60
JAG – Water & Sewage Inc. GROUP E - JONATHAN DAMORA, JAY JIMENEZ, ALEX WAITE, JENNY Final Project

Group Project to Design Water Infrastructure for a Theoretical Small Town

Embed Size (px)

Citation preview

Page 1: Group Project to Design Water Infrastructure for a Theoretical Small Town

JAG – Water & Sewage Inc.

GROUP E - JONATHAN DAMORA, JAY JIMENEZ, ALEX WAITE, JENNY YU, GANAA ZAGDBAZAR

Final Project Report

Page 2: Group Project to Design Water Infrastructure for a Theoretical Small Town

TABLE OF CONTENTS

Acknowledgement

Although this project required good amount of hard work, research, and dedication, it has given us a great opportunity to apply our technical knowledge to practical scenario. We believe we have completed the given assignments correctly to best of our abilities. Still, the project would not have been possible if we did not have the support of our Professor and fellow students of CE 465. First of all, we are thankful to Professor Chun Wang for providing us with the necessary background and guidance concerning the assignment. We are also grateful to our fellow students who are working on the same project. Their effort motivated us to work even harder.       

JAG – Water & Sewage Inc.

ACKNOWLEDGEMENT

Page 3: Group Project to Design Water Infrastructure for a Theoretical Small Town

TABLE OF CONTENTS

Contents

Table of Figures:____________________________________________________________________________________________1

Table of Tables:_____________________________________________________________________________________________2

Section 1 - Executive Summary____________________________________________________________________________3

Section 2 - Background____________________________________________________________________________________4

Section 3 - Project Site Analysis___________________________________________________________________________5

Section 4 - Water Distribution System Design___________________________________________________________12

Sanitary Sewer Design____________________________________________________________________________________27

____________________________________________________________________________________________________________27

Section 6 - Storm Drain Design__________________________________________________________________________30

Section 7 - References____________________________________________________________________________________33

____________________________________________________________________________________________________________35

Name of Section (If needed)______________________________________________________________________________37

JAG – Water & Sewage Inc.

Page 4: Group Project to Design Water Infrastructure for a Theoretical Small Town

TABLE OF CONTENTS

JAG – Water & Sewage Inc.

Page 5: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNTable of Figures

Figure 1. Dimensions of Each Block.....................................................................................................................................................5

Figure 2. Square footage of each block...............................................................................................................................................6

Figure 3. Potable pipeline length and name.....................................................................................................................................7

Figure 4. Complete flow network as drawn in EPANET 2.0 for model small community.........................................12

Figure 5. Water Distribution System, Scenario 1 Results with Color Coding..................................................................17

Figure 6. Water Distribution System, Scenario 2 Results with Color Coding..................................................................21

Figure 7. Scenario 3 pump curve........................................................................................................................................................22

Figure 8. Water Distribution System, Scenario 3 Results with Color Coding..................................................................26

Figure 9. Sanitary Sewer System Map and Labels, Blue dots are manholes, dashed lines are pipes....................27

Page 1 JAG – Water & Sewage Inc.

Page 6: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNTable of Tables:

Table 1. Areas and Populations of each Section.............................................................................................................................9

Table 2. Commercial Zone B Establishments and Flow Demands.......................................................................................10

Table 3. Commercial Zone C Establishments and Flow Demands.......................................................................................10

Table 4. Industrial Zone A establishment and flow demands................................................................................................11

Table 5. Scenario 1 Node Network Table........................................................................................................................................15

Table 6. Scenario 1 Link Network Table..........................................................................................................................................17

Table 7. Scenario 2 Node Network Table........................................................................................................................................19

Table 8. Scenario 2 Link Network Table..........................................................................................................................................21

Table 9. Scenario 3 Node Network Table........................................................................................................................................23

Table 10. Scenario 3 Link Network Table.......................................................................................................................................25

Table 11. Important Design Information for the Sanitary Sewer System.........................................................................29

.       

Page 2 JAG – Water & Sewage Inc.

Page 7: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSection 1 - Executive Summary

Water conveyance, sanitary sewer, and storm drain systems are essential systems required in modern cities. Clean, potable water delivered directly to consumers’ homes and businesses is not only a necessity but is expected to be consistently reliable. In the same way, waste water must be conveyed away from consumers to treatment plants, and storm drains must protect cities from flooding without fail. These three systems, when designed correctly, facilitate a healthy living environment for people and businesses to thrive.

The purpose of this project is to design water conveyance, sanitary sewer, and storm drain systems for the model small community shown in Figure 1. The designs are based on assumptions given in the project problem statement as well as general engineering practices as discussed in [***]. In order to design these systems, the demand was found for each block based on the population for the domestic areas or the type of commercial and industrial uses for zones A, B, and C. The basis for the demand calculations are discussed in Section ***. This demand is subsequently used in the water distribution design and sanitary sewer design. The storm drain system is designed using rainfall intensity analysis for the project area. The water distribution system design is shown in Section ***, sanitary sewer design in Section ***, and storm drain in Section ***. Methods for designing these systems are discussed in their respective sections.

Page 3 JAG – Water & Sewage Inc.

Page 8: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSection 2 - Background

As shown in Figure *** and stated in [***], the river located in the most north-eastern section of the community serves as the community’s water source. The water from this river is treated by a water treatment plant previously designed and operating currently with sufficient capacity to meet the demand of the small community. The treatment plant treats the water to US EPA’s drinking water standards using standard treatment processes (i.e. aeration, sedimentation, filtration, and chlorination). Treated water is then distributed to two storage tanks (see Figure 4): an elevated storage tank located in the upper left area above Ash St. (⊗1) and an underground storage reservoir located in the upper right area above Highland St. (⊗2). These storage tanks serve as the sole distribution centers for the community.

Page 4 JAG – Water & Sewage Inc.

Page 9: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSection 3 - Project Site Analysis

The distance of each block was obtain by scaling the map provided into AutoCad thus allowing for the length to be determine to accurate distance within 5 feet. These measurements are required, for later, to determine the number of fire hydrants, shutoff valves, etc. per block.

Page 5 JAG – Water & Sewage Inc.

Figure 1. Dimensions of Each Block

Page 10: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Acreage and Population As shown in Section ***, the acreage for each residential, commercial, and industrial

zone is estimated using CAD imaging software. Population for the residential zones is based on the assumption of 40 persons/acre for residential zones. Table *** displays the size of the residential zones is square feet and acres and tabulates the population by:Population = acres x 40 persons/acreThis population is then used to determine the demand.

DemandDaily Average, Daily Maximum, and Hourly Maximum

Demand was calculated using several assumptions. The average daily unit consumption is 100 gpcd (gallons per capita per day). This assumption is exclusive to the residential areas. The maximum day’s consumption is 200% of average daily consumption, and the maximum hour’s

Page 6 JAG – Water & Sewage Inc.

Figure 2. Square footage of each block

Page 11: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNconsumption is 400% of average daily consumption. The industrial zone, Zone A, has a process consumption of 2000 gpm for 8 hours a day on working days, and no water consumption is required for the remainder of the day. Peak hourly consumption for Zone A in any hour’s time is 3000 gpm. Using the assumptions and the population estimations for residential zones, the demand is tabulated in Table 1.

The above figure shows the length and name of each pipeline. The pipelines will run parallel to the street and at the center of the street. Moreover, the water distribution pipeline will be placed above any sewage or storm water pipelines thus eliminating any cross contamination between the water distribution system and the sewage/storm water system. The offset will not only be in the vertical direction but also in the horizontal direction with a minimum of three feet.

Page 7 JAG – Water & Sewage Inc.

Figure 3. Potable pipeline length and name

Page 12: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN Given design criteria suggest we should use 40 persons per acre for domestic population density. Since we have the area, we can now calculate the population using following equation.

Population=[persons/acre]*A[acre] where =40 persons/acre

Keep in mind that the population density is given in acres and areas found in square feet, so

Table 1: Area and Residential Population

Area [sf]

Area [acres]

Population [persons]

1 195144 4.48 1792 20521 0.471 193 2986 0.069 34 322453 7.403 2965 178598 4.1 1646 178009 4.087 1637 326350 7.492 3008 282199 6.478 2599 293441 6.736 269

10 276223 6.341 25411 109273 2.509 10012 13079 0.3 1213 30755 0.706 2814 50103 1.15 4615 103394 2.374 9516 205108 4.709 18817 94220 2.163 8718 38826 0.891 3619 137661 3.16 12620 178451 4.097 16421 145019 3.329 13322 255279 5.86 234

Page 8 JAG – Water & Sewage Inc.

