112
Matrices & Vectors

Advance control theory

Embed Size (px)

Citation preview

Page 1: Advance control theory

Matrices &

Vectors

Page 2: Advance control theory
Page 3: Advance control theory
Page 4: Advance control theory
Page 5: Advance control theory

Symmetric matrix

A symmetric matrix is  a square matrix that  is equal  to  its transpose.  Formally,  matrix A is symmetric if

The following 3×3 matrix is symmetric:

Page 6: Advance control theory

Skew Symmetric Matrix 

A skew symmetric (or antisymmetric or antimetric) matrix is  a square  matrix whose transpose is  also  its negative; that is, it satisfies the condition -A = AT.

For example, the following matrix is skew-symmetric:

Page 7: Advance control theory

Complex Conjugate 

Page 8: Advance control theory

Hermitian matrix    A Hermitian matrix (or self-adjoint matrix) is a square matrix with complex entries that is equal to its own conjugate transpose

        matrix A is Hermitian if it satisfies the relation

Page 9: Advance control theory

Skew-Hermitian matrixIn linear  algebra,  a square  matrix  with  complex entries  is  said  to  be Skew-Hermitian or  antihermitian  if  its conjugate  transpose is  equal to its negative.

matrix A is  skew-Hermitian  if  it  satisfies  the relation

 

Page 10: Advance control theory
Page 11: Advance control theory
Page 12: Advance control theory
Page 13: Advance control theory

Rank of a Matrix   The maximum number of linearly independent rows in a matrix A is called the row rank of A, and the maximum number of linearly independent columns in A is called the column rank of A.

    Rank (A m*n) <=min(m,n)                                                                      r3=2r1-r2                                   r4=-3r1+2r2

Page 14: Advance control theory

Find Rank of the Matrix

1.

2. 

Page 15: Advance control theory

Solution 1.

 2. 

Page 16: Advance control theory

Trace of a Matrix can be defined as the sum of the main diagonal elements.

Page 17: Advance control theory

Eigen Values&

Eigen Vectors

Page 18: Advance control theory

• In linear  algebra,  an eigenvector or characteristic vector of  a square  matrix is  a vector that  does  not change  its  direction  under  the  associated linear transformation.

    In other words—if v is a vector that is not zero, then it  is  an  eigenvector  of  a  square  matrix A if Av is  a scalar multiple of v.  This  condition  could be written as the equation:

                                    Av = λv 

Page 19: Advance control theory

• where λ is  a scalar known  as the eigenvalue or characteristic value associated with  the  eigenvector v.  Geometrically,  an eigenvector  corresponding  to  a  real,  nonzero eigenvalue points in a direction that  is stretched by  the  transformation and  the eigenvalue  is  the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.

Page 20: Advance control theory

        In  this shear  mapping the  red  arrow  changes direction  but  the  blue  arrow  does  not.  The  blue arrow  is  an  eigenvector  of  this  shear  mapping because  it  doesn't  change  direction,  and  since  its length is unchanged, its eigenvalue is 1

Page 21: Advance control theory
Page 22: Advance control theory
Page 23: Advance control theory

Determine i)

ii) 

iii)

Page 24: Advance control theory
Page 25: Advance control theory
Page 26: Advance control theory
Page 27: Advance control theory

Vibration Analysis

                   The eigenvalues are used to determine the natural frequencies (or eigenfrequencies)  of  vibration,  and  the  eigenvectors  determine  the shapes  of  these  vibrational  modes. 

Practical Applications in Structural Engineering

Most structures  from buildings  to  bridges  have  a  natural  frequency of vibration.  It  means  all  these  structures  have  their  own  system  of eigenvibrations  and  eigenfrequencies.  Now  external  forces  like  wind and  earthquake may  cause  these  structures  to  undergo  vibrations.  In case  the  frequency  of  these  vibrations  becomes  equal  to  the  natural frequencies of these structures, vibrations with large amplitudes are set up. It is a phenomena called Resonance. This can lead to the collapse of the  structure  by  a  process  called  aeroelastic flutter.  One  very  famous example  of  the  collapse  of  a  structure  due  to  this  phenomena  is  the Tacoma Narrows Bridge (1940) in which the wind provided  an external periodic  frequency  that  matched  the  bridge's  natural  structural frequency. So vibration analysis of these structures are done at the time of their design using eigenvalues and eigenvectors.

