30
TECNOLÓGICO NACIONAL DE MÉXICO INSTITUTO TECNOLÓGICO DE ZACATEPEC INGENIERÍA ELECTROMECÁNICA INSTRUMENTACIÓN KB EQUIPO 3 DOCENTE: JORGELI RIQUELME ARIZMENDI CASTILLO JAHEN JUAN R. MARTINEZ LÓPEZ BRANDON MENDOZA CORAZÓN ADRIAN VALDEZ BAHENA ADOLFO 12090929 12090954 12090939 12090927 PRÁCTICA 5 IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Embed Size (px)

Citation preview

Page 1: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

TECNOLÓGICO NACIONAL DE MÉXICO INSTITUTO TECNOLÓGICO DE ZACATEPEC

INGENIERÍA ELECTROMECÁNICA INSTRUMENTACIÓN – KB – EQUIPO 3 DOCENTE: JORGELI RIQUELME ARIZMENDI CASTILLO JAHEN JUAN R. MARTINEZ LÓPEZ BRANDON MENDOZA CORAZÓN ADRIAN VALDEZ BAHENA ADOLFO

12090929 12090954 12090939 12090927

PRÁCTICA 5

IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Page 2: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Práctica 5. Implementación y caracterización de un sistema de medición de corriente.

INGENIERÍA ELECTROMECÁNICA

RESUMEN

En esta práctica se implementó un sistema de medición de corriente de C.D. utilizando el

sensor ECS712ELCTR-05B-T, arduino Uno y un LCD para la visualización de datos. Según los

datos obtenidos mediante distintas mediciones se realizó la caracterización del sensor

tomando en cuenta los valores obtenidos con respecto a una referencia o patrón (un

amperímetro de gancho de una marca comercial), se observó cómo ciertas variables

como variables la temperatura, el voltaje y la corriente afectan las mediciones y la

calibración de los instrumentos.

Page 3: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Práctica 5. Implementación y caracterización de un sistema de medición de corriente.

INGENIERÍA ELECTROMECÁNICA

OBJETIVOS

Implementar un sistema de medición de corriente para medir la corriente que circula a

través de un circuito eléctrico.

Caracterizar un sistema de medición de corriente, midiendo el comportamiento del

mismo en un ambiente controlado.

MARCO TEÓRICO

Un sensor es un dispositivo diseñado para recibir información de una magnitud del exterior

y convertirla en otra magnitud, la cual se pueda cuantificar y manipular. Normalmente

estos dispositivos se encuentran realizados mediante la utilización de componentes pasivos

(resistencias variables, PTC, NTC, LDR, etc... todos aquellos componentes que varían su

magnitud en función de alguna variable), y la utilización de componentes activos. En la

actualidad existen sensores para casi cada una de las magnitudes a medir y de diferentes

tipos de construcción y forma de funcionamiento, materiales, existen sensores de

proximidad, de humedad, de temperatura, de presión, etc.; pero todos ellos siempre se

rigen bajos las mismas especificaciones y por sobre todo la mayorías de ellos tienen una

características que al ser revisadas pueden darnos el conocimiento de que tan exacto

puede llegar a ser el instrumento que estamos utilizando en el momento.

El sensor de corriente ACS712 es un sensor de efecto Hall, devuelve una tensión

proporcional a la corriente que circula a través de sus terminales. En la figura 1 se muestra

la conexión:

Page 4: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Práctica 5. Implementación y caracterización de un sistema de medición de corriente.

INGENIERÍA ELECTROMECÁNICA

Siguiendo este esquema al final podremos leer la corriente que circula entre los terminales

IP+ e IP- a través del pin 7, el cual estará a una tensión entre 1.5V y 3.5V. Para esta práctica

hemos utilizado el sensor ACS712ELCTR-05B-T capaz de medir entre -5A y +5A, el cual tiene

una sensibilidad de 185mV/A. Esto quiere decir lo siguiente, para una corriente de -5A el

pin7 estará a 1.5V e irá subiendo 185mV por cada amperio que suba la corriente circulante

hasta alcanzar los 3.5A, que corresponderán una corriente de +5A. Esto se ve más claro en

la siguiente gráfica:

Entonces, conectando el pin7 de este sensor a una entra analógica de nuestro arduino

podremos saber que corriente está consumiendo la carga conectada entre los terminales

IP+ e IP-. En el Anexo 1 se encuentra la datasheet del sensor ACS712ELCTR-05B-T.

Por otro lado, la caracterización de un sensor se basa en calcular por medio de medidas

lo más exactas posibles la ecuación característica del comportamiento del mismo, siendo

esta la que determina la razón de cambio de la variable de salida respecto a la de

entrada, al igual para poder hallar los diferentes conceptos que tienen los sensores como

su: linealidad, zona muerta, precisión, error, repetitividad, reproductibilidad, sensibilidad y

resolución.

Para ello procederemos a explicar cada una de las características a medir en un sensor y

sus respectivos usos:

Linealidad: Es la máxima desviación de la curva de calibración con respecto a la línea

recta por la que se ha aproximado. Habitualmente se suele expresar en forma de % con

respecto al alcance. También se conoce como linealidad o error de linealidad.

Page 5: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Práctica 5. Implementación y caracterización de un sistema de medición de corriente.

INGENIERÍA ELECTROMECÁNICA

Existen dos factores que la linealidad puede determinar y que son vitales para la

caracterización de nuestro sensor como lo son:

Histéresis: Es la distancia entre la posición de actuación y la posición en la que deja de

actuar o detectar al objeto cuando éste se aleja de la superficie activa. La histéresis nos

evita el efecto de los rebotes producidos por la posible vibración del objeto a detectar,

así como las influencias de los ruidos eléctricos.

Umbral: Sucede cuando el incremento de la entrada se produce a partir de cero.

Zona Muerta: Todos los sensores tienen una zona muerta la cual es un rango en el cual el

instrumento no genera una medida ni una respuesta a la medición que se está deseando

realizar en el momento.

Precisión: La precisión está asociada al cálculo de la desviación estándar del instrumento

o de un procedimiento analítico y es la cualidad que caracteriza la capacidad de un

instrumento de medida de dar el mismo valor de la magnitud medida, al medir varias veces

en unas mismas condiciones determinadas.

Error: Se define, habitualmente, como Lectura-Valor Real y expresa la diferencia entre la

magnitud medida y la lectura instrumental. En todo instrumento se desearía que el error

fuese 0; sin embargo, todos los aparatos modifican su comportamiento a lo largo de su

vida y es común la necesidad de realizar una calibración de los mismos.