Page 13: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

23 21062 0.484 1924 39618 0.91 3625 41762 0.959 3826 30445 0.699 2827 55565 1.276 5128 33972 0.78 31A 165396 3.797 152

Sum 3824912 87.808 3512Table 1. Areas and Populations of each Section

Commercial and Industrial ZonesCommercial DemandCommercial demand is based on a series of parameters based on the type of commercial use [http://buildingsdatabook.eren.doe.gov/TableView.aspx?table=8.3.2]. The following calculations for Zone B and C use several assumptions. The square footage of each establishment is arbitrarily determined, and the number of seats or rooms in the case of the restaurants and hotel are chosen relative to the square footage of the establishment. The gallon per parameter requirements are chosen from (http://buildingsdatabook.eren.doe.gov/TableView.aspx?table=8.3.2), the following commercial establishments have been chosen along with their respective daily flow rates. The water demands for these establishments in Zone B and Zone C along with the total demand for each zone is displayed in Table *** and ***, respectively:

Zone B: Restaurant 1 - 6000 sq ft, 153 seats x 24 gal/seat/day = 3672 gpdRestaurant 2 - 3000 sq ft, 110 seats x 21 gal/seat/day = 2310 gpdRestaurant 3 - 9000 sq ft, 230 seats x 30 gal/seat/day = 6900 gpdHotel - 100,000 sq ft, 180 rooms x 45,000 gal/room = 25400 gpdSupermarket - 66000 sq ft x 50.75gal/sq ft = 9176 gpd

Page 9 JAG – Water & Sewage Inc.

Page 14: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Establishment

Average Daily Use (gpd)

Max Daily Use (gpd)

Fire Demand (gpm)

Hrs for flow (hr)

Fire Demand (mgd)

Max Daily + Fire Demand (mgd)

Max Hourly Use (mgd)

Hotel 25400 50800 3500 3 5.04 5.09 0.102

Supermarket 9177 18353 2750 2 3.96 3.98 0.037

Restaurant 1 3672 7344 1500 2 2.16 2.17 0.015

Restaurant 2 2310 4620 1500 2 2.16 2.16 0.009

Restaurant 3 6900 13800 1500 2 2.16 2.17 0.028

Total: 47459 94917 10750   15.48 15.57 0.190Table 2. Commercial Zone B Establishments and Flow Demands

Zone C:Office building/warehouse - 45,460 sq ft x 35 gal/sq ft/year = 1.591 mgpy = 4359 gpdHospital - 51 gal/sq ft x 75,369 sq ft = 10531 gpd

Establishment

Average Daily Use (gpd)

Max Daily Use (gpd)

Fire Demand (gpm)

Hrs for flow (hr)

Fire Demand (mgd)

Max Daily + Fire Demand (mgd)

Max Hourly Use (mgd)

Hospital 10531 21062 3750 3 5.40 5.42 0.0421Office

Building / Warehouse

4359 8718 3750 3 5.40 5.41 0.0174

Total: 14890 29780 7500   10.8 10.83 0.0596Table 3. Commercial Zone C Establishments and Flow Demands

Page 10 JAG – Water & Sewage Inc.

Page 15: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Industrial Demand

Concrete and ceramic manufacturing and storage will be our choice of industry, as these have relatively low fire demands. The data for demand was calculated using the population density times per capita industrial usage plus the daily 8 hour demand of 2000 gpm avg. To calculate our required demand spread across all the nodes that feed the industrial area, we take that average demand plus 10 hrs of fire demand. The fire demand was calculated to be 6000 gpm, since our products are non-combustible and the buildings will be made of relatively non-combustible materials besides any offices present.

The average daily demand is 0.9611 mgd. The max daily demand is 1.9222 mgd, and when added to the demand from a 10 hour fire at 6000 gpm equals 5.52 mgd. This is compared to a maximum daily demand of 4.32 mgd using the peak hourly rate of 3000 gpm. We must design for the highest value of 4.5617 million gallons per day. This will be spread across 6 nodes, 4 along Elm St. and 2 along Birch Ave. Leaving a demand for each node of 0.76 mgd. This is in addition to any residential areas served by these nodes.

Establishment

Average Daily Use (gpd)

Max Daily Use (gpd)

Fire Demand (gpm)

Hrs for flow (hr)

Fire Demand (mgd)

Max Daily + Fire Demand (mgd)

Max Hourly Use (mgd)

Concrete Factory 960000 1920000 6000 4 8.64 10.56 4.32

Table 4. Industrial Zone A establishment and flow demands

Fire DemandFire demands are calculated using

[http://ecodes.biz/ecodes_support/free_resources/idaho09/PDFs/Appendix%20B%20-%20Fire-Flow%20Requirements.pdf]. The highest fire demand comes from the industrial zone so the fire demand is based off of this value.

Table *** displays the total demands for the residential and commercial zones and the industrial zone. As shown in the table, the maximum daily demand plus fire demand is greater

Page 11 JAG – Water & Sewage Inc.

Page 16: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNthan the maximum hourly demand. Therefore the maximum daily demand plus fire demand is used in the water distribution and sanitary sewer designs.

Page 12 JAG – Water & Sewage Inc.

Page 17: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSection 4 - Water Distribution System Design

Using the demand calculated in Section *** and as shown in Table *** for maximum day and fire flow, a water distribution system was designed. The demand for each block is separated into the demand for each node. First, using Figure 3, the number of nodes serving each block is entered into Column 6. The demand per node is entered into Col. 7 by dividing Col. 4 by Col. 6. The node number is entered into Col. 8, and the blocks that node services is entered into Col. 9. The serviced blocks are chosen by the blocks surrounding that node. The demand on each node is then entered into Col. 10 by adding the demand per node in Col. 7 based on the blocks serviced by that node in Col. 9. The demand is then converted to gpm (gallons per minute) and entered into Col. 11. The flow network is then created from the demand per node.

Figure 4. Complete flow network as drawn in EPANET 2.0 for model small community

The free software EPANET 2.0 is used to create the flow network as shown in Figure 4.

The software utilizes the Hazen-Williams Formula coupled with the Hardy Cross method to determine the flow and velocity in each pipe and the pressure at each node. The Hazen-Williams Formula is as follows:

Page 13 JAG – Water & Sewage Inc.

Page 18: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Q = 0.432CD2.63S0.54 (flowing full equation)o where Q = flow (gpm)

D = pipe diameter (ft) S = slope (ft/ft) C = pipe roughness coefficient

Pipe Pressure RequirementsAs part of the requirements, the pipe network must be closed. The maximum

permissible pressure is 70 psi, minimum permissible pressure is 20 psi, and the minimum on average day is 35 psi.

Pipe Materials and RoughnessPipe materials are determined based on required diameter. For pipe diameters of 14”

thru 36” in diameter, polyvinyl chloride (PVC) pipe per AWWA C-905, DR-18, is used. For pipe diameters of 4” thru 12” in diameter, polyvinyl chloride (PVC) pipe, Class 150 or 200 per AWWA C-900, is used. The Hazen-Williams roughness coefficient for these pipes is C = 140. This value is used in the equation discussed in Section ***.

Flow Network Scenario - BackgroundTo determine the best design based on the worst case scenario indicating the least

available storage and flow distribution, three different scenarios are run for the flow network. First, the elevated storage acts as the only source of water in the network due to an offline pump. The second scenario is the line connected to the elevated storage is disconnected, and the underground reservoir connected to the pumping station is sole water source. The third scenario consists of both the elevated and underground reservoirs acting as the water sources. The scenario exhibiting the worst results (i.e. the worst case scenario) is chosen as the design system. Results for the three scenarios can be found in Appendix A.

Scenario 1In Scenario 1, the pump connected to the underground reservoir is offline, and the

elevated storage acts as the sole water source. Using Figure 5 as a reference, the height and volume for the elevated storage is calculated as follows using the demand found in Table 5.

Design RequirementsFor a given velocity range of V = 8-10 fps, the nomograph gives a diameter D = 20 – 26” for line RR and a max headloss of hL= 20 ft/1000 ft. Minimum pressure at Node 29 = 35 psi. Therefore, minimum pressure head at Node 29 = 35 psi * 2.31 ft/psi = 80.9 ft. Minimum elevation head at elevated storage tower 34 using a pipe length of 175 ft for line RR is:

Page 14 JAG – Water & Sewage Inc.

Page 19: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

( y−80.9 )0.175

=20 ft gives y = 84.4 ft.

To ensure a design pressure at all nodes of 50 psi, the height of the elevated storage is calculated as: 50 psi * 2.31 ft/psi = 115.5 ft

( y−115.5 )0.175

=20 ft gives y = 119 ≈ 120 ft.

Storage DimensionsFor a given daily demand of 11.4 MGD, the volume of the elevated storage reservoir is

calculated as follows:

Volume ( MG )=11.4 MGD∗2424

hrs of operation a day=11.4 MG

Volume ( f t3 )=11.4 MG∗0.1337 f t3

1 gal=1.524∗106 f t 3

For a standard storage height of 130 ft [*****]:

Diameter ( ft )=√( 1.524∗106 f t3 )∗(4π)/130 ft=122 ft

Scenario 1 - ResultsResults from EPANET 2.0 after running the flow analysis are shown for the nodes in

Table 5 and for the pipes in Table 6. A color coded display of the flow network is shown in Figure 5 which shows the pressures at each node and flows in each pipe.

Scenario 1 Network Table - Nodes Demand Head Pressure Node ID GPM ft psi

Junc 29 23.24 119.44 51.75Junc 28 14.07 118.95 51.54Junc 27 15.46 118.91 51.52Junc 19 19.92 118.69 51.43Junc 18 35.69 118.68 51.43Junc 26 36.44 118.07 51.16Junc 30 29.25 118.11 51.18Junc 25 1482.21 118.01 51.14Junc 31 1475.76 117.94 51.1Junc 23 1474.69 117.92 51.1Junc 22 13.97 117.91 51.09Junc 33 16.51 117.75 51.02

Page 15 JAG – Water & Sewage Inc.