Page 28: Advance control theory

Tacoma Narrows Bridge (1940)

Page 29: Advance control theory

Mode Shape of a Tuning Fork at Eigenfrequency 

440.09 Hz

Page 30: Advance control theory

• In image  processing,  processed images  of  faces  can  be  seen  as vectors  whose  components  are the brightnesses of  each pixel. The  dimension  of  this vector  space  is  the  number  of pixels.  The  eigenvectors  of the covariance  matrix associated with  a  large  set  of  normalized pictures  of  faces  are called eigenfaces;  this  is  an example of principal components analysis.  In  the facial recognition branch  of  biometrics, eigenfaces  provide  a  means  of applying data  compression to faces for identification purposes. 

Page 31: Advance control theory

        Research  related  to  Eigen  vision  systems determining  hand  gestures  has  also  been made. 

eigenvoices represent the general direction of variability  in  human  pronunciations  of  a particular  utterance,  such  as  a  word  in  a language.  Based  on  a  linear  combination  of such eigenvoices, a new voice pronunciation of the word  can  be  constructed.  These  concepts have  been  found  useful  in  automatic  speech recognition systems for speaker adaptation.

Page 32: Advance control theory

• Eigenvalues can also be used to test for cracks or deformities in structural components used for construction. When a beam is struck, its natural frequencies (eigenvalues) can be heard or measured. If the beam "rings," then it is not flawed. A dull sound will result from a flawed beam because the flaw causes the eigenvalues to change. Sensitive machines can be used to "see" and "hear" eigenvalues more precisely.

• The eigenvalues can also be used to determine if a structure has deformed under the application of a particular force. Eigenvalues for the structure are measured before and after the application of force. If a change in the eigenvalues is observed, it means the structure has undergone deformation.

Page 33: Advance control theory

• Eigenvalues  were  used  by  Claude  Shannon  to  determine  the  theoretical limit  to  how  much  information  can  be  transmitted  through  a communication medium like your telephone line or through the air. This is done  by  calculating  the  eigenvectors  and  eigenvalues  of  the communication channel (expressed a matrix), and then waterfilling on the eigenvalues.

The eigenvalues are then, in essence, the gains of the fundamental modes of  the  channel,  which  themselves  are  captured  by  the  eigenvectors.

Google uses  the eigenvector corresponding  to  the maximal eigenvalue of the  Google  matrix  to  determine  the  rank  of  a  page  for  search.

Eigenvectors  are  fundamental  to  principal  components  analysis  which  is commonly used for dimensionality reduction in face recognition and other machine  learning  applications.

Eigenvectors can also be used for latent semantic analysis, a NLP technique for extracting topics and concepts from text documents.

Page 34: Advance control theory

Contents• Need of State Variable Approach• Concept of State, State Variable, State Vector,

State Space• State Variable Modeling• Transformation of State Variable • Conversion of State Variable Models to Transfer

functions• Cayley-Hamilton Theorem

Page 35: Advance control theory

     Need of State variable Approach

Earliest methods modeled the physical systems in the form of transfer function. It suffered from certain drawbacks:-

1) defined only under zero initial conditions.

2) Applicable only to LTI systems & are generally restricted to SISO systems.

3) reveals system o/p only for a given i/p & gives no information regarding the internal states of the systems.

4) Classical design methods based on transfer function model are essentially trial & error procedures which are difficult to visualize & organize in complex systems.

we needed a more general mathematical representation of a system which gives information about the state of the system variables. State Variable Approach(time domain approach) is a very powerful technique for design & analysis of linear & non-linear ,time invariant & time varying MIMO system.

Page 36: Advance control theory

Concept of state ,state variable, state space    A mathematical abstraction to represent the dynamics of a system

utilizes three types of variables called the 1) i/p 2) o/p 3) state variables. Consider the mechanical system shown in figure below wherein

mass M is acted upon by force F(t). fig (a):-

Page 37: Advance control theory

)()(

)(1)(

tvdttdx

tFMdt

tdv

)()()()()(

)()(.

2

1

tFtutxtvtx

txtx

Page 38: Advance control theory

State Equation can be written as:

             Output Equation y(t ) is given as :

    

uMx

xxx

/10

0010

2

1

2

1

2

101)(xx

ty

Page 39: Advance control theory

From these relations we get:- v(t) = =

x(t) = = x(to) + [t-to]v(to) + “The state of a dynamical system is a minimum set of

variables(known as state variable) such that knowledge of these variables at t = to with the knowledge of the inputs for t ≥ to completely determine the behavior of the system for t ≥ to”.

