41
Unsymmetrical Bending Dr Alessandro Palmeri <[email protected]>

Unsymmetrical bending (2nd year)

Embed Size (px)

DESCRIPTION

Lecture slides on the calculation of the bending stress in case of unsymmetrical bending. The Mohr's circle is used to determine the principal second moments of area.

Citation preview

Page 1: Unsymmetrical bending (2nd year)

Unsymmetrical  Bending  

Dr  Alessandro  Palmeri  <[email protected]>  

Page 2: Unsymmetrical bending (2nd year)

Teaching  schedule  Week Lecture 1 Staff Lecture 2 Staff Tutorial Staff 1 Beam Shear Stresses 1 A P Beam Shear Stresses 2 A P --- --- 2 Shear centres A P Basic Concepts J E-R Shear Centre A P 3 Principle of Virtual

forces J E-R Indeterminate Structures J E-R Virtual Forces J E-R

4 The Compatibility Method

J E-R Examples J E-R Virtual Forces J E-R

5 Examples J E-R Moment Distribution -Basics

J E-R Comp. Method J E-R

6 The Hardy Cross Method

J E-R Fixed End Moments J E-R Comp. Method J E-R

7 Examples J E-R Non Sway Frames J E-R Mom. Dist J E-R 8 Column Stability 1 A P Sway Frames J E-R Mom. Dist J E-R 9 Column Stability 2 A P Unsymmetric Bending 1 A P Colum Stability A P 10 Unsymmetric Bending 2 A P Complex Stress/Strain A P Unsymmetric

Bending A P

11 Complex Stress/Strain A P Complex Stress/Strain A P Complex Stress/Strain

A P

Christmas Holiday

12 Revision 13 14 Exams 15 2  

Page 3: Unsymmetrical bending (2nd year)

Mo@va@ons  (1/2)  

•  Many  cross  sec@ons  used  for  structural  elements  (such  us  Z  sec@ons  or  angle  sec@ons)  do  not  have  any  axis  of  symmetry  

•  How  does  the  theory  developed  for  symmetrical  bending  can  be  extended  to  such  sec@ons?  

3  

Page 4: Unsymmetrical bending (2nd year)

Mo@va@ons  (2/2)  •  The  figure  shows  the  

finite  element  model  of  a  can@lever  beam  with  Z  cross  sec@on  subjected  to  its  own  weight,  in  which  the  gravita@onal  (ver@cal)  load  induces  lateral  sway  (horizontal),    –  exaggerated  for  clarity  

•  How  can  we  predict  this?  

4  

XY XZ

YZ

XY

X

Z

Y

Z

Page 5: Unsymmetrical bending (2nd year)

Learning  Outcomes  

•  When  we  have  completed  this  unit  (2  lectures  +  1  tutorial),  you  should  be  able  to:  

– Determine  the  principal  second  moments  of  area  AND  the  principal  direc@ons  of  area  for  unsymmetrical  beam’s  cross  sec@ons  

– Evaluate  the  normal  stress  σx  in  beams  subjected  to  unsymmetric  bending  

5  

Page 6: Unsymmetrical bending (2nd year)

Further  reading  

•  R  C  Hibbeler,  “Mechanics  of  Materials”,  8th  Ed,  Pren@ce  Hall  –  Chapter  6  on  “Bending”  

 •  T  H  G  Megson,  “Structural  and  Stress  

Analysis”,  2nd  Ed,  Elsevier  –  Chapter  9  on  “Bending  of  Beams”  (eBook)  

6  

Page 7: Unsymmetrical bending (2nd year)

Symmetrical  Bending  (1/4)  •  Our  analysis  of  beams  in  bending  has  been  restricted  so  far  

(part  A)  to  the  case  of  cross  sec@ons  having  at  least  one  axis  of  symmetry,  assuming  that  the  bending  moment  is  ac@ng  either  about  this  axis  of  symmetry  (a),  or  about  the  orthogonal  axis  (b)  