Page 20: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Junc 32 25.37 117.77 51.03Junc 3 9.01 117.74 51.02Junc 8 8.26 117.74 51.02Junc 7 23.18 117.74 51.02Junc 12 1488.51 117.74 51.02Junc 24 1471.46 117.75 51.02Junc 21 10.74 117.78 51.04Junc 20 10.95 117.78 51.04Junc 11 1476.06 117.73 51.01Junc 16 17.78 117.84 51.06Junc 15 23.98 117.93 51.1Junc 17 28.61 117.99 51.12Junc 4 18.21 117.74 51.01Junc 1 23.8 117.74 51.02Junc 2 8.2 117.74 51.02Junc 5 8.29 117.74 51.02Junc 6 14.4 117.74 51.02Junc 9 15.85 117.74 51.02Junc 10 10.83 117.74 51.02Junc 13 14.12 117.83 51.06Junc 14 9.87 117.84 51.06Resvr 34 -9354.69 120 0Tank 35 0 120 43.33

Table 5. Scenario 1 Node Network Table

Scenario 1 Network Table - Links

Length

Diameter

Roughness Flow

Velocity

Unit Headloss Friction

Factor Link ID ft in GPM fps ft/Kft Pipe SS 262 18 140 2639.18 3.33 1.85 0.016Pipe TT 303 18 140 695.52 0.88 0.16 0.02Pipe UU 276 12 140 564.9 1.6 0.77 0.019Pipe VV 259 12 140 106.84 0.3 0.04 0.025Pipe JJ 110 12 140 -376.69 1.07 0.36 0.02

Pipe KK 91 28 140 6286.33 3.28 1.07 0.015Pipe LL 124 24 140 2999.51 2.13 0.58 0.016

Pipe MM 59 28 140 3453.34 1.8 0.35 0.016

Page 16 JAG – Water & Sewage Inc.

Page 21: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Pipe NN 191 12 140 147.34 0.42 0.06 0.023Pipe OO 1101 28 140 6692.27 3.49 1.2 0.015Pipe PP 976 18 140 1929.59 2.43 1.04 0.017Pipe QQ 844 6 140 -115.16 1.31 1.18 0.022Pipe XX 290 12 140 -128.3 0.36 0.05 0.024Pipe AA 250 12 140 186.58 0.53 0.1 0.023Pipe S 93 12 140 -6.94 0.02 0 0.027Pipe R 183 12 140 -18.88 0.05 0 0.032Pipe Z 264 12 140 -111.79 0.32 0.04 0.024Pipe T 196 18 140 147.52 0.19 0.01 0.025Pipe II 1020 12 140 340.25 0.97 0.3 0.021

Pipe BB 1219 24 140 1804.61 1.28 0.23 0.018Pipe EE 750 24 140 1831.3 1.3 0.23 0.018Pipe CC 405 24 140 632.65 0.45 0.03 0.021Pipe FF 747 12 140 248.53 0.71 0.17 0.022Pipe DD 222 12 140 -35.02 0.1 0 0.029Pipe YY 181.69 12 140 -272.81 0.77 0.2 0.021Pipe V 205 12 140 305.21 0.87 0.25 0.021Pipe W 185 12 140 -351.19 1 0.32 0.021Pipe X 181 12 140 -428.74 1.22 0.46 0.02

Pipe GG 1600 12 140 438.14 1.24 0.48 0.02Pipe Y 312 6 140 -42.54 0.48 0.19 0.026

Pipe HH 1445 6 140 -71.15 0.81 0.48 0.024Pipe U 219 24 140 -498.14 0.35 0.02 0.021Pipe P 1031 6 140 27.96 0.32 0.09 0.027Pipe O 1034 12 140 59.78 0.17 0.01 0.027Pipe H 189 6 140 -18.09 0.21 0.04 0.029Pipe G 233 6 140 63.75 0.72 0.39 0.024Pipe F 218 12 140 12.86 0.04 0 0.034Pipe E 198 28 140 -37.5 0.02 0 0.03Pipe L 840 12 140 -22.83 0.06 0 0.03Pipe M 840 28 140 -34.52 0.02 0 0.034Pipe N 834 12 140 -40.05 0.11 0.01 0.028Pipe K 840 6 140 3.68 0.04 0 0.037Pipe D 93 28 140 29.08 0.02 0 0.054Pipe C 132 28 140 -33.69 0.02 0 0.028Pipe B 290 28 140 29.52 0.02 0 0.033

Page 17 JAG – Water & Sewage Inc.

Page 22: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Pipe I 833 6 140 5.72 0.06 0 0.035Pipe Q 297 6 140 -12.49 0.14 0.02 0.031Pipe J 834 18 140 71.41 0.09 0 0.027

Pipe RR 175 26 140-

9354.69 5.65 3.21 0.014Pump 1 #N/A #N/A #N/A 0 0 0 0

Table 6. Scenario 1 Link Network Table

Figure 5. Water Distribution System, Scenario 1 Results with Color Coding

Scenario 2In Scenario 2, the line connected to the elevated storage is disconnected, and the pump

connected to the underground reservoir acts as the sole water source for the community. The reservoir volume and pump gpm, TDH, and BHP are calculated as follows:

Design RequirementsVariable Speed PumpUsing a variable speed pump, which allows for the pump to deliver the full flow for the

town as well as any load less than such, the total dynamic head (TDH) for the pump is

Page 18 JAG – Water & Sewage Inc.

Page 23: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNequivalent to the head required for the elevated storage tower. Therefore, TDH = 120 ft. The pump curve is shown in Figure 6.

Figure 6. Scenario 2 Pump Curve

Brake horsepower is calculated as follows assuming pump efficiency of η = 0.75:

BHP=100 Q (TDH )∗S .G .

3960∗η=100∗9355 gpm∗120 ft∗1.0

3960∗0.75=37800 BHP

. Watts required and the KWh for this pump for a 24 hr day is then calculated as:Watts=BHP∗746=37800∗746=28200 KW

KWh=28200 KW∗24 hr=677000 KWhAssuming a rate of $0.05/KWh, the total cost per day, month and year of pump

operation is as follows:

Cost ( $ )=677000 KWh∗$ 0.05KWh

= $ 33,850.00day

=$1,015,500month

=$12,186,000year

Storage DimensionsThe underground reservoir’s bottom sits at 120 ft bgs (below ground surface) with a

maximum height of 140 ft and a diameter of 130 ft. The necessary volume for the reservoir is equal to the necessary volume of the elevated storage as shown in Section ***.

Scenario 2 - ResultsResults from EPANET 2.0 after running the flow analysis are shown for the nodes in

Table 7 and for the pipes in Table 8. A color coded display of the flow network is shown in Figure 7 which shows the pressures at each node and in each pipe.

Scenario 2 Network Table - Nodes Demand Head Pressure Node ID GPM ft psi

Junc 29 23.24 117.48 50.9Junc 28 14.07 117.48 50.9Junc 27 15.46 117.48 50.9Junc 19 19.92 117.49 50.91

Page 19 JAG – Water & Sewage Inc.

Page 24: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Junc 18 35.69 117.49 50.91Junc 26 36.44 117.54 50.93Junc 30 29.25 117.48 50.9Junc 25 1482.21 117.48 50.9Junc 31 1475.76 117.46 50.9Junc 23 1474.69 117.46 50.9Junc 22 13.97 117.48 50.9Junc 33 16.51 118.47 51.33Junc 32 25.37 118.16 51.2Junc 3 9.01 118.77 51.46Junc 8 8.26 118.38 51.29Junc 7 23.18 118.14 51.19Junc 12 1488.51 117.95 51.11Junc 24 1471.46 117.56 50.94Junc 21 10.74 117.57 50.94Junc 20 10.95 117.64 50.97Junc 11 1476.06 117.74 51.02Junc 16 17.78 117.64 50.97Junc 15 23.98 117.61 50.96Junc 17 28.61 117.54 50.93Junc 4 18.21 119.02 51.57Junc 1 23.8 120 52Junc 2 8.2 119.37 51.72Junc 5 8.29 119.17 51.63Junc 6 14.4 119.03 51.57Junc 9 15.85 118.78 51.47Junc 10 10.83 118.45 51.33Junc 13 14.12 117.7 51Junc 14 9.87 117.68 50.99Resvr 34 0 120 0Tank 35 -9354.69 0 52

Table 7. Scenario 2 Node Network Table

Scenario 2 Network Table - Links

Length Diameter Roughness Flow Velocity

Unit Headloss

Friction Factor

Page 20 JAG – Water & Sewage Inc.