M1

t

to

t to

dttFM

dttFM

dttF )(1)(1)(

t

to

dttFtov )()(

t to t

to

dttvdttvdttv )()()(

t

to

t

to

dttFd )(

Page 40: Advance control theory

The different variables may be presented by i/p vector u(t), o/p vector y(t) & state vector x(t).

The state space representation may be visualized in block diagram form as shown below:

)(..)()(

)(,

)(..)()(

)(,

)(..)()(

)(2

1

2

1

2

1

tx

txtx

tx

ty

tyty

ty

tu

tutu

tu

npm

Controlled system(State variables(n))

I/p(u)m variable

o/p (Y)P Variables

   State (x)n Variables

Page 41: Advance control theory

• For a general system of fig. above the state variable representation can be arranged in the form of n first-order differential equations(state equations):

• Integration of equation gives:-

   thus the n state variables & hence the state of the system can be determined uniquely at any t > to if each state variable is known at t = to and all the m control forces are known throughout the interval to to t.

),..,,,..,,(

.

.

),..,,,,..,,(

2121

2121111

mnnnn

mn

uuuxxxfxdtdx

uuuxxxfxdtdx

ni

dtuuuxxxftoxtxt

tomniii

....,3,2,1

),...,,,...,()()( 2121

Page 42: Advance control theory

The above ‘n’ differential equations may be written in vector notation as

where x is n x 1 state vector, u is m x 1 is a input vector &

f(.) =

is n x 1 function vector.

))(),(()( tutxftx

(.)..(.)(.)2

1

nf

ff

Page 43: Advance control theory

State The state of a dynamic system is the smallest set of variables (state variables) such that the knowledge of these variables at t=t0, together with the knowledge of the input for t>=to, completely determine the behaviour of the system for any time t>=to

State Variables

In mechanical systems,  the  position  coordinates  and velocities of mechanical  parts  are  typical  state  variables;  knowing  these,  it  is possible to determine the future state of the objects in the system.In thermodynamics, a state variable is also called a state function. Examples  include temperature, pressure, volume, internal energy, enthalpy,  and entropy.  In  contrast heat and work are  not state functions, but process functions.In electronic circuits,  the voltages of  the  nodes  and the currents through  components  in  the  circuit  are  usually  the state variables.

Page 44: Advance control theory

    In ecosystem models, population sizes (or concentrations) of plants, animals and resources (nutrients, organic material) are typical state variables.

In electric circuits, the number of state variables is often,

though not always, the same as the number of energy storage elements in the circuit such as capacitors and inductors.

State Vector If n state variables x1,x2,…..xn are needed to completely describe the behaviour of a given system, then these n state variables can be considered the n components of a vector x. Such a vector is called a state vector.

Page 45: Advance control theory

At any time to the state vector x determines a point (called the state point) in an n-dimentional space (x1 axis, x2 axis……..xn axis) called state space.

As the time progresses and the system state changes, a set of points will be defined. This set of points, locus of the above tip of the state vector as time progresses, is called the state trajectory of the system.

The o/p y(t) in general form can be expressed as:-

y(t) = g(x(t),u(t))

The state equations and output equations constitute the state model of any system.

y(t) = g(x(t),u(t))

))(),(()( tutxftx

Page 46: Advance control theory

State Variable Modeling State model of a linear time invariant system is a special case

of the general time invariant model. Derivative of each state variable now becomes a linear combination of system states & outputs, i.e.

mmnn ubububxaxaxax 121211112121111

mmnn ubububxaxaxax 22222121222221212

mnmnnnnnnnn ubububxaxaxax 22112211

.

.

Written as:-

)()()( tButAxtx

Page 47: Advance control theory

Where x(t) is a nx1 state vector, u(t) is mx1 input vector . A is n x n system matrix defined by:-

                    A  =

B is n x m input matrix defined by:-

                                                      B   =     

nnnn

n

n

aaa

aaaaaa

.....

.....

.....

21

.

.

.22221

11211

nmnn

m

m

bbb

bbbbbb

.....

.....

.....

21

.

.22221

11211

Page 48: Advance control theory

• Similarly o/p variables at time t are linear combinations of values of input and state variables at time t i,e,:

     

where coefficients cij & dij are constant. In matrix form : y(t) = C x(t) + D u(t)

where y(t) is p x 1 o/p vector. C is p x n o/p matrix defined by:                                               

C =                         

D is transmission matrix .

        

             

                       

)(...)()(....)()(..

)(...)()(....)()(

111

111111111

tudtudtxctxcty

tudtudtxctxcty

mpmpnpnpp

mmnn

pnnp

n

n

ccc

cccccc

.

............

