4
International Journ Internat ISSN No: 245 @ IJTSRD | Available Online @ www Soil Classification Priya Department of E Shri Shankaracharya Institute o ABSTRACT Recently the use of soil classification ha and more importance and recent directi works indicates that image classification soil information is the preferred ch methods for image classification have b based on different theories or models. three of these methods Maximum classification (MLC), Sub pixel class and Support Vector machine (SVM) classify a soil image into seven soil c results compared. MLC and SVM classification methods but SP is a soft Hardening of soft classifications determination leads to loss of inform accuracy may not necessary represent t class membership. Therefore, in the com methods, the top 20% compositions pe the SP were used instead. Resul classification, indicated that output f generally poor although it performs w such as forest that are homogeneous in the two hard classifiers, SVM gave a than MLC. Keywords: Soil Classification, Image Support Vector Machine, SVM I. INTRODUCTION It is an undeniable statement that ‘land i asset and a means to sustain livelihood’ resource for most human activities inclu agriculture, industry, mining, etc. Land fundamental factor of production close the economic growth of a nation and However, as the population increases land for use in settlement, con nal of Trend in Scientific Research and De tional Open Access Journal | www.ijtsr 56 - 6470 | Volume - 2 | Issue – 6 | Sep w.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct Using Image Processing and M SVM Classifier anka Dewangan, Vaibhav Dedhe Electronics and Telecommunication Engineering of Technology & Management, Bhitauna, Uttar as gained more ion in research n of images for hoice. Various been developed In this study, m Likelihood sification (SP) ) are used to classes and the M are hard classification. for accuracy mation and the the strength of mparison of the er soil class of lts from the from SP was well with soils n character. Of a better output e Processing, is an important d’. It is the key uding forestry, d is therefore a ely linked with its people[1]. s, demand for nstruction of infrastructure, farming (agricu activities also increases. Satisfying as a result, land an resources like forest, vege subjected continually to chang turns affect the ecosystem. Ev rivers, streams and wetlands areas where such activities o For example, when changes wildlife habitat, fire cond historical values and ambie affected. As human and natural force landscape, resource agencie important to monitor and a Land use and soil is therefore most important factor of env as deforestation, habitat fragm and wetland degradation. Soil features or vegetation as evid land use is about what econo land is put to Research in lan generated so much interest loc due to concerns globally on and its consequences to th therefore become one of th images classification for scien life earth science applicat fundamentals required for s Various methods are used for maps, however, the applicatio map production is increasing cheap and quick method o information over a large Conventional ground survey m evelopment (IJTSRD) rd.com p – Oct 2018 2018 Page: 504 Modified g, Pradesh, India ulture) and other human nd its associated natural etation, etc are being ges and these changes in ven water resources like s that may be found in occur are also affected. s occur in vegetation; ditions; aesthetic and ent air quality, are all es are transforming the es find it increasingly assess these alterations. e regarded as the single vironmental change such mentation, urbanization, l deals with the physical dent on the land whereas omic activity or use the nd use. Soil studies have cally and internationally land use. Soil changes he environment. It has he crucial elements in ntific research and real- tions[2]. One of the such studies are maps. r the production of these on of remote sensing for g become the relatively of acquiring up-to-date e geographical area. methods of mapping are

Soil Classification Using Image Processing and Modified SVM Classifier

  • Upload
    ijtsrd

  • View
    54

  • Download
    2

Embed Size (px)