7  

(a)   xz

yaxis of symmetry

beam

’s axis

My

G

(right hand)

σ x > 0

σ x < 0

tensilestress

compressivestress

(b)  

xz

yaxis of symmetry

beam

’s axis Mz

G

σ x > 0σ x < 0

tensilestress

compressivestress

Page 8: Unsymmetrical bending (2nd year)

Symmetrical  Bending  (2/4)  

8  

xz

yaxis of symmetry

beam

’s axis Mz

My

G

Right-­‐Hand  Rule  

 If  the  thumb  point  to  the  

posi0ve  direc0on  of  the  axis,  

then  the  curling  of  the  other  

fingers  give  the  posi0ve  

direc0on  of  the  bending  

Noteworthy:  Some0mes  a  double-­‐headed  arrow  is  used  to  represent  a  

moment  (as  opposite  to  a  single-­‐headed  arrow  used  for  a  force)  

 

Page 9: Unsymmetrical bending (2nd year)

Symmetrical  Bending  (3/4)  

9  

xz

yaxis of symmetry

beam

’s axis

My

G

(right hand)

σ x > 0

σ x < 0

tensilestress

compressivestress

xz

yaxis of symmetry

beam

’s axis Mz

G

σ x > 0σ x < 0

tensilestress

compressivestress

⬇  A  posi@ve  bending  moment  My>0,  induces  tensile  stress  σx>0  in  the  boiom  fibres  of  the  cross  sec@on  

A  posi@ve  bending  moment  Mz>0,  induces  tensile  stress  σx>0  in  the  right  fibres  of  the  cross  sec@on  (looking  at  it  from  the  posi@ve  direc@on  of  the  x  axis)  

⬆  

Page 10: Unsymmetrical bending (2nd year)

σ x =

My zIyy

Eq.  (1)  

Symmetrical  Bending  (4/4)  

•  The  simplest  case  when  the  bending  moment  My  acts  about  the  axis  y,  orthogonal  to  the  axis  of  symmetry  z  

•  Therefore,  the  beam  bends  in  the  ver@cal  plan  Gxz  

•  The  direct  stress  σx  is  given  by:  

10  

x z

y

axis of symmetry

beam

’s axis

My

σ x > 0

G

Page 11: Unsymmetrical bending (2nd year)

Unsymmetrical  Bending  (1/3)  

11  

•  The  case  of  unsymmetric  bending  deals  with:  –  EITHER  a  bending  moment  ac@ng  about  an  axis  which  is  neither  an  axis  of  symmetry,  nor  orthogonal  to  it  (le9)  

–  OR  a  beam’s  cross  sec@on  which  does  not  have  any  axis  of  symmetry  (right)  

xz

y

beam

’s axis

My

G

xz

yaxis of symmetry

beam

’s axis

My

G

Page 12: Unsymmetrical bending (2nd year)

Unsymmetrical  Bending  (2/3)  

12  

•  The  first  case  is  trivial,  and  can  be  solved  by  using:  –  Decomposi@on  of  the  bending  moment:  

 –  Superposi@on  of  effects:  

Mp = My cos(α )

Mq = −My sin(α )

σ x (A) =MpIpp

⋅d2−MqIqq

⋅e

=Myd /2Ipp

cos(α )+ eIppsin(α )

⎝⎜⎞

⎠⎟

Page 13: Unsymmetrical bending (2nd year)

Unsymmetrical  Bending  (3/3)  

13  

•  Par@cular  cases…  

Bending  about  the  strong  axis  

σ x (A) =MyIpp

⋅d2

Bending  about  the  weak  axis   σ x (A) =

My

Iqq

⋅e

Page 14: Unsymmetrical bending (2nd year)

Product  Moment  of  Area  (1/3)  

14  

•  Let’s  introduce  a  new  quan@ty,  Iyz,  called  “Product  Moment  of  Area”  

–  Defined  as:  