21

22221

11211

Page 49: Advance control theory

                                                                                                           

     For the system shown in figure (a) let us define:

pmpp

m

m

ddd

dddddd

D

........

....

....

21

22221

11211

The state model of linear time invariant systems is thus given by the following equations

)()()()()()(

.

tdutcxtytButAxtx

Page 50: Advance control theory

• Use of DC motor in speed control systems:-

• Separately excited DC motor drives the load. A DC tachometer is attached to the motor shaft . Speed signal is feedback & error signal is used to control the armature voltage of motor.

• To drive the plant model we have the following diagram:-

Page 51: Advance control theory

)()(

)()()(

tiKtT

tBdttdjtT

aTM

M

The voltage loop equation is given by:-

The torque balance equation is given by:-

)()()()( tetiRdttdiLtu baa

aa

Page 52: Advance control theory

• The counter electromotive force eb which is proportional to ø & ω is given as:-

where kb is back emf cont. (volts /rad/sec) so we can write:-     

                                                                are the state variable & o/p variable is y(t) = ω (t). Then plant model

can be written as:-

)()( tkte bb

)()(&)()(

)()()(

)(1)()()(

21 titxttx

tjBti

jk

dttd

tuL

tLkti

LR

dttdi

a

aT

aa

ba

a

aa

)()(

)(/10

)()(

)()(

1

2

1

2

1

txty

tuLtx

tx

LR

LK

jk

jB

txtx

a

a

a

a

b

T

Page 53: Advance control theory

Transformation of state variable  

2) The change of variables is represented by a linear transformation:- x = P ----------(1)

Transformation matrix p is a nonsingular constant matrix of n x n order. The original dynamics are presented by:-

Substitution of eq.(1) gives:-

1) The state variables used in the original formulation of the dynamics of a system ate not as convenient as another set of state variables.

x

)()()()();()()(

tdutcxtyxtxtbutAxtx o

o

ddcPcbPbAPPA

withtudtxcty

toxPtoxtubtxAtx

ortdutxcPty

tbutxAPtxP

,,,

)()()(

)()(),()()(

)()()(

)()()(

11

1.

.

Page 54: Advance control theory

For the speed control system we have angular velocity ω(t) & armature current as state variable. S o

We define new state variables:-

With transformation

We can write:-

)(tia

aixx 21 ,

2

1

21

1

2

1

1101

xx

xxx

xx

x

xpx

1101

P

)()(

)()(.

txcty

tuBxAtx

Page 55: Advance control theory

 Given below:-

               

)()()();()(

011101

01

100

100

1101

111110

1101

10111

1101

21211

1

1

toxtoxtoxtoxtox

cPc

bpb

APPA

Page 56: Advance control theory

Transfer Function form:

Need of conversion of transfer function form into state space form:

1. Often the system dynamics is determined using standard test signals like a step, impulse or sinusoidal signal. A transfer function can be easily fitted to the determined experimental data in best possible manner. In state variable we have so many design techniques available for system. Hence in order to apply these techniques T.F. must be realized into state variable model.

Page 57: Advance control theory

2. For transient response simulation frequency domain design methods are not helpful. For that It is must to invert design from s-domain to t-domain but there is not much software for this. Hence it is better to convert transfer function to state variable model and numerically integrating the resulting differential equations rather than attempting to compute the inverse laplace transform by numerical methods.

Note: There are certain limitations in classical design techniques which can be overcome by time domain technique or state variable approach. (discussed earlier).

Page 58: Advance control theory

General State Space form of Physical system      BuAxx

DuCxy

xx

y

uA

B

C

D

= state vector

= derivative of the state vector with respect to time

= output vector

= input or control vector

= system matrix

= input matrix

= output matrix

= feedforward matrix

State equation

output equation

Page 59: Advance control theory

Deriving State Space Model from Transfer Function Model:

The process of converting transfer function to state space form is NOT unique. There are various “realizations” possible.

All realizations are “equivalent” (i.e. properties do not change). However, one representation may have some advantages over others for a particular task.

Possible representations: 1. First companion form 2. Second companion form 3. Jordan canonical form

Page 60: Advance control theory

First Companion Form(SISO System):If LTI SISO system is described by transfer function of the form;

Decomposition of transfer function:

.                                                                                        

01223

3

012

2

)()(

)()(

asasasabsbsb

sRsC

sUsY

Page 61: Advance control theory

sXbsbsbsCsY 1012

2

101

121

2

2 xbdtdxb

dtxdbty

)2........(..........322110)( xbxbxbty

sXasasasasRsU 1012

23

3

)()()()(10

112

12

231

3

3 txadt

tdxadt

txdadt

txdatu

43322110)( xaxaxaxatu

I.