Repetitividad: Especifica la habilidad del instrumento para entregar la misma lectura en

aplicaciones repetidas del mismo valor de la variable medida.

Reproductibilidad: Se refiere a la capacidad del instrumento de mantener una misma

lectura cuando el valor de la especie sensada está a valor constante. También se utiliza

este término para describir la capacidad de entregar el mismo valor medio y desviación

estándar al medir repetidamente un mismo valor.

Sensibilidad: Término utilizado para describir el mínimo cambio en la especie sensada que

el instrumento puede detectar. Su definición es similar a la definición de ganancia pero se

refiere, más bien, a la posibilidad de discriminar dos valores muy cercanos entre sí. La

sensibilidad se expresa cuantitativamente mediante la tasa de cambio de la medición

respecto del cambio en la especie sensada.

Resolución: Expresa la posibilidad de discriminar entre valores, debido a las graduaciones

del instrumento. Se suele hablar de número de dígitos para indicadores numéricos digitales

y de porcentaje de escala para instrumentos de aguja.

Page 6: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Práctica 5. Implementación y caracterización de un sistema de medición de corriente.

INGENIERÍA ELECTROMECÁNICA

DESARROLLO

MATERIAL

1 Arduino Uno.

1 LCD 16x2.

1 Sensor de corriente ACS712ELCTR-05B-T.

1 Potenciómetro de 10k Ω.

1 Fuente variable de C.D.

3 Lámparas incandescentes de 60W, 100W y 150W.

2 Protoboard.

Jumpers para protoboard.

Cables banana-caimán.

DIAGRAMA DE CONEXIÓN

En la figura 3 se muestra el diagrama de conexión del circuito utilizado para el desarrollo

de esta práctica; se utilizó el arduino Uno a cuyo pin A0 se conectó la salida del sensor de

corriente, también se utilizó una LCD 16x2 para la visualización de datos (corriente que

circula por la carga conectada entre los pines IP+ e IP- del sensor).

Page 7: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Práctica 5. Implementación y caracterización de un sistema de medición de corriente.

INGENIERÍA ELECTROMECÁNICA

Se montó el circuito en el protoboard para realizar las mediciones en un ambiente

controlado, donde la temperatura era de 25 ±1°C con el fin de que los datos obtenidos no

se vieran afectados por factores externos y de este modo la caracterización del sistema

representara el comportamiento del sensor.

El sistema implementado se muestra en la figura 4, se conectaron las 3 lámparas

incandescentes en paralelo para mayor demanda de corriente, se midió el voltaje de

salida de la fuente variable de C.D., el voltaje de salida del sensor de corriente, la corriente

demandada por el circuito con el sensor de corriente y con un amperímetro de gancho

que se tomó como patrón para la medición.

Para realizar la lectura del voltaje de salida del sensor se implementa en el arduino una

relación de conversión de voltaje a corriente. Para el caso de este sensor, se verá definido

por las siguientes relaciones:

Amp =(

A0 ∗ 51023

) − 2.5

0.185

Donde:

A0: Valor entre 0 y 1023 según el voltaje a la salida del sensor.

5 1023⁄ : Conversión de bits a voltaje.

1 0.185⁄ : Conversión de voltaje a corriente la sensibilidad del sensor es de 1A/0.185V.

*Al numerador se le resta 2.5 porque es el voltaje que envía el sensor cuando por el circula

una corriente de 0A.

Page 8: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Práctica 5. Implementación y caracterización de un sistema de medición de corriente.

INGENIERÍA ELECTROMECÁNICA

Al realizar las primeras mediciones las lecturas obtenidas oscilaban entre ciertos valores

rápidamente, por lo que se implementó en el código un “ciclo for” para hacer un promedio

de las lecturas y obtener valores más estables, en la figura 5 se muestra el código para la

lectura de datos. En el Anexo 2 se encuentra el código completo utilizado.

RESULTADOS

Se realizaron 5 lecturas a una temperatura de 25±1°C, el voltaje de alimentación del sensor

era de 4.96 Volts, en la tabla 1 se observan los resultados obtenidos.

LECTURA

PATRÓNLECTURA 1 LECTURA 2 LECTURA 3 LECTURA 4 LECTURA 5 UNIDADES

0.04 0.017 0.018 0.022 0.018 0.024 Ampere

0.11 0.112 0.12 0.11 0.1 0.11 Ampere

0.21 0.196 0.21 0.21 0.208 0.21 Ampere

0.31 0.298 0.302 0.31 0.296 0.31 Ampere

0.39 0.39 0.4 0.45 0.35 0.42 Ampere

0.49 0.48 0.49 0.509 0.44 0.51 Ampere

0.6 0.598 0.59 0.63 0.5 0.63 Ampere

0.71 0.67 0.8 0.79 0.709 0.72 Ampere

0.8 0.819 0.83 0.82 0.798 0.79 Ampere

0.9 0.896 0.9 0.93 0.85 0.89 Ampere

1 0.9 1.05 1.04 0.909 1.01 Ampere

2 2.09 1.96 1.94 1.06 1.98 Ampere

3 2.9 2.95 2.94 2.03 2.9 Ampere

3.1 3.09 3.09 3.07 2.996 3.02 Ampere

3.2 3.22 3.22 3.16 3.198 3.21 Ampere

3.3 3.31 3.27 3.28 3.28 3.3 Ampere

3.4 3.39 3.38 3.38 3.409 3.4 Ampere

Tabla 1. Lectura de corriente del sensor ACS712ELCTR-05B-T.

Page 9: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Práctica 5. Implementación y caracterización de un sistema de medición de corriente.

INGENIERÍA ELECTROMECÁNICA

Error. Se calculó un promedio de error de cada lectura mediante la siguiente fórmula y se

determinó un error promedio total. Los resultados se muestran en la tabla 2.

Error = Valor leído − Valor real

Repetitividad. Según los resultados obtenidos en las tablas 1 y 2 la repetitividad se puede

expresar de la siguiente manera:

Repetitividad =Error

Rango∗ 100%

Donde el Rango = 5A – 0A, valores entre los cuales se puede medió en esta práctica.

Repetitividad =0.148235294

3.5∗ 100% = 4.24 %

Exactitud. Según lo observado mientras se realizaban las mediciones los valores aún con el

“ciclo for” oscilaban siempre entre ±0.02A aunque la corriente medida fuera constante. En

la tabla 1 se puede observar ese comportamiento según las distintas mediciones, algunas

de las cuales fueron promediadas al tomar la medición.