•  If  and  only  if  Iyz  =0,  a  bending  moment  ac@ng  on  one  of  these  two  axes  will  cause  the  beam  to  bend  about  the  same  axis  only,  not  about  the  orthogonal  axis  (symmetric  bending)  –  I.e.  a  ver@cal  transverse  load  will  not  induce  any  lateral  sway  and  a  lateral  transverse  will  not  cause  any  ver@cal  movement  

= ∫ dyzA

I y z A

Page 15: Unsymmetrical bending (2nd year)

Product  Moment  of  Area  (2/3)  

15  

•  The  product  moment  of  area  is  defined  mathema@cally  as  the  integral  of  the  product  of  the  coordinates  y  and  z  over  the  cross  sec@onal  area  

•  Similarly  the  second  moments  of  area  Iyy  and  Izz  are  the  integrals  of  the  second  power  of  the  other  coordinate,  z2  and  y2  

•  G  is  the  centroid  of  the  cross  sec@on  

Iyy = z2 dAA∫

Izz = y2 dA

A∫

Iyz = y zdA

A∫

Page 16: Unsymmetrical bending (2nd year)

Product  Moment  of  Area  (3/3)  

16  

•  The  “Parallel  Axis  Theorem”  (also  known  as  Huygens-­‐Steiner  Theorem)  can  be  used  to  determine  the  product  moment  of  area  Iyz,  as  well  as  the  second  moments  of  area  Iyy  and  Izz,  provided  that:  –  The  cross  sec@on  can  be  split  into  simple  blocks,  e.g.  rectangular  blocks  –  The  corresponding  quan@@es  for  the  central  axes  η  (eta)  and  ζ  (zeta),  parallel  

to  y  and  z,  are  known  

 

Iyy = Iηη

(i ) + zi2 A(i )

i∑

Izz = Iζζ(i ) + yi

2 A(i )i∑

Iyz = Iηζ(i ) + yi zi A

(i )

i∑z

yG

ηi

ζ i

Γ i

A(i)

yi (< 0)

zi (> 0)

Page 17: Unsymmetrical bending (2nd year)

Moments  of  Area:  Worked  Example  (1/5)  

17  

1.  Split  the  cross  sec@on  in  rectangular  blocks  

2.  Calculate  the  area  of  each  block  

3.  If  the  posi@on  of  the  centroid  G  is  unknown  –  Calculate  the  first  moment  of  each  block  

about  two  arbitrary  references  axes  

       

A(1) =30×30 = 900A(2) =30×50 =1,500

Qm(1) = A(1) ×15 =13,500 Qn

(1) = A(1) ×15 =13,500Qm(2) = A(2) ×45 =67,500 Qn

(2) = A(2) ×25 =37,500

?  

?  

m mn

n

Page 18: Unsymmetrical bending (2nd year)

Moments  of  Area:  Worked  Example  (2/5)  

18  

–  Calculate  the  posi@on  of  the  centroid  

4.  Calculate  the  two  second  moments  of  area  (and  the  product  moment  of  area,  if  needed)  for  each  block          

 

dm =Qm(i )

i∑A(i )

i∑ = 81,0002,400

=33.75

dn =Qn(i )

i∑A(i )

i∑ = 51,0002,400

=21.25

Iηη(1) = 30×303

12= 67,500 Iζζ

(1) = 30×303

12= 67,500 Iηζ

(1) = 0

Iηη(2) = 50×303

12=112,500 Iζζ

(2) = 30×503

12=312,500 Iηζ

(2) = 0

m mn

n

?  

?  