II.

)1..(..........3

)(3322311304 atuxaaxaaxaax

21 xx 32 xx 1)( xtx 43 xx &Select state variables like :

Page 62: Advance control theory

21 xx 32 xx 1)( xtx

from equation (1) & (2) and state equation, block diagram realization in first companion form of TF will be

43 xx

Page 63: Advance control theory

Again from equation (1) & (2) complete state model will be ;

)3).....((

3/100

3

2

1

210

100010

3

1

3

2

1

,

)(

3

13

3

22

3

11

3

043

tuax

x

x

aaaax

x

x

or

tua

xa

ax

a

ax

a

axx

 A  B

21 xx 32 xx

Page 64: Advance control theory

Equation (3)&(4) combining together gives the complete realization of the given transfer function.

Matrix A has coefficients of the denominator of the TF preceded by minus sign in its bottom row and rest of the matrix is zero except for the superdiagonol terms which are all unity.

In matrix theory matrix with this structure is said to be in companion form therefore this realization is called first companion form of realizing a TF.

)4.......(

3

2

1

210)(

,

322110)(

x

x

x

bbbty

or

xbxbxbty

  C

Page 65: Advance control theory

Determine the First Companion form

)(

)(

2024293

3)(

sU

sY

sss

ssG

Page 66: Advance control theory

Ans

3

2

1

3

2

1

3

2

1

]310[

100

92420100010

xxx

y

uxxx

xxx

Page 67: Advance control theory

Second Companion Form

• In this form the coefficient appear in a column of the A matrix.

• This can be obtain by writing equation (1) as

)()........110()()........11( sUnsnsnsYnsnsn

or

0)](0)([..........)](1)(1[1)](0)([ sUsYnsUsYsnsUsYsn

• On dividing by and solving for Y(s), we obtainsn

)]()([1.......)](1)(1[1)(0)( sYnsUnsnsYsUssUsY

Note that is the transfer function of a chain of n integrators.sn1

nsnsnnsnsn

sUsY

......11

.....110

)()(

Page 68: Advance control theory

• The signal passes through n integrators ; the signal

passes through n-1 integrators and so forth to complete the realization of

equation

βn βn-1 βn-2 β1 β0

αnαn-1 αn-2 α1

u

+

-

x1 x2 xn-1 xn y

Realization of equation (9)

ynun ynun 11

)]()([1.......)](1)(1[1)(0)( sYnsUnsnsYsUssUsY

Page 69: Advance control theory

• .• To write the differential equation for the realization identify the output of each

integrator with a state variable starting at the left and proceeding to the right

ẋn = xn-1 -α1 ( xn + β0 u ) + β1 uẋn-1 = xn-2 - α2 ( xn + β0 u ) + β2 u        :

ẋ2 = x1 - αn-1 ( xn + β0 u ) + βn-1 u

ẋ1 = - αn ( xn + β0 u ) + βn u

and the output equation is y = xn + β0 u

• The state and output equation organized in vector matrix form are given below

ẋ (t) = A x(t) + B u(t)

y (t) = C x(t) + D u(t)(10)

Page 70: Advance control theory

0 0 … 0 -αn

1 0 … 0 -αn-1

0 1 … 0 -αn-2

: : : : :0 0 0 1 -α1

A = ; B =

βn – αn β0

βn-1 – αn-1 β0

βn -2 – αn-2 β0

:- β1 – α1 β0

C = [ 0 0 … 0 1 ] ;

D = β0

A , B , C or D matrix of second companion form correspond ot the transpose of

the A , B , C or D respectively to the first one.

• This state-space realization is also called observable canonical form because the

resulting model is guaranteed to be observable (i.e., because the output exits from

a chain of integrators, every state has an effect on the output).

• These form also play an important role in pole placement design through state

feedback.

Page 71: Advance control theory

Determine the Second Companion form

)(

)(

2024293

3)(

sU

sY

sss

ssG

Page 72: Advance control theory

Ans

3

3

2

1

3

2

1

013

91024012000

xy

uxxx

xxx

Page 73: Advance control theory

Jordan Canonical Form• In this form the poles of the transfer function form a string along the main diagonal of the

matrix.

nsnnsnnsnsn

sG

......1......1

10)(

• By long division , G(s) can be written as

)('0.....11

'.....1'1

0)( sGnsnsn

nsnsG

or

nsrn

sr

sr

sUsYsG

.....