Exactitud = ±0.02 ∗ 100% = ±2%

Sensibilidad. Según la hoja de datos idealmente el sensor tiene una sensibilidad de

185mV/1A a 25°C y 5 V de alimentación, pero debido a las condiciones en las que se

trabajó en esta práctica la sensibilidad cambió como se observa en la tabla 3.

Por lo que la sensibilidad es de 0.09A/0.5V equivalente a 0.18A/1V, un tanto distinto a lo

indicado en la hoja de datos.

ERROR L1 ERROR L2 ERROR L3 ERROR L4 ERROR L5 ERROR %

0.01082353 -0.012 -0.00064706 0.14352941 -0.13429412 0.148235294

Tabla 2. Error en las lecturas del sensor ACS712ELCTR-05B-T.

CORRIENTE VOLTAJE SENSIBILIDAD

0 2.51 0.07

0.5 2.58 0.09

1 2.67 0.08

1.5 2.75 0.1

2 2.85 0.09

2.5 2.94 0.09

3 3.03 0.11

3.5 3.14 0.11

PROMEDIO 0.09

Tabla 3. Sensibilidad del sensor ACS712ELCTR-05B-T.

Page 10: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Práctica 5. Implementación y caracterización de un sistema de medición de corriente.

INGENIERÍA ELECTROMECÁNICA

Precisión. La precisión no es muy buena puesto que los valores al expresarlos en un rango

de 6 dígitos después del cero siempre varían sobre todo en los dígitos después de las

centenas. La precisión se calculó con los valores obtenidos en la tabla 1 con cada lectura

determinando el valor mínimo, medio y máximo obtenidos, se calculó la precisión de cada

lectura con la siguiente formula, y se calculó un promedio de precisión cuyos resultados se

muestran en la tabla 4.

Precisión =(Vmáx − Vmín) ∗ 0.5

Vmed∗ 100%

Fiabilidad. Manteniendo las condiciones ambientales estables a una temperatura

ambiente de 25±5°, el comportamiento del sensor es similar a lo analizado en la tabla 1,

esto se comprobó al variar la temperatura ambiental con las lámparas incandescentes, se

obtuvo un error estimado de ±0.008A en promedio por lectura.

Calibración. El sensor ACS712ELCTR-05B-T es producido en masa, los componentes

necesarios para su óptimo funcionamiento vienen incorporados en el integrado por lo que

necesita una calibración en caso de querer manejar corrientes distintas a lo establecido

en esta práctica, tanto el código como el circuito funcionarán correctamente si no se

realizan cambios en ellos.

Tabla 4. Precisión del sensor ACS712ELCTR-05B-T.

Vmín Vmed Vmáx PRECISIÓN %

0.017 0.0205 0.024 17.07317073

0.1 0.11 0.12 9.090909091

0.196 0.203 0.21 3.448275862

0.296 0.303 0.31 2.310231023

0.35 0.4 0.45 12.5

0.44 0.475 0.51 7.368421053

0.5 0.565 0.63 11.50442478

0.67 0.735 0.8 8.843537415

0.79 0.81 0.83 2.469135802

0.85 0.89 0.93 4.494382022

0.9 0.975 1.05 7.692307692

1.06 1.575 2.09 32.6984127

2.03 2.49 2.95 18.47389558

2.996 3.043 3.09 1.544528426

3.16 3.19 3.22 0.940438871

3.27 3.29 3.31 0.607902736

3.38 3.3945 3.409 0.427161585

PROMEDIO 8.322772669

Page 11: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Práctica 5. Implementación y caracterización de un sistema de medición de corriente.

INGENIERÍA ELECTROMECÁNICA

En las figuras (6-10) se observa la regresión lineal del comportamiento del sistema de

medición de corriente con el sensor ACS712ELCTR-05B-T, en cada lectura y en la figura 11

se puede observar como la variación entre las lecturas y el valor real.

Page 12: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Práctica 5. Implementación y caracterización de un sistema de medición de corriente.

INGENIERÍA ELECTROMECÁNICA

Page 13: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Práctica 5. Implementación y caracterización de un sistema de medición de corriente.

INGENIERÍA ELECTROMECÁNICA

Page 14: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Práctica 5. Implementación y caracterización de un sistema de medición de corriente.

INGENIERÍA ELECTROMECÁNICA

Por último en la tabla 5 se muestra la caracterización completa del sensor de corriente

ACS712ELCTR-05B-T según el sistema de medición del esquema de la figura 3.

Tabla 5. Caracterización del sensor de corriente ACS712ELCTR-05B-T.

CARACTERIZACIÓN DEL SENSOR DE CORRIENTE ACS712ELCTR-05B-T

Tensión de alimentación 4.96±0.01V DC

Tensión de salida 2.5 – 3.1V

Corriente nominal 50mA

Rango de medida 0 – 3.5A

Tiempo de respuesta >1s

Precisión 8.32 %

Repetitividad 4.4 %

Exactitud 2 %

Sensibilidad 0.09A/0.5V

Resolución 1µV

CONCLUSIONES

El comportamiento del sensor de corriente ACS712ELCTR-05B-T implementado en el

presente sistema de medición de corriente presenta ciertas variaciones respecto de lo

especificado en la hoja de datos del fabricante, debido a que al realizar las mediciones se

tienen presentes tanto las variables controladas como las incontroladas y éstas afectan las

variables de interés.

El sistema implementado en esta práctica funciona correctamente siguiendo ciertas

condiciones, pues al igual que la hoja de datos del fabricante y los resultados obtenidos

con este sistema, los resultados pueden variar si se modifican intencionalmente o no

algunos factores como pueden ser la tensión de alimentación, la corriente nominal, la

temperatura ambiente, y el código en el programa arduino.

FUENTES DE INFORMACIÓN

1. R. Pallás, “Sensores y acondicionadores de señal”. Alfaomega Marcombo, 4ta.

edición, 2007. pp 70.

2. R. Chwang, B. J. Smith and C. R. Crowell, "Contact Size Effects on the Van Der Pauw

Method for Resistivity and Hall Coefficient Measurement", Solid-State Electronics 17,

1217-1227 (1974).