Page 19: Unsymmetrical bending (2nd year)

Moments  of  Area:  Worked  Example  (3/5)  

19  

5.  Calculate  the  coordinates  of  the  centroid  Γi  of  each  block…        

 

y1 =21.25−302

=6.25 >0

z1 = − 33.75− 302

⎛⎝⎜

⎞⎠⎟

= −18.75 <0

y2 = − 502

−21.25⎛⎝⎜

⎞⎠⎟

= −3.75 <0

z2 =30+302

−33.75

=11.25 >0

Page 20: Unsymmetrical bending (2nd year)

Moments  of  Area:  Worked  Example  (4/5)  

20  

6.  Apply  the  Parallel  Axis  Theorem  for  the  two  second  moments  of  area…        

 

Iyy = Iηη(i ) + A(i )zi

2( )i∑= 67,500+900× −18.75( )2

+112,500+1,500× 11.25( )2

= 686,250

Izz = Iζζ(i ) + A(i )yi

2( )i∑= 67,500+900× 6.25( )2

+312,500+1,500× −3.75( )2

= 436,250

Page 21: Unsymmetrical bending (2nd year)

Moments  of  Area:  Worked  Example  (5/5)  

21  

7.  …  And  the  product  moment  of  area          

 

Iyz = Iηζ(i ) + A(i )yizi( )i∑

= 0+900×6.25× −18.75( )+0+1,500× −3.75( )×11.25= −168,750

Page 22: Unsymmetrical bending (2nd year)

Rota@ng  the  Central  Axes  

22  

QuesBon:  What  happens  to  second  moment  of  area  (Imm)  and  product  moment  of  area  (Imn)  if  we  rotate  the  central  axes  of  reference  for  a  given  cross  sec@on?  

m

n

m

nm

n

m

n

m

n

m

n

Imm  

Imn  

Y  

Z  

Product  moment  of  area  (+ve,  -­‐ve  or  null)  

 

Second  moment  of  area  (always  +ve)  

 

Iyy  

Iyz  

-­‐Iyz  

Izz  

Mohr’s  Circle    

Gy  ≡

 ≡

z

Answer:  The  points  of  coordinates  {Imm,Imn}  will  describe  a  circle  

Page 23: Unsymmetrical bending (2nd year)

Mohr’s  Circle  (1/6)  

23  

•  Named  aser  the  German  civil  engineer  Chris@an  Oio  Mohr  (1835-­‐1918),  the  Mohr’s  circle  allows  determining  the  extreme  values  of  many  quan@@es  useful  in  the  stress  analysis  of  structural  members,  including  minimum  and  maximum  values  of  stress,  strain  and  second  moment  of  area  

m

n

m

nm

n

m

n

m

n

m

n

Imm  

Imn  

Y  

Z  

Product  moment  of  area  (+ve,  -­‐ve  or  null)  

 

Second  moment  of  area  (always  +ve)  

 

Iyy  

Iyz  

-­‐Iyz  

Izz  

Mohr’s  Circle    

Gy  ≡

 ≡

z

Page 24: Unsymmetrical bending (2nd year)

Mohr’s  Circle  (2/6)  

24  

•  We  can  draw  the  Mohr’s  circle,  once  its  centre  CI  and  its  radius  Ri  are  known:  –  The  centre  is  always  on  the  

horizontal  axis,  whose  posi@on  is  the  average  of  the  second  moments  of  area  about  two  orthogonal  axes,  e.g.  Iyy  and  Izz  

 –  From  simple  geometrical  

considera@ons  (Pythagoras’  theorem),  the  radius  requires  the  product  moment  of  area  as  well  

   

Imm  

Imn  

Y  

Z  

Iyy  

Iyz  

-­‐Iyz  

Izz  

y

z

G

m

n CI ≡ Iave,0{ }

Iave =Iyy + Izz2

RI =Iyy − Izz

2⎛⎝⎜

⎞⎠⎟

2

+ Iyz2

CI  Iave  

RI  

=561,250  

=210,004  

Page 25: Unsymmetrical bending (2nd year)

Mohr’s  Circle  (3/6)  

25  

•  Points  Y  and  Z  in  the  Mohr’s  circle,  representa@ve  of  the  central  axes  y  and  z  in  the  cross  sec@on,  are  the  extreme  points  of  a  diameter  

•  A  rota@on  of  an  angle  α  of  the  central  axes  in  the  cross  sec@on  corresponds  to  an  angle  2α  in  the  Mohr’s  circle  (in  the  same  direc@on),  i.e.  twice  the  angle  in  the  Mohr’s  plane  

