6
HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314 Name: DEEPAK PAUL TIRKEY ASSIGNMENT NUMBER 04 Student number: 4590929 Question 1. Flapping blade angle variation for the advancing blade for one complete revolution Answer : My chosen helicopter is MBB Bo105 Locks inertia number = 4 = 5.07 where ρ = 1.225 3 [sea level condition] ; a = lift curve slope = 6.113 /rad ; c = chord = 0.27 m ; R = radius = 4.91 m ; = 231.7 2 [ data source : Helicopter Flight Dynamics –Padfield] Induced Velocity in hover = √ 2 2 = 10.8 m/sec ; where W = 2200 x 9.81 = 21582 N Induced inflow ratio = Ω = 10.8 218 = 0.05 Flapping solution in hover Ξ² (t) = (t) + (t) Particular solution (t) = 8 ( ΞΈ - 4 3 ) = 5.07 8 (8 - 4 3 0.05) = 5.03 degree; where ΞΈ = 8 degree(given) [ (t) = 5.03 degree is constant coning angle ] Homogenous solution β„Ž (t) = 0 βˆ’β„¦ 16 [cos(Ω √ 1βˆ’( 16 ) 2 . ) + 16 √ 1βˆ’( 16 ) 2 sin(Ω √ 1βˆ’( 16 ) 2 . )] MS Excel was used to calculate and plot Ξ² (t) = β„Ž (t) + (t) , were azimuth angle ψ =Ω t , 0 = β„Ž Fig. 01 Flapping blade angle Ξ² (ψ) = Ξ² hom (ψ) + Ξ² part (ψ) variation for one revolution 0 2 4 6 8 10 12 0 5 10 15 20 25 30 beta (degree) PSI ( x 15 degree) Beta_hom + Beta_parti coning angle (Beta_parti)

Helicopter rotor dynamics

Embed Size (px)

Citation preview

Page 1: Helicopter rotor dynamics

HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314

Name: DEEPAK PAUL TIRKEY

ASSIGNMENT NUMBER 04 Student number: 4590929

Question 1. Flapping blade angle variation for the advancing blade for one complete revolution Answer : My chosen helicopter is MBB Bo105

Locks inertia number 𝛾 =πœŒπ‘Žπ‘π‘…4

𝐼𝛽 = 5.07

where ρ = 1.225 π‘˜π‘”

π‘š3 [sea level condition] ; a = lift curve slope = 6.113 /rad ; c = chord = 0.27 m ;

R = radius = 4.91 m ; 𝐼𝛽= 231.7 π‘˜π‘”

π‘š2 [ data source : Helicopter Flight Dynamics –Padfield]

Induced Velocity in hover πœˆπ‘– = βˆšπ‘Š

2πœŒπœ‹π‘…2 = 10.8 m/sec ; where W = 2200 x 9.81 = 21582 N

Induced inflow ratio πœ†π‘– = πœˆπ‘–

Ω𝑅 =

10.8

218 = 0.05

Flapping solution in hover Ξ² (t) = πœ·π’‰π’π’Ž(t) + πœ·π’‘π’‚π’“π’•(t)

Particular solution π›½π‘π‘Žπ‘Ÿπ‘‘(t) = 𝛾

8( ΞΈ -

4

3πœ†π‘– ) =

5.07

8(8 -

4

30.05) = 5.03 degree; where ΞΈ = 8 degree(given)

[π›½π‘π‘Žπ‘Ÿπ‘‘(t) = 5.03 degree is constant coning angle ]

Homogenous solution π›½β„Žπ‘œπ‘š(t) = 𝛽0π‘’βˆ’π›ΎΞ©π‘‘

16 [cos (Ω√1 βˆ’ (𝛾

16)

2

. 𝑑) +𝛾

16

√1βˆ’(𝛾

16)

2 sin (Ω√1 βˆ’ (

𝛾

16)

2

. 𝑑)]

MS Excel was used to calculate and plot Ξ² (t) = π›½β„Žπ‘œπ‘š(t) + π›½π‘π‘Žπ‘Ÿπ‘‘(t) ,

were azimuth angle ψ =Ξ© t , 𝛽0 = π›½π‘π‘Žπ‘Ÿπ‘‘ π‘€π‘Žπ‘  π‘β„Žπ‘œπ‘ π‘’π‘›

Fig. 01 Flapping blade angle β (ψ) = βhom(ψ) + βpart(ψ) variation for one revolution

0

2

4

6

8

10

12

0 5 10 15 20 25 30

be

ta (

de

gre

e)

PSI ( x 15 degree)

Beta_hom +Beta_parti

coning angle(Beta_parti)

Page 2: Helicopter rotor dynamics

HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314

Name: DEEPAK PAUL TIRKEY

ASSIGNMENT NUMBER 04 Student number: 4590929

Question 2. Angle of attack variation for the advancing blade for one complete revolution at different radii positions on the blade varying from 0 to R Answer : Angle of attack of blade element located at a distance r from the rotation axis

