steinike, U.: J. Appl. Phys. 34 (1963) 433

I9581 NEmec, J.. HloZny. L., Broul, M., Veverka, F.: Chem. prfimysl 42 (5-6)

(1992) 114

[959] Nepomnyashtchaya, V.N.. et al.: Rost Kristallov 3 (1961) 290

I9601 Nestor, L.I.: Khirn. Prom., Ser. KaLtinaya Prom. 2 (1980) 4

[9611 Neuhaus, A.: 2. Krist.103 (5) (1941) 297

I9621 Neumann, M., Ulrich, J.: Progressive freezing process - static /

dynamic - a comparison, in: Industrial Crystallization '93 (ed. 2.

Rojkowski), vol. 1, p. 1-061. Warszawa 1993

19631 Neumann, M.. Ulrich, J.: The washing procedure in solid layer melt

crystallization. in: BIwlC 1994 (ed. J. Ulrich), p. 19. Univ. Brernen

1994

I9641 Nicar, M.J.. Hill, K., Pak. C.Y.L.: J. Bone Miner. Res. 2 (1987) 215

I9651 Nielsen, A.E.: J. Colloid Sci. 10 (1955) 576

I9661 Nielsen, A.E.: Faraday Disc. Chem. SOC. 61 (1976) 153

19671 Nightingale, E.R.. Benik. R.F.: Anal. Chem. 32 (1960) 566

I9681 Nitrogen 46 (1967) 33

I9691 Novobilsky, V.: PhD Thesis, Tech. Univ. Chem. Technol., Prague

1965

I9701 Novobilsky, V.: In. Symposium on Industrial Crystallization, Usti

n.L. 1965

19711 Novobilsky. V., Jgger. L., N*lt, J.: Chem prfimysl 18 (1968) 123

I9721 Novobilsky, V., N@lt, J.. Jager. L.: Chem. prfimysl 18 (1968) 180

I9731 Novosel. B.: Colloid Polymer Sci. 254 (1976) 650

Page 355: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

350 11. References to Tables

I9741 Nowakowski. R.. Czenvinski. 2.: Nieorg. Zwiazki Fosforowe 7th

(1976) 177

19751 Nozhkina. I.N.. Vityugin. V.M.: Izv. Tomsk. Politekh. Inst. 258 (1976)

71

I9761 N w l t , J.: Conference onIndustrial Crystallization. asti n.L. 1960

(9771 Njvl t , J.: Chem. prfimysl 12 (1962) 170

I9781 N@lt, J.. Gotffrled. J.. KiiEkovB. J.: Chem. prhmysl 14 (1964) 242

I9791 Njvl t , J.. Gottfrled, J.. Sucharda, J.: Chem prfimysl28 (1978) 132

I9801 Nplt , J., Kraus, J.: Zuckerind. 119 (3) (1994) 219

I9811 Njvlt . J., MaCek, J.. ZakrajSek, S.: Crystal Res. Technol. 28 (1993)

479

I9821 Nyvlt, J., Netuka, V., VBclavh, V., MiCek, F.: Sci. Rept Res. Inst.

Inorg. Chem. 259 (1960)

I9831 Nyvlt. J., SittovB. 2.: Collect. Czech. Chem. Commun. 57 (1992)

1798

19841 N p l t , J.. Sucharda, J., HufikovB, A.: Czech Pat. 133 701 (1969)

I9851 Njklt, J.. Snoblova. V.: Chem. prfimysl36 (1986) 297

I9861 Njvl t . J.. SnoblovB. V., Karel, M.: Collect. Czech. Chem. Commun. 51

(1986) 2473

19871 Njklt, J.. VBclavh, V.: Collect. Czech. Chem. Commun. 37 (1972)

3664

I9881 Njklt, J., ZBEek. S.: Chem. prfimysl38 (1988) 402

I9891 Obukhova, N.F.. Chirva, L.A.: Sb. Nauch. Tr. VNII Monokrist..

Stslntil. Mater. i Osobo Chist. Khim. Veshch. 18 66

Page 356: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 35 1

[9901 Oganesyan. A.A., Atanesyan, A.K., Babadzhanyan. K.P., Gukasyan,

A.V.:Armen. Khim. Zhur. 36 (12) (1983) 759

I9911 Ogawa: J. Appl. Phys. J a p a n 26 (10) (1957) 526

[992] Oguni, M., Angell, C.A.: J. Phys. Chem. 87 (1983) 1848

19931 Ohyama, Y., Futaki, K.: Bull. Chem. SOC. Japan 28 (1956) 243

19941 Oka. T.. Yoshioka, T., Koide. T. et al.: Urol. Int. 42 (1987) 89

I9951 Okhrimenko. T.M.. Kozhoeva. S.T.. Kuznetsov. V.A.. Klimova. A.Yu.,

Barsukova, M.L.: Kristallografiya 37 (5) (1992) 1309

[996] Olgun, Ozden. Atalay, Suheyda: J. Fac. Sci. Ege Univ., Ser. A 14 (2)

(1991) 39

[997] Onna, K., Goya, S.: Hawaiian Sugar Technol. Rept. 22 (1963) 9

[998] Oomori, T., Kitano, Y.: Bull. Coll. Sci. Univ. Ryukyus 39 (1985) 57

[999] Orekhov. M.A.. Timokhova, L.B.: Zhur. Prikl. Khim. 42 (1969) 1926

[lOOOI Orlov, P.P.: Zhur. Rossii. Fiz.- Khim. Obsch. 28 (18961 714

[ 100 11 Orlov. P.P.: Izv. AN SSSR. otd. fiz.-mat. nauk 6-7 (1929)

[lo021 Orlova. M.P.: Uch. Zap. Tomsk. Univ. 29 (1959) 46

[lo031 Osichkina. R.G., Ismailov. F.Kh.: Dokl. Akad. Nauk UzSSR 6 (1989)

35

[lo041 Osther, P.J.. Bollerslev. J.. Norgard. J.R.. et al.: Scanning Microsc.

8 (1994) 63

[lo051 Ostrowski. C.: Cem.-Wapno-Gips 7 (1980) 179

(10061 Otani. S.: Bull. Chem. SOC. Japan 33 (1960) 1543

[lo071 Otani. S.: Bull. Chem. SOC. J a p a n 33 (1960) 1549

[lo081 Otani, S., Miura. M.: J. Sci. Hiroshima Univ. A - 11, 25 (2-3) (1963)

145

Page 357: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

352 1 1 . References to Tables

[lo091 Otani, S., Miura, M.: J. Sci. Hiroshima Univ. A-I127 (1963) 1 1

[lolo] Otterson. D.: J. Chem. Phys. 33 (1960) 227

[loll] Owczarek, I.. Sangwal. K.: J. Crystal Growth 99 (1-4, pt.2) (1990)

827

[ 10 121 Pach. L.. Hrabe. 2.. Komarneni. S.. Roy, R.: J. Mater. Res. 5 (1 2)

(1990) 2928

[lo131 Packter. A.. Alleem, A.: Krist. Tech. 15 (1980) 1249

I10141 Packter. A.. Alleem, A.: Crystal Res. Technol. 16 (1981) 33

[lo151 Packter, A.. Jakubowski, J.: Crystal Res. Technol. 20 (1985) 1063

[lo161 Packter. A.. Panesar. K.S.: Crystal Res. Technol. 20 (1985) 749

[lo171 Packter. A., Saunders, D.F.: J. Chem. SOC. A (1970) 725

[lo181 Pakhomov, V.I., Medvedev. A.V., Linde, S.A.. Sil'nitskaya, G.B..

Churbakov, V.F.: Izv. Akad. Nauk SSSR, Neorg. Mater. 20 (1 0) (1984)

1715

[ 10191 van Panhuys-Sigler. S.. Hartman, P., Woensdrest, C.F.: J. Crystal

Growth 87 (4) (1988) 554

[lo201 Panfilov, V.V., Khamskii. E.V.: Khim. Tekhnol. (Kiev) 6 (1984) 51

[lo211 Panov. V.I.. Novikov, A.N.. Prisyazhnyuk: Tr. NII Osn. Khim. 20

(1969) 50

[lo221 Panov. V.I., Novikov. A.N., Prisyazhnyuk: Tr. NII Osn. Khim. 20

(1969) 58

[lo231 Papazova-Dencheva, K., Njrvlt. J . , PekBrek, V., Sipek, M.: Collect.

Czech. Chem. Commun. 55 (1990) 1175

Page 358: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11 . References to Tables 353

I10241 Papoff, I.G., Sherp, G.W.: J. Meteorol. 16 (1959) 288

I1 0251 Pawlowska-Kozinska. D .: Ziemie Rzadkie Fosfogipsach Pochodz.

Apatytowego, Politech. Krakow (1990) 33

I10261 Pencheva. J.. Kirkova, E.. Djarova. M.: Kinetic approach of investi-

gation of inclusion into the system ZnC20, . 2 H 2 0 - Cu(I1) -

C20,2- - H 2 0 . in: Industrial Crystallization '90 (ed. Mersmann. A.), p.

677. Munich 1990

I10271 Perelman. S.. Strakhova, J.: Zhur. Khim. Prom. 15 (1938) 26

[lo281 Perez B.C.L.. Carrazana. R.. Gonzalez, 0.: Cent. Azucar 11 (1)

(1984) 121

[lo291 Peters, R.W.. Ku, Y., Bhattacharyya, D.. Chen, L.F.: Crystal size

distribution of sulfide precipitation of heavy metals, in: Industrial

Crystallization '84 (eds. S.J. Janeiie. E.J. de Jong). p. 11 1. Elsevier.

Amsterdam 1984

[ 10301 Peters, R.W.. Chang. T.K.: Effect of sodium hexametaphosphate on

the particle size distribution of calcium carbonate under constant

pH precipitation conditions. in: Industrial Crystullization '84 (eds.