Page 25: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN Link ID ft in GPM fps ft/Kft Pipe SS 262 18 140 86.1 0.11 0 0.027Pipe TT 303 18 140 -115.25 0.15 0.01 0.026Pipe UU 276 12 140 -125.51 0.36 0.05 0.024Pipe VV 259 12 140 17.75 0.05 0 0.032Pipe JJ 110 12 140 463.7 1.32 0.53 0.02

Pipe KK 91 28 140 325.11 0.17 0 0.023Pipe LL 124 24 140 1268.71 0.9 0.12 0.019

Pipe MM 59 28 140 -19.77 0.01 0 0Pipe NN 191 12 140 -183.76 0.52 0.1 0.023Pipe OO 1101 28 140 -109.34 0.06 0 0.028Pipe PP 976 18 140 187.28 0.24 0.01 0.024Pipe QQ 844 6 140 5.2 0.06 0 0.035Pipe XX 290 12 140 676.88 1.92 1.07 0.019Pipe AA 250 12 140 151.36 0.43 0.07 0.023Pipe S 93 12 140 -1073.48 3.05 2.52 0.017Pipe R 183 12 140 -980.02 2.78 2.13 0.018Pipe Z 264 12 140 693.39 1.97 1.12 0.019Pipe T 196 18 140 1871.36 2.36 0.98 0.017Pipe II 1020 12 140 -500.14 1.42 0.61 0.02

Pipe BB 1219 24 140 -2425.81 1.72 0.39 0.017Pipe EE 750 24 140 -1310.69 0.93 0.12 0.019Pipe CC 405 24 140 -2639.41 1.87 0.46 0.017Pipe FF 747 12 140 -202.93 0.58 0.12 0.022Pipe DD 222 12 140 -356.41 1.01 0.33 0.021Pipe YY 181.69 12 140 -142.74 0.4 0.06 0.024Pipe V 205 12 140 -444.81 1.26 0.49 0.02Pipe W 185 12 140 77.44 0.22 0.02 0.026Pipe X 181 12 140 209.65 0.59 0.12 0.022

Pipe GG 1600 12 140 -163.18 0.46 0.08 0.023Pipe Y 312 6 140 46.55 0.53 0.22 0.025

Pipe HH 1445 6 140 17.94 0.2 0.04 0.029Pipe U 219 24 140 -3960.79 2.81 0.97 0.016Pipe P 1031 6 140 -24.06 0.27 0.06 0.028Pipe O 1034 12 140 -149.99 0.43 0.07 0.023Pipe H 189 6 140 33.93 0.39 0.12 0.027Pipe G 233 6 140 -198.04 2.25 3.22 0.021

Page 21 JAG – Water & Sewage Inc.

Page 26: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Pipe F 218 12 140 -808.36 2.29 1.49 0.018Pipe E 198 28 140 -6827.95 3.56 1.25 0.015Pipe L 840 12 140 669.7 1.9 1.05 0.019Pipe M 840 28 140 -6003.75 3.13 0.99 0.015Pipe N 834 12 140 -599.48 1.7 0.86 0.019Pipe K 840 6 140 -101.72 1.15 0.94 0.023Pipe D 93 28 140 7512.06 3.91 1.49 0.015Pipe C 132 28 140 -7622.06 3.97 1.53 0.015Pipe B 290 28 140 -9216.02 4.8 2.18 0.014Pipe I 833 6 140 114.87 1.3 1.18 0.022Pipe Q 297 6 140 96.66 1.1 0.85 0.023Pipe J 834 18 140 -1585.76 2 0.72 0.017

Pipe RR 175 26 140 0 0 0 0Pump 1 #N/A #N/A #N/A 9354.69 0 -120 0

Table 8. Scenario 2 Link Network Table

Figure 7. Water Distribution System, Scenario 2 Results with Color Coding

Scenario 3

Page 22 JAG – Water & Sewage Inc.

Page 27: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

In Scenario 3, both the elevated storage and the underground reservoir serve as water sources for the community. For this scenario, the elevated storage and the reservoir are splitting the demand for the small community: the elevated storage supplies 4677.5 gpm and the reservoir/pump station supplies 4677.5 gpm.

Elevated Storage and Reservoir DimensionsThe dimensions for the elevated storage are consistent with the dimensions obtained in

Section ***, and the dimensions of the underground reservoir are the same as obtained in Section ***.

Pump CharacteristicsThe TDH for the variable pump is maintained at 120 ft to supply a minimum pressure of

50 psi throughout the community. For a flow of 4677.5 gpm, the pump curve then takes the form seen in Figure 8.

Figure 8. Scenario 3 pump curve

Brake horsepower is calculated as follows assuming pump efficiency of η = 0.75:

BHP=100 Q (TDH )∗S .G .

3960∗η=100∗4677.5 gpm∗120 ft∗1.0

3960∗0.75=18900 BHP

. Watts required and the KWh for this pump for a 24 hr day is then calculated as:Watts=BHP∗746=18900∗746=14099 KW

KWh=14099 KW∗24 hr=338400 KWhAssuming a rate of $0.05/KWh, the total cost per day, month and year of pump

operation is as follows:

Cost ( $ )=338400 KWh∗$ 0.05KWh

= $ 16,920.00day

=$ 507,600month

=$6,091,200year

Scenario 3 - ResultsResults from EPANET 2.0 after running the flow analysis are shown for the nodes in

Table 9 and for the pipes in Table 10. A color coded display of the flow network is shown in Figure 9 which shows the pressures at each node and in each pipe.

Page 23 JAG – Water & Sewage Inc.

Page 28: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Scenario 3 Network Table - Nodes Demand Head Pressure Node ID GPM ft psi

Junc 29 23.24 119.84 51.93Junc 28 14.07 119.7 51.87Junc 27 15.46 119.69 51.86Junc 19 19.92 119.63 51.84Junc 18 35.69 119.63 51.83Junc 26 36.44 119.49 51.78Junc 30 29.25 119.49 51.77Junc 25 1482.21 119.46 51.76Junc 31 1475.76 119.41 51.74Junc 23 1474.69 119.4 51.74Junc 22 13.97 119.4 51.74Junc 33 16.51 119.63 51.83Junc 32 25.37 119.55 51.8Junc 3 9.01 119.7 51.87Junc 8 8.26 119.6 51.82Junc 7 23.18 119.54 51.79Junc 12 1488.51 119.48 51.77Junc 24 1471.46 119.39 51.73Junc 21 10.74 119.4 51.74Junc 20 10.95 119.42 51.74Junc 11 1476.06 119.42 51.74Junc 16 17.78 119.44 51.75Junc 15 23.98 119.46 51.76Junc 17 28.61 119.46 51.76Junc 4 18.21 119.75 51.89Junc 1 23.8 120.04 52.01Junc 2 8.2 119.87 51.94Junc 5 8.29 119.81 51.91Junc 6 14.4 119.77 51.9Junc 9 15.85 119.7 51.87Junc 10 10.83 119.62 51.83Junc 13 14.12 119.46 51.76Junc 14 9.87 119.46 51.76

Page 24 JAG – Water & Sewage Inc.

Page 29: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Resvr 34 -4679.67 120 0Tank 35 -4675.02 0 52

Table 9. Scenario 3 Node Network Table

Scenario 3 Network Table - Links

Length

Diameter

Roughness Flow

Velocity

Unit Headloss

Friction Factor

Link ID ft in GPM fps ft/Kft

Pipe SS 262 18 1401358.7

1 1.71 0.54 0.018Pipe TT 303 18 140 357.13 0.45 0.05 0.022

Pipe UU 276 12 140 283.16 0.8 0.21 0.021Pipe VV 259 12 140 68.43 0.19 0.02 0.026

Pipe JJ 110 12 140 106.01 0.3 0.03 0.025Pipe KK 91 28 140

3374.48 1.76 0.34 0.016

Pipe LL 124 24 1402351.3

9 1.67 0.37 0.017Pipe MM 59 28 140

1863.15 0.97 0.11 0.018

Pipe NN 191 12 140 -35.15 0.1 0 0.029Pipe OO 1101 28 140

3297.72 1.72 0.32 0.017

Pipe PP 976 18 140 987.51 1.25 0.3 0.019Pipe QQ 844 6 140 -58.51 0.66 0.34 0.025Pipe XX 290 12 140 315.89 0.9 0.26 0.021Pipe AA 250 12 140 148.07 0.42 0.06 0.023

Pipe S 93 12 140 -525.56 1.49 0.67 0.019Pipe R 183 12 140 -483.68 1.37 0.58 0.02Pipe Z 264 12 140 332.4 0.94 0.29 0.021Pipe T 196 18 140 979.5 1.23 0.3 0.019Pipe II 1020 12 140 -142.45 0.4 0.06 0.024

Page 25 JAG – Water & Sewage Inc.