πœΆπ’“ = ΞΈ - π‚π’Š+𝜷

Ω𝒓

Now to calculate from the relation 𝛽 (𝑑 ) = π›½β„Žπ‘œπ‘š (t) + π›½π‘π‘Žπ‘Ÿπ‘‘

(t) = π›½β„Žπ‘œπ‘š (t) [as π›½π‘π‘Žπ‘Ÿπ‘‘(t) is a constant term]

Writing 𝛽 (𝑑 ) = 𝛽0[A+B]

Were A = (βˆ’π›ΎΞ©

16) 𝑒

βˆ’π›ΎΞ©π‘‘

16 [cos (Ω√1 βˆ’ (𝛾

16)

2

. 𝑑) +𝛾

16

√1βˆ’(𝛾

16)

2sin (Ω√1 βˆ’ (

𝛾

16)

2

. 𝑑)]

And B = π‘’βˆ’π›ΎΞ©π‘‘

16 [– (Ω√1 βˆ’ (𝛾

16)

2

)sin (Ω√1 βˆ’ (𝛾

16)

2

. 𝑑) +𝛾Ω

16cos (Ω√1 βˆ’ (

𝛾

16)

2

. 𝑑)]

Simplifying [A+B] , cosine terms from both A and B cancel each other

[A+B] = (βˆ’)π‘’βˆ’π›ΎΞ©π‘‘

16 sin (Ω√1 βˆ’ (𝛾

16)

2

. 𝑑) [(

𝛾

16)

2Ξ©

√1βˆ’(𝛾

16)

2+ Ω√1 βˆ’ (

𝛾

16)

2

]

Simplifying the [ ] term further

[A+B] = (βˆ’)π‘’βˆ’π›ΎΞ©π‘‘

16 sin (Ω√1 βˆ’ (𝛾

16)

2

. 𝑑) [Ξ©

√1βˆ’(𝛾

16)

2]

or 𝛃 (𝐭 ) = (βˆ’)π›ƒπŸŽΞ© 𝐞

βˆ’π›„Ξ©π­πŸπŸ”

βˆšπŸβˆ’(𝛄

πŸπŸ”)

𝟐𝐬𝐒𝐧 (Ω√𝟏 βˆ’ (

𝛄

πŸπŸ”)

𝟐. 𝐭)

using the Ξ² (t ) value , π›Όπ‘Ÿ at each radial location was calculated using MS EXCEL and are plotted below.

Fig. 0.2 Angle of attack variation with radial and azimuth

5

5.5

6

6.5

7

7.5

8

0 10 20 30 40 50

An

gle

of

atta

ck (

de

gre

e)

PSI (x 15)

r 0.1 r 0.2

r 0.3 r 0.4

r 0.5 r 0.6

r 0.7 r 0.8

r 0.9 r 1

Page 3: Helicopter rotor dynamics

HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314

Name: DEEPAK PAUL TIRKEY

ASSIGNMENT NUMBER 04 Student number: 4590929

Question 3. Coning angle , longitudinal and lateral disc tilt angles. Answer : Coning angle a0 = Ξ²part(t) = 5.03 degree

Longitudinal disc tilt angle a1 = 0 degree Lateral disc tilt angle b1 = 0 degree

Assume that the helicopter is fixed to the ground but has a body pitch rate q and roll rate p. Question 4. Advancing blade angular velocities

Blade angular velocities: i Ξ© sinΞ² + q sinψ cosΞ² – p cosψ cosΞ²

j q cosψ + p sinψ - k Ξ© cosΞ² + p cosψ sinΞ² – q sinψ sinΞ²

Question 5. Flapping equation when the helicopter is having body rates p and q and is fixed to the ground Kinetic Energy:

T = 1

2𝐼 [(π‘ž π‘π‘œπ‘ πœ“ + 𝑝 π‘ π‘–π‘›πœ“ βˆ’ )

2+ (Ξ© π‘π‘œπ‘ π›½ + 𝑝 π‘π‘œπ‘ πœ“ 𝑠𝑖𝑛𝛽 βˆ’ π‘ž π‘ π‘–π‘›πœ“ 𝑠𝑖𝑛𝛽)2] eq. 01

[Note: neglecting the i axis contribution of blade angular velocities towards Kinetic Energy calculation]

Writing the above eq. 01 for simplicity T = 1

2𝐼[𝐴 + 𝐡]

Lagrange equation of motion:

𝑑

𝑑𝑑(

πœ•π‘‡

πœ•) βˆ’

πœ•π‘‡

πœ•π›½+

πœ•π‘‰

πœ•π›½= 𝑄𝛽 were 𝑄𝛽 is the aerodynamic moment about the flapping hinge π‘€π‘Ž(𝑑)