JanEiie. S.J., de Jong. E.J.), p. 67, Elsevier. Amsterdam 1984

[lo311 Peters, R.W.. Chen. P.H.. Chang. T.K.: CaC03 precipitation under

MSMPR conditions, in: Industrial Crystallization '84 (eds. S.J. Janeiie,

E.J. de Jong). p. 309, Elsevier. Amsterdam 1984

110321 Peters, R.W., Young, K.. Dibakar. B.. Lih-Fen Chen: Crystal size

distribution of sulfide precipitation of heavy metals, in: Industrial

Crystalllzation '84 (eds. JanEi:iC. S.J.. de Jong, E.J.). p. 11 1. Elsevier.

Amsterdam 1984

Page 359: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

354 11. References to Tables

110331 Petinelli, J.C.: Rev. Inst. Fr. Petrol. 34 (5) (1979) 771

110341 Petrenko. D.S.. Arabova, L.M.: Koks i Khim. 1967 (2) 22

110351 Phillips, V.A.. Kolbe. J.L.. Opperhauser. H.J.: J. Crystal Growth 41

(1977) 228

110361 Phoenix, L.: Brit. Chem. Eng. 11 (1) (1966) 34

110371 Phoenix, L.: Sch. Sci Rev. 48 (1966) 173

110381 Pinaev, V.A.: Zhur. Prikl. Khim. 37 (1964) 898

110391 Ploss, R.S.: Science 144 (3615) (1964) 169

[lo401 Podolinskii, V.V., Drykin, V.G.: Zhur. Fiz. Khim. 53 (1979) 2092

110411 Podozerskaya, E.A., Khamskii, E.V.: Zhur. Prikl. Khim. 43 (1970)

736

110421 Podozerskaya, E.A.. Khamskii. E.V.: J. Appl. Chem. USSR 48 (3)

(1975) 512

110431 Pol. Pat. 46 248 (1962)

I10441 Pol. Pat. 50 990 (1966)

110451 Pol. Pat. 120 673 (1976); CA 90 057434

[lo461 Polesitskii, A.E.: Tr. Gos. Rad. Inst. 2 (1933) 86

[ 10471 Polikarpov, V.A., Laryutina. E.A.: Khim. Prom-st (Moscow) (1978)

687: CA89 199837

110481 Pompe. S., Lehmann, H.A.: 2. anorg. allg. Chem. 505 (1983) 201

[lo491 Popolitov, V.I.: Neorg. Mater. 29 (5) (1993) 663

[lo501 Popovitz-Biro. R.. Gavish, M., Lahav, M.. Leiserowitz. L.: Ice

nucleation by monolayers of aliphatic alcohols, in: MakromoL Chem,

MacromoL Symp. 46,3rd Europ. Con, Organ Org. Thin Films. 19

Page 360: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 355

[lo511 Portnov, V.N., Belyustin, A.V.: Kristallografiya 10 (1965) 362

110521 Portnov, V.N.: Kristallografiya 11 (1966) 916

[lo531 Portnov, V.N.: Kristallografiya 12 (1967) 530

110541 Postnikov. V.A.. Obukhov. A.V.: Teor. Osn. Khim. Tekhnol. 10 (5)

(1976) 778

110551 Potop. P., et al.: Rev. Chim. (Bucharest) 12 (1961) 3

[ 1056) Pozdnyakov. P.G.: Kristallografiya 1 (2) (1956)

110571 Pozdnyakov. P.G.: Kristallografiya 1 (3) (1956) 356

[lo581 Poznyak, V.S.. Chesnokov, L.I.: Vestsi Akad. Nauk. BSSR, Ser. Fiz.-

Mat . Nauk 1 (1980) 116

110591 Pradhan, R.M.. Ganguli, P.: Indian J. Technol. 27 (5) (1989) 237

110601 Prasad, P.B.V.: Crystal Res. Technol. 20 (11) (1985) 1527

110611 Prasad. P.B.V., Sato, K.: Crystal Res. Technol. 21 (1986) 835

110621 Prasad. P.B.V.: Crystal Res. Technol. 25 (12) (1990) K301

110631 Prisekina, T.N.. Driker, B.N.. Prostakov. S.M.. Morgunova. S.A.:

Deposited doc. SPSTL 618 KHP-D81 (1981)

110641 Prostakov, S.M.. Driker, B.N., Rempel, S.I.. Belyaeva. N.A.:

Deposited doc. SPSTL 339 KHP-D8 1 (198 1)

110651 Przytycka, R.: Nukleonika 12 (1967) 747

[lo661 Punin, Yu.0.: Uch. Zap. Leningr. Gos. Univ. 409 (1982) 143

110671 Punin, Yu.0.. Petrov, T.G.: Kristallografiya 13 (1968) 922

[lo681 Pytkowicz. R.M.: h e r . J. Sci. 273 (1973) 515

ll0691 Rabkin, M.A.. et al.: Zhur. Prfkl. Khim. 24 (1951) 1257

Page 361: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

356 11. References to Tables

I10701 Radhakrishnan, S.. Saini. D.R.: J. Crystal Growth 129 (1-2) (1993)

19 1

[ 107 11 Radhakrishnan, S., Schultz. J.M.: J. Crystal Growth 116 (3-4)

1992

I10721 Raistrick, B.: Disc. Faraday SOC. 5 (1949) 234

I10731 Rakityanskaya. O.F.: Praci Odess. Univ.. prir. nauki 152 (8) (1962)

22

I10741 RaksBnyi, K., Voszka. R.: Krist. Tech. 4 (1969) 227

[ 10751 Ramanaiah. K.V., Varma, K.B.R.: Indian J. Pure Appl. Phys. 21 (7)

(1983) 388

[lo761 Randolph, A.D., Drach, G.W.: J. Crystal Growth 53 (1981) 195

I10771 Randolph, A.D.. Koonitz, S . : Effect of habit and nucleation modifiers

in crystallization of borax, in: 69th Ann Meet, NCHE. Chicago 1976

[lo781 Randolph, A.D., Puri, A.D.: AICHE J. 27 (1) (1981) 92

[lo791 Randolph, A.D.. Vaden. D.E., Stewart. D.: AICHE Symp. Ser. No.

240.80 (1984) 110

(10801 Rao. C., Rama Rohan, Mehrotra, P. Narain: J. Appl. Chem.

Bfotechnol. 28 (9) (1978) 608

[ l O 8 l ] Rashkovich, L.N.. Shekunov. B.Yu.: Rost Krist. 18 11990) 124

[ 10821 Raskol, W.: Thesis, Techn Hochschule Darmstadt 1959

I10831 Ratinov, V.B., Todes. O.M.: Sb. tr. Nauch.-Issl. Inst. zhelezobeton.

izdel stroit. i nerud. mater. 4 (1961) 154

I10841 Ratner. A.P.: J. Chem. Phys. 1 (1933) 789

Page 362: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1 . References to Tables 357

110851 Ratsimba, B.: Cristallisation du bitartrate de potassium aparttr de

solutions hydroalcoolques - extension des rbsultats , Thesis. Toulouse

1990

I10861 Reddy, M.M.: J. Crystal Growth 41 (2) (1977) 287

I10871 Reddy, M.M.. Nancollas. G.H.: Desalination 12 (1973) 61

I10881 Reddy. M.M.. Wang, K.K.: J. Crystal Growth 50 (2) (1980) 470

110891 Redoute. M., Boistelle. R.. Kern, R.: Compt. rend. 260 (1965) 2167

I10901 Redoute, M.. Boistelle. R.. Kern, R.: Compt. rend. 262 (1966) 1081

I10911 Reid. D.S.. Foin. A.T., Lem. C.A.: Cryo-Lett. 6 (3) (1985) 189

I10921 Reinders. W.: 2. physik. Chem. 77 (1911) 677

I10931 Reitemeier. R.F.. Buehrer, T.F.: J. Phys. Chem. 44 (1940) 535

110941 Remoissenet. M.. et al.: Krist. Tech. 5 (1970) 535

I10951 Retgers. J.W.: 2. physik. Chem. 9 (1892) 267

110961 Retgers, J.W.: 2. physik. Chem. 9 (1892) 304

I10971 Retgers, J.W.: 2. physik. Chem. 12 (1893) 582

I10981 Retgers. J.W.: 2. physik. Chem. 12 (1893) 614

I10991 Richardson, C.F., Johnson, M.. Sharma. V.K.. Sallis. J.D..

Nancollas, G.H.: Mater. Res. SOC. Symp. Proc. 174 (1990) 87

Ill001 Rigterink. France: J. Phys. Chem. 42 (1938) 1079

I11011 Rinaudo. C.. Franchlni-Angela. M.: Rend. SOC. Ital. Mineral. Petrol.

40 (2) (1985) 285

11 1021 Rinaudo. C., Franchini-Angela, M., Boistelle. R.: J. Crystal Growth

89 (1988) 257

Page 363: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

358 11. References to Tables

111031 Ristie, R., Shekunov. B.Yu.. Sherwood. J.N.. Wojciechowski, K.:

Studies of the relationship between morphological changes and

growth rate dispersion of small crystals of sodium chlorate grown

from pure and sodium dithionate doped solutions, in: Industrial

Crystallization '93, VoL II (ed. Rojkowski. 2.). p. 4-021, Warsaw 1993

[ 11041 l3istie.R.. Sherwood. J.N.. Wojciechowski. K.: J. Phys. Chem. 97 (41)

(1993) 10774

I11051 Rtzkalla. E.N.: J. Chem. Soc.. Faraday Trans. 1 79 (1983) 1657

(11061 Roberts, K.J., Sherwood. J.N., Taggart. A.M.: Influence of solvent on

crystallization of normal alkanes C18H38 to C,,H,, from model

hydrocarbon solvents. in: Industrial Crystallization '93, VoZ. I (ed.

Rojkowski. 2.). p. 3-063. Warsaw 1993

(11071 Robertson, W.G., Peacock, M., Marshall, W.R., Knowles. F.: Clin.