Page 30: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNPipe BB 1219 24 140 -459.12 0.33 0.02 0.022Pipe EE 750 24 140 423.6 0.3 0.02 0.022Pipe CC 405 24 140 -896.89 0.64 0.06 0.02Pipe FF 747 12 140 9.39 0.03 0 0.035

Pipe DD 222 12 140 -152.32 0.43 0.07 0.023Pipe YY

181.69 12 140 -150.97 0.43 0.07 0.023

Pipe V 205 12 140 55.51 0.16 0.01 0.027Pipe W 185 12 140 -218.78 0.62 0.13 0.022Pipe X 181 12 140 -171.5 0.49 0.08 0.023Pipe GG 1600 12 140 194.8 0.55 0.11 0.023

Pipe Y 312 6 140 -4.13 0.05 0 0.037Pipe HH 1445 6 140 -32.74 0.37 0.11 0.027

Pipe U 219 24 140

-2016.0

1 1.43 0.28 0.017Pipe P 1031 6 140 3.46 0.04 0 0.037Pipe O 1034 12 140 -65.06 0.18 0.01 0.026Pipe H 189 6 140 6.41 0.07 0.01 0.034Pipe G 233 6 140 -85.6 0.97 0.68 0.023Pipe F 218 12 140 -397.85 1.13 0.4 0.02

Pipe E 198 28 140

-3397.8

4 1.77 0.34 0.016Pipe L 840 12 140 329.05 0.93 0.28 0.021

Pipe M 840 28 140

-2984.1

4 1.55 0.27 0.017Pipe N 834 12 140 -301.42 0.86 0.24 0.021Pipe K 840 6 140 -50.14 0.57 0.25 0.025

Pipe D 93 28 1403741.2

9 1.95 0.41 0.016Pipe C 132 28 140 -

3799.71

1.98 0.42 0.016

Pipe B 290 28 140 - 2.39 0.6 0.016

Page 26 JAG – Water & Sewage Inc.

Page 31: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

4592.16

Pipe I 833 6 140 59.05 0.67 0.34 0.025Pipe Q 297 6 140 40.84 0.46 0.17 0.026Pipe J 834 18 140 -784.25 0.99 0.2 0.019

Pipe RR 175 26 140

-4679.6

7 2.83 0.89 0.016

Pump 1 #N/A #N/A #N/A 4675.0

2 0 -120.04 0Table 10. Scenario 3 Link Network Table

Figure 9. Water Distribution System, Scenario 3 Results with Color Coding

Conclusion of Water Distribution SystemUsing the data found in Sections ***, ***, ***, the worst case scenario for this

water distribution system is Scenario 2. This scenario requires the most amount of energy and money to operate, produces the highest flows throughout the system’s pipes, and exhibits the lowest pressures at all of the nodes.

Page 27 JAG – Water & Sewage Inc.

Page 32: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Page 28 JAG – Water & Sewage Inc.

Page 33: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSection 5 – Sanitary Sewer Design

Figure 10. Sanitary Sewer System Map and Labels, Blue dots are manholes, dashed lines are pipes

See Figure 10 for system design: The lines shown are the proposed sewer pipes layout serving their adjacent blocks. The sewage flows toward Center Street in every pipe, until reaching the main trunk, where all pipes converge and flow toward the WWTP/River. The larger dots indicate the location of all manholes, which are roughly located between 250 ft to 300 ft. The service areas for each line are estimated using the water supplied to each area, and assuming water in is equal to water out. Table 11 contains most relevant data for the sanitary sewer system.

The sanitary sewer system lies a minimum of five feet below the pressurized water distribution piping system, and maintains a maximum distance of 13.6 ft from the ground level elevation. This limits the possibilities for contaminants to enter the potable water distribution system. The sanitary sewer system runs parallel with the streets and connects to the main trunkline which runs northeast on Center St up to the river (see Figure 10).

Preliminary data of the area was observed to determine all requirements and assumptions needed it. This data included:

Map of the area.

Page 29 JAG – Water & Sewage Inc.

Page 34: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Locations of streets, buildings (i.e. commercial, industrial, or household) which may impact the sewer system.

Contour, high and low point and changes of surface slope.Furthermore, the design involves estimating the waste flow rates for the assume data with local conditions given by the map. These factors may affect the hydraulic operation of the system; the hydraulic-design, sewer pipe materials, minimum and maximum sizes (i.e. diameter), minimum and maximum velocity and slopes of the system.

The design of a sanitary sewer system may be essentially broken down into four steps: Sewer material and size: This is important to facilitate velocities that prevent solids

deposition/buildup, ensure minimal corrosion effects from wastewater, and avoid clogging of the system.

Design flow: The important factors here are the peak flow of the service area. Peak Factor: PF = 15.05 x Q-0.167

Hydraulic Design equation: Manning equation, and Modified Manning equation. V=Q

A=1.49

n∗3√R2∗√S

Q= K̀n∗3√ D8∗√S

Where K prime is equal to 0.463 for flowing Half fullMinimum and Maximum Velocity: In practice, these values are determine to get a minimum velocity as the sewer system is half-full and full. The importance of this is to ensure that there is no deposition of solids along the pipe. Moreover, this helps with corrosion prevention for the system, although that is already minimal due to the use of PVC piping.

The modified manning eqn was used to obtain a minimum diameter for each pipe when flowing half full, then we adjusted the slope in order to accommodate topography as well as pipe intersections. This caused a large amount of work to balance out slope vs diameter, while maintaining all design parameter ranges.

The required flows were determined using the known supply across the service areas of the sewer pipe, assuming water in is equal to water out. This causes problems though, since not all the water will need to be transported to the WWTP. For example, a large portion of the fire flows will not become waste water, even if the industrial park uses an extensive drainage system. We have decided to err on the side of caution, since the purpose of this design is to ensure the system does not exceed capacity and become pressurized, which could cause the hydraulic gradient to rise above the surface of the ground, creating a huge health concern and causing environmental damages.

Important things to notice below are the minimal depth below ground that is maintained throughout the system. The elevations labeled on the right are the starting and ending elevations for each pipe length, the color coding indicates which pipes meet and ensure they are at the

Page 30 JAG – Water & Sewage Inc.

Page 35: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNsame invert elevation. The system is also design so that no large pipe feeds into a smaller pipe, and minimum pipe size is maintained whenever possible. See appendix for the full sanitary sewer design table.

Table 11. Important Design Information for the Sanitary Sewer System.

   

Page 31 JAG – Water & Sewage Inc.

Pipe Required Peak Q (cfs)

Actual Q (cfs)

V Max (fps)

Slope Length (ft)

Actual D (inches)

Invert Depth at end of pipe (ft)

Approx. excavation (ft^3)

starting pipe Invert elevation (ft)

ending invert elevation (ft)

1A 0.052 1.116 6.393 1.6258% 1101 8 11.7 11,418.4 217.33 199.43 1B 3.419 4.033 6.129 0.5930% 1310 16 12.5 29,193.3 199.43 191.67 2A 0.031 0.850 3.884 0.6000% 976 8 8.3 7,221.0 206.33 200.48 2B 6.605 9.017 8.267 0.8012% 809 20 8.9 16,008.1 200.48 194.00 2C 9.883 13.284 5.872 0.2849% 405 26 8.8 10,247.5 194.00 192.84 3A 0.034 0.610 3.495 0.4858% 844 8 8.7 6,502.6 201.43 197.33 3B 0.066 0.555 3.177 0.4016% 747 8 8.7 5,755.3 197.33 194.33 3C 0.090 0.717 4.109 0.6718% 222 8 8.8 1,728.9 194.33 192.84 4A 0.044 0.474 2.715 0.2932% 1600 8 8.8 12,456.5 199.53 194.84 5A 0.080 0.349 2.002 0.1595% 1261 8 9.9 11,128.8 198.43 196.42 5B 0.080 0.438 2.507 0.2500% 263 8 9.1 2,122.0 197.68 197.03 6A 0.053 1.184 6.625 1.7457% 833 8 10.5 7,781.3 202.53 187.99 7A 0.018 0.877 5.244 1.0940% 834 8 12.8 9,483.1 198.33 189.21 8A 0.018 0.586 3.358 0.4486% 840 8 13.6 10,181.5 194.63 190.87 9A 0.032 0.719 4.119 0.6748% 840 8 12.5 9,360.1 196.53 190.87 10A 0.035 0.706 4.045 0.6510% 840 8 12.5 9,360.1 197.13 191.67 11A 0.024 0.573 3.282 0.4285% 834 8 11.0 8,185.0 196.33 192.76 12A 0.031 0.516 2.955 0.3473% 1034 8 8.8 8,050.2 197.13 193.54 13A 0.022 0.509 2.918 0.3386% 1031 8 9.0 8,210.2 198.33 194.84 14A 6.627 8.622 7.975 0.7455% 1270 20 12.5 35,377.2 200.33 190.87 M1 0.143 0.732 4.195 0.7000% 312 8 8.8 2,429.6 197.03 194.84 M2 0.263 0.742 4.249 0.7182% 181 8 8.8 1,409.8 194.84 193.54 M3 0.334 0.538 3.084 0.3784% 185 8 8.8 1,440.9 193.54 192.84 M4 0.448 7.056 2.200 0.0400% 205 26 11.0 6,538.9 192.84 192.76 M5 13.644 24.948 7.779 0.5000% 219 26 12.5 7,931.2 192.76 191.66 M6 20.415 30.858 8.072 0.4082% 196 32 12.5 8,736.3 191.66 190.86 M7 27.126 47.100 9.786 0.6000% 276 32 13.3 13,043.7 190.86 189.21 M8 27.201 78.248 10.000 0.4097% 297 44 10.5 15,258.4 189.21 187.99

Sum 276560

Page 36: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSection 6 - Storm Drain Design

Figure 11. Storm Drain Design Map

Designed storm drain system lies 5 ft. below and ** feet parallel to the sanitary sewer system. Inlets are located at the indicated location on Figure 11 represented by a dot. Dots indicate two parallel curbe inlets that are located either side of the road. Inlets are joined into a single underground line below road surface and flows downstream by gravity. The overall layout of the system is similar to the sanitary design with few minor differences. Unlike sanitary system that has one main line, storm drains have two larger pipes that carries the cumulated runoffs from upstream. The vertical line starting on Ashmount Street runs along Acorn until Forrest collecting runoffs from Ash and Sycmore streets on the way, and ends at Forrest. The pipe diameter is calculated to be 22 inches, and the line is indicated as line (4) in Figure 11. The same main line with same diameter, then, continues horizontally downward on Forrest streets as a line (5) also collecting cumulative runoffs from line (3) and line (4). The other main line is parallel to Center St, like a sanitary design, and it has a diameter of 30 inches. It is slightly bigger than line (4) and (5) because it essentially carries the total runoffs of the community. Rest of the lines are uniform in their pipe diameters with 16 inches, and majority of them have same ground slope. Our storm drain system lies directly ** ft. above and parallel to our sewer design minimizing the excavation expenses. Thus, it follows same outline as the sewer system. We calculated necessary quantities including flow and concentration time based on following assumptions.