3. PALLAS A. R. "Sensores y Acondicionadores de Señal". 3ra. edición. Barcelona España,

Marcombo S.A. 1998

4. COUGLIN R. F. "Amplificadores operacionales y circuitos integrados lineales". México,

Prentice-Hall Hispanoamérica S.A. 1993

5. CREUS A. "Instrumentación industrial". Alfaomega-Marcombo

Page 15: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE
Page 16: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

IP+IP+

IP–IP–

IP

5GND

2

4

1

3ACS712

7

8+5 V

VIOUTVOUT

6FILTER

VCC

CBYP0.1 μF

CF1 nF

Application 1. The ACS712 outputs an analog signal, VOUT . that varies linearly with the uni- or bi-directional AC or DC primary sampled current, IP , within the range specified. CF is recommended for noise management, with values that depend on the application.

ACS712

DescriptionThe Allegro™ ACS712 provides economical and precise solutions for AC or DC current sensing in industrial, commercial, and communications systems. The device package allows for easy implementation by the customer. Typical applications include motor control, load detection and management, switch-mode power supplies, and overcurrent fault protection. The device is not intended for automotive applications.

The device consists of a precise, low-offset, linear Hall circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field which the Hall IC converts into a proportional voltage. Device accuracy is optimized through the close proximity of the magnetic signal to the Hall transducer. A precise, proportional voltage is provided by the low-offset, chopper-stabilized BiCMOS Hall IC, which is programmed for accuracy after packaging.

The output of the device has a positive slope (>VIOUT(Q)) when an increasing current flows through the primary copper conduction path (from pins 1 and 2, to pins 3 and 4), which is the path used for current sampling. The internal resistance of this conductive path is 1.2 mΩ typical, providing low power loss. The thickness of the copper conductor allows survival of

ACS712-DS, Rev. 15

Features and Benefits Low-noise analog signal path Device bandwidth is set via the new FILTER pin 5 μs output rise time in response to step input current 80 kHz bandwidth Total output error 1.5% at TA = 25°C Small footprint, low-profile SOIC8 package 1.2 mΩ internal conductor resistance 2.1 kVRMS minimum isolation voltage from pins 1-4 to pins 5-8 5.0 V, single supply operation 66 to 185 mV/A output sensitivity Output voltage proportional to AC or DC currents Factory-trimmed for accuracy Extremely stable output offset voltage Nearly zero magnetic hysteresis Ratiometric output from supply voltage

Fully Integrated, Hall Effect-Based Linear Current Sensor IC with 2.1 kVRMS Isolation and a Low-Resistance Current Conductor

Continued on the next page…

Approximate Scale 1:1

Package: 8 Lead SOIC (suffix LC)

Typical Application

TÜV AmericaCertificate Number:U8V 06 05 54214 010

Page 17: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Fully Integrated, Hall Effect-Based Linear Current Sensor IC with 2.1 kVRMS Isolation and a Low-Resistance Current ConductorACS712

2Allegro MicroSystems, LLC115 Northeast CutoffWorcester, Massachusetts 01615-0036 U.S.A.1.508.853.5000; www.allegromicro.com

Absolute Maximum RatingsCharacteristic Symbol Notes Rating Units

Supply Voltage VCC 8 V

Reverse Supply Voltage VRCC –0.1 V

Output Voltage VIOUT 8 V

Reverse Output Voltage VRIOUT –0.1 V

Output Current Source IIOUT(Source) 3 mA

Output Current Sink IIOUT(Sink) 10 mA

Overcurrent Transient Tolerance IP 1 pulse, 100 ms 100 A

Nominal Operating Ambient Temperature TA Range E –40 to 85 ºC

Maximum Junction Temperature TJ(max) 165 ºC

Storage Temperature Tstg –65 to 170 ºC

Selection Guide

Part Number Packing* TA (°C)

Optimized Range, IP(A)

Sensitivity, Sens (Typ) (mV/A)

ACS712ELCTR-05B-T Tape and reel, 3000 pieces/reel –40 to 85 ±5 185

ACS712ELCTR-20A-T Tape and reel, 3000 pieces/reel –40 to 85 ±20 100

ACS712ELCTR-30A-T Tape and reel, 3000 pieces/reel –40 to 85 ±30 66

*Contact Allegro for additional packing options.

the device at up to 5× overcurrent conditions. The terminals of the conductive path are electrically isolated from the signal leads (pins 5 through 8). This allows the ACS712 to be used in applications requiring electrical isolation without the use of opto-isolators or other costly isolation techniques.

The ACS712 is provided in a small, surface mount SOIC8 package. The leadframe is plated with 100% matte tin, which is compatible with standard lead (Pb) free printed circuit board assembly processes. Internally, the device is Pb-free, except for flip-chip high-temperature Pb-based solder balls, currently exempt from RoHS. The device is fully calibrated prior to shipment from the factory.

Description (continued)

Parameter Specification

Fire and Electric ShockCAN/CSA-C22.2 No. 60950-1-03

UL 60950-1:2003EN 60950-1:2001

Isolation CharacteristicsCharacteristic Symbol Notes Rating Unit

Dielectric Strength Test Voltage* VISO Agency type-tested for 60 seconds per UL standard 60950-1, 1st Edition 2100 VAC

Working Voltage for Basic Isolation VWFSIFor basic (single) isolation per UL standard 60950-1, 1st Edition 354 VDC or Vpk

Working Voltage for Reinforced Isolation VWFRIFor reinforced (double) isolation per UL standard 60950-1, 1st Edition 184 VDC or Vpk

* Allegro does not conduct 60-second testing. It is done only during the UL certification process.

Page 18: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Fully Integrated, Hall Effect-Based Linear Current Sensor IC with 2.1 kVRMS Isolation and a Low-Resistance Current ConductorACS712

3Allegro MicroSystems, LLC115 Northeast CutoffWorcester, Massachusetts 01615-0036 U.S.A.1.508.853.5000; www.allegromicro.com

VCC(Pin 8)

(Pin 7)VIOUT

RF(INT)

GND(Pin 5)

FILTER(Pin 6)

Dyn

amic

Offs

et

Can

cella

tion

IP+(Pin 1)

IP+(Pin 2)

IP−(Pin 3)

IP−(Pin 4)

