82
MANUFACTURING TECHNOLOGIES CNC by Endika Gandarias BACHELOR OF ENGINEERING

CNC Milling

Embed Size (px)

Citation preview

Page 1: CNC Milling

MANUFACTURING TECHNOLOGIES

CNC

by Endika Gandarias

BACHELOR OF ENGINEERING

Page 3: CNC Milling

3

CONTENTS

BIBLIOGRAPHY INTRODUCTION REFERENCE SYSTEMS BASIC ISO PROGRAMMING FIXED CANNED CYCLES EXERCISES FAGOR SIMULATOR GLOSSARY

by Endika Gandarias

Page 4: CNC Milling

4

BIBLIOGRAPHY

BIBLIOGRAPHY

by Endika Gandarias

Page 5: CNC Milling

5

The author would like to thank all the bibliographic references and videos that

have contributed to the elaboration of these presentations.

For bibliographic references, please refer to:

• http://www.slideshare.net/endika55/bibliography-71763364 (PDF file)

• http://www.slideshare.net/endika55/bibliography-71763366 (PPT file)

For videos, please refer to:

• www.symbaloo.com/mix/manufacturingtechnology

BIBLIOGRAPHY

by Endika Gandarias

Page 6: CNC Milling

6

INTRODUCTION

INTRODUCTION

by Endika Gandarias

Page 7: CNC Milling

7

1942 Bendix Corporation, a USA helicopter blade manufacturing company, needs three-dimensional cam parts. → Coordination of movements is necessary.

1947 John Parson (a Bendix corporation worker) using punched tapes is able to control simultaneously axes movements of a machine → MIT collaborates

1953 Numerical Control (NC) term appears at M.I.T. 1960 Adaptative Control term appears at M.I.T. 1970 Computer Numerical Control (CNC) is created → Microprocessors origin. 1980 Direct Numerical Control (DNC) is possible. A large number of machines are controlled by a computer.

INTRODUCTION

by Endika Gandarias

Brief history

Definition CNC (Computer Numerical Control (CNC) refers to the method of controlling a machine tool or

the machining process by means of a computer.

Coded numerical instructions are inserted into the CNC PROGRAMMING LANGUAGE

NC Punched Tape

Page 8: CNC Milling

8

Machine control feedback: position & velocity CNC block diagram

INTRODUCTION

by Endika Gandarias

Velocity Feedback

Position Feedback

VIDEO

VIDEO

CNC machine tool description Loop control types

OPEN LOOP

CLOSED LOOP

Page 9: CNC Milling

9

Every position of an absolute device is unique. The disk has many circular tracks, the higher the

number of tracks the higher the resolution. These devices do not lose position when power

is removed (homing sequence not needed on startup).

They do not accumulate errors (not affected by noise signal).

They are more complex and expensive.

INTRODUCTION

by Endika Gandarias

CNC machine tool description

Feedback devices

ABSOLUTE ROTARY ENCODER INCREMENTAL ROTARY ENCODER

The feedback signal is always referenced to a start or home position. They need an external processing of signals.

In the event of a power failure, it must be reinitialized.

They are susceptible to noise, thus, errors. They are simpler and cheaper.

An encoder is a sensor for converting rotary motion or position to analog/digital signal.

VIDEO VIDEO

VIDEO

Page 10: CNC Milling

10

It measures directly the position of linear axes. High positioning accuracy. High permissible traversing speed. It can correct next errors:

Positioning error due to thermal behavior of the recirculating ball screw. Reversal error. Kinematics error through ball-screw pitch error.

INTRODUCTION

by Endika Gandarias

CNC machine tool description

Feedback devices

LINEAR GLASS SCALE ENCODER

VIDEO

VIDEO

Absolute glass scale

Incremental glass scale

VIDEO

Page 11: CNC Milling

11

INTRODUCTION

Advantages High Repeatability + High Trueness = High Accuracy.

More complex 3-dimensional geometries.

Better quality.

Higher productivity.

Greater safety and lower operator qualification.

Greater flexibility to part changes.

Minimizes human errors.

Disadvantages Higher investment cost.

Higher maintenance cost.

Time consuming set-up.

Training is needed for CNC programming.

Increasing Repeatability

Incr

easi

ng T

ruen

ess

by Endika Gandarias

CNC FAGOR - USER MANUAL www.fagorautomation.com/download/

Page 12: CNC Milling

12

Type of machines Turning Centers

Milling Centers

Machining Centers

Drilling Machines

CNC manufacturers

INTRODUCTION

by Endika Gandarias

Grinding Machines

EDM Machines

Laser-Cutting Machines

Page 13: CNC Milling

13 by Endika Gandarias

The axes are named according to DIN 66217.

Axis nomenclature

VIDEO

Three-axes milling machine

Six-axis milling machine

Turning machine

VIDEO

A+ C+

B+

INTRODUCTION

Page 14: CNC Milling

14

Reference systems

by Endika Gandarias

INTRODUCTION

VIDEO

Page 15: CNC Milling

15

M Machine Zero or home: This is set by the manufacturer as the origin of the coordinate system of the machine.

W Part zero or point of origin of the part: This is the origin point that is set for programming the measurements of the part. It can be freely selected by the programmer.