Assumptions: ti=5 min (inlet time)

Page 32 JAG – Water & Sewage Inc.

Page 37: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

C=0.70 (commercial) C=0.40 (residential) C=0.80 (industrial)5 year return periodV=3 ft/sn=0.013

The assumptions and given data help us to find desired design values. Table 12 shows the obtained data for each specified location. Columns (1) through (3) describe the layout and starting point of each pipe and columns (4) through (6) show the given values that will be used to calculate the subsequent data. Column (7) displays the assumed C values differing residential, commercial, and industrial zones. Assuming an inlet time of 5 min, time of concentration was calculated using the following equations:

t t=LV

where L=length of pipe

V=velocityt t= timeof travel

t c=t i+t t where t c=time of concentration

From there, intensity was obtained using a 5 year intensity-duration curve. Then Q was calculated using

Q=CIA where C= runoff coefficient [runoff/rainfall]I= rainfall intensity [in/hr]A=drainage area [acres]

and was then used to find the slope and diameter with assumed velocity on the Nomograph (n=0.013). Diameter was adjusted to standard pipe sizes in column (16). Velocity flowing full was calculated using the following equation and displayed on column (17):

V full=( 1.486n )R

23∗S

12 where n= Manning’s constant (0.013)

R= hydraulic radius (Π/4)S=slope

Capacity of the storm sewer in column (18) was obtained multiplying the area and the velocity flowing full using the equation Q=VA. Given ground elevation is tabulated in column (19) and (20) and inlet elevation is calculated by deducting assumed 5 feet depth. Storm drain layout can be seen in Figure 11 with lines and inlets are labeled.

Page 33 JAG – Water & Sewage Inc.

Page 38: Group Project to Design Water Infrastructure for a Theoretical Small Town

Table 12. Design of Storm Drains

CI

QS

Lin

e no

.(1)

Inle

t N

ame

(2)

Len

gth

(4) f

t

Incr

eme

nt o

f ar

ea

[acr

e]

(5)

Incr

eme

nt o

f A

, 10

^6

[sqf

t] (

6)-7

10^

6 10

0 %

(8)

Tot

al,

10^

6 [s

qft]

(9)

Inle

t T

ime

[min

] (1

0)

Tim

e of

C

once

ntra

tion

[min

] (1

1)

Inte

nsit

y [i

n/hr

] (1

2)[c

fs]

(13)

[ft/

ft]

(14)

Cal

cula

ted

[in

] (1

5)D

esig

n [i

n] (

16)

Vel

ocit

y fl

owin

g fu

ll [f

t/s]

(17)

Cap

acit

y of

se

wer

, (18

)U

pper

en

d (1

9)L

ower

en

d (2

0)U

pper

en

d (2

1)L

ower

en

d (2

2)A

sh1

--1.

70.

0740

50.

40.

0296

210.

0296

215

55.

50.

1629

144

0.00

1514

.56

163.

6480

2877

5.09

1026

8121

821

521

321

0A

sh2

360

2.5

0.10

890.

40.

0435

60.

0731

815

75.

20.

3805

402

0.00

1514

.56

163.

6480

2877

5.09

1026

8121

521

121

020

6A

sh3

370

2.6

0.11

326

0.4

0.04

5302

0.11

8483

59.

0555

5556

50.

5924

160.

0015

14.5

616

3.64

8028

775.

0910

2681

211

206

Syca

mor

e135

52.

10.

0914

80.

40.

0365

90.

0365

95

55.

50.

2012

472

0.00

1514

.56

163.

6480

2877

5.09

1026

8121

220

920

720

4Sy

cam

ore2

315

2.1

0.09

148

0.4

0.03

659

0.07

3181

56.

755.

40.

3951

763

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

920

620

420

1Sy

cam

ore3

315

2.2

0.09

583

0.4

0.03

8333

0.11

1514

58.

55.

10.

5687

194

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

620

1Fo

rest

142

02.

90.

1263

20.

40.

0505

30.

0505

35

55.

50.

2779

128

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

920

620

420

1Fo

rest

242

02.

50.

1089

0.4

0.04

356

0.09

409

57.

3333

3333

5.2

0.48

9265

90.

0015

14.5

616

3.64

8028

775.

0910

2681

206

201

Aco

rn1

400

2.5

0.10

890.

40.

0435

60.

0435

65

55.

50.

2395

80.

0015

20.3

522

4.51

0867

3211

.901

7981

213

211.

120

820

6.1

Aco

rn2

200

0.8

0.03

485

0.4

0.01

3939

0.16

2043

56.

1111

1111

5.3

0.85

8829

0.00

1520

.35

224.

5108

6732

11.9

0179

8121

1.1

209.

720

6.1

204.

7A

corn

319

00.

40

0.27

3557

57.

1666

6667

5.2

1.42

2495

40.

0015

20.3

522

4.51

0867

3211

.901

7981

209.

720

620

4.7

201

Aco

rn4

195

0.4

00.

3676

465

8.25

5.1

1.87

4996

60.

0015

20.3

522

4.51

0867

3211

.901

7981

206

201

Fore

st3

370

3.1

0.13

504

0.4

0.05

4014

0.46

1736

510

.305

5556

4.8

2.21

6332

80.

0015

20.3

522

4.51

0867

3211

.901

7981

206

204

201

199

Fore

st4

370

2.4

0.10

454

0.4

0.04

1818

0.50

3554

512

.361

1111

4.5

2.26

5991

20.

0015

20.3

522

4.51

0867

3211

.901

7981

204

202

199

197

Fore

st5

319

10.

0435

60.

40.

0174

240.

5209

785

14.1

3333

334.

22.

1881

059

0.00

1520

.35

224.

5108

6732

11.9

0179

8120

220

119

719

6O

ak1

400

2.5

0.10

890.

40.

0435

60.

0435

65

55.

50.

2395

80.

0015

14.5

616

3.64

8028

775.

0910

2681

206

204

201

199

Oak

240

02.

40.

1045

40.

70.

0731

810.

1167

415

7.22

2222

225.

20.

6070

522

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

420

3.6

199

198.

6O

ak3

400

2.5

0.10

890.

40.

0435

60.

1603

015

9.44

4444

444.

90.

7854

739

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

3.6

203

198.

619

8O

ak4

400

2.8

0.12

197

0.4

0.04

8787

0.20

9088

511

.666

6667

4.6

0.96

1804

80.

0015

14.5

616

3.64

8028

775.

0910

2681

203

198

Map

le1

375

2.3

0.10

019

0.4

0.04

0075

0.04

0075

55

5.5

0.22

0413

60.

0015

14.5

616

3.64

8028

775.

0910

2681

209

208

204

203

Map

le2

375

2.4

0.10

454

0.4

0.04

1818

0.08

1893

57.

0833

3333

5.2

0.42

5842

60.

0015

14.5

616

3.64

8028

775.

0910

2681

208

207.

520

320

2.5

Map

le3

375

2.2

0.09

583

0.4

0.03

8333

0.12

0226

59.

1666

6667

4.9

0.58

9105

40.

0015

14.5

616

3.64

8028

775.

0910

2681

207.

520

7.5

202.

520

2.5

Red

woo

d111

01.

50.

0653

40.

40.

0261

360.

1463

625

9.77

7777

784.

80.

7025

357

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

7.5

205

202.

520

0R

edw

ood2

315

2.2

0.09

583

0.4

0.03

8333

0.18

4694

511

.527

7778

4.6

0.84

9594

20.

0015

14.5

616

3.64

8028

775.

0910

2681

205

203.

520

019

8.5

Ash

mon

t1

600

3.5

0.15

246

0.4

0.06

0984

0.06

0984

55

5.5

0.33

5412

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

620

420

119

9A

shm

ont

245

02.

20.

0958

30.

40.

0383

330.

0993

175

7.5

5.1

0.50

6515

70.

0015

14.5

616

3.64

8028

775.

0910

2681

204

201.

519

919

6.5

Ash

mon

t3

350

2.1

0.09

148

0.4

0.03

659

0.13

5907

59.

4444

4444

4.9

0.66

5945

30.

0015

14.5

616

3.64

8028

775.

0910

2681

201.

519

6.5

Ced

ar1

320

20.

0871

20.