Sci . Mol. Med. 47 (1974) 13

[ 1 1081 Robertson, W.G., Peacock, M., Nordin. B.E.C.: Clin. Chim. Acta 43

(1973) 31

11 1091 Robinson, A.: Sb. Novye Issled. PO Krfstallogr. i Kristallokhim. fl

(1950) 80

Illlo] Rodgers. A.L., Ball, D., Harper, W.: Scanning Microsc. 8 (1994) 71

[ 1 1 111 Rogalla, W., Schmalzried, H.: Ber. Bunsenges. Phys. Chem. 72

(1968) 615

Ill121 Rohani. S.. Ng. B.: Chem. Eng. Sci. 47 (2) (1992) 367

11 1131 Rohatgi. P.K.: Bull. Inst. Int. Froid, Ann. 3 (1966) 69

11 1141 Rohatgi. P.K.. et al.: Ind. Eng. Chem.. Fundam. 7 (1968) 72

111151 Rolfe, P.F.: Desalination 1 (1966) 359

Page 364: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1 . References to Tables 359

I1 1161 Rolfs. J., Lacmann, R.: Kristallwachstum von KNO, mit und ohne

Fremdstoff. Int. Arbeitssitz. Kristallisation GVC-VDI, Aachen 1989

11 171 Rolfs. J.. Lacmann. R.: The influence of additives on the growth of

KNO, in aqueous solution. in: Arbeitssitz. KristaZZisation GVC-VDI.

Delft 1992

[1118] Rome de Lisle, J.B.: Cristallographie 1 (1783) 379

[ 11 191 Romer, W., Sidorowicz, A.: Rocznikl Chem. 39 (1965) 1145

(1 1201 Rosca, B., Simon, Z . , Policec, S . , Roth, G., Sayti, L.: Rev. Chim.

(Bucharest) 29 (10) (1978) 941

[1121] Rosinski. J., Lecinski. A.: J. Phys. Chem. 85 (1981) 2993

111221 van Rosmalen, G.M.: Scale prevention. PhD Thesis, Delft Univ.

198 1

ill231 van Rosmalen. G.M., Bennema. P.: Characterization of additive

performance on crystallization. in: ICCG-A Sendai (1989) 2 1A CO 1

[1124] van Rosmalen, G.M.. Bennema, P.: J. Crystal Growth 99 91-4, (Pt.2)

(1990) 1053

[1125] van Rosmalen. G.M., Daudey, P.J., Marchee, W.G.J.: in: Industrial

Crystallization '81 (eds. JanCie, S.J.. de Jong. E.J.). p. 147, North-

Holland, Amsterdam 1982

[11261 van Rosmalen, G.M., van der Leeden. M.C.: Crystal Res. Technol. 17

(1982) 627

111271 van Rosmalen, G.M., van der Leeden, M.C.. Gouman. J.: Kristall u.

Tech. 15 ( 1980) 1269

111281 van Rosmalen, G.M., van der Leeden. M.C.: Crystal Res. Technol. 17

(1982) 627

Page 365: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

360 1 1 . References to Tables

[ I 1291 van Rosmalen, G.M., Witkamp, G.J.. d e Vreugd, C.H.: Process

Technol. Proc. 6. Ind. Cryst. (1989) 15

[1130] Roquez, H., Girou. A.: Water Res. 8 (1974) 907

El1311 Rousseau. R.W.. Yin, M.S.: Inhibition of contact nucleation and

growth of secondary nuclei in solutions of mixed solutes, in:

IndusMal Crystallization '81 (eds. JanW, S.J., de Jong, E.J.). p. 71,

North-Holland, Amsterdam 1982

[ 11321 Rousseau, R.W.: Agglomeration in well-mixed crystallizers. Intern.

Symp. on Prepar. of Funct. Mat. and CrystaZL. Osaka 1988

[1133] Rousseau, R.W., Woo, R.: Effects of operating variables on

potassium alum crystal size distributions, 84th Natl. AICHE

Meeting, Atlanta 1978

[ 11341 Rousseau, R.W.. Zumstein. R.S.. Turchi. C.: Effects of surface-

active agents on the batch crystallization of L-isoleucine. in:

Industrial Crystallization '87 (eds. N p l t , J., ZBEek. S. ) , p. 507.

Academia Prague and Elsevier Amsterdam 1979

[1135] Rowe: ColourIndex, 1924

[1136] Royer, L.: Compt. rend. 198 (1934) 185. 585

[ 1 1371 Rozin. K.M., Vasil'eva. L.V. Portnov. O.G., Morozov, V.I., Kozlova,

N.S.: Izv. Akad. Nauk SSSR, Neorg. Mater. 24 (51 (1988) 843

[ 11381 Ruan. D.. Zhang. D.. Zhang. T.. Hu, 9.: Huazhong Shifan Daxue

Xuebao, Ziran Kexueban 23 (1) (1989) 57

[1139] RubinovB. E.: Fyz. Easopis Slov. AV 17 (1967) 174

11 1401 Rudenko, M.I., Egorycheva, G.V.: Khimiya i Khim. Tekhnol.. Sintez i

Issled. Plenkoobraz. Veshch. i Pigm. 81

Page 366: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1. References to Tables 36 1

I11411 Runova. E.N., Neupokoev, G.I.: Depos. Doc. SPSTL 227 KHP-D81

(1981)

[ 1 1421 Ryall. R.L.. Harnett. R.M., Marshall, V.R.: Clinica Chim. Acta 112

(1981) 349

I11431 Ryan, B.F.. Macklin, W.C.: J. Crystal Growth 2 (1968) 337

(11441 Rychljr, R.: Chem. listy 66 (1972) 853

11 1451 Sadokhina. L.A.. Zimina, G.V., Poletaev, I.F.: Zhur. Prikl. Khim. 59

(1986) 2679

11 1461 Safiullln. N.S.. Solyanik, S.K.: Khlm. Prom. Ukr. 1966 (6) 8

[ 11471 Saidov. M.S.. Avezmuratov, A., Koshchanov. E.A., Atakhanov.

Sh.S.: Uzbek. Fiz. Zhur. 4 (1991) 79

(11481 Sakagudi, W.: Kogyo Kyokai Sci. 66 (8) (1958) 165

(11491 Sakata. Y.. Takenouchi, K.: Agr. Biol. Chem. 27 (1963) 610

ill501 Salimi. M.H., Heughebaert. J.C., Nancollas. G.H.: Langmuir 1 (1)

(1985) 119

(11511 Samakaev. R.Kh., Akhmetov. V.N.. Dytyuk, L.T., Dyatlova, N.M.:

Zhur. Neorg. Khim. 34 (2) (1989) 513

11 1521 Samakaev. R. Kh.. Dyatlova. N.M.: Zhur. Vses. Obsch. Mendeleeva

3 0 U ) (1985) 118

[11531 Samakaev, R.Kh., Dyatlova, N.M., Driker. B.N., Dyutyuk. L.T.:

Kompleksony i Khelatoobraz. Sorbenty, M (1982) 98

111541 Samakaev. R.Kh.. Dyatlova, N.M., Driker. B.N., Dyutyuk. L.T.:

Kompleksn. Ispol'z. Miner. Syr'ya 10 (1983) 76

Page 367: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

362 1 1 . References to Tables

[ 1 1551 Samakaev. R.Kh., Dyatlova, N.M.. Driker. B.N., Dyutyuk. L.T.,

Tsirul'nikova. M.V.: Zhur. Neorg. Khim. 29 (1984) 2146

I1 1561 Samakaev. R.Kh., Dyatlova, N.M., Driker. B.N., Dyutyuk, L.T.,

Yaroshenko, G.F.: Zhur. Neorg. Khim. 28 (1983) 1607

111571 Samakaev. R.Kh., Nikolaeva, L.S.. Dyatlova. N.M., Evseev, A.M.:

Zhur. PriM. Khlm. 57 (1984) 2237

I11581 Sangwal, K.: J. Crystal Growth 128 (1-4) (1993) 1236

ill591 Sano. C., Nagashima. N.. et al.: The effect of additives on the crystal

habit of monosodium L-glutamate monohydrate. ICCG - A Sendai

(1989) 21A C02

[I1601 Sapre, R.K.: Indian J. Technol. 6 (1968) 219

11 16 11 Sarig, S.: in: 5th Symposium on Industrial Crystallization, CHISA,

Prague 1972

11 1621 Sarig, S.: J. Crystal Growth 24/25 (1974) 338

I11631 Sarig, S., Ben-Yosef, N., Ginio, 0.. Maklab. D.. Weitz. A,: J. Phys.

Chem. 80 (1976) 253

11 1641 Sarig, S.. Glasner. A., Tandy. S.: CEPAS '78, Abstract Book (ed. A.E.

Nielsen). p. 57, University Copenhagen

I11651 Sarig, S.. Kahana, F.: J. Crystal Growth 35 (1976) 145

I1 1661 Sarig, S.. Kahana, F., Fuchs, J., Karasikov. W., Azoury. R.: J.