R Machine Reference point. This is a point on the machine established by the manufacturer around which the synchronization of the system is done. The control positions the axis on this point.

by Endika Gandarias

INTRODUCTION

Reference systems

Page 16: CNC Milling

16

Pre-Start

Power ON

Find Machine Zero or Home (M)

Load Tools

Set Machine Reference (R)

Set Part zero (W)

Load CNC program

Run Program

Power OFF

Define Tool Length & Radius Offsets

Check coolant and air supply levels, ensure work area is clean, …

INTRODUCTION

CNC machine setup and operation

Fill the tool carousel.

Once he workholding device is properly installed and aligned, set part X,Y&Z zero datum.

by Endika Gandarias

1

2

3

4

5

6

7

8

9

Page 17: CNC Milling

17

REFERENCE SYSTEMS

REFERENCE SYSTEMS

by Endika Gandarias

Page 18: CNC Milling

18

Machine Reference (R) setting

TOOL LENGTH COMPENSATION OFF

G44

TOOL LENGTH COMPENSATION ON

G43

REFERENCE SYSTEMS

by Endika Gandarias

R R R R

T1

L1 L2 L3 L4

R R R R

T2 T3 T4

TOOL TOOL OFFSET RADIUS LENGTH

T1 D1 55.234

T2 D1 72.345

T3 D1 61.098

T4 D1 66.683

… … ... …

OFFSET TABLE

Page 19: CNC Milling

19

Tool presetting machine

REFERENCE SYSTEMS

Machine Reference (R) setting

1

by Endika Gandarias

High accuracy.

Based on camera images (contact methods were used in the past).

Tool length (L) and radius (R) values are measured.

Minimizes tool setting times.

Used at high production runs.

TOOL LENGTH MEASUREMENT

TOOL RADIUS MEASUREMENT

X

Z

VIDEO

Page 20: CNC Milling

20

Tool on the workpiece

REFERENCE SYSTEMS

Machine Reference (R) setting

2

by Endika Gandarias

Low accuracy.

Time consuming method.

Only tool length (L) values are measured.

Tool is rotating and thus, part or referencing block gets marked. TOOL LENGTH MEASUREMENT

W

T1 T2 T3 T4

L4 = 0 L3 < 0

L2 > 0

L1 < 0 W

R R R R

Page 21: CNC Milling

21

3

REFERENCE SYSTEMS

Machine Reference (R) setting

by Endika Gandarias

Using a tool length setter gauge

TOOL LENGTH MEASUREMENT

Good accuracy.

Time consuming method.

Only tool length (L) values are measured.

Part or referencing block does not get marked.

W

L2<0 L1=0

R R

L1

M

50

z1 z2 L2

50

L1= z1-50 L2= z2-50

R

R

BASE

D O

N A

REF

. TO

OL

BASE

D O

N M

ACH

INE

DAT

UM

VIDEO

Page 22: CNC Milling

22

REFERENCE SYSTEMS

Machine Reference (R) setting

Using a touch probe 4

by Endika Gandarias

High accuracy.

Fast method.

Tool length (L) and radius (R) values are measured.

Tool rotates counterclockwise not to mark the probe at low RPM.

Additional applications

Low RPM

TOOL LENGTH MEASUREMENT

TOOL RADIUS MEASUREMENT

VIDEO

Page 23: CNC Milling

23

REFERENCE SYSTEMS

Machine Reference (R) setting

Using a laser beam 5 Additional applications

Highest accuracy.

Fast method.

Tool length (L) and radius (R) values are measured.

Tool rotates at working conditions. TOOL LENGTH MEASUREMENT

TOOL RADIUS MEASUREMENT

by Endika Gandarias

VIDEO VIDEO

Page 24: CNC Milling

24

Part zero (W) setting Prior to defining part zero, procedure should be:

1. Study how the drawing is dimensioned.

2. Decide on the workholding device type and part zero (W) definition.

Machine operator defines part zero (W) position anywhere.

Most common positions:

o Left lower side of the part (all data position values are positive).

o Part symmetry axis.

o CLAMP CASE Centering pins side.

o VISE CASE Stationary chuck & vise stop side.

REFERENCE SYSTEMS

by Endika Gandarias

Clamps (with or without centering pins) Vise (with or without vise stop)

Movable chuck

Stationary chuck

Vise stop

Centering pins Clamps

Page 25: CNC Milling

25

X

Z Y

Symmetry

X

Y

Z

Y

Part zero (W) setting

X

Z Y

X

Y

Z

Y

Stationary chuck & Y axis part symmetry X-Y axis part symmetry

REFERENCE SYSTEMS

by Endika Gandarias

VISE VISE

Page 26: CNC Milling

26

Part zero (W) setting

Stationary chuck & left lower part

REFERENCE SYSTEMS

by Endika Gandarias

X

Y

Z X

X

Z

Y

VISE CLAMP

Stationary chuck & Y axis part symmetry

X

Y

Z X

Page 27: CNC Milling

27

Part zero (W) setting

VIDEO

Using the tool

Low accuracy.

Tool is rotating and thus, part gets marked.