22

11

0)()()(

• The coefficient (i = 1,2,…….,n ) are the residue of the transfer function G’(s)

at the poles at s = ( i = 1,2,…..,n).

ri i

(11)

Page 74: Advance control theory

• The transfer function consists of a direct path with gain , and first order transfer

function in parallel.

0

λ1

λ2

λn

β0

 r1 

 r2

 rn 

+

u y

Realization of G(s) in equation (11)

x1

x2

xn

nsrn

sr

sr

sUsYsG

.....

22

11

0)()()(

Page 75: Advance control theory

• Identifying the outputs of integrator with the state variables results in following state

and output equations:

λ1 0 … 00 λ2 … 00 0 … 0: : : :0 0 0 λn

ẋ (t) = x(t) + B u(t)

y (t) = C x(t) + D u(t)

ʌ    =    ;

111:1

B =

C = [ r1 r2 ….. rn ] ; D = β0

• It is observed that for this canonical state variable model , the matrix A is a diagonal

with the poles of G(s) as its diagonal elements.

• The unique decoupled nature of the canonical model is obvious from eqn (12); the

n first order differential equation are independent of each other.

ẋ (t) = λi xi(t) + u(t) ; i = 1 , 2 , 3 …….,n

(12)

(13)

Page 76: Advance control theory

• Assume that G(s) has m distinct poles at s = λ1 , λ2 , ……… , λm of multiplicity

n1 , n2 , ……… , nm respectively: s = n1 + n2 + ……… + nm i.e. G(s) is of the

form

)(.........)2( 2)1( 1

'.........2'2

1'1

0)(

ms nms ns nnsnsn

sG

• The partial fraction expansion of G(s) is of the form

)()()(.......)(10)(

sUsYsH msHsG

where

)()(

)(.........

)( 12

)(1)(

sUsY i

is

rini

is niri

is nirisH i

• The first term in Hi(s) can be synthesized as a chain of ni identical, first order

systems , each having transfer function 1/(s-λi).

• The second order term can be synthesized by a chain of (ni-1) first order system ,

and so forth.

(14)

(15)

Page 77: Advance control theory

• The entire Hi(s) can be synthesized by the system having block diagram shown in

figure.

rin1 ri2 ri1

λi λi λi

u +

+

yi

xini xi2 xi1

Realization of Hi(s) in equation (15)

• Now to get state variable we identify the output of each integrator with a state variable

starting at the right and proceeding to the left.

Page 78: Advance control theory

• The corresponding differential equation are

ẋi1 = λi xi1 + xi2

ẋi2 = λi xi2 + xi3

:uxiniixini

.

And the output is given by

xrxrxr ii ininiiiiyi 2211 .........

• If the state vector for the subsystem is defined by

rinixixiT

xi 21

• Then equation can be written in standard form

ẋi = ʌi xi + Bi uyi = Ci xi

where

i

i

i

i

0001000

010001

1

000

Bi; ;

rrrC ini

iii21

(16a)

(16b)

(17)

Page 79: Advance control theory

Note that the matrix has two diagonals- the principle diagonal has the corresponding characteristic root (pole) and the super diagonal has all 1’s.

i

• In matrix theory , a matrix having this structure is said to be in Jordan form. That’s

why this realization is identified as Jordan Canonical Form.

• The state vector of the overall system consists of the concatenation of state vector

of each of the Jordan blocks:

xm

xx

x21

• Since there is no coupling between any of the subsystem , the matrix of the

overall system is ‘block diagonal’: where each of the sub matrices is in the

Jordan canonical form.

i

Page 80: Advance control theory

ẋ1=ʌ1x1+B1uy1=C1x1

ẋ1=ʌ2x2+B2uy2=C2x2

ẋm=ʌmxm+Bmuym=Cmxm

0

y1

y2

ym

yu

m

00

020001

;

BM

BB

B21

C = [ C1 C2 … Cm] ; D = β0

Subsystems in Jordan canonical form combined into overall system

Page 81: Advance control theory

Determine the Jordan canonical form

)(

)(

2024293

3)(

sU

sY

sss

ssG

9/2;1

9/23/1;10

5;20

12

22

11

21

5

9/2

2

9/2

2)2(

3/1)(

)5(2)2(

3)(

cb

cb

ssssG

ss

ssG

Page 82: Advance control theory

3

2

1

.

3

.

2

.