Evaluating the first term Lagrange EoM

Now πœ•π‘‡

πœ• =

1

2𝐼 [2-2(π‘ž π‘π‘œπ‘ Ξ©π‘‘ + 𝑝 𝑠𝑖𝑛Ω𝑑)] and

𝑑

𝑑𝑑(

πœ•π‘‡

πœ•) = 𝐼[ + π‘žΞ© π‘ π‘–π‘›πœ“ βˆ’ 𝑝Ω π‘π‘œπ‘ πœ“] with ψ = Ξ©t

Now expand the B term of eq. 01 B = [(Ξ© π‘π‘œπ‘ π›½)2 + (𝑝 π‘π‘œπ‘ πœ“ βˆ’ π‘ž π‘ π‘–π‘›πœ“ )2𝑠𝑖𝑛2𝛽 + 2Ξ© π‘π‘œπ‘ π›½π‘ π‘–π‘›π›½(𝑝 π‘π‘œπ‘ πœ“ βˆ’ π‘ž π‘ π‘–π‘›πœ“ )] = [(Ξ© π‘π‘œπ‘ π›½)2 + (𝑝 π‘π‘œπ‘ πœ“ βˆ’ π‘ž π‘ π‘–π‘›πœ“ )2𝑠𝑖𝑛2𝛽 + Ξ© 𝑠𝑖𝑛2𝛽(𝑝 π‘π‘œπ‘ πœ“ βˆ’ π‘ž π‘ π‘–π‘›πœ“ )] = [(Ξ© π‘π‘œπ‘ π›½)2 + 0 + Ξ© 𝑠𝑖𝑛2𝛽(𝑝 π‘π‘œπ‘ πœ“ βˆ’ π‘ž π‘ π‘–π‘›πœ“ )] Middle term became 0 as 𝛽 is small and neglecting 𝑝2, π‘ž2, 𝑝. π‘ž terms Now evaluating the second term of Lagrange EoM

πœ•π‘‡

πœ•π›½=

1

2𝐼[βˆ’2Ξ©2 π‘π‘œπ‘ π›½π‘ π‘–π‘›π›½ + 2Ξ©π‘π‘œπ‘ 2𝛽(𝑝 π‘π‘œπ‘ πœ“ βˆ’ π‘ž π‘ π‘–π‘›πœ“ ) ]

= 𝐼[βˆ’Ξ©2𝛽 + Ξ©(𝑝 π‘π‘œπ‘ πœ“ βˆ’ π‘ž π‘ π‘–π‘›πœ“ ) ] assuming 𝛽 is small Third term of the Lagrange EoM is zero

Page 4: Helicopter rotor dynamics

HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314

Name: DEEPAK PAUL TIRKEY

ASSIGNMENT NUMBER 04 Student number: 4590929

Now evaluating the complete Lagrange EoM:

𝐼 + πΌπ‘žΞ© π‘ π‘–π‘›πœ“ βˆ’ 𝐼𝑝Ω π‘π‘œπ‘ πœ“ + 𝐼Ω2𝛽 βˆ’ 𝐼Ω𝑝 π‘π‘œπ‘ πœ“ + πΌΞ©π‘ž π‘ π‘–π‘›πœ“ = π‘€π‘Ž(𝑑) Retaining the 𝛽 terms on LHS and dividing throughout by 𝐼

+ Ω𝟐𝜷 = βˆ’πŸΞ©π’’ π’”π’Šπ’π + πŸΞ©π’‘ 𝒄𝒐𝒔𝝍 + 𝑴𝒂(𝒕)

𝑰 eq. 02

Question 6. Disc tilt angles a0 , a1 and b1 Angle of attack of a blade element

𝛼 = πœƒ βˆ’πœˆπ‘–+𝛽 π‘Ÿβˆ’π‘ž π‘Ÿ π‘π‘œπ‘ πœ“βˆ’π‘π‘Ÿπ‘ π‘–π‘›πœ“

Ξ©π‘Ÿ

Evaluate aerodynamic moment about flapping hinge:

𝑴𝒂

𝑰=

1

𝐼∫ π‘Ž (πœƒ βˆ’

πœˆπ‘–+𝛽 π‘Ÿβˆ’π‘ž π‘Ÿ π‘π‘œπ‘ πœ“βˆ’π‘π‘Ÿπ‘ π‘–π‘›πœ“

Ξ©π‘Ÿ)

1

2𝜌(Ξ©π‘Ÿ)2π‘π‘Ÿ π‘‘π‘Ÿ

𝑅

0

=πœŒπ‘Žπ‘

𝐼.

Ξ©2

2∫ (πœƒ0 βˆ’

πœˆπ‘–

Ω𝑅π‘₯βˆ’

𝛽

Ξ©+

π‘ž π‘π‘œπ‘ πœ“

Ξ©+

π‘π‘ π‘–π‘›πœ“

Ξ©) π‘₯3𝑅4 𝑑π‘₯

1

0 taking π‘₯ =

π‘Ÿ

𝑅 ; π‘Ÿ = π‘₯𝑅 ; π‘‘π‘Ÿ = 𝑅 𝑑π‘₯

=πœŒπ‘Žπ‘π‘…4

𝐼.