REFERENCE SYSTEMS

by Endika Gandarias

Using a mechanical edge finder 1 2

Low accuracy.

X

Y DATUM SETTING

X

Y

Z

DATUM SETTING Optical edge finder similar

VIDEO

Page 28: CNC Milling

28

3 Part zero (W) setting

VIDEO

REFERENCE SYSTEMS

by Endika Gandarias

Using a touch probe

High accuracy.

X

Y

Z

DATUM SETTING VIDEO

Page 29: CNC Milling

29 by Endika Gandarias

VIDEO

2 types:

1. Touch-trigger probes

2. Scanning probes (continuous measuring)

PRO & CON:

Almost any machined geometry may be measured in-situ.

Reduced machine downtime.

Part unclamping for measuring is avoided.

It cannot consider possible machine axes errors.

Touch probe stylus tips

3 Part zero (W) setting

REFERENCE SYSTEMS

Using a touch probe

Page 30: CNC Milling

30

BASIC ISO PROGRAMMING

FAGOR 8055-M

by Endika Gandarias

BASIC ISO PROGRAMMING

Page 31: CNC Milling

31

BASIC ISO PROGRAMMING

by Endika Gandarias

Block identification Identifies the block of information.

/ N**** G** X****.*** Y****.*** Z****.*** A****.*** B****.*** C****.*** F****.** S****.**

Preparatory functions or G-codes

Linear and angular positioning data Feed function

Speed function

Block structure

T** D** M** N** ;*****

Tool number Tool offset number

Miscellaneous or auxiliary functions

Block skip condition

Number of block repetitions Block comment Not ISO,

corresponds to FAGOR 8055M

=

Page 32: CNC Milling

32 by Endika Gandarias

Feed function (F) Speed function (S)

The feed function F is the speed at which the tool center point moves.

The programmed F is effective working in linear (G01) or circular (G02, G03).

The maximum F value is limited by the machine parameters.

The speed function S is the speed at which the tool (in milling) or part (in turning) rotates.

The maximum S value is limited by the machine parameters.

BASIC ISO PROGRAMMING

Page 33: CNC Milling

33 by Endika Gandarias

Tool number (T) The "T" code identifies the tool position in the tool magazine.

Tool offset number (D) The tool offset contains the tool dimensions. Each tool may have several offsets associated with it.

TOOL TOOL OFFSET RADIUS LENGTH …

T1

D1 8.002 55.234 …

D2 7.502 55.234 …

D3 8.002 55.026 …

… … … …

TOOL TOOL OFFSET RADIUS LENGTH …

T2

D1 4.000 72.345 …

D2 11.990 60.036 …

D3 7.500 33.110 …

… … … …

BASIC ISO PROGRAMMING

Page 34: CNC Milling

34

M functions DESCRIPTION

M00 Program STOP / Spindle STOP / Coolant OFF

M03 Spindle ON clockwise

M04 Spindle ON counterclockwise

M05 Spindle STOP

M06 Tool change

M08 Coolant ON

M09 Coolant OFF

M30 End of program

BASIC ISO PROGRAMMING

Auxiliary or Miscellaneous (M) functions

by Endika Gandarias

Page 35: CNC Milling

35

M functions MODAL DESCRIPTION

G00 * Rapid traverse

G01 * Linear interpolation

G02 * Clockwise circular interpolation

G03 * Counterclockwise circular interpolation

G05 * Controlled corner rounding

G07 * Square corner

G36 Automatic radius blend

G39 Chamfer

G37 Tangential entry

G38 Tangential exit

G40 * Cancellation of tool radius compensation

G41 * Left-hand tool radius compensation

G42 * Right-hand tool radius compensation

G43 * Tool length compensation

G44 * Cancellation of tool length compensation

G90 * Absolute programming

G91 * Incremental programming

… … …

BASIC ISO PROGRAMMING

Preparatory functions or G-codes

by Endika Gandarias

MODAL = Once programmed, it remains active until another incompatible G function is programmed or until M30 / EMERGENCY or RESET.

Page 36: CNC Milling

36

It is a positioning linear movement at maximum F value defined in the machine parameters.

Not valid for cutting.

It can be programmed as G00, G0 or G.

by Endika Gandarias

BASIC ISO PROGRAMMING

Preparatory functions or G-codes

Rapid traverse (G00) Linear interpolation (G01)

It is a working linear movement at the programmed F value.

It can be programmed as G01 or G1.

… N80 G00 X500 Y300 …

… N120 G01 X500 Y300 F400 …

(TP)

(SP)

(TP)

(SP)

G00 X___ Y___

TP

G01 X___ Y___

TP

Page 37: CNC Milling

37 by Endika Gandarias

BASIC ISO PROGRAMMING

Preparatory functions or G-codes

Rapid traverse (G00) Linear interpolation (G01)

EXERCISE 1

w

= SP

Page 38: CNC Milling

38

I

J

SP

TP

CC I

J

SP

TP CC

It is a working circular movement at the programmed F value.

It can be programmed as G02 or G2 / G03 or G3.

by Endika Gandarias

BASIC ISO PROGRAMMING

Preparatory functions or G-codes

Clockwise circular interpolation (G02)

Counterclockwise circular interpolation (G03)

… N60 G02 X300 Y300 I200 J0 …

CA

RTE

SIA

N C

OO

RD

INAT

ES

WIT

H A

RC

CEN

TER

G02 X___ Y___ I___ J___

Distance from the SP to the Circle Center (CC).