DESCRIPTION

Recently the use of soil classification has gained more and more importance and recent direction in research works indicates that image classification of images for soil information is the preferred choice. Various methods for image classification have been developed based on different theories or models. In this study, three of these methods Maximum Likelihood classification MLC , Sub pixel classification SP and Support Vector machine SVM are used to classify a soil image into seven soil classes and the results compared. MLC and SVM are hard classification methods but SP is a soft classification. Hardening of soft classifications for accuracy determination leads to loss of information and the accuracy may not necessary represent the strength of class membership. Therefore, in the comparison of the methods, the top 20 compositions per soil class of the SP were used instead. Results from the classification, indicated that output from SP was generally poor although it performs well with soils such as forest that are homogeneous in character. Of the two hard classifiers, SVM gave a better output than MLC. Priyanka Dewangan | Vaibhav Dedhe "Soil Classification Using Image Processing and Modified SVM Classifier" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-6 , October 2018, URL: https://www.ijtsrd.com/papers/ijtsrd18489.pdf Paper URL: http://www.ijtsrd.com/engineering/electronics-and-communication-engineering/18489/soil-classification-using-image-processing-and-modified-svm-classifier/priyanka-dewangan

Citation preview

Page 1: Soil Classification Using Image Processing and Modified SVM Classifier

International Journal of Trend in

International Open Access Journal

ISSN No: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

Soil Classification Using Image Processing and Modified

Priyanka Dewangan, Department of Electronics and Telecommunication Engineering

Shri Shankaracharya Institute of

ABSTRACT Recently the use of soil classification has gained more and more importance and recent direction in research works indicates that image classification of imagessoil information is the preferred choice. Various methods for image classification have been developed based on different theories or models. In this study, three of these methods Maximum Likelihood classification (MLC), Sub pixel classification (SP) and Support Vector machine (SVM) are used to classify a soil image into seven soil classes and the results compared. MLC and SVM are hard classification methods but SP is a soft classification. Hardening of soft classifications for accuracy determination leads to loss of information and the accuracy may not necessary represent the strength of class membership. Therefore, in the comparison of the methods, the top 20% compositions per soil class of the SP were used instead. Results from the classification, indicated that output from SP was generally poor although it performs well with soils such as forest that are homogeneous in character. Of the two hard classifiers, SVM gave a better output than MLC. Keywords: Soil Classification, Image Processing, Support Vector Machine, SVM I. INTRODUCTION It is an undeniable statement that ‘land is an important asset and a means to sustain livelihood’. It is the key resource for most human activities including forestry, agriculture, industry, mining, etc. Land is fundamental factor of production closely linked with the economic growth of a nation and its peopleHowever, as the population increases, demand for land for use in settlement, construction of

International Journal of Trend in Scientific Research and Development (IJTSRD)

International Open Access Journal | www.ijtsrd.com

ISSN No: 2456 - 6470 | Volume - 2 | Issue – 6 | Sep

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

ication Using Image Processing and ModifiedSVM Classifier

Priyanka Dewangan, Vaibhav Dedhe Department of Electronics and Telecommunication Engineering

Shri Shankaracharya Institute of Technology & Management, Bhitauna, Uttar Pradesh

Recently the use of soil classification has gained more and more importance and recent direction in research works indicates that image classification of images for soil information is the preferred choice. Various methods for image classification have been developed based on different theories or models. In this study, three of these methods Maximum Likelihood classification (MLC), Sub pixel classification (SP) and Support Vector machine (SVM) are used to classify a soil image into seven soil classes and the results compared. MLC and SVM are hard classification methods but SP is a soft classification. Hardening of soft classifications for accuracy

eads to loss of information and the accuracy may not necessary represent the strength of class membership. Therefore, in the comparison of the methods, the top 20% compositions per soil class of the SP were used instead. Results from the

dicated that output from SP was generally poor although it performs well with soils such as forest that are homogeneous in character. Of the two hard classifiers, SVM gave a better output