Ξ©2

2∫ (πœƒ0π‘₯3 βˆ’ πœ†π‘–π‘₯

2 βˆ’π›½

Ξ©π‘₯3 +

π‘ž π‘π‘œπ‘ πœ“

Ξ©π‘₯3 +

π‘π‘ π‘–π‘›πœ“

Ξ©π‘₯3) 𝑑π‘₯

1

0

= 𝛾.Ξ©2

2[

πœƒ0

4βˆ’

πœ†π‘–

3βˆ’

𝛽

4Ξ©+

π‘ž π‘π‘œπ‘ πœ“

4Ξ©+

π‘π‘ π‘–π‘›πœ“

4Ξ©]

𝑴𝒂

𝑰=

𝛾Ω2

8(πœƒ0 βˆ’

4πœ†π‘–

3) βˆ’

𝛾𝛽 Ξ©

8+

𝛾 π‘žΞ© π‘π‘œπ‘ πœ“

8+

𝛾 𝑝Ω π‘ π‘–π‘›πœ“

8 eq. 03

Now rewriting eq. 02 using eq. 03

+ Ξ©2𝛽 = βˆ’2Ξ©π‘ž π‘ π‘–π‘›πœ“ + 2Ω𝑝 π‘π‘œπ‘ πœ“ +𝛾Ω2

8(πœƒ0 βˆ’

4πœ†π‘–

3) βˆ’

𝛾𝛽 Ξ©

8+

𝛾 π‘žΞ© π‘π‘œπ‘ πœ“

8+

𝛾 𝑝Ω π‘ π‘–π‘›πœ“

8

+𝛾𝛽 Ξ©

8+ Ξ©2𝛽 =

𝛾Ω2

8(πœƒ0 βˆ’

4πœ†π‘–

3) +

𝛾 π‘žΞ© π‘π‘œπ‘ πœ“

8+

𝛾 𝑝Ω π‘ π‘–π‘›πœ“

8 βˆ’ 2Ξ©π‘ž π‘ π‘–π‘›πœ“ + 2Ω𝑝 π‘π‘œπ‘ πœ“

+𝜸Ω

πŸ– + Ω𝟐𝜷 =

𝜸Ω𝟐

πŸ–(𝜽𝟎 βˆ’

πŸ’π€π’Š

πŸ‘) + Ξ© (

𝜸 𝒒

πŸ–+ πŸπ’‘) 𝒄𝒐𝒔Ω𝒕 + Ξ© (

𝜸 𝒑

πŸ– βˆ’ πŸπ’’ ) π’”π’Šπ’Ξ©π’• eq. 04 (using πœ“ = Ω𝑑)

Assuming solution for the above eq. 04 of the form 𝛽 = π‘Ž0 βˆ’ π‘Ž1 π‘π‘œπ‘ Ξ©π‘‘ βˆ’ 𝑏1 𝑠𝑖𝑛Ω𝑑

= π‘Ž1Ξ© 𝑠𝑖𝑛Ω𝑑 βˆ’ 𝑏1Ξ© π‘π‘œπ‘ Ξ©π‘‘

= π‘Ž1Ξ©2 π‘π‘œπ‘ Ξ©π‘‘ + 𝑏1Ξ©2 𝑠𝑖𝑛Ω𝑑

Now substituting the values of 𝛽, , on the LHS of eq. 04 LHS of eq.04

≑ π‘Ž1Ξ©2 π‘π‘œπ‘ Ξ©π‘‘ + 𝑏1Ξ©2 𝑠𝑖𝑛Ω𝑑 +𝜸

πŸ–π‘Ž1Ξ©2 𝑠𝑖𝑛Ω𝑑 βˆ’

𝜸

πŸ–π‘1Ξ©2 π‘π‘œπ‘ Ξ©π‘‘ + Ξ©2π‘Ž0 βˆ’ π‘Ž1Ξ©2 π‘π‘œπ‘ Ξ©π‘‘ βˆ’ 𝑏1Ξ©2 𝑠𝑖𝑛Ω𝑑

≑ Ξ©2π‘Ž0 + (π‘Ž1Ξ©2 βˆ’πœΈ

πŸ–π‘1Ξ©2 βˆ’ π‘Ž1Ξ©2) π‘π‘œπ‘ Ξ©π‘‘ + (𝑏1Ξ©2+

𝜸

πŸ–π‘Ž1Ξ©2 βˆ’ 𝑏1Ξ©2) 𝑠𝑖𝑛Ω𝑑

≑ Ξ©2π‘Ž0 βˆ’πœΈ

πŸ–π‘1Ξ©2 π‘π‘œπ‘ Ξ©π‘‘ +

𝜸

πŸ–π‘Ž1Ξ©2 𝑠𝑖𝑛Ω𝑑

Equating the above expression with the RHS of eq. 04 and comparing constant, sine and cosine terms Constant term

Ξ©2π‘Ž0 =𝛾Ω2

8(πœƒ0 βˆ’

4πœ†π‘–

3) or π’‚πŸŽ =

𝜸

πŸ–(𝜽𝟎 βˆ’

πŸ’π€π’Š

πŸ‘)

Page 5: Helicopter rotor dynamics

HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314

Name: DEEPAK PAUL TIRKEY

ASSIGNMENT NUMBER 04 Student number: 4590929

Sine term

𝛾

8π‘Ž1Ξ©2 = Ξ© (

𝛾 𝑝

8 βˆ’ 2π‘ž ) or π’‚πŸ = (

𝒑

Ξ© βˆ’

πŸπŸ”π’’

𝜸Ω )