SenseTrim

SignalRecovery

Sense TemperatureCoefficient Trim

0 AmpereOffset Adjust

Hall CurrentDrive

+5 V

IP+

IP+

IP–

IP–

VCC

VIOUT

FILTER

GND

1

2

3

4

8

7

6

5

Terminal List TableNumber Name Description

1 and 2 IP+ Terminals for current being sampled; fused internally

3 and 4 IP– Terminals for current being sampled; fused internally

5 GND Signal ground terminal

6 FILTER Terminal for external capacitor that sets bandwidth

7 VIOUT Analog output signal

8 VCC Device power supply terminal

Functional Block Diagram

Pin-out Diagram

Page 19: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Fully Integrated, Hall Effect-Based Linear Current Sensor IC with 2.1 kVRMS Isolation and a Low-Resistance Current ConductorACS712

4Allegro MicroSystems, LLC115 Northeast CutoffWorcester, Massachusetts 01615-0036 U.S.A.1.508.853.5000; www.allegromicro.com

COMMON OPERATING CHARACTERISTICS1 over full range of TA , CF = 1 nF, and VCC = 5 V, unless otherwise specifiedCharacteristic Symbol Test Conditions Min. Typ. Max. Units

ELECTRICAL CHARACTERISTICSSupply Voltage VCC 4.5 5.0 5.5 VSupply Current ICC VCC = 5.0 V, output open – 10 13 mAOutput Capacitance Load CLOAD VIOUT to GND – – 10 nFOutput Resistive Load RLOAD VIOUT to GND 4.7 – – kΩPrimary Conductor Resistance RPRIMARY TA = 25°C – 1.2 – mΩRise Time tr IP = IP(max), TA = 25°C, COUT = open – 3.5 – μsFrequency Bandwidth f –3 dB, TA = 25°C; IP is 10 A peak-to-peak – 80 – kHzNonlinearity ELIN Over full range of IP – 1.5 – %Symmetry ESYM Over full range of IP 98 100 102 %

Zero Current Output Voltage VIOUT(Q) Bidirectional; IP = 0 A, TA = 25°C – VCC × 0.5 – V

Power-On Time tPOOutput reaches 90% of steady-state level, TJ = 25°C, 20 A present on leadframe – 35 – μs

Magnetic Coupling2 – 12 – G/AInternal Filter Resistance3 RF(INT) 1.7 kΩ1Device may be operated at higher primary current levels, IP, and ambient, TA , and internal leadframe temperatures, TA , provided that the Maximum Junction Temperature, TJ(max), is not exceeded.21G = 0.1 mT. 3RF(INT) forms an RC circuit via the FILTER pin.

COMMON THERMAL CHARACTERISTICS1

Min. Typ. Max. UnitsOperating Internal Leadframe Temperature TA E range –40 – 85 °C

Value UnitsJunction-to-Lead Thermal Resistance2 RθJL Mounted on the Allegro ASEK 712 evaluation board 5 °C/W

Junction-to-Ambient Thermal Resistance RθJAMounted on the Allegro 85-0322 evaluation board, includes the power con-sumed by the board 23 °C/W

1Additional thermal information is available on the Allegro website.2The Allegro evaluation board has 1500 mm2 of 2 oz. copper on each side, connected to pins 1 and 2, and to pins 3 and 4, with thermal vias connect-ing the layers. Performance values include the power consumed by the PCB. Further details on the board are available from the Frequently Asked Questions document on our website. Further information about board design and thermal performance also can be found in the Applications Informa-tion section of this datasheet.

Page 20: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Fully Integrated, Hall Effect-Based Linear Current Sensor IC with 2.1 kVRMS Isolation and a Low-Resistance Current ConductorACS712

5Allegro MicroSystems, LLC115 Northeast CutoffWorcester, Massachusetts 01615-0036 U.S.A.1.508.853.5000; www.allegromicro.com

x05B PERFORMANCE CHARACTERISTICS1 TA = –40°C to 85°C, CF = 1 nF, and VCC = 5 V, unless otherwise specifiedCharacteristic Symbol Test Conditions Min. Typ. Max. Units

Optimized Accuracy Range IP –5 – 5 ASensitivity Sens Over full range of IP, TA = 25°C 180 185 190 mV/A

Noise VNOISE(PP)Peak-to-peak, TA = 25°C, 185 mV/A programmed Sensitivity, CF = 47 nF, COUT = open, 2 kHz bandwidth – 21 – mV

Zero Current Output Slope ∆VOUT(Q)TA = –40°C to 25°C – –0.26 – mV/°CTA = 25°C to 150°C – –0.08 – mV/°C

Sensitivity Slope ∆SensTA = –40°C to 25°C – 0.054 – mV/A/°CTA = 25°C to 150°C – –0.008 – mV/A/°C

Total Output Error2 ETOT IP =±5 A, TA = 25°C – ±1.5 – %1Device may be operated at higher primary current levels, IP, and ambient temperatures, TA, provided that the Maximum Junction Temperature, TJ(max), is not exceeded.2Percentage of IP, with IP = 5 A. Output filtered.

x20A PERFORMANCE CHARACTERISTICS1 TA = –40°C to 85°C, CF = 1 nF, and VCC = 5 V, unless otherwise specifiedCharacteristic Symbol Test Conditions Min. Typ. Max. Units

Optimized Accuracy Range IP –20 – 20 ASensitivity Sens Over full range of IP, TA = 25°C 96 100 104 mV/A

Noise VNOISE(PP)Peak-to-peak, TA = 25°C, 100 mV/A programmed Sensitivity, CF = 47 nF, COUT = open, 2 kHz bandwidth – 11 – mV

Zero Current Output Slope ∆VOUT(Q)TA = –40°C to 25°C – –0.34 – mV/°CTA = 25°C to 150°C – –0.07 – mV/°C

Sensitivity Slope ∆SensTA = –40°C to 25°C – 0.017 – mV/A/°CTA = 25°C to 150°C – –0.004 – mV/A/°C

Total Output Error2 ETOT IP =±20 A, TA = 25°C – ±1.5 – %1Device may be operated at higher primary current levels, IP, and ambient temperatures, TA, provided that the Maximum Junction Temperature, TJ(max), is not exceeded.2Percentage of IP, with IP = 20 A. Output filtered.

x30A PERFORMANCE CHARACTERISTICS1 TA = –40°C to 85°C, CF = 1 nF, and VCC = 5 V, unless otherwise specifiedCharacteristic Symbol Test Conditions Min. Typ. Max. Units

Optimized Accuracy Range IP –30 – 30 ASensitivity Sens Over full range of IP , TA = 25°C 63 66 69 mV/A

Noise VNOISE(PP)Peak-to-peak, TA = 25°C, 66 mV/A programmed Sensitivity, CF = 47 nF, COUT = open, 2 kHz bandwidth – 7 – mV

Zero Current Output Slope ∆VOUT(Q)TA = –40°C to 25°C – –0.35 – mV/°CTA = 25°C to 150°C – –0.08 – mV/°C

Sensitivity Slope ∆SensTA = –40°C to 25°C – 0.007 – mV/A/°CTA = 25°C to 150°C – –0.002 – mV/A/°C

Total Output Error2 ETOT IP = ±30 A , TA = 25°C – ±1.5 – %1Device may be operated at higher primary current levels, IP, and ambient temperatures, TA, provided that the Maximum Junction Temperature, TJ(max), is not exceeded.2Percentage of IP, with IP = 30 A. Output filtered.

