30
Deep Unsupervised Learning using Nonequlibrium Thermodynamics Tran Quoc Hoan @k09ht haduonght.wordpress.com/ 14 December 2015, Paper Alert, Hasegawa lab., Tokyo The University of Tokyo Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli Proceedings of the 32 nd International Conference on Machine Learning, 2015

007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Embed Size (px)

Citation preview

Page 1: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Tran Quoc Hoan

@k09ht haduonght.wordpress.com/

14 December 2015, Paper Alert, Hasegawa lab., Tokyo

The University of Tokyo

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli Proceedings of the 32nd International Conference on Machine Learning, 2015

Page 2: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Abstract

Deep Unsupervised Learning using Nonequilibrium Thermodynamics 2

“…The essential idea, inspired by non-equilibrium statistical

physics, is to systematically and slowly destroy structure in

a data distribution through an iterative forward diffusion

process. We then learn a reverse diffusion process

that restores structure in data, yielding a highly flexible

and tractable generative model of the data…”

Page 3: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Outline

3

- The promise of deep unsupervised learning

• Motivation

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

- Diffusion processes and time reversal

• Physical intuition

- Derivation and experimental results

• Diffusion probabilistic model

Page 4: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Deep Unsupervised Learning

4

- Novel modalities

• Unknown features/labels

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

- Ex. disease part in medical image

• Expensive labels

• Unpredictable tasks / one shot learning

- Exploratory data analysis

https://www.ceessentials.net/article40.html

Page 5: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Physical Intuition

5

- Destroy structure in data

• Diffusion processes and time reversal

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

- Carefully characterize the destruction

- Learn how to reverse time

Page 6: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Observation 1: Diffusion Destroy Structure

6

Data distribution

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Uniform distribution

Uniform distributionData distribution

(Observation)Diffusion destroys structure

(Recover structure)Recover data distribution by starting from uniform

distribution and running dynamics backwards

Page 7: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Observation 2: Microscopic Diffusion

7

• Time reversible

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

https://www.youtube.com/watch?v=cDcprgWiQEY

• Brownian motion

• Position updates are small Gaussians (both forwards and backwards in time)

Page 8: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Diffusion-based Probabilistic Models

8

• Destroy all structure in data distribution using diffusion process

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

• Learn reversal of diffusion process

- Estimate function for mean and covariance of each step in the reverse diffusion process (Ex. binomial rate for binary data)

• Reverse diffusion process is the model of the data

Page 9: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Diffusion-based Probabilistic Models

9

• Algorithm

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

• Deep convolutional network: universal function approximatior

• Multiplying distributions: inputation, denoising, computing posteriors

Page 10: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Destroy by Diffusion Process

10

Datadistribution

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Forwarddiffusion

Noisedistribution

Temporal diffusion rate

Page 11: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Destroy by Gaussian Process

11

Datadistribution

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Forwarddiffusion

Noisedistribution

Decay towards origin

Add small noise

Page 12: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Reversal Gaussian Diffusion Process

12

Datadistribution

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Reversediffusion

Noisedistribution

Learned drift and covariance functions

Page 13: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Case Study: Swiss Roll

13Deep Unsupervised Learning using Nonequilibrium Thermodynamics

True model

Inference model

Page 14: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Training the reverse diffusion

14Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Model probability

Annealed importance sampling

Page 15: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Training the reverse diffusion

15Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Log likelihood

Jensen’s inequality

Page 16: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Training the reverse diffusion

16Deep Unsupervised Learning using Nonequilibrium Thermodynamics

…do some algebra…

Page 17: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Training the reverse diffusion

17Deep Unsupervised Learning using Nonequilibrium Thermodynamics

…for Gaussian diffusion process…

Training

unsupervised learning becomes regression problem

Page 18: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Training the reverse diffusion

18Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Setting the diffusion rate

• For Binomial diffusion (erase constant fraction of stimulus variance each step)

• For Gaussian diffusion

�t

�1

�t = (T � t+ 1)�1

= small constant (prevent over-fitting)

Training �t

Page 19: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Multiplying Distributions

19Deep Unsupervised Learning using Nonequilibrium Thermodynamics

• Required to compute posterior distribution - Missing data (inpainting)

- Corrupted data (denoising)

• Difficult and expensive using competing techniques

- Ex. VAE, GSNs, NADEs, most graphical models

Interested in

Acts as small perturbation to diffusion process

Page 20: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Multiplying Distributions

20Deep Unsupervised Learning using Nonequilibrium Thermodynamics

• Modified marginal distributions

Interested in

Acts as small perturbation to diffusion process

Page 21: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Multiplying Distributions

21Deep Unsupervised Learning using Nonequilibrium Thermodynamics

• Modified diffusion steps

Equilibrium condition

Normalized

Page 22: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Multiplying Distributions

22Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Reversal gaussian Diffusion Process

Interested in

Acts as small perturbation to diffusion process

Small perturbation affects only mean

Page 23: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Deep Network as Approximator for Images

23Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Page 24: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Multi-scale convolution

24Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Downsample

Convolve

Upsample

Sum

Page 25: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Applied to CIFAR-10

25Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Training data Samples from Generative Adversarial [Goodfellow

et al, 2014]

Samples from diffusion model

Page 26: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Applied to CIFAR-10

26Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Samples from DRAW

[Gregor et al, 2015]

Samples from Generative Adversarial [Goodfellow

et al, 2014]

Samples from diffusion model

Page 27: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Applied to Dead Leaves

27Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Training dataSamples from

[Theis et al, 2012]Log likelihood 1.24

bits/pixel

Samples from diffusion model

Log likelihood 1.49 bits/pixel

Page 28: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Applied to Inpainting

28Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Page 29: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

Table App.1

29Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Page 30: 007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics

References

30Deep Unsupervised Learning using Nonequilibrium Thermodynamics

h"p://jmlr.org/proceedings/papers/v37/sohl-dickstein15.html

h"p://videolectures.net/icml2015_sohl_dickstein_deep_unsupervised_learning/

h"p://www.inference.vc/icml-paper-unsupervised-learning-by-inverEng-diffusion-processes/