Soil Classification, Image Processing,

It is an undeniable statement that ‘land is an important asset and a means to sustain livelihood’. It is the key resource for most human activities including forestry, agriculture, industry, mining, etc. Land is therefore a fundamental factor of production closely linked with the economic growth of a nation and its people[1]. However, as the population increases, demand for

settlement, construction of

infrastructure, farming (agriculture) and other human activities also increases. Satisfying as a result, land and its associated natural resources like forest, vegetation, etc are being subjected continually to changes and tturns affect the ecosystem. Even water resources like rivers, streams and wetlands that may be found in areas where such activities occur are also affected. For example, when changes occur in vegetation; wildlife habitat, fire conditions; ahistorical values and ambient air quality, are all affected. As human and natural forces are transforming the landscape, resource agencies find it increasingly important to monitor and assess these alterations. Land use and soil is therefore most important factor of environmental change such as deforestation, habitat fragmentation, urbanization, and wetland degradation. Soil deals with the physical features or vegetation as evident on the land whereas land use is about what economic activity or use the land is put to Research in land use. Soil studies have generated so much interest locally and internationally due to concerns globally on land use. Soil changes and its consequences to the environment. It has therefore become one of the crucial elements in images classification for scientific research and reallife earth science applicationsfundamentals required for such studies areVarious methods are used for the production of these maps, however, the application of remote sensing for map production is increasing become the relatively cheap and quick method of acquiring upinformation over a large geographical area. Conventional ground survey methods of mapping are

Research and Development (IJTSRD)

www.ijtsrd.com

6 | Sep – Oct 2018

Oct 2018 Page: 504

ication Using Image Processing and Modified

Department of Electronics and Telecommunication Engineering, Bhitauna, Uttar Pradesh, India

infrastructure, farming (agriculture) and other human

Satisfying as a result, land and its associated natural resources like forest, vegetation, etc are being subjected continually to changes and these changes in turns affect the ecosystem. Even water resources like rivers, streams and wetlands that may be found in areas where such activities occur are also affected. For example, when changes occur in vegetation; wildlife habitat, fire conditions; aesthetic and historical values and ambient air quality, are all

As human and natural forces are transforming the landscape, resource agencies find it increasingly important to monitor and assess these alterations. Land use and soil is therefore regarded as the single most important factor of environmental change such as deforestation, habitat fragmentation, urbanization, and wetland degradation. Soil deals with the physical features or vegetation as evident on the land whereas

hat economic activity or use the land is put to Research in land use. Soil studies have generated so much interest locally and internationally due to concerns globally on land use. Soil changes and its consequences to the environment. It has

me one of the crucial elements in images classification for scientific research and real-life earth science applications[2]. One of the fundamentals required for such studies are maps. Various methods are used for the production of these maps, however, the application of remote sensing for map production is increasing become the relatively cheap and quick method of acquiring up-to-date information over a large geographical area.

onventional ground survey methods of mapping are

Page 2: Soil Classification Using Image Processing and Modified SVM Classifier

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

labour intensive, time consuming and are done relatively infrequently[3]. Especially in fast changing environments, maps produced using ground survey methods will soon become obsolete with passage of time. II. PROBLEM IDENTIFICATIONCryptography The availability of up-tosoil information is central to much resource management, planning and monitoring programmes. Maps are fundamental for the provision of such land use – soil information and processes that enhances or leads to the production of such current maps in a costeffective manner is essential. Recent direction in research works indicates that classification of satellite images for soil information is the preferred choice for producing such maps. Out of the many methods for image classification, three were chosen Maximum Likelihood Classification, Sub-pixel Classification and Artificial Neural Network Classification[3]. In this work, support vector machine is chosen because they provide a varied of options, good for comparison as;1. Maximum Likelihood is a supervised parametric

hard classifier. 2. Sub-pixel Classification is a supe

parametric soft classifier. 3. Artificial Neural Network Classification is a

supervised non-parametric hard classifier. The focus of this project is to explore the capabilities of the selected methods (Maximum Likelihood Classification, Sub-pixel Classification and Neural Network Classification) to effectively represent soil types. III. METHODOLOGY Image Pre-Processing Image pre-processing are actions or processes undertaken prior to the main data analysis and extraction of information. They are of two main forms – radiometric correction or geometric correction. Radiometric corrections are needed to correct the data for sensor irregularities and unwanted sensor or atmospheric noise, and converting the data so they accurately represent the reflected or emitted radiation measured by the sensor[4].