TP

… N60 G03 X300 Y300 I0 J200 …

G03 X___ Y___ I___ J___

Distance from the SP to the Circle Center (CC).

TP

Page 39: CNC Milling

39

SP

TP

SP

TP

by Endika Gandarias

BASIC ISO PROGRAMMING

Preparatory functions or G-codes

… N40 G02 X400 Y150 R150 …

Clockwise circular interpolation (G02)

Counterclockwise circular interpolation (G03)

CA

RTE

SIA

N C

OO

RD

INAT

ES

WIT

H A

RC

RA

DIU

S

G02 X___ Y___ R___

R + : Arc < 180º R ˗̶ : Arc > 180º

TP

A complete circle cannot be programmed.

… N40 G02 X400 Y150 R-150 …

R+

R ˗̶

… N40 G03 X400 Y300 R150 … … N40 G03 X400 Y300 R-150 …

R+

R ˗̶

G03 X___ Y___ R___

R + : Arc < 180º R ˗̶ : Arc > 180º

TP

Page 40: CNC Milling

40 by Endika Gandarias

BASIC ISO PROGRAMMING

Preparatory functions or G-codes

Clockwise circular interpolation (G02)

Counterclockwise circular interpolation (G03)

EXERCISE 2 EXERCISE 3

EXERCISE 4 EXERCISE 5

w w

w w

SP SP

SP SP

Page 41: CNC Milling

41 by Endika Gandarias

BASIC ISO PROGRAMMING

Preparatory functions or G-codes

Clockwise circular interpolation (G02)

Counterclockwise circular interpolation (G03)

EXERCISE 6

w

SP

Page 42: CNC Milling

42

BASIC ISO PROGRAMMING

by Endika Gandarias

Preparatory functions or G-codes

Absolute programming (G90)

Incremental programming (G91)

G90: The positioning data refers to the part zero (default). G91: The positioning data corresponds to the distance to be travelled from the point where the tool is situated.

w

… N70 G01 G90 X70 Y15 F350 ; P2 N80 G01 X70 Y30 ; P3 N90 G01 X45 Y45 ; P4 N100 G01 X20 Y45 ; P5 N110 G01 X20 Y15 ; P6 …

Absolute programming (G90) … N70 G01 G91 X50 Y0 F350; P2 N80 G01 X0 Y15 ; P3 N90 G01 X-25 Y15 ; P4 N100 G01 X-25 Y0 ; P5 N110 G01 X0 Y-30 ; P6 …

Incremental programming (G91)

= SP

Page 43: CNC Milling

43

BASIC ISO PROGRAMMING

by Endika Gandarias

Preparatory functions or G-codes

Absolute programming (G90)

Incremental programming (G91)

EXERCISE 7

w

EXERCISE 8

SP

SP

Page 44: CNC Milling

44

BASIC ISO PROGRAMMING

by Endika Gandarias

Other functions

REPEAT

(RPT N___ ,N___)N___

Number of repetitions

From block

To block

EXERCISE 9

100 275 450 600 775 950 1100 1275 1450

SP

Page 45: CNC Milling

45

Pocket Milling

Engraving

by Endika Gandarias

Profile Milling

Face Milling Slot Milling

BASIC ISO PROGRAMMING

Pecking / Drilling / Threading / Reaming

Page 46: CNC Milling

46

Face milling

by Endika Gandarias

N00 T1 D1 ; Ø28mm end-mill, assign tool 1 value D1 N10 M06 ; Tool change action N20 G00 G43 X14 Y40 Z100 F400 S1500 M03 N30 G00 Z58 N40 G01 X116 Y40 N50 G00 X116 Y54 N60 G01 X14 Y54 N70 G00 X14 Y68 N80 G01 X116 Y68 N90 G00 X116 Y82 N100 G01 X14 Y82 N110 G00 X14 Y96 N120 G01 X116 Y96 N130 G00 Z100 N130 M30 ; End of program

SP

60

70

20 40 60 80 100

100

80

60

40

20 Security distance ~ 2 mm

For exercises consider: ae = 50% of tool Ø

BASIC ISO PROGRAMMING

Page 47: CNC Milling

47 by Endika Gandarias

Face milling

EXERCISE 10

Tool: Ø50mm HSS end-mill, z=4 Material: Aluminium

• CASE A apTOTAL=5mm; ap=5mm

• CASE B apTOTAL=5mm; ap=2.5mm RPT

• CASE C apTOTAL=5mm; ap=1mm RPT & G91

BASIC ISO PROGRAMMING

Page 48: CNC Milling

48

BASIC ISO PROGRAMMING

by Endika Gandarias

Preparatory functions or G-codes

Square corner (G07) Round corner (G05)

The CNC starts executing the following block as soon as the position programmed in the current block has reached the dead band (default) Sharp edges, Machining time ↑, Shocks ↑.