Cosine term

βˆ’π›Ύ

8𝑏1Ξ©2 = Ξ© (

𝛾 π‘ž

8+ 2𝑝) or π’ƒπŸ = (

βˆ’ 𝒒

Ξ©βˆ’

πŸπŸ”π’‘

𝜸Ω)

Assume that the helicopter is in forward flight and has body rate q Question 7. Perform analytically the integral of blade aerodynamic moment and compare with given expression Aerodynamic moment is given as:

π‘€π‘Ž = ∫ 𝐢𝑙𝛼 𝛼1

2𝜌(Ξ©π‘Ÿ + π‘‰π‘π‘œπ‘ π›Όπ‘ π‘ π‘–π‘›πœ“)2𝑅

0𝑐 π‘‘π‘Ÿ. π‘Ÿ Where 𝛼 = πœƒ βˆ’

𝑉 𝑠𝑖𝑛𝛼𝑐+πœˆπ‘–+π‘Ÿβˆ’π‘žπ‘Ÿ π‘π‘œπ‘ πœ“+𝛽𝑉 π‘π‘œπ‘ π›Όπ‘ π‘π‘œπ‘ πœ“

Ξ©π‘Ÿ+𝑉 π‘π‘œπ‘ π›Όπ‘ π‘ π‘–π‘›πœ“

Performing integration with the 𝜽 part

π‘€π‘Ž1 = πœŒπΆπ‘™π›Ό 𝑐1

2 ∫ πœƒ(Ξ©π‘Ÿ + π‘‰π‘π‘œπ‘ π›Όπ‘ π‘ π‘–π‘›πœ“)2𝑅

0 π‘‘π‘Ÿ. π‘Ÿ

= πœŒπΆπ‘™π›Ό 𝑐1

2 πœƒ ∫ (Ξ©2π‘Ÿ3 + 𝑉2π‘Ÿ cos 𝛼𝑐

2 π‘ π‘–π‘›πœ“2 + 2Ω𝑉 π‘Ÿ2π‘π‘œπ‘ π›Όπ‘ π‘ π‘–π‘›πœ“)𝑅

0 π‘‘π‘Ÿ

= πœŒπΆπ‘™π›Ό 𝑐1

2 πœƒ [

Ξ©2𝑅4

4+

Ξ©2𝑅4

2 (

π‘‰π‘π‘œπ‘ π›Όπ‘

Ω𝑅)

2

π‘ π‘–π‘›πœ“2 +2 Ξ©2𝑅4

3(

π‘‰π‘π‘œπ‘ π›Όπ‘

Ω𝑅) π‘ π‘–π‘›πœ“] Where

π‘‰π‘π‘œπ‘ π›Όπ‘

Ω𝑅= πœ‡

= 𝝆π‘ͺπ’πœΆ π’„π‘ΉπŸ’Ξ©πŸ 𝟏

𝟐 𝜽 [

𝟏

πŸ’+

𝟏

𝟐𝝁𝟐 π’”π’Šπ’ππŸ +

𝟐

πŸ‘π π’”π’Šπ’π]

Performing integration with 𝑽 π’”π’Šπ’πœΆπ’„+π‚π’Š+π’“βˆ’π’’π’“ 𝒄𝒐𝒔𝝍+πœ·π‘½ π’„π’π’”πœΆπ’„ 𝒄𝒐𝒔𝝍

Ω𝒓+𝑽 π’„π’π’”πœΆπ’„ π’”π’Šπ’π part

π‘€π‘Ž2 = πœŒπΆπ‘™π›Ό 𝑐1

2 ∫ (𝑉 𝑠𝑖𝑛𝛼𝑐 + πœˆπ‘– + π‘Ÿ βˆ’ π‘žπ‘Ÿ π‘π‘œπ‘ πœ“ + 𝛽𝑉 π‘π‘œπ‘ π›Όπ‘ π‘π‘œπ‘ πœ“)(Ξ©π‘Ÿ + π‘‰π‘π‘œπ‘ π›Όπ‘ π‘ π‘–π‘›πœ“)

𝑅

0π‘‘π‘Ÿ. π‘Ÿ

Now integrating each term:

π‘€π‘Ž3 = πœŒπΆπ‘™π›Ό 𝑐1

2 ∫ (𝑉 𝑠𝑖𝑛𝛼𝑐)(Ξ©π‘Ÿ + π‘‰π‘π‘œπ‘ π›Όπ‘ π‘ π‘–π‘›πœ“)

𝑅

0π‘‘π‘Ÿ. π‘Ÿ = 𝝆π‘ͺπ’πœΆ π’„π‘ΉπŸ’Ξ©πŸ 𝟏

𝟐 [

𝝀𝒄

πŸ‘+

𝝀𝒄 𝝁

πŸπ’”π’Šπ’π]

π‘€π‘Ž4 = πœŒπΆπ‘™π›Ό 𝑐1

2 ∫ (πœˆπ‘–)(Ξ©π‘Ÿ + π‘‰π‘π‘œπ‘ π›Όπ‘ π‘ π‘–π‘›πœ“)