Page 21: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Fully Integrated, Hall Effect-Based Linear Current Sensor IC with 2.1 kVRMS Isolation and a Low-Resistance Current ConductorACS712

6Allegro MicroSystems, LLC115 Northeast CutoffWorcester, Massachusetts 01615-0036 U.S.A.1.508.853.5000; www.allegromicro.com

–402585

150

TA (°C)

–402585

150

TA (°C)

IP = 0 A IP = 0 A

VCC = 5 V

VCC = 5 V

VCC = 5 V; IP = 0 A,After excursion to 20 A

Mean Supply Current versus Ambient Temperature

Sensitivity versus Sensed Current200.00190.00180.00170.00160.00150.00140.00130.00120.00110.00100.00

Sens

(mV/

A)

186.5186.0185.5185.0184.5184.0183.5183.0182.5182.0181.5181.0

Sens

(mV/

A)

Ip (A)-6 -4 -2 0 2 4 6

TA (°C)

TA (°C) TA (°C)

Mea

n I C

C (m

A)

10.3010.2510.2010.1510.1010.0510.00

9.959.909.859.809.75

-50 -25 0 25 50 75 125100 150

I OM

(mA)

0–0.5–1.0–1.5–2.0–2.5–3.0–3.5–4.0–4.5–5.0

-50 -25 0 25 50 75 125100 150

Supply Current versus Supply Voltage10.9

10.8

10.7

10.6

10.5

10.4

10.3

10.2

10.1

10.04.5 4.6 4.84.7 4.9 5.0 5.35.1 5.2 5.4 5.5

VCC (V)

I CC (m

A)

TA (°C)

V IO

UT(Q

) (m

V)

2520

2515

2510

2505

2500

2495

2490

2485-50 -25 0 25 50 75 125100 150

TA (°C)

I OUT

(Q) (

A)

0.20

0.15

0.10

0.05

0

–0.05

–0.10

–0.15-50 -25 0 25 50 75 125100 150

Nonlinearity versus Ambient Temperature0.6

0.5

0.4

0.3

0.2

0.1

0–50 0–25 25 50 12575 100 150

E LIN

(%)

TA (°C)

Mean Total Output Error versus Ambient Temperature8

6

4

2

0

–2

–4

–6

–8–50 0–25 25 50 12575 100 150

E TO

T (%

)

TA (°C)

Sensitivity versus Ambient Temperature

–50 0–25 25 50 12575 100 150

IP (A)

Output Voltage versus Sensed Current4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

V IO

UT

(V)

Magnetic Offset versus Ambient Temperature

VCC = 5 V

0 A Output Voltage versus Ambient Temperature 0 A Output Voltage Current versus Ambient Temperature

Characteristic PerformanceIP = 5 A, unless otherwise specified

Page 22: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Fully Integrated, Hall Effect-Based Linear Current Sensor IC with 2.1 kVRMS Isolation and a Low-Resistance Current ConductorACS712

9Allegro MicroSystems, LLC115 Northeast CutoffWorcester, Massachusetts 01615-0036 U.S.A.1.508.853.5000; www.allegromicro.com

Sensitivity (Sens). The change in device output in response to a 1 A change through the primary conductor. The sensitivity is the product of the magnetic circuit sensitivity (G / A) and the linear IC amplifier gain (mV/G). The linear IC amplifier gain is pro-grammed at the factory to optimize the sensitivity (mV/A) for the full-scale current of the device.

Noise (VNOISE). The product of the linear IC amplifier gain (mV/G) and the noise floor for the Allegro Hall effect linear IC (≈1 G). The noise floor is derived from the thermal and shot noise observed in Hall elements. Dividing the noise (mV) by the sensitivity (mV/A) provides the smallest current that the device is able to resolve.

Linearity (ELIN). The degree to which the voltage output from the IC varies in direct proportion to the primary current through its full-scale amplitude. Nonlinearity in the output can be attrib-uted to the saturation of the flux concentrator approaching the full-scale current. The following equation is used to derive the linearity:

where VIOUT_full-scale amperes = the output voltage (V) when the sampled current approximates full-scale ±IP .

Symmetry (ESYM). The degree to which the absolute voltage output from the IC varies in proportion to either a positive or negative full-scale primary current. The following formula is used to derive symmetry:

Quiescent output voltage (VIOUT(Q)). The output of the device when the primary current is zero. For a unipolar supply voltage, it nominally remains at VCC ⁄ 2. Thus, VCC = 5 V translates into VIOUT(Q) = 2.5 V. Variation in VIOUT(Q) can be attributed to the resolution of the Allegro linear IC quiescent voltage trim and thermal drift.

Electrical offset voltage (VOE). The deviation of the device out-put from its ideal quiescent value of VCC / 2 due to nonmagnetic causes. To convert this voltage to amperes, divide by the device sensitivity, Sens.

Accuracy (ETOT). The accuracy represents the maximum devia-tion of the actual output from its ideal value. This is also known as the total output error. The accuracy is illustrated graphically in the output voltage versus current chart at right.

Accuracy is divided into four areas:

0 A at 25°C. Accuracy at the zero current flow at 25°C, with-out the effects of temperature.

0 A over Δ temperature. Accuracy at the zero current flow including temperature effects.

Full-scale current at 25°C. Accuracy at the the full-scale current at 25°C, without the effects of temperature.

Full-scale current over Δ temperature. Accuracy at the full-scale current flow including temperature effects.

Ratiometry. The ratiometric feature means that its 0 A output, VIOUT(Q), (nominally equal to VCC/2) and sensitivity, Sens, are proportional to its supply voltage, VCC . The following formula is used to derive the ratiometric change in 0 A output voltage,VIOUT(Q)RAT (%).