Crystal Growth 87 (4) (1988) 43 1

I11671 Sarig, S.. Kahana. F.: J. Crystal Growth 35 (1976) 145

I11681 Sarig, S.. Kahana. F., Leshem. R.: Desalinatlon 17 (1975) 215

11 1691 Sarig, S., Leshem, R.. Ben-Yosef, N.: Chem. Eng. Sci. 31 (1976)

1061

Page 368: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to TQbZes 363

[1170] Sarig. S.. Mullin. J.W.: Ind. Eng. Chem.. Proc. Des. Devel. 19 (3)

(1980) 490

I11711 Sarig. S.. Mullin. J.W.: J. Chem. Technol. Biotechnol. 32 (4) (1982)

525

111721 Sarig, S.. Raphael, M.: J. Crystal Growth 16 (1972) 203

111731 Sarlg. S.. Raphael, M.. Ron, A.: Israel J. Chem. 11 (5) (1973) 635

[1174] Sarig, S., Tartakovsky, F.: Israel J. Chem. 12 (1974) 905

(11751 Sarig. S.. Zalcman. H., Greidinger, D.: Chem. Eng. Sci. 32 (1977)

643

111761 Sasaki, N., Minato. H.: Mineral. J. 11 (8) (1983) 365

111771 Sasaki. T., Yokotani, A., Fujioka. K.. Nishida. Y.. Yamanaka, T.,

Yamanaka. Ch.: Japan J. Appl. Phys.. Part 2. 26 (11) (1987) 1769

[1178] Satapathy. B.K., Vidyasagar. P.: Light Met. (Warrendale) 105 - 13;

CA 113 (24) 214695

(11791 Sat0.A.. Umetsu, Y., Kubota. N.: Iwate Daigaku Kogakubu Kenkyu

Hokoku 41 (1988) 119

111801 Sattarov, S.A., Yuldashev, U.Y., Reiterov. V.M.. Trofimova, L.M.: Fiz.

Tverdogo Tela 32 (4) (1990) 1256

11181) Sawada. K., Ogino. T.. Suzuki, T.: J. Crystal Growth 106 (2-3)

(1990) 393

I1 1821 Sayan, P.. Kruse. M., Ulrich. J.: Die Wirkung von Flockungsmitteln

auf die Kristallisatlon von BorsSure aus wassriger LGsung. in:

Arbeltssitz. KristaZUsation GVC-VDI. Delft 1992

Page 369: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

364 11. References to Tables

[ 11831 Sayed. S.A., Larson. M.A.: Univ. Microfilms No. DA8221224; CA 98

0 18669

[1184] Schierholtz, O.J.: Canad. J. Chem. 36 (1958) 1057

[1185] Schiller. E.L.: Light Met. (Warrendale, USA) 185

11 1861 Schimmel. G.: Chem.-1ng.-Tech. 38 (1966) 1101

111871 Schlain. D.. Proter. J.D., Ravitz, J.F.: Ind. Eng. Chem. 41 (1949)

834

111881 Schliephake. D.. Ekelhot, B.: Beitrag zur vollstandigen Berechnung

der Kristallisationsgeschwindigkeit der Saccharose in reinen und

unreinen Lijsungen, in: Meeting GVC - Krtstallisation, Natternberg

1984

111891 Schneider, H.: Vest. Moskov. Univ.. Ser. 4:Geol. 2 (1987) 78

1 1 1901 Scholz, R.: Die SchichtkristaEZisation als thermisches Trennuerfahren,

Fortschr.-Ber. VDI, Reihe 3,347. VDI-Verlag Dfisseldorf 1993

11 1911 Schroeder, J.. Skudlarska. W.. Szczepanik, A., et al.: The influence

of surface-active agents on gypsum crystallization in phosphoric

acid solutions. in: Industrial Crystallization (ed. Mullin, J.W.). p. 263.

Plenum Press, New York 1976

11 1921 Schulte, Mattler: Brennstoff-Chem. 23 (1942) 103, 115

11 1931 Scott, G., Thompson, R.W.. Dixon, A.G., Sacco, A. Jr.: Zeolites 10

(1) (1990) 44

11 1941 Scrutton. A.: J. Separ. Proc. Technol. 6 (1985) 26

I1 1951 Sears, G.W.:J. Chem. Phys. 29 (19581 979

11 1961 Sears, G.W.: Proc. Int. Con$ Growth and Perfectionof Crystals, New

York 1958. p. 441

Page 370: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 365

11 1971 Sears, G.W.: U S Dept. Corn.. Office Tech. Serv.. AD 255 093 (1961)

111981 Segalova. J.. et al.: Dokl. AN SSSR 114 (1957) 594

11 1991 Segalova, F.E.: Dokl. AN SSSR 133 (1960) 630

[1200] Seifert, H.: Chem.-1ng.-Tech. 27 (1955) 135

112011 Senarmont, H.: Ann. Chim. 41 (1854) 319

[ 12021 Sendfjarevie, A., BreEevie. L., Fiiredi-Milhofer. H.: The influence of

organic acid ions on the crystallization of calcium hydrogen

phosphate dihydrate, in: Industrial Crystallization’81 (eds. JanEiC.

S.J.. de Jong, E.J.). p. 321. North-Holland, Amsterdam 1982

I12031 Sengupta, S. Kar, T.. Gupta, S.P.S.: J. Mater. Sci. Lett. 9 (3) (1990)

334

I12041 Serbina, N.N.. Dubinskii. V.G.: Zhur. Fiz. Khim. 5 (1934) 190

112051 Shadman. F.. Randolph, A.D.: AICHE Journal 24 (5) (1978) 782

[lZOS] Shanmugham. M., Gnanam. F.D., Ramasamy, P.: Proc. Nucl. Phys.

Solid State Phys. Symp. 24 C (19821 355

112071 Shanmugham, M.. Gnanam, F.D.. Ramasamy. P.: J. Mater. Sci. 19

(9) (1984) 2837

112081 Shanmugham, M.. Gnanam. F.D., Ramasamy. P.: J. Mater. Sci. Lett.

4 (6) (1985) 746

112091 Sheeham, M.E., Nancollas, G.H.: J. Urol. (Baltimore] 132 (1) (19841

158

112101 Sherman, B.S.. Sobel. A.E.: J. Dental Res. 44 (1965) 454

[12111 Shestakov. V.A.: Koks i Khim. 5 (1986) 33

Page 371: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

366 11. References to Tables

[1212] Shimizu, K., Kubota, N., Kawasaki, T.: Kagaku Kogaku Rombunshu

5 (2) (1979) 143

112131 Shimlzu, K., Kubota, N., Kawakami. T.: Kagaku Kogaku Ronbunshu

5 (4) (1979) 433

112141 Shimfzu, K., Kubota. N.: Kagaku Kogaku Ronbunshu 12 (6) (1986)

737

112151 Shimomura, 0.. Suzuki, M.: J. Crystal Growth 98 14) (1989) 850

I12161 Shimon. L.J.W.. Valda, M.. Addadi. L., Lahav. M., Leiserowitz, L.:

J. Am. Chem. SOC. 112 (17) (1990) 6215

(12171 Shinohara, T., Saito. H.: J a p a n Kokai Tokkyo Koho 90233518

I12181 Shirotsuka, T., et al.: Waseda Appl. Chem SOC. Bull. 29 (1962) 74

[12191 Shirotsuka, T., et al.: Kagaku Kogaku 28 (1964) 221; Chem. Eng.

Japan 2 (1964) 182

I12201 Shissaki. T., Murotani, H.: Bull. SOC. Salt Sci. J a p a n 13 (1959) 261

112211 Shitov. G.G.. Dovzhenko. N.P.: Khim. Tekhnol. (Kiev) 2 (1984) 20

[ 12221 Shor. S.M.: Effects of Surjiactants and Inorganic Additiues onNucleation

Kinetics In Mixed Suspension Crystallization, PhD Thesis, Iowa State

Univ.. Ames 1970

(12231 Shor. S.M., Larson. M.A.: Effect of additives on crystallization

kinetics, in: 62-nd Ann. AICHE Meeting, Washington 1969

112243 Shor. S.M., Larson, M.A.: Chem. Eng. Progr. Symp. Ser. 67 (1 10)

(1971) 32

112251 Shrivastava. A.K.. Bansigir. K.G.: J. Mater. Sci. Lett. 3 (1984) 349

112261 Shyu, L.J.. Nancollas, G.H.: Croat. Chem. Acta 53 (2) (1980) 281

Page 372: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 367

112271 Sidhu. H., Gupta. R., Thind. S.K.. Na th , R.: Urol. Res. 14 (1986)

299

I12281 Sikdar, S.K.. Ore, F., Moore, J.H.: AICHE Symp. Ser. 76 (193) (1980)

8 2

112291 Sikdar, S.K.. Ore, F.. Moore, J.H.: 84th Natl. AICHE Meeting,

Atlanta, Georgia 1978; AICHE Symp. Ser. No. 193, 76 (1979) 82

[12301 Simon, B.. Grassi, A., Boistelle. R.: J. Crystal Growth 26 (1974) 77

[1231] Simon, B.. Grassi, A., Boistelle, R.: J. Crystal Growth 26 (1974) 90

[ 12321 Singewald. A.: Kristallisation. VDI 1969

I12331 Singh. R.P.. Gaur, S.S., White, D.J.. Nancollas, G.H.: J. Colloid

Interface Sci. 118 (2) (1987) 379

(12341 Singh. R.P.. Gaur. S.S.. White, D.J.. Nancollas. G.H.: J. Colloid

Interface Sci. 118 (2) (1987) 965

1 12351 Singh. N.B., Gottlleb, M.. Henningsen. T., Hopkins. R.H., Mazelsky,

R.. Glicksman, M.E., Coriell. S.R., Santoro. G.J.. Duval, W.M.B.:

J. Crystal Growth 123 (1-2) (1992) 221

[1236] Slack, J.G.: Water Res. 14 (1980) 799

112371 SlBma. I.: Collect. Czech. Chem. Commun. 56 (1991) 2142

[12381 Slavnova. E.N.: Thesis, Moscow Univ. 1956

[12391 Slavnova, E.N.: Dokl. AN SSSR 106 (1956) 1007

112401 Slavnova. E.N.: Rost Kristallov 1 (1957) 149

112411 Slavnova. E.N.: Rost Kristallov 2 (1959) 44

I12421 Slavnova. E.N.: Kristallografiya 5 (1960) 89

112431 Slavnova. E.N., et al.: Kristallografiya 13 (1968) 497

Page 373: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

368 1 1 . References to Tables

I12441 Sloat, Menzies: J. Phys. Chem. 35 (1931) 2005

[1245] Slovenc. M.. TeZak. B.: Croat. Chem. Acta 41 (1969) 15

[1246] Smallwood, P.V.: Colloid and Polymer Scl. 255 (1977) 994

112471 Smirnova, E.P., Kravchuk. I.F.. Tikhomirova, E.I.: Crystal Res.

Technol. 20 (1985) 1189

[12481 Smith, B.R.. Alexander, A.E.: J. Colloid Int. Sci. 34 (1970) 81

112491 Smith, B.R., Sweett. F.: J. Colloid Interface Sci. 37 (1971) 612

I12501 Smodis, M.. Livk. I., Pohar. C.: Measurements of solubility, meta-

stable zone width and conductivity of aqueous SPB solutions for the

precipitation design purpose, in: CHISA 93, F2.46 , 3196, Praha

1993

I12511 Smorodin, V.Y.: Aerosol Sci. 25 (1994) 1

[12521 Smythe, B.M.: Austral. J. Chem. 20 (1967) 1097

112531 Solans-Huguet. J.. Recker. K.: Ann. Rep. SOC. Esp. de Fis. y Quim.

56A (1965) 24 1

I12541 Solans-Huguet. J.. Font-Altaba. M.: Rost Kristallov 8 (1968) 81

f12551 Solomon, D.H., Rolfe. P.F.: Desalination 1 (1966) 260

112561 Sohnel, 0.. Costa-Bauza. A.. Velich, V.: J. Crystal Growth 126 (2-3)

(1993) 493

11257) Sbhnel. 0.. Garside. J.: Precipitation: Basic principles and industrial

applications, Butterworth-Heinemann. Oxford 1992

I12581 Sbhnel. 0.. HandliiovB. M., Macenauer, J.: Crystal Res. Technol. 25

(12) (1990) 1367

112591 Sohnel, 0.. Mullin. J.W.: J . Crystal Growth 60 (21 (1982) 239

Page 374: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1 . References to Tables 369

[1260] S6hnel. 0.. sole, Z., solc. M.: Chem. Listy 66 (19721 984

[I2611 Spangenberg. K.: 2. Krist. 59 (1924) 383

[I2621 Speidel. R.: Neues Jahrb. Miner., Monatsh. (1961) 81

I12631 Steinike. U.: 2. anorg. allg. Chem. 317 (19621 186

[ 12641 Steinike. U.: ID. Symposium on Industrial Crystallization. Osti n.L.

1965

I12651 Steinike. U.: Krist. Tech. 1 (1966) 113

I12661 Steinike, U.: Krist. Tech. 1 (1966) 285

I12671 Steinike, U.: Krist. Tech. 3 (1968) K 5

I12681 Steinike, U.: Krist. Tech. 5 (1970) K19

[12691 Steinike. U.: Krist. Tech. 6 (1971) 7

I12701 Steinike. U.: Krist. Tech. 6 (19711 17

112711 Stepanova. N.S.. Belyustin, A.V.: Fiz. Krist. (19791 107

I12721 Stepanova. N.S.. Portnov, V.N.. Fridman. S . S . . Fishman. Yu.M..

Belyustin. A.V.: Rost Krist. 12 (1977) 129

[ 12731 Stepanski, M.: Zur Wachstumskinetik in der Uisungskristallisation,

Thesis, Univ. Bremen 1990

[ 12741 Stepanski. M.. Yuan. J.J.. Zhang. S.B.: Das Wachstumsverhalten

von Kristallen unterschiedlicher Oberfl&henqualit2ten bei wiissriger

Losung unter dem Einfluss von Fremdstoffen. in: Int. Arbeitssitz.

Kristallisatlon GVC-VDI, Aachen 1989

112751 Stoilova. D.. Aslanian, S.: Influence of the Jahn-Teller effect on the

cocrystallization of metall(I1) formates and Cu(HC00I2.2 H 2 0 , in:

Industrial Crystallization '87 (eds. N*lt, J.. ZhEek, S.), p. 271.

Academia Prague and Elsevier Amsterdam 1979

Page 375: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

370 11. References to Tables

(12761 van Straten, H.A., Schoonen, M.A.A., Verheul, R.C.S.. de Bruyn.

P.L.: J. Colloid Interface Sci. 106 (1) (1985) 175

[1277] StubiCar. N.. Markovic’,B., Tonejc, A., StubiEar. M.: J. 3rystal

Growth 130 (1-2) (1993) 300

(12781 StubiEar. N., SCerbak. M., StubiCar. M.: J. Crystal Growth 100

(1990) 261

112791 SubotiC. B.: Croat. Chem. Acta. 53 (3) (1980) 425

I12801 Suhara. T.. Esumi. K.. Meguro. K.: Bull. Chem. SOC. Japan 56

(1983) 2932

(12811 Sullivan, J.M., Kohler. J.J.. Grinstead, J.H.Jr.: J. Chem. Eng. Data

36 (1) (1991) 77

[1282] Surender, V., Rao K.: Bull. Mater. Sci. 16 (2) (1993) 155

(12831 Sutor. D.J.: Brit. J. Urol. 41 (1969) 171

( 12841 Suzuki, Kakuo: J. SOC. Chem. Ind. Japan 44 (1941) 1081

(12851 Suzuki, Kakuo: J. Soc. Chem. Ind. Japan 46 (1943) 32

I12861 Suzuki, Kakuo: J. Soc. Chem. Ind. Japan 48 (1945) 39

(12871 Svanoe, H.: Chem. Eng. Progr. 55 (5) (1959) 47

I12881 Svoronos. D.R.: Compt. rend. 269 (2) (1969) 133

(12893 Swillens. E.: Chem. Techn. 20 (1968) 677

112901 Synowiec, J.: Przem. Chem. 58 (4) (1979) 180

[1291] Synowiec, J., Pabis-Machej, J.: Przemysl Chem. 39 (3) (1960) 161

[ 12921 Syromyatnikov, N.G.. Trofimova. L.A.: Radiokhimiya 9 (1967) 251

I12931 Sheftal, N.N.: Rost Kristallov 1 (1957) 5

Page 376: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1 . References to Tables 37 1

I12941 Shterberg, A.A.. Pozdnyakov, P.G.: Avtor. svid. 101 179 (1952)

I12951 Shvarcvald. A.I.: Zhur. Prikl. Khim. 40 (1967) 2452

I12961 Skrtie. D.. FSlredi-Milhofer. H., Markovie. M.: J. Crystal Growth 80

(1) (1987) 113

112971 Skrtid, D., Fiiredi-Milhofer, H.. MarkovlC. M.: The effect of some

aminoacids on the crystallization of calcium oxalate trihydrate. in:

Industrial Crystallization '87 (eds. N p l t , J . , ZgEek. S.), p. 627.

Academia Prague and Elsevier Amsterdam 1979

[12981 Skrtie. D., Filipovie-Vincekovle. N.: J. Crystal Growth 88 (1988)

3 13

[ 12991 Skrtib. D.. Filipovib-Vincekovid. N., Fiiredi-Mflhofer, H.: J. Crystal

Growth 114 (1-2) (1991) 118

I13001 SkrUC, D.. Fillpovid-Vencekovie. N., Babie-IvanEle, V.: J. Crystal

Growth 121 (1-2) (1992) 197

I13011 Skrtie, D.. Fiiredi-Mflhofer, H.: J. Crystal Growth 129 (3-4) (1993)

449

113021 Stempel, S . , JelenEik, V., Kalkb, V., Njvl t . J.: Chem. prfimysl 19

(1969) 467

113031 Tadros. M.E.. Mayes. I.: J. Colloid Interface Sci. 72 (2) (1979) 245

I13041 Taganovich. D.D.: Koks i khfm. (71 (1957) 31

I13051 Tai, C.Y.: J. Chin Inst. Chem. Eng. 16 (2) (1985) 179

I13061 Tai, C.Y.. Pan, R.K.: J. Chin. Inst. Chem. Eng. 16 (4) (1985) 379

I13071 Tai. C.Y.. Wu. J.F.. Leu, L.P.: J. Chem. Eng. Japan 25 (6) (1992)

74 1

Page 377: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

372 11. References to Tables

I13081 Tak Hyon-Ki, Wilcox, W.R.. Cooper, S.M.: J. Colloid Interface Sci.

77 (1) (1980) 195

I13091 Tamaki. Y.: Kogyo Kagaku Zashi 68 (1965) 416

I13101 Tanaka. Y., Matsuoka. M.: J. Crystal Growth 99 (1990) 1130

I13111 Tandy. S.. Glasner. A., Sarig, S.: J. Phys. Chem. 85 (1981) 1841

113121 Telkes. M.: Ind. Eng. Chem. 44 (1952) 1308

I13131 Teltow, J.: 2. physik. Chem. 195 (1950) 197

I13141 Teodossiev. N., Kirkova. E.: On the preparation of high-purity boric

acid by crystallization, in: Industrial Crystallization '81 9eds. JaneiC,

S.J., de Jong, E.J.), p. 155. North-Holland, Amsterdam 1982

[ 13 151 Teiak. D.. Hrust. V.. Heimer, S. . TeZak. B., Wrischer, M.: Croat.

Chem. Acta 53 (1980) 397

I13161 Than, A.: Coal Carbon. 1937111) 173

I13171 Than, A.: Coal Carbon. 1938(2) 27

I13181 Thau: Gas- u. Wasserfach 68 (1925) 824

(13 191 Tikhonov. V.A.. Borlnskaya. E.P.: Nauch. Zap. Lvovsk. Politekh.

Inst. 23 (1955) 47

I13201 Tilliakodzhaev. Kh.N.. Osichkina, R.G.: Depos. Doc. VINITI 4239-80

(1980)

I132 11 Tffliakodzhaev. Kh.N.. Osichkina, R.G.: Depos. Doc. VINITI 4241-80

(1980)

I13221 Tilmans. Yu.Ya: Zhur. Obsch. Khim. 10 (1940) 1631

I13231 Tilmans, Yu.Ya.: Zhur. Obsch. Khim. 11 (1941) 869

I13241 Tilmans, Yu. Ya.: Zhur. Obsch. Khim. 16 (1946) 3

Page 378: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 373

[1325] Tilmans. Yu. Ya.: Zhur. Obsch. Khim. 18 (1948) 1752

[ 13261 Tilmans, Yu.Ya.: Kz-lstaZZizatsiya sofei iz uodnykh rastuorou u prisutstuii

primesei raznykh ionou, Izd. AN Kirgiz. SSR. Frunze 1957

(13271 Timan. B.L.. Smirnova, O.M.. Velikhov, Yu.N.. Kislomed. A.N..