𝑅

0π‘‘π‘Ÿ. π‘Ÿ = 𝝆π‘ͺπ’πœΆ π’„π‘ΉπŸ’Ξ©πŸ 𝟏

𝟐 [

π€π’Š

πŸ‘+

π€π’Š 𝝁

πŸπ’”π’Šπ’π]

π‘€π‘Ž5 = πœŒπΆπ‘™π›Ό 𝑐1

2 ∫ (𝛽)(Ξ©π‘Ÿ + π‘‰π‘π‘œπ‘ π›Όπ‘ π‘ π‘–π‘›πœ“)

𝑅

0π‘‘π‘Ÿ. π‘Ÿ= 𝝆π‘ͺπ’πœΆ π’„π‘ΉπŸ’Ξ©πŸ 𝟏

𝟐 [

πŸ’Ξ©+

𝝁

πŸ‘Ξ©π’”π’Šπ’π]

π‘€π‘Ž6 = πœŒπΆπ‘™π›Ό 𝑐1

2 ∫ (βˆ’π‘žπ‘Ÿ π‘π‘œπ‘ πœ“)(Ξ©π‘Ÿ + π‘‰π‘π‘œπ‘ π›Όπ‘ π‘ π‘–π‘›πœ“)

𝑅

0π‘‘π‘Ÿ. π‘Ÿ= 𝝆π‘ͺπ’πœΆ π’„π‘ΉπŸ’Ξ©πŸ 𝟏

𝟐 [

βˆ’π’’

πŸ’Ξ©π‘π‘œπ‘ πœ“ +

βˆ’π’’ 𝝁

πŸ‘Ξ©π’”π’Šπ’ππ‘π‘œπ‘ πœ“]

π‘€π‘Ž7 = πœŒπΆπ‘™π›Ό 𝑐1

2 ∫ (𝛽𝑉 π‘π‘œπ‘ π›Όπ‘ π‘π‘œπ‘ πœ“)(Ξ©π‘Ÿ + π‘‰π‘π‘œπ‘ π›Όπ‘ π‘ π‘–π‘›πœ“)

𝑅

0π‘‘π‘Ÿ. π‘Ÿ= 𝝆π‘ͺπ’πœΆ π’„π‘ΉπŸ’Ξ©πŸ 𝟏

𝟐 [

𝜷𝝁

πŸ‘π‘π‘œπ‘ πœ“ +

𝜷𝝁𝟐

πŸπ’”π’Šπ’ππ‘π‘œπ‘ πœ“]

Now π‘€π‘Ž/𝐼𝑏𝑙=π‘€π‘Ž1- (π‘€π‘Ž3 + π‘€π‘Ž4 + π‘€π‘Ž5 + π‘€π‘Ž6 + π‘€π‘Ž7) /𝐼𝑏𝑙

= 𝛾Ω2 1

2 πœƒ [

1

4+

1

2πœ‡2 π‘ π‘–π‘›πœ“2 +

2

3πœ‡ π‘ π‘–π‘›πœ“] βˆ’π›ΎΞ©2 1

2 [

πœ†π‘

3+

πœ†π‘ πœ‡

2π‘ π‘–π‘›πœ“] βˆ’ 𝛾Ω2 1

2 [

πœ†π‘–

3+

πœ†π‘– πœ‡

2π‘ π‘–π‘›πœ“]

βˆ’π›ΎΞ©2 1

2 [

4Ξ©+

πœ‡

3Ξ©π‘ π‘–π‘›πœ“] +𝛾Ω2 1

2 [

π‘ž

4Ξ©π‘π‘œπ‘ πœ“ +

π‘ž 𝝁

3Ξ©π‘ π‘–π‘›πœ“π‘π‘œπ‘ πœ“] βˆ’π›ΎΞ©2 1

2 [

π›½πœ‡

3π‘π‘œπ‘ πœ“ +

π›½πœ‡2

2π‘ π‘–π‘›πœ“π‘π‘œπ‘ πœ“]

Now flapping equation is given as: + Ξ©2𝛽 = βˆ’2π‘žΞ© π‘ π‘–π‘›πœ“ + π‘€π‘Ž/𝐼𝑏𝑙

+ 𝜸

πŸ–Ξ© [𝟏 +

πŸ’π

πŸ‘π’”π’Šπ’π]+Ω𝟐𝜷 [𝟏 +

𝜸 𝝁

πŸ”π’„π’π’”π +

𝜸 𝝁𝟐

πŸ–π’”π’Šπ’πŸπ] = 𝜸Ω𝟐 𝟏

πŸ– 𝜽(𝟏 + 𝝁𝟐) βˆ’ 𝜸Ω𝟐 𝟏

πŸ”(𝝀𝒄 + π€π’Š)

+𝜸Ω𝟐 𝟏

πŸ– π’”π’Šπ’π (

πŸ–

πŸ‘πœ½π βˆ’ 𝟐𝝁 (𝝀𝒄 + π€π’Š))