To be used with G00: face milling, canned cycles, …

The CNC starts executing the following block as soon as deceleration of the currently executing axes start (“?” distance depends on the feedrate F value) Rounded edges, Machining time ↓

NOT to be used with G00: slot milling, engraving, contouring,…

… N60 G01 G07 X50 Y100 F400 N70 G01 X140 Y100 F300 …

… N60 G01 G05 X50 Y100 F400 N70 G01 X140 Y100 F300 …

w

t

Fy

t

Fx

w

DEAD BAND: The range through which an input can be varied without initiating response

t

Fy

t

Fx

Acceleration

Constant feed

Deceleration

Page 49: CNC Milling

49

Pocket Milling

Engraving

by Endika Gandarias

Profile Milling

Face Milling Slot Milling

BASIC ISO PROGRAMMING

Pecking / Drilling / Threading / Reaming

Page 50: CNC Milling

50

Slot milling

by Endika Gandarias

SP

20 60 85

20 Security distance ~ 2 mm

70

95

45

N00 T7 D1 ; Ø10mm end-mill N10 M06 N20 G00 G43 X85 Y13 Z100 F400 S3500 M03 N30 G00 Z20 N40 G00 G91 Z-2 N50 G01 G90 G05 X85 Y45 N60 G01 X60 Y70 N70 G01 X60 Y95 N80 G01 G07 X3 Y95 N90 G00 G91 Z10 N100 G00 G90 X85 Y13 N110 G00 G91 Z-10 N120 (RPT N40,N110)N1 ; Repeat N130 (RPT N40,N80)N1 ; Repeat N140 G00 Z100 N150 M30

20 40 60 80 100

60

40

20 6

+Z

Tool: Ø10mm H.S.S. end-mill ap TOTAL = 6mm ; ap = 2mm

BASIC ISO PROGRAMMING

Page 51: CNC Milling

51

35

100

40

SP

85

65

65 55

• • •

85

Slot milling

by Endika Gandarias

EXERCISE 11 60

40

20 5

+Z

Tool: Ø16mm H.M. end-mill, z=3 Material: Steel ap TOTAL = 5mm ; ap = 2.5mm

BASIC ISO PROGRAMMING

Page 52: CNC Milling

52

Engraving

by Endika Gandarias

EXERCISE 12 Tool: Ø12mm HSS engraving tool, z=1

Material: Steel

ap TOTAL = 2mm ; ap = 2mm

H.S.S. engraving tool

H.M. engraving tool

60

40

20 2

+Z

20 40 60 80 100

100

20

20

45

60

70

35 45 55 70 85 100

52.5

BASIC ISO PROGRAMMING

Page 53: CNC Milling

53

BASIC ISO PROGRAMMING

by Endika Gandarias

Preparatory functions or G-codes

Cancellation of tool radius compensation (G40)

Left-hand tool radius compensation (G41)

Right-hand tool radius compensation (G42)

The CNC automatically calculates the path the tool should follow based on the contour of the part and the tool radius value stored in the tool offset table.

G41 - CLIMB CUTTING G42 - CONVENTIONAL CUTTING

Page 54: CNC Milling

54

BASIC ISO PROGRAMMING

by Endika Gandarias

Preparatory functions or G-codes

Cancellation of tool radius compensation (G40)

Left-hand tool radius compensation (G41)

Right-hand tool radius compensation (G42)

… N50 G01 G41 G05 X77.5 Y70 F400 N60 G01 X100 Y70 N70 G01 X100 Y60 N80 G03 X85 Y45 I0 J-15 N90 G02 X70 Y30 I-15 J0 N100 G01 X50 Y30 N110 G01 X20 Y20 N120 G01 X25 Y70 N130 G03 X55 Y70 I15 J0 N140 G01 X77.5 Y70 N150 G01 G40 G07 X77.5 Y100 …

G41

Tool entry & exit should always be perpendicular to the workpiece contour. Tool entry & exit should be avoided to be from a workpiece edge may produce burr.

20 25 50 55 70 85 100

20

45

60 70

30

SP

22.5 30

Page 55: CNC Milling

55

Pocket Milling

Engraving

by Endika Gandarias

Profile Milling

Face Milling Slot Milling

BASIC ISO PROGRAMMING

Pecking / Drilling / Threading / Reaming

Page 56: CNC Milling

56

BASIC ISO PROGRAMMING

by Endika Gandarias

Roughing operation

Tool: Ø8mm H.M. end-mill, z=3

Material: Aluminium

ap TOTAL = 10mm ; ap = 2.5mm

+Z

30 60 90 120 150

30

60

30 60 90 120 150

30

60

90

25 SP

Profile milling

EXERCISE 13

Page 57: CNC Milling

57

BASIC ISO PROGRAMMING

by Endika Gandarias

Preparatory functions or G-codes

Automatic radius blend (G36) Chamfer (G39)

It rounds a corner with a determined radius, without having to calculate the center nor the start and end points of the arc.

Function G36 is not modal.

… N60 G01 G36 R5 X250 Y450 F400 N70 G01 X400 Y0 …

… N60 G01 G39 R15 X350 Y600 F400 N70 G01 X500 Y0 …

G36 R___

It chamfers corners between two straight lines, without having to calculate intersection points.

Function G39 is not modal.