Ivkova. T.I.: Zhur. Fiz. Khim. 63 (1989) 2092

I13281 Tlselius. H.G.: Brit. J. Urol. 53 (1981) 470

[13291 Tjioe. T.T., van der Woude, H.. Verbiest, J.. Durville, P.F.M.. van

Rosmalen. G.M.: Crystal Res. Technol. 21 (1986) 1287

[1330] Togari. K.. Togari, S.: J. Sci. Fac. Hokkaido Univ. 9 (1959) 55

[13311 Tomasid, B., Mohanty. R.. Tadros. M.. Estrin. J.: J. Crystal Growth

75 (1986) 329

[ 13321 TomaSie, V.. Popovie, S. . Kallay. N.: Colloid Polymer Sci. 266 (5)

(1988) 449

[1333] Tomson, M.B.: J. Crystal Growth 62 (1983) 106

[13341 Topie. M.: Croat. Chem. Acta 37 (1965) 125

[1335] Topie, M.: Croat. Chem. Acta 37 (1965) 133

113361 Torgesen, J.L.. et al.: Res. Nat. Bur. Stand. 236 (1963)

[1337] Torgesen. J.L., Strassburger, J.: Science 146 (3640) (1964) 53

[13381 Treivus, E.B.: Usp. Khim. 61 (7) (1992) 1224

I13391 Treivus. E.B., Lysyuk, G.N.: Mineral. Zhur. 6 (2) (1984) 79; CA 101

063807

[1340] Treivus. E.B.: Kristallografiya 29 (1984) 1037

[13411 Treivus. E.B.: Kristallografiya 30 (2) (1985) 365

113421 Treivus, E.B., Kim Su Cher: Kristallografiya 37 (3) (1992) 801

Page 379: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

374 11. References to Tables

113431 Trendafelov. D., Balarev, C.: Commun. Dept. Chem. Bulg. Acad.

Sci. I/2 (1968) 73

I13441 Triboulet. P., Cournll. M.: Mater. Chem. Phys. 24(3) (1990) 221

I13451 Triboulet. P.. Cournil. M.: J. Crystal Growth 118 (1-2) (1992) 231

113461 Troost, S.: J. Crystal Growth 3-4 (1968) 340

I13471 Tsuchiya. Y.N.: Kogyo Kagaku Kyokaishi 22 (1961) 138

I13481 Tsusue, A.. Holland, H.D.: Geochim. et Cosmochim. Acta 30 (1966)

439

[13491 Tyutyunnikova. T.V.: Kristallogafiya 11 (1966) 338

113501 Tyutyueva. N.N.. Serebrennikova. G.M., Ermolina, N.S.: Khimiya i

Tekhnol. Osobo Chistykh Veshch. dlya Volokon. Optikl. M (1980) 83

113511 Uhler, A.D.: Univ Microfilms No. DA8421276 : CA 102 12-101332

I13521 Ulrich. J.: Purification by crystallization of organic compounds, in:

Industrial CrystalUzatIon '87 (eds. Nplt , J.. ZgEek, S . ) , p. 585,

Academia Prague and Elsevier Amsterdam 1979

I13531 Ulrich, J., K6nig. A.: Chem.-1ng.-Tech. 63 (1) (1991) 55

1 13541 Ulrich, J., Kruse, M., Stepanski, M.: On the growth behaviour of

NaCl crystals with and without additives, in: 7th Intemat. Symp. on

Salt, Kyoto 1992, Proc. II , p. 209, Elsevler. Amsterdam 1993

I 13551 Ulrich, J., Stepanski. M.: Auswirkung von Fremdstoffzusatzen auf

das Wachstumsverhalten von K,SO, Kristallen unterschiedlicher

Oberfllchenbeschaffenheit. Int. GVC-VDI Meeting Kristallisation,

Burghausen

Page 380: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 375

(13561 Ulrich. J., Stepanski, M.: The effect of additives on the growth

behavior of reaction diffusion controlled growing crystals, in:

Industrial Crystallization '87 (eds. NJivlt, J.. ZBCek, S..), 253, Elsevier.

Amsterdam and Academia, Prague 1989

I13571 Ulrich, J., Stepanski. M.: Crystal growth of potassium sulphate

with and without additives, in: Intern Mineral Proc. Congr., Dresden

1991. p. 187

[1358] U S Pat. 1 919 707 (1933)

I13591 US Pat. 2 516 420 (1950)

[13601 US Pat. 2 616 788 (1952)

[1361J US Pat. 2 631 084 (1953)

[13621 U S Pat. 2 642 335 (1953)

I13631 U S Pat. 2 656 248 (19531

I13641 U S Pat. 2 723 183 (1955)

I13651 U S Pat. 2 732 334 (1956)

I13661 U S Pat. 2 782 097 (1957)

I13671 U S Pat. 2 920 937 (1960)

I13681 U S Pat. 2 954 282 (1960)

113691 U S Pat. 2 959 465 (1960)

I13701 U S Pat. 3 109 705 (1963)

I13711 U S Pat. 3 112 175 (1963)

I13721 U S Pat. 3 123 439 (1964)

I13731 U S Pat. 3 152 863 (1964)

I13741 U S Pat. 3 183 263 (1965)

113751 U S Pat. 3 187 039 (1965)

Page 381: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

376 11. References to Tables

I13761 US Pat. 3 223 478 (1965)

I13771 U S Pat. 3 230 038 (1966)

(13783 U S Pat. 3 240 558 (1966)

113793 US Pat. 3 248 182 (1966)

(13801 US Pat. 3 272 593 (1966)

(13811 US Pat. 3 290 158 (1966)

(13821 US Pat. 3 352 906 (1967)

I13831 US Pat. 4 046 576 (1979)

I13841 US Pat. 4 183 901 (1980)

I13851 US Pat. 4 183 908 (1980)

113861 U S Pat. 4 220 630 (1980)

I13871 US Pat. 4 374 102 (19831

I13881 US Pat. 4 578 086 (1986)

I13891 U S Pat. 4 709 104: CA 108 (141 115017

I13901 US Pat. 4 737 352: CA 108 (241 207154

113911 USSR Pat. 117 370 (1959)

(13921 USSR Pat. 208 699 (1968)

[13931 USSR Pat. 305 135

I13941 USSR Pat. 618 363 (1978)

I13951 USSR Pat. 632 651 (1979)

I13961 USSR Pat. 633 807 (1978)

I13971 USSR Pat. 969 667 (1982)

113981 Vaganov. V.P., Amelina. E.A., Shchukin. E.D.: Kolloid. Zhur. 42 (41

(1980) 736

Page 382: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 377

[ 13991 Valyuskaya, E.A., Makin, V.I.: Precipitation of hydroxides and

hydroxocarbonates of copper and nickel in the presence of hydrogen

peroxide, in: Industrial ClystaUization '90 (ed. A. Mersmann). p. 305.

Munich 1990

[1400] VanEura, J.. Sipek. M.. Njvlt. J.: Chem. prPlmysl35 (1985) 190.

368

I14011 Vater, H.: 2. Krlst. 30 (1899) 485

114021 Vedenaeva. N.E.. Slavnova. E.N.: Tr. Inst. Kristallogr. AN SSSR 7

(1952) 135

[ 14031 Velikhov. Yu.N., Demirskaya. O.V., Pulyaeva. I.V.: Kristallografiya

37 (2) (1992) 509

[1404] Venzhega, A.G., Gorokhov, N.N.: Koks i Khim. (10) (1978) 28

[ 14051 Verdoes, D.. Landschoot. R.C.: Crystallization and detergents, in:

ICCG-A, Sendai (1989) 21A C07

[1406] Verdoes, D., Landschoot. R.C.. van Rosmalen. G.M.: The influence

of additives on the crystal size distribution of CaCO, in batch

precipitation experiments. in: Industrial Crystallization '90 (ed.

Mersmann, A.), p. 621, Munich 1990

I14071 Vermeulen, A.C.. Geus. J.W.. Stol. R.J.. de Bruyn, P.L.: Colloid

Interface Sci. 51 (1975) 449

[14081 Viola, M.S.. Botsaris. G.D.. Gold, D.: The paradoxical behavior of the

crystallization of KC1 in the presence of PbC1,. 68th Ann. AlCHE

Meeting. Los Angeles 1975

Page 383: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

378 1 1 . References to Tables

I14091 Viola, M.S., Botsaris, G.D.. Szeto. K.K.: Effect of impurities on

contact nucleation, 2nd World Congress Chem. Eng., Montreal

198 1

114101 VlasBk, G., SiSoviEovB. M.: Czech. J. Phys. B 19 (1969) 1418

[ 141 11 Vlasova. G.M.: Tsvet. Met. (9) (1972) 30

I14121 Voigt. H., Emons, H.H.: Freiberger Forschungsh. A 600 (1979) 99

I14131 Voyzelle, R.: NASA Acces. No. N66-14172. Rept. No. CARDE-TN-

1674/65

I14141 d e Vreugd, C.H., Stajcer. D., Verdoes. D., van Rosmalen, G.M.: The

effect of small biodegradable additives on growth and batch

recrystallization of calcium sulfate, in: Industrial Crystallization '90

(ed. Mersmann. A.), p. 643. Munich 1990

I14151 d e Vreugd. C.H., Witkamp. G.J.. van Rosmalen, G.M.: The influence

of lanthanide ions on the growth kinetics of gypsum a n d the uptake

of cadmium, in: Industrial CrystaZZization '90 (ed. Mersmann. A.), p.