Imm  

Imn  

Iyy  

Iyz  

-­‐Iyz  

Izz  

y

z

G

m

n

Y  

Z  

CI  Iave  

RI  

α  

2α  

M  

Page 26: Unsymmetrical bending (2nd year)

Mohr’s  Circle  (4/6)  

26  

•  We  can  determine  the  maximum  and  minimum  values  of  the  second  moment  of  area  for  a  given  cross  sec@on:  

•  The  axes  p  and  q  associated  with  the  extreme  value  of  I  are  called  “principal  axes  of  iner@a”  –  They  are  orthogonal  each  other  –  In  this  example:  

 Ipp=  Imax  è  p-­‐p  is  the  strong(est)  axis  in  bending    Iqq=  Imin  è  q-­‐q  is  the  weak(est)  axis  in  bending,  e.g.  to  be  used  when  calcula@ng  the  Euler’s  buckling  load  

Imm  

Imn  

Y  

Z  

Iyy  

Iyz  

-­‐Iyz  

Izz  

y

z

G

CI  Iave  

RI  

Imin = Iave −RI

Imax = Iave +RI

Q  

Imin   P  Imax  

=771,254  

=351,246  

Page 27: Unsymmetrical bending (2nd year)

Mohr’s  Circle  (5/6)  

27  

•  We  can  also  evaluate  the  inclina@on  of  the  principal  axes  p  and  q  with  respect  to  reference  axes  y  and  z  

•  In  this  example:  

–  In  general,  you  don’t  know  whether  p  is  the  strong  axis  or  the  weak  axis,  but  it’s  for  sure  one  of  the  two  extreme  values    

Imm  

Imn  

Y  

Z  

Iyy  

Iyz  

-­‐Iyz  

Izz  

y

z

G

CI  Iave  

RI  

αyp =α zq =12sin−1 Iyz

RI

⎝⎜⎜

⎠⎟⎟

Q  

Imin   P  Imax  

αyp  αzq=αyp  

2αyp  

2αzq  

=26.7°  

Page 28: Unsymmetrical bending (2nd year)

Mohr’s  Circle  (6/6)  

28  

•  For  any  beam’s  cross  sec@on,  the  principal  axes  p  and  q  always  sa@sfy  the  mathema@cal  condi@on  

–  That  is,  their  representa@ve  points  P  and  Q  in  the  Mohr’s  circle  belong  to  the  horizontal  axis  

•  An  axis  of  symmetry  is  always  a  principal  axis  of  the  area  Imm  

Imn  

Y  

Z  

Iyy  

Iyz  

-­‐Iyz  

Izz  

y

z

G

CI  Iave  

RI  

Q  

Imin   P  Imax  

αyp  αzq=αyp  

2αyp  

2αzq  

Ipq =0

Page 29: Unsymmetrical bending (2nd year)

Mohr’s  Circle:  Par@cular  Cases  •  If  for  a  given  cross  sec@on  

Imin=Imax,  then  all  the  central  axes  m  will  have  the  same  second  moment  of  area,  i.e.  Imm=Imin=Imax,  and  all  the  central  axes  m  will  be  principal  axes  of  area,  i.e.  Imn=0  

–  This  is  the  case,  for  instance,  of  both  circular  and  square  shapes  

–  The  neutral  axis  (where  σx=0)  will  always  coincide  with  the  axis  about  which  the  bending  moment  is  applied  

29  

z

y G

x

Mm

m

m

z

y G

x

Mm

m

m

Page 30: Unsymmetrical bending (2nd year)

Bending  about  Principal  Axes  •  In  general,  a  bending  

moment  Mp  ac@ng  about  the  principal  axis  p  will  cause  the  beam  to  bend  in  the  orthogonal  Gxq  plane  

•  The  simple  formula  of  direct  stress  σx  due  to  pure  bending  can  be  resorted  to:  