G39 R___

Page 58: CNC Milling

58

BASIC ISO PROGRAMMING

by Endika Gandarias

Preparatory functions or G-codes

Tangential entry (G37 RENTRY) Tangential exit (G38 REXIT)

It is used to create a tangential entry in Finishing operations so tool entry mark can be unnoticeable (not necessary for roughing).

It is used to create a tangential entry in Finishing operations so tool exit mark can be unnoticeable (not necessary for roughing).

… N60 G01 G05 G41 G37 R12 X25 Y30 ; Tool Ø 22mm N70 G01 X10 Y30 …

… N60 G01 G38 R12 X25 Y30 ; Tool Ø 22mm N70 G01 G07 G40 X25 Y5 …

RENTRY > RTOOL-OFFSET LENTRY ≥ 2 * RENTRY

RENTRY

LENTRY

REXIT > RTOOL-OFFSET LEXIT ≥ 2 * REXIT

12 ≥ 11 25 ≥ 2 * 12

12 ≥ 11 25 ≥ 2 * 12

REXIT

LEXIT

NOT MODAL FUNCTION NOT MODAL FUNCTION

G38 REXIT

G37

RE

NTR

Y

Page 59: CNC Milling

59

G01 G05 G41 G37 RENTRY

G00 G43

G01 G07 G40

RENTRY = REXIT

G38 REXIT 1

2

3 4

5

0

WORKPIECE

LENTRY = LEXIT

TOOL

BASIC ISO PROGRAMMING

Preparatory functions or G-codes

Summary for profile milling operations

by Endika Gandarias

NOTE: - G37 & G38 only for finishing operations.

RENTRY > RTOOL-OFFSET LENTRY ≥ 2 * RENTRY

Page 60: CNC Milling

60

Pocket Milling

Engraving

by Endika Gandarias

Profile Milling

Face Milling Slot Milling

BASIC ISO PROGRAMMING

Pecking / Drilling / Threading / Reaming

Page 61: CNC Milling

61

Profile milling

by Endika Gandarias

EXERCISE 14

SP

Roughing operation:

Tool: Ø20mm H.M. end-mill, z=3

Stock: 0.4mm

Finishing operation:

Tool: Ø20mm H.M. end-mill, z=3

Stock: 0mm

Material: Aluminium

ap TOTAL = 2mm ; ap = 2mm

BASIC ISO PROGRAMMING

v

Page 62: CNC Milling

62

Cycles are referred to repetitive program sequences commonly used In machining operations that makes easier programming.

Canned cycles or Fixed cycles: They are an inbuilt feature of the CNC usually permanently stored as a pre-program and cannot be altered by the user (G80-G89)

User-defined cycles or Sub-routines: They are created when the necessary fixed cycle is not available.

FIXED CYCLES OR CANNED CYCLES

by Endika Gandarias

CANNED CYCLE

NUMBER DESCRIPTION

G80 Canned cycle cancellation

G81 Drilling cycle

G69 Deep hole drilling cycle with variable peck

G84 Tapping cycle

G85 Reaming cycle

G87 Rectangular pocket cycle

G88 Circular pocket cycle

Page 63: CNC Milling

63

G81 G98/G99 X___ Y___ Z___ I___ K___ G81: Drilling cycle

FIXED CYCLES OR CANNED CYCLES

by Endika Gandarias

Valid for drilling depth ≤ 3*Ø

Valid for pecking cycle

N0 T1 D1 ; Ø8mm drill N10 M06 N20 G00 G43 X30 Y20 Z100 F300 S1400 M03 N30 G81 G98 X30 Y20 Z2 I-15 K100 ; P1 N40 G80 N50 M30

Only one drill machining

N0 T1 D1 ; Ø8mm drill N10 M06 N20 G00 G43 X30 Y20 Z100 F300 S1400 M03 N30 G81 G99 X30 Y20 Z2 I-15 K100 ; P1 N40 G00 X80 Y20 ; P2 N50 G00 X80 Y50 ; P3 N60 G00 G98 X30 Y50 ; P4 N70 G80 N80 M30

Four drills machining

Dwell time (1/100s)

I.P. R.P. Distance from

w to the drilling depth

Distance from w to the R.P.

Machining coordinates

Withdrawal planes

Z I

Reference Plane (R.P.) - G99

Initial Plane (I.P.) - G98

W 15

8

4 3

1 2

Page 64: CNC Milling

64

G81 G98/G99 X___ Y___ Z___ I___ K___ G81: Drilling cycle

FIXED CYCLES OR CANNED CYCLES

by Endika Gandarias

Valid for drilling depth ≤ 3*Ø

Valid for pecking cycle

N0 T1 D1 ; Ø8mm drill N10 M06 N20 G00 G43 X30 Y20 Z100 F300 S1400 M03 ; Z100 N30 G81 G99 X30 Y20 Z2 I-15 K100 ; Z2 N40 G00 G98 X30 Y50 ; Z100 N50 G81 G99 X80 Y50 Z27 I10 K100 ; Z27 N60 G00 G98 X80 Y20 ; Z100 N70 G80 N80 M30

Dwell time (1/100s)

I.P. R.P. Distance from

w to the drilling depth

Distance from w to the R.P.