649, Munich 1990

114161 de Vries. R.C.: J. Am. Ceram. SOC. 42 (1959) 547

(14171 de Vrles, R.C., Sears, G.W.: J. Chem. Phys. 34 (1961) 616

114181 Wachi, Y.: Kogyo Kagaku Zashi 59 (1956) 403

114191 Wada. T., Matsunaga, K.. Matsuo, Yo.: Bull. Chem. SOC. Japan 57

(2) (1984) 557

I14201 Wada. T., Matsuo. Yo.: Bull. Chem. SOC. Japan 57 (2) (1984) 561

114211 Waku, S.: Kogyo Kagaku Zashi 64 (1961) 272

I14221 Walcott. A.J.: Amer. Mineral. 2 (1926) 221. 259

Page 384: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1 . References to Tables 379

[ 14231 Waldeck. H., Baier. E.: Krist. Tech. 4 (1969) 57

[14241 Waldeck. H.: Krist. Tech. 4 (1969) K1

[14251 Walker, A.C.: J. Franklin Inst. 250 (6) (1950) 481

114261 Walker, J.B.A., Heywood. B.R., Mann, S.: J. Mater. Chem. 1 (5)

(1991) 889

114271 Wang. J.K.. Ouyang, S.L.. Zhang. Y.M.: Research on assessment of

addition agent of crystallization with dynamic method, in: Industrial

CrystaZZfzation '90 led. Mersmann, A.), p. 683, Munich 1990

[14281 Wang, M.L.. Chou, Ch.K.: J. Chin. Inst. Chem. Eng. 18(2)(1987)

103

[14293 Wang, L.. Wan, X., Liao, H.. Wu, S.: Kinetics of calcium carbonate

crystallization in ammonium sulfate solution. Intern. Symp. on Prepar.

of Funct. Mat. and CrystaZL., Osaka 1988

[14301 Wang. W., Yang, Z., Zhang. L.. Gu, M.: Shuichuli Jishu 15 (6) (1989)

370

114311 Wang,Y.S.. Zheng. M.N.. Bennema. P.. Liu.Y.S.. Zhu. R.. Ye, G.F..

Bian. J., van Enckevort, W.J.P.: J. Phys. D: Appl. Phys. 25 (11)

(1992) 1616

I14321 Wang, 2.. Zhao, 9.. Zhang. L.. et al.: Gaodeng Xuexiao Huaxue

Xuebao 11 (11) (1990) 1232

I14331 Wang, Z., Guo. X.. Zhang, L., Xu, B., Zhao, M.: Gaodeng Xuexiao

Huaxue Xuebao 13 (12) (1992) 1564

[14341 Wasabro, J.. Teizo, W.: J. Chem. SOC. Japan, Ind. Chem. Sect. 60

(1957) 515

Page 385: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

380 11. References to Tables

I14351 Watanabe. Y., Saito. T.: Effect of nucleation agent for solidification

of CaC12 . 2 H 2 0 , Intern Symp. on Prepar. ofFunct. Mat and CystaZL.

Osaka 1988

I14361 Watanabe. Y.. Saito, T.: Kagaku Kogaku Ronbunshu 17 (1) (1991)

48

I14371 Watanabe. Y., Saito. T., Nakai, T.: Acceleration effect of a

nucleation agent on the crystallization of salt hydrate as a heat

storage material, in: Industrial CrystaZZizaffon '87 (eds. N p l t , J.,

ZriEek. S . ) , p. 141, Academia Prague and Elsevier Amsterdam 1979

I14381 Weber. Th.: Gldckauf 75 (1939) 890

I14391 Weijnen, M.P.C.. Marchee. W.G.J.. van Rosmalen. G.M.:

Desalination 47 (1983) 8 1

114401 Weijnen. M.P.C., van Rosmalen, G.M.: The role of additives and

Impurities in the crystallization of gypsum, in: Indusbial

Cystallization '84 (eds. JanEie, S.J., de Jong, E.J.). p. 61, Elsevier,

Amsterdam 1984

I14411 Weijnen. M.P.C.. van Rosmalen. G.M., Bennema. P.: J. Crystal

Growth 82 (3) (1987) 528

I14421 Weinland. L.A.. France, W.G.: J. Phys. Chem. 36 (1932) 2832

(14431 Weis, J.: Krist. Tech. 6 (1971) 69

I14441 Weissbuch, I.. Addadi, L., Leiserowitz. L.. Lahav, M.: J. Am. Chem.

SOC. 11 0 (1988) 56 1

I14451 Weissbuch. I . , Berkovic. G.. Leiserowitz, L., Lahav. M.: J. Am.

Chem. SOC. 112 (1990) 5874

Page 386: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

11. References to Tables 38 1

[14463 Weissbuch, I., Frolow, F.. Addadi. L.. Leiserowitz, L. Lahav, M.: to

be published

[14471 Wenk, W.: 2. Krist. 47 (1910) 124

114481 Whetstone, J.: Disc. Faraday Soc. 5 (1949) 261

[1449] White. E.T., Bateman, S.H.: Light Met. (Warrendale. Pa.) (1988)

157

[ 14501 Whiting, M.J.L.: PhD Thesis, University of London 1976

114511 Wied, J.I.. Syrojezkina. J.W.: Cement Wapno Gips 20/32 (7) (1965)

181

[ 14521 Williams. R.J.E.: Erde 13/M/67

I14531 Winzer. A.: Freiberger Forschungsh. A 600 1979) 121

[ 14541 Winzer, A.: Freiberger Forschungsh. A 600 1979) 137

I14551 Winzer. A.. Emons, H.H.: Freiberger Forschungsh. A600 (1979) 73

[ 14561 Winzer, A., Emons, H.H.. Jugel, B.: Freiberger Forschungsh. A600

(1979) 31

[ 14571 Winzer. A., Emons, H.H.. Burger, V.: Freiberger Forschungsh. A 600

(1979) 61

I14581 Winzer. A., Quasdorf. G.. Kemp. G.: Mezhvuz. Sb. Nauch. Tr.

Leningrad. Tekhnol. Inst. 6 (1982) 140

I14591 Wireco. F.C.. Shimon, L.J.W.. Frolow. F., Berkovitch-Yellin, Z . ,

Lahav. M.. Leiserowitz, L.: J. Phys. Chem. 91 (2) (1987) 472

[ 14601 Witkamp, G.J., van der Eerden. J.P.. van Rosmalen. G.M.: J.

Crystal Growth 102 (1 990) 28 1

[ 14611 Witkamp, G.J., van Rosmalen, G.M.: Incorporation of cadmium and

aluminium fluoride in calcium sulphate, in: Industrial Crystallization

Page 387: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

382 1 1 . References to Tables

'87 (eds. Nfrvlt, J., ZaEek. S. ) . p. 265. Academia Prague and Elsevier

Amsterdam 1979

[ 14621 Witkamp, G.J., van Rosmalen, G.M.: Reduction of cadmium uptake

in calcium sulfate hydrates by complexing agents, in: Industrial

Crystallization '90 (ed. Mersmann, A.), p. 689, Munich 1990

[ 14631 Wohlk, W.: Beispiele technischer Kristallisation 1970, leaflet

Standard-Messo-Duisburg

114641 Wolf, F.. Holzweissig, J.: Chem. Techn. 20 (1968) 477

[14651 Wolf, R.H.H., TomaZie, V.. sipalo-Zuljevie, L.: Croat. Chem. Acta 50

(1977) 155

I14661 Wray, J.L.. Daniels, F.: J. Am. Chem. SOC. 79 (1957) 2031

I14671 Xu, Zh.. Wang. S . , Shi, Ya.. Yang, B.: Huadong Huadong Ueyuan

Xuebao 17 (2) (1991) 129

114681 Xyla. A.G.. Koutsoukos, P.G.: J. Chem. SOC., Faraday Trans. I , 83

(1987) 1477

1 14691 Xyla, A.G., Koutsoukos, P.G.: J. Chem. SOC.. Faraday Trans. I , 85

(1989) 3165

[14701 Yamada, T., et al.: Nagoya Kogyo Daigaku Gakuho 10 (1958) 176

I14711 Yamada. T., Hiyama. E.: Nagoya Kogyo Daigaku Gakuho 13 (1961)

295

I14721 Yamada, T., et al.: Sekko To Sekkai 78 (1965) 440

[ 14731 Yamakami, T.: Tohoku Daigaku Kagaku Keisoku Kenkyusho

HOkOkU 26 (2-3) (1977) 173

114741 Yamamoto. T.: Sci. Pap. Inst. Chem. Res. 35 (1939) 263

Page 388: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1 . References to Tables 383

114751 Yamamoto. H., Hasegawa. H.. Harano. Y.: J. Chem. Eng. Japan 14

(1) (1981) 59

114761 Yamamoto. H.. Takeda. Y., Harano. Y.: Kagaku Kogaku Rombunshu

8 (4) (1982) 423

[1477] Yamazaki, Y., Enomoto. Y.. Nakano. T., Toyokura, K.: Design

method of purification process in a stirred vessel crystallizer, in:

Industrial CrystaZUzation '87 (eds. N@lt, J., ZBEek. S.), p. 561,

Academia Prague and Elsevier Amsterdam 1989

[1478] Yamazaki. Y.. Kashima. K.. Toyokura. K.: Behaviour of ice crystal

layer and trapped impurities in small pores, in: Industrial

Crystallization '84 (eds. N@lt, J., ZBCek, S.), p. 375, Academia

Prague and Elsevier Amstardam 1989

114791 Yavorovskli. I.G.: Kristallografiya 12 (1967) 1104

[1480] Yoshl-Yama. T., et al.: J. Phys. SOC. Japan 24 (1968) 1019

[ 14811 Yuan, J.J., Stepanski, M.. Ulrich, J.: Chem.-1ng.-Tech. 62 (8) (1990)

645

[ 14821 Yudina, T.B.: Elektr. Svoi. Tverd. Tela i Faz. Prevrashch. (1978)