–  Similar  to  Eq.  (1)     30  

x

beam

’s axis

G

q

p

Mp

principal axis

σ x > 0

σ x < 0

tensilestress

compressivestress

σ x =MpqIpp

Eq.  (2)  

Distance  (with  sign)  to  the  neutral  axis  

Page 31: Unsymmetrical bending (2nd year)

Normal  Stress  due  to  Unsymmetrical  Bending:  General  Procedure  (1/4)  

•  If  the  bending  does  not  act  along  one  of  the  principal  axis  (p  and  q),  then  the  bending  moment  can  be  decomposed  along  the  principal  axes  

•  In  the  figure,  My  is  the  bending  moment  about  the  horizontal  axis  (due,  for  instance,  to  the  dead  load):  

 

   31  

My

z

yG

q

pααyp  

Mp = My cos(α )Mq = −My sin(α )

⎧⎨⎪

⎩⎪

My(> 0)

M p(>0)

M q(<0)

ααyp  

Page 32: Unsymmetrical bending (2nd year)

Normal  Stress  due  to  Unsymmetrical  Bending:  General  Procedure  (2/4)  

•  If  the  bending  does  not  act  along  one  of  the  principal  axis  (p  and  q),  then  the  bending  moment  can  be  decomposed  along  the  principal  axes  

•  Similarly  for  the  case  of  the  bending  moment  Mz  (due,  for  instance,  to  some  lateral  forces):  

 

   32  

My

z

yG

q

pααyp  

Mp = Mz sin(α )Mq = Mz cos(α )

⎧⎨⎪

⎩⎪

M p(>0)

α

Mz (> 0)

M q(>0)αzq  

Page 33: Unsymmetrical bending (2nd year)

Normal  Stress  due  to  Unsymmetrical  Bending:  General  Procedure  (3/4)  

•  Once  Mp  and  Mq  are  known,  the  normal  stress  σx  (+ve  in  tension)  can  be  computed  with  the  expression:  

33  

My

z

yG

q

pααyp  

p  and  q  here  are  the  distances  from  the  principal  axes  of  the  point  where  the  stress  σx  is  sought  q

p

G

σ x

q

p

x

σ x =

Mp qIpp

−Mq pIqq

Eq.  (3)  

Page 34: Unsymmetrical bending (2nd year)

Normal  Stress  due  to  Unsymmetrical  Bending:  General  Procedure  (4/4)  

•  As  an  alterna@ve,  the  following  binomial  formula  can  be  used  

–  where  the  coefficients  beta  (β)  and  gamma  (γ)  are  given  by:  

Mzz

G

My

y

x

σ x = β y + γ z

β = −Mz Iyy +My IyzIyy Izz − Iyz

2

γ =My Izz +Mz IyzIyy Izz − Iyz

2

⎨⎪⎪

⎩⎪⎪

34  

Eq.  (4)  

Page 35: Unsymmetrical bending (2nd year)

Neutral  Axis  (1/2)  •  Along  the  neutral  axis  the  normal  stress  

σx  is  zero,  that  is:      –  The  centroid  G≡{0,0}  belongs  to  the  neutral  axis,  and  indeed  yG=0  and  zG=0  sa@sfies  the  above  equa@ons  

–  We  need  a  second  point  N≡{yN,zN}  to  draw  the  straight  line  GN  represen@ng  the  neutral  axis:  we  can  choose  a  convenient  value  for  the  coordinate  zN,  e.g.  the  boiom  edge  of  the  cross  sec@on,  and  the  associated  value  of  yN  is  given  by:  

   

z

Gy

x

Mz

N

zN

yN

elastic neutral axis

σ x = β y + γ z =0

β yN + γ zN = 0 ⇒ yN = − γ zN

β35  

Page 36: Unsymmetrical bending (2nd year)