The ratiometric change in sensitivity, SensRAT (%), is defined as:

Definitions of Accuracy Characteristics

100 1– [ [ VIOUT_full-scale amperes – VIOUT(Q)Δ gain × % sat ( )2 (VIOUT_half-scale amperes – VIOUT(Q) )

100VIOUT_+ full-scale amperes – VIOUT(Q)

VIOUT(Q) – VIOUT_–full-scale amperes

100VIOUT(Q)VCC / VIOUT(Q)5V

VCC / 5 V

100

SensVCC / Sens5V

VCC / 5 V‰ Output Voltage versus Sampled Current

Accuracy at 0 A and at Full-Scale Current

Increasing VIOUT (V)

+IP (A)

Accuracy

Accuracy

Accuracy25°C Only

Accuracy25°C Only

Accuracy25°C Only

Accuracy

0 A

v rO e Temp erature

AverageVIOUT

–IP (A)

v rO e Temp erature

v rO e Temp erature

Decreasing VIOUT (V)

IP(min)

IP(max) Full Scale

Page 23: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Fully Integrated, Hall Effect-Based Linear Current Sensor IC with 2.1 kVRMS Isolation and a Low-Resistance Current ConductorACS712

10Allegro MicroSystems, LLC115 Northeast CutoffWorcester, Massachusetts 01615-0036 U.S.A.1.508.853.5000; www.allegromicro.com

Power on Time versus External Filter Capacitance

020406080

100120140160180200

0 10 20 30 40 50CF (nF)

CF (nF)

t PO

(μs)

IP = 5 A

IP = 0 A

Noise versus External Filter Capacitance

1

1000

10

100

10000

0.01 0.1 1 10 100 1000

Noi

se(p

-p) (

mA

)

Noise vs. Filter Cap

Rise Time versus External Filter Capacitance1200

1000

800

600

400

200

00.1 1 10 100 1000

t r(μs

)

CF (nF)

Rise Time versus External Filter Capacitance1801601401201008060402000.1 1 10 100

t r(μs

)

CF (nF)

Expanded in chart at right Definitions of Dynamic Response Characteristics

Primary Current

Transducer Output

90

100

I (%)

Rise Time, trt

Rise time (tr). The time interval between a) when the device reaches 10% of its full scale value, and b) when it reaches 90% of its full scale value. The rise time to a step response is used to derive the bandwidth of the device, in which ƒ(–3 dB) = 0.35 / tr. Both tr and tRESPONSE are detrimentally affected by eddy current losses observed in the conductive IC ground plane.

Excitation Signal

Output (mV)

15 A

Step Response

TA=25°C

CF (nF) tr (μs)

Open 3.5 1 5.8 4.7 17.5 22 73.5 47 88.2

100 291.3 220 623 470 1120

Power-On Time (tPO). When the supply is ramped to its operat-ing voltage, the device requires a finite time to power its internal components before responding to an input magnetic field.Power-On Time, tPO , is defined as the time it takes for the output voltage to settle within ±10% of its steady state value under an applied magnetic field, after the power supply has reached its minimum specified operating voltage, VCC(min), as shown in the chart at right.

Page 24: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Fully Integrated, Hall Effect-Based Linear Current Sensor IC with 2.1 kVRMS Isolation and a Low-Resistance Current ConductorACS712

11Allegro MicroSystems, LLC115 Northeast CutoffWorcester, Massachusetts 01615-0036 U.S.A.1.508.853.5000; www.allegromicro.com

Chopper Stabilization is an innovative circuit technique that is used to minimize the offset voltage of a Hall element and an asso-ciated on-chip amplifier. Allegro patented a Chopper Stabiliza-tion technique that nearly eliminates Hall IC output drift induced by temperature or package stress effects. This offset reduction technique is based on a signal modulation-demodulation process. Modulation is used to separate the undesired DC offset signal from the magnetically induced signal in the frequency domain. Then, using a low-pass filter, the modulated DC offset is sup-pressed while the magnetically induced signal passes through

the filter. As a result of this chopper stabilization approach, the output voltage from the Hall IC is desensitized to the effects of temperature and mechanical stress. This technique produces devices that have an extremely stable Electrical Offset Voltage, are immune to thermal stress, and have precise recoverability after temperature cycling.

This technique is made possible through the use of a BiCMOS process that allows the use of low-offset and low-noise amplifiers in combination with high-density logic integration and sample and hold circuits.

Chopper Stabilization Technique

Amp

Regulator

Clock/Logic

Hall ElementS

ampl

e an

dH

old

Low-PassFilter

Concept of Chopper Stabilization Technique

Page 25: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Fully Integrated, Hall Effect-Based Linear Current Sensor IC with 2.1 kVRMS Isolation and a Low-Resistance Current ConductorACS712

12Allegro MicroSystems, LLC115 Northeast CutoffWorcester, Massachusetts 01615-0036 U.S.A.1.508.853.5000; www.allegromicro.com

+

–IP+IP+

IP–IP–

IP

7

5

5

8

+5 V

U1LMV7235

VIOUTVOUT

GND

6

2

4

41

1

23

3

FILTER

VCC

ACS712

D11N914

R2100 kΩ

R133 kΩ

RPU100 kΩ

Fault

CBYP0.1 μF

CF1 nF

+

IP+IP+

IP–IP–

7

5

8

+5 V

U1LT1178

Q12N7002

VIOUTVOUT

VPEAK

VRESET

GND

6

2

4

1

3D11N914

VCC

ACS712

R410 kΩ

R11 MΩ

R233 kΩ

RF10 kΩ

R3330 kΩ

CBYP0.1 μF

C10.1 μF

COUT0.1 μF

CF1 nF

C20.1 μF

FILTER

IP

IP+IP+

IP–IP–

IP

7

5

8

+5 V

D11N4448W

VIOUTVOUT

GND

6

2

4

1

3 FILTER

VCC

ACS712 R110 kΩ

CBYP0.1 μF

RF2 kΩ

CF1 nF

C1

A-to-DConverter

Typical Applications

Application 5. 10 A Overcurrent Fault Latch. Fault threshold set by R1 and R2. This circuit latches an overcurrent fault and holds it until the 5 V rail is powered down.

Application 2. Peak Detecting Circuit

Application 4. Rectified Output. 3.3 V scaling and rectification application for A-to-D converters. Replaces current transformer solutions with simpler ACS circuit. C1 is a function of the load resistance and filtering desired. R1 can be omitted if the full range is desired.