1

]9/29/23/1[

110

500020012

XXX

y

u

X

X

X

Page 83: Advance control theory

 CONTROLLABILITY AND

OBSERVABILITY

Page 84: Advance control theory

INTRODUCTION

• Controllability  is  an  important    property  of  a control  system,and  the  controllability  property plays  crucial role in many control problems,such as  stabilization  of  unstable  systems  by  feedback or optimal control.

• The conditions of controllability and observability may govern the existence of a complete solution to the control system design problem.

Page 85: Advance control theory

DEFINITIONS

•  Controllability In order to be able to whatever     we want with the given dynamic system under control input,the system must be controllable. 

• Observability The method of determining  the   state  of  a  system  by  observing  its  output concerns  observability.In  order  to  see  what  is going  on  inside  the  system  under observation,the system must be observable.

Page 86: Advance control theory

CONTROLLABILITY   Controllability is  in relation to transfer of a system   from one state to another by appropriate input   controls in a finite time.      Consider the continous linear time-invariant   system.     ẋ(t)=Ax(t)+Bu(t)                   state equation(a)     y(t)=Cx(t)+Du(t)                   output equation(b)    

      

       

Page 87: Advance control theory

 where,          A is the n×n “state matrix”          B is the n×1 “input matrix”          C is the 1×n “output matrix”          D is the 1×1 “feed forward matrix”          x(t) is the n×1 “state vector”          y(t) is the “output  variables”          u(t) is the “input variables”          

Page 88: Advance control theory

•   For the linear system given by equation (a),if there exists an input u[0,t1] which transfers the initial state x(0)=x0 to the state x¹ in a finite time t1,the state x0 is said to be controllable.If all initial states are controllable,the system is said to be completely controllable,or simply controllable.Otherwise , the system is said to be uncontrollable.

Page 89: Advance control theory

• The solution of equation (a) is

   If the system is controllable , there exists an input u[0,t1] such that

        From  this  equation  we  observe  that  complete controllability of a system depends on A and B and  is independent of output matrix C. The controllability of the  system  is  frequently  referred  to  as  the controllability of the pair [A,B].

Page 90: Advance control theory

CONTROLLABILITY TEST

Sometimes controllability control is not possibleand this can verified by using controllability testmatrix. 

 The n×n controllability matrix is given by         U=[B  AB  A2B.....An-1B]                         This test allows the controllability of a system to be easily checked.                         

Page 91: Advance control theory

• The  matrix  U  is  known  as  controllability  test matrix.

• The  controllability  condition  of  a  system depends  on  the  coefficient  matrices  A  and  B, and  it  is  said  that  the  pair  A,B  is  controllable indicating that the rank of the test matrix is n.

• However  if  controllability matrix U  is  n  x  n  i.e. square  matrix,  then  the  condition  for  state controllability  is  I  U  I  ≠  0  i.e.  matrix  be  non singular. 

Page 92: Advance control theory

Example 1 - Verify whether the following system is controllable :• ẋ1              -2      0      x1          1

               =                  +                      u

     ẋ2                0     -1       x2         1 Soln.            1                        -2    0 B =              and A =           1                          0    -1

Page 93: Advance control theory

             -2    0    1        -2 AB=                         =              0    -1    1       -1       U= [B : AB ]= 1     -2                              1      -1       I U I= [1x (-1)- 1×(-2)]=1    The test matrix U is found to non-singular, hence the rank of the test matrix U is equal to n(n=2) and the system is controllable. 

Page 94: Advance control theory

OBSERVABILITY

• For the  linear system given by equation (a)  ,if the knowledge of the output y and the input u over  a  finite  time  (0,t1)  suffices  to  determine the  state  x(0)=  x0  the  state  x0  is  said  to  be observable.  If  all  initial  states are observable, the system is said to be completely observable ,or simply observable. Otherwise , the system is said to be unobservable.

Page 95: Advance control theory

• The output of the system is given by

    The output and the input can be measured and used so that following signal ŋ.

 

Multiplying by           and integrating from 0 to t1, gives

                                                                                      

Page 96: Advance control theory

• When  the  signal  ŋ(t)  is  available  over  a  time interval  [0,  t1]  and  the  system  is  observable then  the  initial  state  x0  can  be  uniquely determined from above equation.

• From  above  equation  we  see  that  complete observability of a system depends on A and C and  is  independent of B.  The observability of the  system  is  frequently  referred  to  as  the observability of the pair A,C.

Page 97: Advance control theory

OBSERVABILITY TEST

• The n×n observability matrix is given by             CV=        CA              .