Machining coordinates

Withdrawal planes

Z

Z’ R.P. - G99

Initial Plane (I.P.) - G98

W 15

Ref. Plane’ (R.P.) - G99’

I’ I

25 10

8

2 3

1 4

Four drills machining

Page 65: CNC Milling

65

G69: Deep hole drilling cycle with variable peck

FIXED CYCLES OR CANNED CYCLES

by Endika Gandarias

General drilling cycle (≥ 3*Ø)

G69 G98/G99 X___ Y___ Z___ I___ B___ C___

Drilling peck

I.P. R.P. Distance from w to the R.P.

Machining coordinates

Withdrawal planes

Distance from w to the

drilling depth

D___ H___ J___ K___ L___ R___

Reduction factor for drilling peck

Dwell time (1/100s)

Minimum drilling peck

Approach to the

previous drilling

Distance between R.P. and w

(absolute value)

Withdrawal after drilling

Num. pecks before total withdrawal

N0 T3 D3 ; Ø10mm drill N10 M06 N20 G00 G43 X30 Y20 Z100 F300 S1400 M03 N30 G69 G99 X30 Y20 Z2 I-60 B4 C1 D2 H10 J5 K100 L2 R0.8 ; Z2 N40 G00 G98 X30 Y50 ; Z100 N50 G69 G99 X80 Y50 Z27 I-20 B4 C1 D2 H10 J5 K100 L2 R0.8 ; Z27 N60 G98 X80 Y20 ; Z100 N40 G80 N50 M30

8

2 3

1 4

Z

Z’ R.P. - G99

Initial Plane (I.P.) - G98

W

60

Ref. Plane’ (R.P.) - G99’

I’ I

25

20 B

D

D’

Page 66: CNC Milling

66

G84: Tapping cycle

N0 T7 D7 ; M-10 tap N10 M06 N20 G00 G43 X50 Y20 Z100 F600 S600 M03 N30 G84 G98 X50 Y20 Z2 I-60 R0 N40 G80 N50 M30

Z

I

Ref. Plane (R.P.) - G99

Initial Plane (I.P.) - G98

W

60

G84 G98/G99 X___ Y___ Z___ I___ K___ R___

Dwell time (1/100s)

I.P. R.P. Distance from w to the thread depth

Distance from w to the R.P.

Machining coordinates

Withdrawal planes

FIXED CYCLES OR CANNED CYCLES

by Endika Gandarias

Type of tapping R=0 Normal tapping

R=1 Rigid tapping

Page 67: CNC Milling

67

N0 T4 D4 ; Ø12H6 reamer N10 M06 N20 G00 G43 X30 Y20 Z100 F500 S2500 M03 N30 G85 G99 X30 Y20 Z2 I-35 K100 N40 G00 G98 X30 Y50 N50 G85 G99 X80 Y50 Z22 I-15 K100 N60 G00 X80 Y20 N70 G80 N80 M30

G85 G98/G99 X___ Y___ Z___ I___ K___

Dwell time (1/100s)

I.P. R.P. Distance from w to the reaming depth

Distance from w to the R.P.

Machining coordinates

Withdrawal planes

FIXED CYCLES OR CANNED CYCLES

by Endika Gandarias

G85: Reaming cycle

12

2 3

1 4

Z

Z’ R.P. - G99

Initial Plane (I.P.) - G98

W

35

Ref. Plane’ (R.P.) - G99’