40.

0348

480.

0348

485

55.

50.

1916

640.

0015

14.5

616

3.64

8028

775.

0910

2681

210.

620

620

5.6

201

Ced

ar2

320

2.5

0.10

890.

40.

0435

60.

0784

085

6.77

7777

785.

30.

4155

624

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

620

420

119

9C

edar

332

02.

20.

0958

30.

40.

0383

330.

1167

415

8.55

5555

565

0.58

3704

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

420

3.4

199

198.

4C

edar

432

02.

90.

1263

20.

40.

0505

30.

1672

75

10.3

3333

334.

80.

8028

979

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

3.4

198.

4B

irch

140

52

0.08

712

0.7

0.06

0984

0.06

0984

55

5.5

0.33

5412

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

620

4.2

201

199.

2B

irch

241

02.

20.

0958

30.

70.

0670

820.

1280

665

7.27

7777

785.

20.

6659

453

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

4.2

204.

219

9.2

199.

2B

irch

340

51.

90.

0827

60.

70.

0579

350.

1860

015

9.52

7777

784.

90.

9114

059

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

4.2

199.

2E

lm1

350

1.6

0.06

970.

80.

0557

570.

0557

575

55.

50.

3066

624

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

520

320

019

8E

lm2

420

1.7

0.07

405

0.8

0.05

9242

0.11

4998

57.

3333

3333

5.2

0.59

7991

70.

0015

14.5

616

3.64

8028

775.

0910

2681

203

202

198

197

Elm

328

41.

40.

0609

80.

80.

0487

870.

1637

865

8.91

1111

115

0.81

8928

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

219

7H

ighl

and

141

82.

10.

0914

80.

40.

0365

90.

0365

95

55.

50.

2012

472

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

819

8.5

203

193.

5H

ighl

and

241

82

0.08

712

0.4

0.03

4848

0.07

1438

57.

3222

2222

5.2

0.37

1479

70.

0015

14.5

616

3.64

8028

775.

0910

2681

198.

519

3.5

Ash

mon

t4

418

2.2

0.09

583

0.4

0.03

8333

0.03

8333

55

5.5

0.21

0830

40.

0015

14.5

616

3.64

8028

775.

0910

2681

208.

920

220

3.9

197

Ash

mon

t5

418

1.8

0.07

841

0.4

0.03

1363

0.06

9696

57.

3222

2222

5.2

0.36

2419

20.

0015

14.5

616

3.64

8028

775.

0910

2681

202

197

Asp

en1

425

1.1

0.04

792

0.4

0.01

9166

0.01

9166

55

5.5

0.10

5415

20.

0015

14.5

616

3.64

8028

775.

0910

2681

206.

320

3.4

201.

319

8.4

Asp

en2

420

1.8

0.07

841

0.4

0.03

1363

0.05

053

57.

3333

3333

5.2

0.26

2753

90.

0015

14.5

616

3.64

8028

775.

0910

2681

203.

419

8.4

Ced

ar5

425

1.6

0.06

970.

40.

0278

780.

0278

785

55.

50.

1533

312

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

520

3.4

200

198.

4C

edar

642

01.

60.

0697

0.4

0.02

7878

0.05

5757

57.

3333

3333

5.2

0.28

9935

40.

0015

14.5

616

3.64

8028

775.

0910

2681

203.

419

8.4

Bir

ch4

425

20.

0871

20.

70.

0609

840.

0609

845

55.

50.

3354

120.

0015

14.5

616

3.64

8028

775.

0910

2681

205

204.

220

019

9.2

Bir

ch5

420

2.3

0.10

019

0.7

0.07

0132

0.13

1116

57.

3333

3333

5.2

0.68

1801

10.

0015

14.5

616

3.64

8028

775.

0910

2681

204.

219

9.2

Forr

est6

490

2.2

0.09

583

0.4

0.03

8333

0.16

9448

55

5.5

0.93

1966

20.

0015

14.5

616

3.64

8028

775.

0910

2681

206.

520

3.5

201.

519

8.5

Forr

est7

480

1.8

0.07

841

0.4

0.03

1363

0.20

0812

57.

6666

6667

5.1

1.02

4139

20.

0015

14.5

616

3.64

8028

775.

0910

2681

203.

519

8.5

Wal

nut1

515

2.7

0.11

761

0.4

0.04

7045

0.04

7045

55

5.5

0.25

8746

40.

0015

14.5

616

3.64

8028

775.

0910

2681

204.

220

2.3

199.

219

7.3

Wal

nut2

520

30.

1306

80.

40.

0522

720.

0993

175

7.88

8888

895.

10.

5065

157

0.00

1514

.56

163.

6480

2877

5.09

1026

8120

2.3

197.

3A

lpin

e151

53.

40.

1481

0.4

0.05

9242

0.05

9242

55

5.5

0.32

5828

80.

0015

14.5

616

3.64

8028

775.

0910

2681

205

203.

620

019

8.6

Alp

ine2

520

2.6

0.11

326

0.4

0.04

5302

0.10

4544

57.

8888

8889

5.1

0.53

3174

40.

0015

14.5

616

3.64

8028

775.

0910

2681

203.

619

8.6

Cen

ter1

350

3.1

0.13

504

0.4

0.05

4014

0.23

8709

55

5.5

1.31

2898

40.

001

29.2

630

4.52

9116

322

.220

9768

203.

620

2.3

198.

619

7.3

Cen

ter2

160

00.

40

0.55

2341

55.

8888

8889

5.2

2.87

2172

20.

001

29.2

630

4.52

9116

322

.220

9768

202.

320

1.8

197.

319

6.8

Cen

ter3

160

00.

40

0.65

1658

56.

7777

7778

5.3

3.45

3785

30.

001

29.2

630

4.52

9116

322

.220

9768

201.

820

3.6

196.

819

8.6

Cen

ter4

200

00.

40

1.17

2635

57.

8888

8889

5.1

5.98

0439

50.

001

29.2

630

4.52

9116

322

.220

9768

203.

620

4.2

198.

619

9.2

Cen

ter5

250

1.5

0.06

534

0.4

0.02

6136

1.53

7232

59.

2777

7778

4.9

7.53

2438

80.

001

29.2

630

4.52

9116

322

.220

9768

204.

220

3.4

199.

219

8.4

Cen

ter6

250

00.

40

1.85

4349

510

.666

6667

4.7

8.71

5441

20.

001

29.2

630

4.52

9116

322

.220

9768

203.

420

219

8.4

197

Cen

ter7

/A

shm

oun

t 320

00

0.4

02.

0773

765

11.7

7777

784.

59.

3481

938

0.00

129

.26

304.

5291

163

22.2

2097

6820

219

8.5

197

193.

5C

ente

r830

01.

40.

0609

80.

40.

0243

942.

2829

85

13.4

4444

444.

39.

8168

123

0.00

129

.26

304.

5291

163

22.2

2097

6819

8.5

193.

5

20Li

ncol

nC

ente

r

21

(ver

tica

l )

Red

woo

dH

ighl

and

18Li

ncol

nC

ente

r

19Li

ncol

nC

ente

r

16Li

ncol

nC

ente

r

17Li

ncol

nC

ente

r

14Li

ncol

nC

ente

r

15Li

ncol

nC

ente

r

12A

corn

Cen

ter

13Li

ncol

nC

ente

r

10A

corn

Cen

ter

11A

corn

Cen

ter

8M

aple

Cen

ter

9A

corn

Cen

ter

6M

ain

StC

ente

r St

7M

ain

StR

edw

ood

4 (v

erti

cal )

Ash

mon

tFo

rest

5A

corn

Cen

ter

St.

2M

ain

StA

corn

3M

ain

StA

corn

Gro

und

elev

atio

nsIn

vert

ele

vati

ons

Loc

ated

Bet

wee

n (3

)

1M

ain

StA

corn

Des

crip

tion

Par

amet

ers

CA

Tim

eD

iam

eter

Flow

ing

Full

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Page 34 JAG – Water & Sewage Inc.

Page 39: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSection 7 - References

I. GIVEN DESIGN CRITERIA

A.  WATER DISTRIBUTION SYSTEM DESIGN

Important Parameters: The system must be looped Elevated storage is located at X1 Underground storage is located at X2 The system will serve: 1) domestic demand (industrial and commercial)

                                                 2)  fire protection fighting purposes

Design Parameters: Domestic water demand parameters (exclusive of industrial and commercial uses)

o Average population density=40 persons/acreo Average unit consumption=100 gpcpd (gallons per capita per day)o Maximum day's consumption=200% of average daily consumptiono Maximum hour's consumption=400% of average daily consumption

Industrial park area water demando Population density = 20 persons/acreo Process consumption = 2,000 gpm for 8 hours a day on working days. No water

consumption is required for the remainder of the day. Peak hourly consumption in any hour's time is 3000 gpm.

o Select the type of industrial park that you are familiar withfor your system design.

Commercial zone water demando You can design the system based on the type of commercial units you proposed

to have in this commercial zones. Fire demand

To be computed in accordance with standard procedures. For the industrial park and commercial areas, fire demand is to be based on the types of industry and commercial that you selected.

Line pressureo Maximum permissible: 70 psio Minimum permissible: 20 psio Minimum on average day: 35 psi

Land use

Page 35 JAG – Water & Sewage Inc.