+𝜸Ω𝟏

πŸ–π’’ 𝒄𝒐𝒔𝝍+𝜸Ω

𝟏

𝟏𝟐𝝁 𝒒 π’”π’Šπ’πŸπ

βˆ’πœΈΞ©πŸ 𝟏

πŸ– πœ½ππŸπ’„π’π’”πŸπ βˆ’ πŸπ’’Ξ© π’”π’Šπ’π eq. 05

Question 8. Deduce disc tilt angles Assuming solution for the above eq. 05 of the form 𝛽 = π‘Ž0 βˆ’ π‘Ž1 π‘π‘œπ‘ πœ“ βˆ’ 𝑏1 π‘ π‘–π‘›πœ“

= π‘Ž1Ξ© π‘ π‘–π‘›πœ“ βˆ’ 𝑏1Ξ© π‘π‘œπ‘ πœ“ by using πœ“ = Ω𝑑

= π‘Ž1Ξ©2 π‘π‘œπ‘ πœ“ + 𝑏1Ξ©2 π‘ π‘–π‘›πœ“

Page 6: Helicopter rotor dynamics

HELICOPTER PERFORMANCE STABILITY AND CONTROL COURSE CODE: AE4314

Name: DEEPAK PAUL TIRKEY

ASSIGNMENT NUMBER 04 Student number: 4590929

Now substituting the values of 𝛽, , on the LHS of eq. 05 LHS of eq.05

≑ π‘Ž1Ξ©2 π‘π‘œπ‘ πœ“ + 𝑏1Ξ©2 π‘ π‘–π‘›πœ“ +𝛾

8Ξ© (π‘Ž1Ξ© π‘ π‘–π‘›πœ“ βˆ’ 𝑏1Ξ© π‘π‘œπ‘ πœ“ +

4πœ‡

3π‘Ž1Ξ© 𝑠𝑖𝑛2πœ“ βˆ’

4πœ‡

3𝑏1Ξ©π‘ π‘–π‘›πœ“π‘π‘œπ‘ πœ“)

+Ξ©2 (π‘Ž0 βˆ’ π‘Ž1 π‘π‘œπ‘ πœ“ βˆ’ 𝑏1 π‘ π‘–π‘›πœ“ +𝛾 πœ‡

6π‘Ž0 π‘π‘œπ‘ πœ“ βˆ’

𝛾 πœ‡

6π‘Ž1 π‘π‘œπ‘ 2πœ“ βˆ’

𝛾 πœ‡

6𝑏1π‘ π‘–π‘›πœ“π‘π‘œπ‘ πœ“ +

𝛾 πœ‡2

8π‘Ž0 𝑠𝑖𝑛2πœ“ βˆ’

𝜸 𝝁𝟐

πŸ–π’‚πŸπ’„π’π’” ππ’”π’Šπ’πŸπ βˆ’

𝜸 𝝁𝟐

πŸ–π’ƒπŸπ’”π’Šπ’π π’”π’Šπ’πŸπ) eq. 06

Simplifying the last two terms of eq. 06 :

βˆ’ 𝜸 𝝁𝟐

πŸ–π’‚πŸπ’„π’π’” ππ’”π’Šπ’πŸπ ≑ βˆ’

𝛾 πœ‡2

4π‘Ž1π‘π‘œπ‘  πœ“ π‘ π‘–π‘›πœ“ π‘π‘œπ‘ πœ“ ≑ βˆ’

𝛾 πœ‡2

4π‘Ž1 π‘ π‘–π‘›πœ“ π‘π‘œπ‘ 2πœ“

≑ βˆ’ 𝛾 πœ‡2

4π‘Ž1 (

1

4π‘ π‘–π‘›πœ“ +

1

4𝑠𝑖𝑛3πœ“ )

≑ βˆ’ 𝛾 πœ‡2

16π‘Ž1π‘ π‘–π‘›πœ“ βˆ’

𝛾 πœ‡2

16π‘Ž1𝑠𝑖𝑛3πœ“

βˆ’πœΈ 𝝁𝟐

πŸ–π’ƒπŸπ’”π’Šπ’π π’”π’Šπ’πŸπ ≑ βˆ’

𝛾 πœ‡2

4𝑏1π‘ π‘–π‘›πœ“ π‘ π‘–π‘›πœ“ π‘π‘œπ‘ πœ“ ≑ βˆ’

𝛾 πœ‡2

4𝑏1𝑠𝑖𝑛2πœ“ π‘π‘œπ‘ πœ“

≑ βˆ’ 𝛾 πœ‡2

4𝑏1 (

1

4π‘π‘œπ‘ πœ“ βˆ’

1

4π‘π‘œπ‘ 3πœ“ )

≑ βˆ’ 𝛾 πœ‡2

16𝑏1π‘π‘œπ‘ πœ“ +

𝛾 πœ‡2

16𝑏1π‘π‘œπ‘ 3πœ“

Rewriting eq. 06

≑ π‘Ž1Ξ©2 π‘π‘œπ‘ πœ“ + 𝑏1Ξ©2 π‘ π‘–π‘›πœ“ +𝛾

8Ξ©2π‘Ž1 π‘ π‘–π‘›πœ“ βˆ’

𝛾

8Ξ©2𝑏1 π‘π‘œπ‘ πœ“ +

𝛾

8Ξ©2 2πœ‡

3π‘Ž1 (1 βˆ’ π‘π‘œπ‘ 2πœ“) βˆ’