Neutral  Axis  (2/2)  

z

Gy

x

Mz

N

zN

yN

elastic neutral axis

•  Although  the  bending  

acBon  is  about  the  verBcal  

axis  z,  the  neutral  axis  is  

not  verBcal  

•  The  two  flanges  are  parBally  

in  tension,  parBally  in  

compression    tension  

compression  

36  

Page 37: Unsymmetrical bending (2nd year)

Normal  Stress  Calcula@ons:  Worked  Example  (1/3)  

37  37  

y

z

Gαyp  

A≡{-­‐8.75,-­‐33.75}  

B≡{21.25,    26.25}  

 

My  

My =106

Mz =0⎧⎨⎪

⎩⎪

Iyy =686,250 Ipp =771,254Izz = 436,250 Iqq =351,246Iyz = −168,750 αyp =26.7°

β = −Mz Iyy +My Iyz

Iyy Izz − Iyz2 = 0.623

γ =My Izz +Mz Iyz

Iyy Izz − Iyz2 =1.610

⎨⎪⎪

⎩⎪⎪

σ x (A) = β yA + γ zA= −0.623×8.75−1.610×33.75= −59.80

σ x (B) = β yB + γ zB = +55.51

Page 38: Unsymmetrical bending (2nd year)

Normal  Stress  Calcula@ons:  Worked  Example  (2/3)  

38  38  

y

z

Gαyp  

My  

Iyy =686,250 Ipp =771,254Izz = 436,250 Iqq =351,246Iyz = −168,750 αyp =26.7°

Mp = My cos(αyp ) = 893,092Mz = −My sin(αyp ) = −449,874⎧⎨⎪

⎩⎪

σ x (A) =Mp qA

Ipp

−Mq pA

Iqq

= 894,092× (−23.00)771,254

− (−449,874)× (−26.21)351,246

= −59.80

σ x (B) =

Mp qB

Ipp

−Mq pB

Iqq

= +55.51

Page 39: Unsymmetrical bending (2nd year)

Normal  Stress  Calcula@ons:  Worked  Example  (2/3)  

39  39  

y

z

GMy  

Iyy =686,250 Ipp =771,254Izz = 436,250 Iqq =351,246Iyz = −168,750 αyp =26.7°

yN = dn =21.25

σ x (N) = β yN + γ zN

= 0.623×21.25+1.610× zN = 0

⇒ zN = −13.241.610

= −8.22

N  

tension  

compression  

point  of  max  tensile  stress  

point  of  max  compressive  stress  

Assume:    Calculate:  

(which  gives  the  neutral  axis  GN)    

elas0c  neutral  axis  

Page 40: Unsymmetrical bending (2nd year)

Key  Learning  Points  (1/2)  1.  The  simple  formula  of  bending  stress,  σx=Myz/Iyy,  is  valid  if  

and  only  if  y  is  a  principal  axis  for  the  cross  sec@on  –  That  is,  if  and  only  if  the  product  moment  of  iner@a  is  Iyz=0  –  This  is  the  case,  for  instance,  when  y  and/or  z  are  axis  of  symmetry  

2.  To  calculate  Iyz  one  can  split  the  cross  sec@on  in  elementary  blocks,  sum  the  contribu@on  from  each  block  and  use  the  parallel  axis  theorem  –  Important:  Iyz  can  be  nega@ve,  posi@ve  or  null  

40  

Page 41: Unsymmetrical bending (2nd year)

Key  Learning  Points  (2/2)  3.  Knowing  Iyy,  Izz  and  Iyz  ,  one  can  draw  the  Mohr’s  circle  for  the  

second  moment  of  area,  which  allows  determining  the  extreme  values  (Imin  and  Imax)  and  their  direc@ons  

4.  In  the  general  case  of  unsymmetrical  bending,  the  normal  stress  is  given  by  the  formula  –  σx=  β y  +  γ z  

•  where  β  and  γ  depend  on  the  components  of  the  bending  moments  (My  and  Mz)  as  well  as  on  Iyy,  Izz  and  Iyz  

5.  The  above  formula  allows  determining  the  inclina@on  of  the  neutral  axis    

41