+

–IP+IP+

IP–IP–

IP

7

5

58

+5 V

LM321

VIOUT

VOUT

GND

6

2

4

11 4

2

3

3

FILTER

VCC

ACS712

R2100 kΩ

R1100 kΩ

R33.3 kΩ

CBYP0.1 μF

CF0.01 μF

C11000 pF

RF1 kΩ

Application 3. This configuration increases gain to 610 mV/A (tested using the ACS712ELC-05A).

Page 26: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Fully Integrated, Hall Effect-Based Linear Current Sensor IC with 2.1 kVRMS Isolation and a Low-Resistance Current ConductorACS712

13Allegro MicroSystems, LLC115 Northeast CutoffWorcester, Massachusetts 01615-0036 U.S.A.1.508.853.5000; www.allegromicro.com

Improving Sensing System Accuracy Using the FILTER Pin

In low-frequency sensing applications, it is often advantageous to add a simple RC filter to the output of the device. Such a low-pass filter improves the signal-to-noise ratio, and therefore the resolution, of the device output signal. However, the addition of an RC filter to the output of a sensor IC can result in undesirable device output attenuation — even for DC signals.

Signal attenuation, ∆VATT , is a result of the resistive divider effect between the resistance of the external filter, RF (see Application 6), and the input impedance and resistance of the customer interface circuit, RINTFC. The transfer function of this resistive divider is given by:

Even if RF and RINTFC are designed to match, the two individual resistance values will most likely drift by different amounts over

temperature. Therefore, signal attenuation will vary as a function of temperature. Note that, in many cases, the input impedance, RINTFC , of a typical analog-to-digital converter (ADC) can be as low as 10 kΩ.

The ACS712 contains an internal resistor, a FILTER pin connec-tion to the printed circuit board, and an internal buffer amplifier. With this circuit architecture, users can implement a simple RC filter via the addition of a capacitor, CF (see Application 7) from the FILTER pin to ground. The buffer amplifier inside of the ACS712 (located after the internal resistor and FILTER pin connection) eliminates the attenuation caused by the resistive divider effect described in the equation for ∆VATT. Therefore, the ACS712 device is ideal for use in high-accuracy applications that cannot afford the signal attenuation associated with the use of an external RC low-pass filter.

=∆VATTRINTFC

RF + RINTFCVIOUT ⎟

⎞⎜⎜⎝

⎛ .

Application 6. When a low pass filter is constructed externally to a standard Hall effect device, a resistive divider may exist between the filter resistor, RF, and the resistance of the customer interface circuit, RINTFC. This resistive divider will cause excessive attenuation, as given by the transfer function for ∆VATT.

Application 7. Using the FILTER pin provided on the ACS712 eliminates the attenuation effects of the resistor divider between RF and RINTFC, shown in Appli-cation 6.

ApplicationInterface

Circuit

Resistive Divider

RINTFC

Low Pass Filter

RFAmp Out

VCC

+5 V

Pin 8

Pin 7VIOUT

Pin 6N.C.

Input

GNDPin 5

Filte

r

Dyn

amic

Offs

et

Can

cella

tion

IP+ IP+

0.1 F

Pin 1 Pin 2

IP– IP–Pin 3 Pin 4

Gain TemperatureCoefficient Offset

VoltageRegulator

Trim Control

To all subcircuits

Input

VCCPin 8

Pin 7VIOUT

GNDPin 5

FILTERPin 6

Dyn

amic

Offs

et

Can

cella

tion

IP+Pin 1

IP+Pin 2

IP–Pin 3

IP–Pin 4

SenseTrim

SignalRecovery

Sense TemperatureCoefficient Trim

0 AmpereOffset Adjust

Hall CurrentDrive

+5 V

ApplicationInterface

Circuit

Buffer Amplifier and Resistor

RINTFC

Allegro ACS712

Allegro ACS706

CF1 nF

CF1 nF

Page 27: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Fully Integrated, Hall Effect-Based Linear Current Sensor IC with 2.1 kVRMS Isolation and a Low-Resistance Current ConductorACS712

14Allegro MicroSystems, LLC115 Northeast CutoffWorcester, Massachusetts 01615-0036 U.S.A.1.508.853.5000; www.allegromicro.com

Package LC, 8-pin SOIC

CSEATINGPLANE

1.27 BSC

GAUGE PLANESEATING PLANE

A Terminal #1 mark area

B

Reference land pattern layout (reference IPC7351 SOIC127P600X175-8M); all pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances

B

D

C

21

8

Branding scale and appearance at supplier discretion

CSEATINGPLANEC0.10

8X

0.25 BSC

1.04 REF

1.75 MAX

For Reference Only; not for tooling use (reference MS-012AA)Dimensions in millimetersDimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown

4.90 ±0.10

3.90 ±0.10 6.00 ±0.20

0.510.31 0.25

0.10

0.250.17

1.270.40

8°0°

N = Device part number T = Device temperature range P = Package Designator A = Amperage L = Lot number Belly Brand = Country of Origin

NNNNNNN

LLLLL

1

TPP-AAA

A

Standard Branding Reference View

21

8

PCB Layout Reference ViewC

0.65 1.27

5.60

1.75

Branded Face

Page 28: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Fully Integrated, Hall Effect-Based Linear Current Sensor IC with 2.1 kVRMS Isolation and a Low-Resistance Current ConductorACS712

15Allegro MicroSystems, LLC115 Northeast CutoffWorcester, Massachusetts 01615-0036 U.S.A.1.508.853.5000; www.allegromicro.com

Copyright ©2006-2013, Allegro MicroSystems, LLC The products described herein are protected by U.S. patents: 5,621,319; 7,598,601; and 7,709,754. Allegro MicroSystems, LLC reserves the right to make, from time to time, such de par tures from the detail spec i fi ca tions as may be required to

permit improvements in the per for mance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro’s products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.

The in for ma tion in clud ed herein is believed to be ac cu rate and reliable. How ev er, Allegro MicroSystems, LLC assumes no re spon si bil i ty for its use; nor for any in fringe ment of patents or other rights of third parties which may result from its use.

For the latest version of this document, visit our website:www.allegromicro.com

Revision HistoryRevision Revision Date Description of Revision

Rev. 15 November 16, 2012 Update rise time and isolation, IOUT reference data, patents

Page 29: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE
Page 30: IMPLEMENTACIÓN Y CARACTERIZACIÓN DE UN SISTEMA DE MEDICIÓN DE CORRIENTE

Código en arduino Uno del programa que controla el sistema de medición de corriente.