𝛾

8Ξ©2 2πœ‡

3𝑏1Ω𝑠𝑖𝑛2πœ“

+Ξ©2π‘Ž0 βˆ’ Ξ©2π‘Ž1 π‘π‘œπ‘ πœ“ βˆ’ Ξ©2𝑏1 π‘ π‘–π‘›πœ“ + Ξ©2 𝛾 πœ‡

6π‘Ž0 π‘π‘œπ‘ πœ“ βˆ’ Ξ©2 𝛾 πœ‡

12π‘Ž1 (1 + π‘π‘œπ‘ 2πœ“) βˆ’ Ξ©2 𝛾 πœ‡

12𝑏1𝑠𝑖𝑛2πœ“ +

Ξ©2 𝛾 πœ‡2

8π‘Ž0 𝑠𝑖𝑛2πœ“ βˆ’ Ξ©2

𝛾 πœ‡2

16π‘Ž1π‘ π‘–π‘›πœ“ βˆ’ Ξ©2 𝛾 πœ‡2

16π‘Ž1𝑠𝑖𝑛3πœ“ βˆ’ Ξ©2

𝛾 πœ‡2

16𝑏1π‘π‘œπ‘ πœ“ + Ξ©2 𝛾 πœ‡2

16𝑏1π‘π‘œπ‘ 3πœ“

Rearranging the above expression in terms of free, sine, cosine terms etc..

≑ (𝛾

8Ξ©2 2πœ‡

3π‘Ž1 + Ξ©2π‘Ž0 βˆ’ Ξ©2 𝛾 πœ‡

12π‘Ž1) + (𝑏1Ξ©2 +

𝛾

8Ξ©2π‘Ž1 βˆ’ Ξ©2𝑏1 βˆ’ Ξ©2

𝛾 πœ‡2

16π‘Ž1) π‘ π‘–π‘›πœ“

+ (π‘Ž1Ξ©2 βˆ’π›Ύ

8Ξ©2𝑏1 βˆ’ Ξ©2π‘Ž1 + Ξ©2 𝛾 πœ‡

6π‘Ž0 βˆ’ Ξ©2

𝛾 πœ‡2

16𝑏1) π‘π‘œπ‘ πœ“ + β‹― π‘‘π‘’π‘Ÿπ‘šπ‘  π‘π‘œπ‘›π‘‘π‘Žπ‘–π‘›π‘–π‘›π‘” β„Žπ‘–π‘”β„Žπ‘’π‘Ÿ β„Žπ‘Žπ‘Ÿπ‘šπ‘œπ‘›π‘–π‘π‘ 

Comparing free terms with the RHS free term of eq.05

(𝛾

8Ξ©2 2πœ‡

3π‘Ž1 + Ξ©2π‘Ž0 βˆ’ Ξ©2 𝛾 πœ‡

12π‘Ž1) = 𝜸Ω𝟐 𝟏

πŸ– 𝜽(𝟏 + 𝝁𝟐) βˆ’ 𝜸Ω𝟐 𝟏

πŸ”(𝝀𝒄 + π€π’Š)

Or π’‚πŸŽ = 𝜸𝟏

πŸ– [𝜽(𝟏 + 𝝁𝟐) βˆ’

πŸ’

πŸ‘(𝝀𝒄 + π€π’Š)]

Comparing sine terms with the RHS sine term of eq.05

(𝑏1Ξ©2 +𝛾

8Ξ©2π‘Ž1 βˆ’ Ξ©2𝑏1 βˆ’ Ξ©2

𝛾 πœ‡2

16π‘Ž1) = 𝛾Ω2 1

8 (

8

3πœƒπœ‡ βˆ’ 2πœ‡ (πœ†π‘ + πœ†π‘–)) βˆ’ 2π‘žΞ©

𝛾

8Ξ©2π‘Ž1 (1 βˆ’

πœ‡2

2) = 𝛾Ω2 1

8 (

8

3πœƒπœ‡ βˆ’ 2πœ‡ (πœ†π‘ + πœ†π‘–)) βˆ’ 2π‘žΞ©

Or π’‚πŸ = (

πŸ–

πŸ‘πœ½πβˆ’ 𝟐𝝁 (𝝀𝒄+π€π’Š))βˆ’

πŸπŸ”π’’

𝜸Ω

(πŸβˆ’ 𝝁𝟐

𝟐)

Comparing cosine terms with the RHS cosine term of eq.05

(π‘Ž1Ξ©2 βˆ’π›Ύ

8Ξ©2𝑏1 βˆ’ Ξ©2π‘Ž1 + Ξ©2 𝛾 πœ‡

6π‘Ž0 βˆ’ Ξ©2

𝛾 πœ‡2

16𝑏1) = 𝛾Ω

1

8π‘ž

(1

8𝑏1 +

πœ‡2

16𝑏1) = βˆ’

π‘ž

Ξ©

1

8+

πœ‡

6π‘Ž0

Or π’ƒπŸ =βˆ’

𝒒

Ξ© +

πŸ’ 𝝁

πŸ‘π’‚πŸŽ

(𝟏+ 𝝁𝟐

𝟐)