   .            CAn-1

V= [ CT : AT :CT : ………. :(AT)n-1 CT] The above matrix is to have a rank of n

Page 98: Advance control theory

QUADRATIC FORMS AND

DEFINITE MATRICES

Page 99: Advance control theory

QUADRATIC FORM

Let A denote an n x n symmetric matrix with real entries and x denote an n x 1 column matrix.

Then, Q = x’Ax is said to be a quadratic form.

Page 100: Advance control theory

For example, 

consider the matrix   

1221

][A

Page 101: Advance control theory

Classification of the quadratic form Q

  a: positive definite: Q > 0 when x ≠ 0

  b: positive semi-definite:                                              Q ≥ 0 for all x  c: negative definite: 

  Q < 0 when x ≠ 0  d: negative semi-definite:                                               Q ≤ 0 for all x  e: indefinite:

 Q > 0 for some x and Q < 0 for some other x

Page 102: Advance control theory

Testing for Definiteness

Eigen values of A Nature of quadratic form Q

All λi > 0 positive definite

All λi ≥ 0  positive semi-definite

All λi < 0  negative definite

All λi ≤ 0  negative semi-definite

some λi ≥ 0 and some λi ≤ 0 

indefinite

Page 103: Advance control theory

Consider the state variable model:-

Taking the Laplace:

Where After manipulation we get:-

Or,

In case of zero initial conditions ,we get i/p, o/p relation by transfer function :-

Conversion of state variables to Transfer function

)()(

)()(.

txcty

tBuxAtx

0)( xtox

)()()()()()(

sdUscXsysbUsAXxssX o

)]([)()];([)()];([)( tyLsYtuLsUtxLsX

nxnmatrixIsbUxsXAsI o ),()()(

)(])([)()(

)()()()(11

11

sUdbAsIcxAsIcsY

sbUAsIxAsIsXo

o

Page 104: Advance control theory

Inverse of the matrix can be written as:-

So , transfer function is given by:-

For a general nth order matrix given as:-

dbAsIcsGsusy

1)()()()(

AsIAsIAsI

)()( 1

dAsIbAsIcsG

)()(

nnnn

n

n

aaa

aaaaaa

A

...........

...

...

21

22221

11211

Page 105: Advance control theory

• Matrix ISI-AI has the following matrix:-

     ISI-AI will be of following form:- 

     where       are the constants scalars.         This is known as characteristic polynomial of matrix A. it plays a vital role 

in the dynamic behavior of the system. The roots of this characteristics equation are called the  characteristics roots or eigen values of the matrix A.

i

nnn sssAsI ...)( 1

1

nnnn

n

n

asaa

aasaaaas

AsI

...........

...

...

)(

21

22221

11211

Page 106: Advance control theory

Cayley Hamilton Theorem

   A matrix satisfies its own characteristics equation.

0....11 IAA n

nn

Page 107: Advance control theory

Thank You

Page 108: Advance control theory
Page 109: Advance control theory

• An rectangular array of nm elements. n= rows, m=no. of columns. aij= (I,j)th element.

• Diagonal Matrix :- all elements are zero except diagonal elements.

nnnn

n

n

aaa

aaaaaa

A

...........

...

...

21

22221

11211

nna

aa

...00........0...00...0

22

11

Page 110: Advance control theory

• Unity Matrix :- A diagonal matrix whose all elements are unity.

• Transpose Matrix:- If row & column of a matrix A are interchanged then we get transposed matrix of A.

1...00....0...100...01

I

nmnm

n

n

T

aaa

aaaaaa

A

.......

...

...

21

22212

12111

Page 111: Advance control theory

• Determinant of a matrix:- defined only for square matrix. Represented as IAI or detA is a scalar valued function of A. found with the help of minors & cofactors.

a) Minors:- minor mij of any element aij is determinant of a matrix of order of (n-1)x(n-1) obtained from A removing row & column containing aij.

b) Cofactors:- cofactors cij of the element aij is defined by the equation:-

So determinant is given by:-

K = any arbitrary row.

ijji

ij mc )1(

n

jkjkjcaA

1

Page 112: Advance control theory

• Singular Matrix:- A matrix whose associated determinant is zero.• Non –singular Matrix:- A matrix whose associated determinant is

not equal to zero.• Adjoint Matrix:- found by replacing each element of a matrix A by

its cofactor & then transposing. adjA =

• Inverse Matrix:- inverse of a matrix is given by:- A-1 = adjA/ IAI also we have:- A A-1 = I = A-1A

   

ji

nnnn

n

n

c

ccc

cccccc

.......

...

...

21

22212

12111