I’ I

20

15

Page 68: CNC Milling

68

Pocket Milling Pecking / Drilling / Tapping / Reaming

Engraving

by Endika Gandarias

Profile Milling

Face Milling Slot Milling

FIXED CYCLES OR CANNED CYCLES

Page 69: CNC Milling

69 by Endika Gandarias

FIXED CYCLES OR CANNED CYCLES

Pecking / Drilling / Tapping / Reaming

EXERCISE 15

Tool: Ø12mm H.M. spot drill, z=2 Ø7.75mm H.S.S. drill, z=2 Ø8H7 H.M. reamer, z=5

Material: Steel

Page 70: CNC Milling

70 by Endika Gandarias

FIXED CYCLES OR CANNED CYCLES

Pecking / Drilling / Tapping / Reaming

EXERCISE 16

Tool: Ø12mm H.M. spot drill, z=2 Ø5mm H.S.S. drill, z=2 M-6x1 H.M. tap

Material: Aluminium

Page 71: CNC Milling

71 by Endika Gandarias

FIXED CYCLES OR CANNED CYCLES

Pecking / Drilling / Tapping / Reaming

EXERCISE 17

Tool: Ø16mm H.S.S. spot drill, z=2 Ø5mm H.S.S. drill, z=2 M-6x1 H.M. tap

Material: Steel

Page 72: CNC Milling

72

EXERCISES

EXERCISES

by Endika Gandarias

Page 73: CNC Milling

73 by Endika Gandarias

EXERCISES

Face milling / Profile milling

EXERCISE 18 Material: Steel

Page 74: CNC Milling

74 by Endika Gandarias

EXERCISES

Face milling / Profile milling

EXERCISE 19 Material: Aluminium

Page 75: CNC Milling

75

EXERCISES

by Endika Gandarias

Face milling / Grooving / Pecking / Drilling / Tapping / Reaming

EXERCISE 20 Material: Aluminium

Page 76: CNC Milling

76

FAGOR SIMULATOR

FAGOR SIMULATOR

by Endika Gandarias

Page 77: CNC Milling

77

FAGOR SIMULATOR

by Endika Gandarias

CNC FAGOR 8060/65 SIMULATOR www.fagorautomation.com/download/

CHANGE LANGUAGE: https://www.youtube.com/watch?v=rFTlmvQJdk8

VIDEO

VIDEO VIDEO

Page 78: CNC Milling

78

GLOSSARY

GLOSSARY

by Endika Gandarias

Page 79: CNC Milling

79

GLOSSARY

by Endika Gandarias

ENGLISH SPANISH BASQUE

Accuracy Exactitud Zehaztasun Adaptative control Control adaptativo Kontrol moldagarri Blade Hélice Helize Burr Rebaba Bizar Cam Leva Espeka Carousel Carrusel Karrusel Chamfer Chaflán Alaka Clamp Brida Brida Climb cutting Corte en concordancia Konkordantzia ebaketa Clockwise Sentido horario Erlojuaren norantza Closed loop Lazo cerrado Lotura itxia Conventional cutting Corte en contraposición Kontraposizio ebaketa Coolant Regfrigerante Hozkarri Counterclockwise Sentido anti-horario Erlojuaren aurkako norantza Dead band Banda muerta Tarte hila Deep hole drilling Taladrado profundo Zulaketa sakona Downtime Tiempo de inactividad Aktibitate gabeko denbora Drill Broca Barauts Drilling Taladrado Zulaketa Driving system Sistema de regulación Erregulazio sistema Dwell time Tiempo de espera Itxaron denbora Edge finder Centrador Zentratzaile EDM Electroerosión Elektrohigadura Encoder Encoder Encoder End mill Fresa plana Fresa planua Engraving Grabado Grabaketa Face milling Planeado Planeaketa Feed Avance por minuto Aitzinamendua minutuko

Page 80: CNC Milling

80

GLOSSARY

by Endika Gandarias

ENGLISH SPANISH BASQUE

Finishing Acabado Akabera Fixed canned cycle Ciclo fijo Ziklo fijoa Glass scale Regla óptica Erregela optiko Grinding Rectificado Artezketa Grooving Ranurado Artekaketa Homing Búsqueda de cero máquina Zero makina bilatzea HSS Acero rápido Altzairu laster Investment Inversión Inbertsio Left-hand tool Herramienta a izquierdas Ezkerretarako erraminta Load Cargar Kargatu Loop Lazo Lotura Machine zero Cero máquina Zero makina bilatzea Machining centre Centro de mecanizado Mekanizatu zentru Modal Modal Modal Noise Ruido Zarata Offset Corrector Zuzentzaile Offset table Tabla de correctores Taula zuzentzaile Open loop Lazo abierto Lotura irekia Part zero Cero pieza Zero pieza Peck Picada Ziztada Pecking Punteado Punteaketa Pin Pasador Ziri Pocket Cajera Kajera Power failure Fallo de alimentación eléctrica Elikadura elektriko gabezia Profiling Perfilado / Contorneado Perfilaketa / Kontorneaketa Punched tape Tarjeta perforada Tarjeta perforatu Rapid traverse Recorrido rápido Ibilbide azkar Reamer Escariador Otxabu

Page 81: CNC Milling

81

GLOSSARY

by Endika Gandarias

ENGLISH SPANISH BASQUE

Reaming Escariado Otxabuketa Reference system Sistema de referencias Erreferentzi sistema Referencing block Bloque de referencia Erreferentzi bloke Repeatability Repetibilidad Errepikagarritasun Rigth-hand tool Herramienta a derechas Eskuinetarako erraminta Roughing Desbaste Arbastaketa Round corner Arista matada Ertz hila Setter gauge Calibre de alturas Altuera kalibratzailea Set-up Puesta a punto Prestaketa Skip Salto Jauzi Slot Ranura Arteka Speed Velocidad de giro Biraketa abiadura Spot drill Broca de puntear Punteatzaile Square corner Arista viva Ertz bizia Stationary chuck Parte no movil Atal ez higikor Stylus Estilete Estilete Tap Macho de roscar Hariztatze ardatz Tapping Roscado (con macho de roscar) Hariztaketa (hariztatze ardatzarekin) Target position Posición objetivo Jomuga posizio Thermal growth Alargamiento térmico Luzapen termikoa Threading Roscado Hariztaketa Tip Punta Punta Tool magazine Cambiador de herramienta Erraminta aldatzaile Tool presetting machine Máquina de pre-reglaje Doikuntza makina Touch probe Palpador Haztagailu Track Pista Pista Trueness Veracidad Egiatasun Unnoticeable Imperceptible Hauteman ezin

Page 82: CNC Milling

82

GLOSSARY

by Endika Gandarias

ENGLISH SPANISH BASQUE

Vise Mordaza Baraila Wear Desgaste Higadura Withdrawal planes Planos de salida Irteera planu Workholding Sistema de amarre de pieza Pieza lotze sistema