111

[14831 Zagidullin, S.Kh.: Tr. LENNIIIGIPROKHIMa 27 (1977) 126

[14841 Zagrodzki, S., Marczynski. J.: Gaz. Cukrown. 71 (1963) 158

[14851 Zagrodzki. S.: Gaz. Cukrown. 77 (1969) 265

[1486] Zagrodzki, S., Niedzielski. 2.: Krist. Tech. 4 (1969) 407

[14871 Zamyatchenskii. P.A.: Zap. Imper. Akad. Nauk, fiz.-mat- otd. 24 (8)

(1909) 1

Page 389: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

384 11. References to Tables

[ 14881 Zamyatchenskii, P.A.: Zap. Imper. Akad. Nauk, fizz.-mat- otd. 30 (3)

(1911) 1

[ 14891 Zamyatchenskii, P.A.: Zap. Imper. Akad. Nauk, fiz.-mat- otd. 33 (4)

(1914)

I 14901 Zamyatchenskli. P.A.: Zap. Imper. Akad. Nauk. flz.-mat- otd. 33 (5)

(1914)

I14911 Zaorska. H.: Int. Sugar J. 70 (1968) 99

[ 14923 Zaorska. H.: Influence of non-sugar and colouring substance

quantity on the sucrose crystallization rate in impure solutions, in:

Industrial Crysiallization'78 (eds. de Jong. E.J.. JanEie. S.J.), p. 517,

North-Holland, Amsterdam 1979

114933 Zapolskii. A.K.: Ukr. Khim. Zhur. 33 (1967) 805

114941 Zel'manov. V.G.. Cherkez, G.S., Tubolkin. A.F.: Zhur. Prikl. Khim.

52 (1979) 2247

[ 14951 Zhang. S.B.. Stepanski. M., Yuan, J.J., Ulrich, J.: Investigations of

crystal growth rates in presence of different additives. in: lndustrlal

CrystaUizatlon '90 (ed. Mersmann. A.), p. 695, Munich 1990

114961 Zhang. S.. Xie, Ya.. Shi. 2.: Guisuanyan Xuebao 12 (3) (1984) 264

[ 14971 Zheng. D.H.. Budz, J . , Jones, A.: J. Crystal Growth 79 (1986) 658

[1498] Zheng. D.H., Budz. J.. Jones, A.G.. Mullin. J.W.: J. Crystal Growth

79 (1 -3.Pt.2) (1986) 658

114991 Zhmurova. 2.1.. et al.: Krlstallografiya 8 (1963) 936

[ 15001 Zhmurova, 2.1.. et al.: Colloq. Int. Centre Nat. Rech. Sci. 152 (1965)

329

Page 390: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

1 1 . References to Tables 385

1 15011 Zhmurova, 2.1.. Khaimov-Malkov, V. Ya.: Kristallografiya 15 (1970)

136

[1502] Zhmurova. 2.1.. Khaimov-Malkov. V. Ya.: Kristallografiya 15 (1970)

142

115031 Zhukova. L.A., Chikov. V.S.: Dokl. TSKHA 223 (1977) 155

115041 Zielinski S.: The effect of phosphoric acid composition on the

growth of gypsum crystals, in: Industrial Crystallization '81, (eds.

JanEie, S.J., de Jong, E.J.), p. 329. North-Holland, Amsterdam

1982

[1505] Ziller, K.H., Ruprecht, H.: Drug Dev. Ind. Pharm. 14 f15-17) (1988)

2341

115061 Zipp. G.L., Rodriguez-Hornedo. N.: J. Crystal Growth 123 (1-2)

(1992) 247

115071 Zosimovich, D.P., et al.: Zhur. Prikl. Khim. 38 (1965) 979

[1508] Zumstein, R.C., Rousseau, R.W.: Ind. Eng. Chem. Res. 28 (1989)

334

[ 15091 Zumstein. R.C., Rousseau. R.W.. Turchi, C.: Process Technol. Proc.

6 (1989) 507

I15101 ZBCek. S.. N p l t , J.: Chem. prPlmysl36 (1986) 410

115111 ZBEek, S., N p l t . J.. Mullin. J.W.: Collect. Czech. Chem. Commun.

52 (1987) 72

115121 Ziak. J.: Chem. prPlmysl35 (1985) 252

I15131 Ziak. J., Npl t , J.: Chem. prPlmysl32 (1982) 582

I15141 Ziiie, B.. Davey. R.J., Zegarac. S. , Pastor. T., Ristie. R., Napijalo,

M.M.: J. Crystal Growth 49 (4) (1980) 675

Page 391: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)
Page 392: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

Admixtures in Crystallization Jaroslav Njlvlt, Joachim Ulrich

0 VCH Verlagsgesellschaft mbH, 1995

12. Subject Index

A

active site 11.14.17.19.20,21

activity 8.13

additive 6.7.8.12.13.22.25.27.28

adhering mother liquor 45.46.49.53

adsorption 11,13.17,18,19,20.22,25.

30.34,41.42,43

adsorption isotherm 13.20

agglomeration 20

agitation 4.41

anomalous mixed crystals 34.43

attachment energy 25

B

bond 19.25.29.30.32

- chain 25

- energy 17.25

boundary layer 30

C

chirality 29

collision 9.1 1

collision breeding 9

colloids 11.34,44,45

computer simulation 5.28.33.48

concentration 6,7.10,13,15,19.2 1,

23.25.35.35.36.38,

39.40.41.42.45

coordination complexes 10

counter-current recrystallization 50

critical nucleus 11.13,14,17.18

cross-current flow 53

crystalgrowth 4.8.11.16,18,19.20,

21.22.23.24.28.29,

30.3 1,32.33.40

crystal lattice 4.15.19.20.2 1.22.23,

25.26.29.30.36.37.

4 1.42

crystal surface 8.1 1,13,14,15.16,17.

18,19.20.2 1.22.25,

26.28.29.30.32.33,

37.38.41.42.43.46

D

dielectric constant 3 1

diffusion 11.19.20,22,23.28,30,38.

39.40

diffusional regime 40

diffusion washing 54

Page 393: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

388 12. SuQJectIndex

dislocation 32

- mechanism 32.33

dissolution 7.8,14,19.43

- rate 8

distribution 5,10.34.36,37,38,39,40.

41,43

- coefficient see d. constant

- constant 37.38.39.43.47.48,

49

dust particles 44

dyestuffs 7.2 1

E

effectiveness 7.8.28

electric

- charge 14

- field 10.25.28

embryo 1 1

equilibrium 1 9,24,3 7.38.49

F

fractals 23

G

geometric similarity 10.22

growth center 4,17,19,20, see also

growth site

growth rate 7.8,16,17,18,20.21.22,

24.3 1

- restrainer 15.19

- site 17.20.21.29

H

habit 18.28.3 1,37

heteroclusters 10

heterogeneous nucleation 9.12,13

heteronucleus 2 1

heteroparticles 13

homogeneous dfstribution 38.40.41

- coefficient 38,41

-law 38.49

homogeneous nucleation 9,10,11

hydration 12,28

hydrogen bonding 30.31

I

impurities 5,6,12.34.37.38.4 1,43.44.

45.48.47.48.49.53.54

impurity concentration gradient 15

induction period 12

inhibiting effect 10

inorganic additives 7.10,14,19

interface 4.23,30,31

Page 394: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

12. SubjectIndex 389

interphase 9,13,14.22.23.28,39

isodimorphism 34.36

Isomorphous inclusion 34.35.36.37.

38,41,43

K

Kinetic regime 39

L

lattice 4.15.19.20.21.22,23,25,26,

29.30.36.37.41.42

- dimensions 21,23,26,36

logarithmic distribution 37.38.40

M

macroadmixture 6

macrocomponent 5.6.7.8.10.1 1.12.

14,19.21,22.29.

3 1.34.35.36.37.38.

39.40.41.42,44.45.

49

materials balance 45

mechanical inclusions 34.44

melt crystallization 54

melting point 37

microcomponent 5.6.3 7,38,39.40,

41.49.52

migration regime 40

miscibility 34,35.36,41.42

mother liquors 44.45,46.49,52,53

N

Nernst distribution 38.45

non-stationary precipitation 40

nucleatton 4. 9.10.12.13,14,15,19.

20.28,32

- mechanism 12.13.14.33

- rate 10.12,13.14

nucleus

- critical 11.13.17.18

- two-dimensional 18,20,22

0

organic additives 7.8.21.25

overlapping faces 24

P

pHvalue 7.22

polarity 31

polyvalent cations 7

primary nucleation 9

purification 4.4953

purity 4,5,3 4.3 7.49

R

recycling 45.46

- ratio 45,46,48,49

Page 395: [Jaroslav nyvlt, joachim_ulrich]_admixtures_in_cry(book_zz.org)

390 12. Subject Index

roughness 14.23.33

S

secondary nucleation 9.13,14

sectorial crystal growth 43.44

semistationary coprecipitation 39

separation 4.6.34.37.38.45.48

shape 4, 7,8.23.25.29,36.43,31,37

size 4.7,8.10.11,13.14.17,18,20,21,

26.36.42

solid phase 9.23,34,35,38,39,40,49

solid solution 34,36.37.41

solubility 1 2.22.32.35.3 6.3 7.42

solvent 4.6.30.3 1,32,33.34.37,45.

53

-mixed 31.32

stationary coprecipitation 39

steric arrangement 25

structure 11,16,21,23.25,29,31,32,

36.41.43

supersaturation 4,9,10,12,14,20,2 1,

22

surface 8,9.11,13,14.15,16.17,18.

19.20.22.25.26.28.29.30.32,

33.37.38.42.46

- active substances 7.13,22

surface - diffusion 19,20,22,30

- energy 13.17,20.21,24.31

- entropy factor 3 1.32

- integration 22.32

- nucleation 32

- tension 10

sweating 53

T

tailor-made admixtures 5.25,29

temperature 4.8.36,3 7,4 1.43,53

V

viscosity 11,23.30

W

washing 43,53.54

well fitting position 28