Page 40: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

o Industrial zone : Block Ao Commercial zone: Block B and Co Residential areas: All remaining blocks

   B.  SEWAGE COLLECTION SYSTEMBased on the same sketch, and the pertinent information provided for water supply design case, a storm drain and sanitary sewage system should also be designed. A separate drainage system (separate storm drain and sanitary sewage system) shall be designed.

Page 36 JAG – Water & Sewage Inc.

Page 41: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGN

Page 37 JAG – Water & Sewage Inc.

PipeNodes

Required Pe

ak Q

Required

Peak Q ft3/s

Length (ft)

Z initial

ZfinalTopog

raphy del

ta Z

actual Slope

Slopeactual

deltaZ

endingstartin

g pipe Invert

elevat

ionending

invert

elevationDepth

at end

Cubic feet to be excavated

Crown

depthactual

D FtDiame

ter requir

ed for

Half Full

Actual D

inchesArea o

f Flow

(Half Full)

PV Ma

x (fps)Act

ual Q (cfs)Requi

red Peak Q

ft3/s

1A29

23.2415995

0.05178234

1101229

211.117.9

0.01625795

0.01625794

717.91

B217.3

33199.43

311.6667

11418.444

110.6666

66672.873

0721880.1

74532931.

04719755

6.39306492

1.11580032

0.05178

1B29,30

,251534.

6995763.4

1931422

1310211.1

204.26.90

.00526718

0.00593002

57.76833

Main199.4

33191.66

512.535

29193.289

11.201667

1.33333333

16.7063764

160.6981

3172.094

39516.129

022294.278

864763.419

312A

2814.07

3844510.0

3135656

976218

208.89.20

.00942623

0.0065.856

2B206.3

33200.47

78.32267

7221.0424

7.6560.666

666672.869

6109780.1

74532931.

04719755

3.88375552

0.67784321

0.03136

2B28, 31

, 23,2964.

5280656.6

0497542

809209.7

202.96.80

.00840544

0.00801153

76.48133

2C200.4

77193.99

68.904

16008.087

.2373333

1.66666667

20.2119503

201.09083

0782.6179

93888.266

611279.017

474046.604

982C

28,31,23,24

4435.

9863249.8

8338784

405202.9

201.60.80

.00197531

0.00284938

31.154

Main193.9

96192.84

28.758

10247.527

6.5913333

2.16666667

28.538238

261.84350

4023.4033

92045.872

2863610.82

558359.883

393A

2715.46

4241990.0

3445437

844210.1

2064.10

.00485782

0.00485782

4.13B201.4

33197.33

38.66667

6502.5926

80.666666

673.09287

29380.1

74532931.

04719755

3.49459591

0.60992205

0.03445

3B27,22

29.4349437

70.065581

12747

206203

30.004016

060.0040

1606433C

197.3331

94.3338.

666675755.

333380.6

66666674.

08021158

80.174532

931.04719

7553.177

434340.554

566910.065

583C

27,22,21

40.1725401

0.08950451

222203

201.61.40

.00630631

0.00671771

81.49133

Main194.3

33192.84

28.758

1728.9128

.0913333

0.66666667

4.16333166

80.174532

931.04719

7554.109

482490.717

240.089

54A

1919.92

143386

0.044385

1600208.2

203.64.6

0.002875

0.00293208

34.69133

Main199.5

33194.84

28.758

12456.489

8.0913333

0.66666667

3.73870559

80.174532

931.04719

7552.714

966110.473

850980.044

395A

1835.68

5905770.0

7950828

1261207.1

206.35

0.750.000

594770.001

5952.011

35B198.4

33196.42

29.92796

11128.809

9.261295

0.66666667

5.21483108

80.174532

931.04719

7552.002

426580.349

489370.079

515B

35.6859057

70.079508

28263

206.35

206.10.25

0.00095057

0.00250

.6575Main

197.6831

97.0269.

074172122.

00528.407

50.666666

674.79340

49880.1

74532931.

04719755

2.50695341

0.43754591

1.07951

6A12

3.79961228

0.05302559

833211.2

198.512.7

0.0152461

0.01745658

314.5413

Main202.5

33187.99

210.508

7781.2569

9.8413333

0.66666667

2.86034193

80.174532

931.04719

7556.624

542231.156

200730.053

037A

28.1995

247080.018

26856834

210202

80.009592

330.0109

404489.124

33Main

198.3331

89.2091

2.7919483.

061312.12

43330.666

666672.093

7425480.1

74532931.

04719755

5.2443758

0.91531625

0.01827

8A58

.290321141

0.01847085

840206.3

204.51.80

.00214286

0.00448611

13.76833

Main194.6

33190.86

513.635

10181.467

12.968333

0.66666667

2.48490752

80.174532

931.04719

7553.358

236450.586

122830.018

479A

614.397

014120.032

07658840

208.2203.4

4.80.0057

14290.006

7480165.

66833Main

196.5331

90.8651

2.5359360.

133311.86

83330.666

666672.831

087280.1

74532931.

04719755

4.11873933

0.71885562

0.03208

10A91

5.84752512

0.03530832

840208.8

204.24.60

.00547619

0.00650992

15.46833

Main197.1

33191.66

512.535

9360.1333

11.868333

0.66666667

2.95468851

80.174532

931.04719

7554.045

424550.706

059780.035

3111A

1010.83

314840.024

13628834

208203.8

4.20.0050

35970.004

2845723.

57333Main

196.333

192.76

11.048184.

986710.37

33330.666

666672.770

9070680.1

74532931.

04719755

3.28193518

0.57280575

0.02414

12A13

14.1168056

80.031452

281034

206.8202.3

4.50.0043

52030.003

4732433.

59133Main

197.1331

93.542

8.7588050.

24188.091

33330.666

666673.182

9874180.1

74532931.

04719755

2.95490721

0.5157286

0.03145

13A14

9.86888030

10.021987

891031

207203.8

3.20.0031

03780.003

3863563.

49133Main

198.3331

94.842

8.9588210.

1768.2913

3330.666

666672.796

3864380.1

74532931.

04719755

2.91771309

0.509237

0.02199

14A26,32

,332974.

4813316.6

2715132

1270213

203.49.60

.00755906

0.00745538

19.46833

Main200.3

33190.86

512.535

35377.222

10.868333

1.66666667

20.512223

201.09083

0782.6179

93887.974

519188.698

850996.627

15M1

5A,1764.29

1522120.1

4324166

312206.1

203.62.50

.00801282

0.0072.184

M2197.0

26194.84

28.75817

2429.5982

8.09150.6

66666674

.9280302

80.174532

931.04719

7554.194

935410.732

154350.143

24M2

M1,4A,13A,1

5118.0

6046030.2

6303898

181203.6

202.31.30

.00718232

0.00718232

1.3M3

194.8421

93.5428.

758171409.

75848.091

50.666666

676.15972

23180.1

74532931.

04719755

4.24921443

0.74162782

0.26304

M3M2,12

A,16149.9

6180050.3

3411524

185202.3

201.60.70

.00378378

0.00378378

40.7M

4193.5

42192.84

28.75817

1440.8985

8.09150.6

66666677.

59806775

80.174532

931.04719

7553.084

177860.538

290580.334

12M4

M3,3C,20

201.086908

60.4480

221205

201.6203.8

-2.2-0.010

731710.000

40.082

M5192.8

42192.7

611.0402

6538.8987

8.87352.1

666666712

.9257061

261.84350

4023.4033

92042.200

198324.056

074450.448

02M5

M4,2C,11A,1

16123.

96195513

.6442015

219203.6

204.2-0.6-

0.00273973

0.0051.095

M6192.7

6191.665

12.535279

31.2488

10.36852

.16666667

28.983572

261.84350

4023.4033

92047.778

8757514.34

0388713.64

42M6

M5,1B,10A,1

29163.

02156320

.4152333

196204.2

203.40.80

.00408163

0.00408163

30.8M

7191.6

65190.86

512.5352

8736.285

9.86852.6

666666735

.0190822

322.7925

2684.188

79028.071

7284722.54

0518120.41

52M7

M6,14A,9A,7

12175.0825

127.1261

121276

203.4202.5

0.90.0032

60870.006

1.656M8

190.8651

89.20913

.291213043

.73210.62

452.6666

666736.24

26722322

.7925268

4.1887902

9.78645067

27.3289258

27.1261

M8M7,8A

,7A,8,3

12208.8463

427.201

338297

202.5198.5

40.013468

010.0040

972921.216

9WTP189.2

09187.99

210.5081

15258.373

6.8413958

3.66666667

38.9700905

445.27962

0995.7595

86539.999

9965352.79

6191527.20

13116.5

122.84

276559.99

Table 13. Complete Sanitary Sewer Design Table

Page 42: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNAppendix A Sanitary Sewer full

Page 38 JAG – Water & Sewage Inc.

Page 43: Group Project to Design Water Infrastructure for a Theoretical Small Town

SECTION 4 - WATER DISTRIBUTION SYSTEM DESIGNSECTION 4 - WATER DISTRIBUTION SYSTEM DESIGName of Section (If needed)

Page 39 JAG – Water & Sewage Inc.