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

labour intensive, time consuming and are done . Especially in fast changing

environments, maps produced using ground survey methods will soon become obsolete with passage of

PROBLEM IDENTIFICATION to-date land use

soil information is central to much resource management, planning and monitoring programmes.

the provision of such land soil information and processes that enhances or

leads to the production of such current maps in a cost-effective manner is essential. Recent direction in research works indicates that classification of satellite

soil information is the preferred choice for

Out of the many methods for image classification, three were chosen Maximum Likelihood

pixel Classification and Artificial . In this work,

support vector machine is chosen because they provide a varied of options, good for comparison as;

Maximum Likelihood is a supervised parametric

pixel Classification is a supervised non-

Artificial Neural Network Classification is a parametric hard classifier.

The focus of this project is to explore the capabilities of the selected methods (Maximum Likelihood

Classification and Neural Network Classification) to effectively represent soil

processing are actions or processes undertaken prior to the main data analysis and

of two main forms radiometric correction or geometric correction.

Radiometric corrections are needed to correct the data for sensor irregularities and unwanted sensor or atmospheric noise, and converting the data so they

d or emitted radiation

Figure 1: Fundamental Structure of soil classification process

Radiometric Correction It has been identified above; are important and mandatory when using multiimages datasets. This must be done so that images obtained by sensors at different times are made comparable in terms of radiometric characteristics. Techniques like image enhancemecalibration etc have been applied to multisatellite images to increase the amount of information for improve interpretability. In this study however, no atmospheric correction was applied because data on atmospheric characteristics Secondly only a single-date image is being used for the classification and therefore atmospheric correction can be ignored. Image Processing In remote sensing, images are historically processed digitally because of two important princiapplication namely; the improvement of the spectral information to enhance the process of visual interpretation and the processing of image data for computer assisted classification. The aim of both processes is to increase spectral separabiliobject features in the image. Commonly used image enhancement techniques include image reduction, image magnification; transect extraction, contrast adjustments (linear and

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Oct 2018 Page: 505

Figure 1: Fundamental Structure of soil classification

process

radiometric corrections are important and mandatory when using multi-date images datasets. This must be done so that images obtained by sensors at different times are made comparable in terms of radiometric characteristics. Techniques like image enhancement, normalization, calibration etc have been applied to multi-date satellite images to increase the amount of information for improve interpretability. In this study however, no atmospheric correction was applied because data on

was not available. date image is being used for

the classification and therefore atmospheric correction

In remote sensing, images are historically processed digitally because of two important principal areas of application namely; the improvement of the spectral information to enhance the process of visual interpretation and the processing of image data for computer assisted classification. The aim of both processes is to increase spectral separability of the

Commonly used image enhancement techniques include image reduction, image magnification; transect extraction, contrast adjustments (linear and

Page 3: Soil Classification Using Image Processing and Modified SVM Classifier

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

non-linear), band rationing, spatial filtering, Fourier transformations, principal components analysis, and texture transformation (Jensen, 1996). Two of these techniques; Vegetation Indices developed under the band rationing technique and Principal Components Analysis will be considered briefly as they were used in this study. Image classification using Support vector MachineSupport vector machine (SVM) in machine learning are supervised models associated with respect to learning algorithms. These are mainly used for analysing the data for regression and classification. For a set of training examples, it belongs to either one of the two categories; a support vector machine algorithm for training generates a model which tells the new thing falls in to which category by a nonprobabilistic binary classifier. SVM model is the example on depiction of points in space which is mapped. Thus, the data of different types are separated by as wide as possible. The new data are mapped and categorized according to which part of the group they fall on. Support Vector Regression: Developed by Vapnik (1998). IV. RESULTS The image dataset used are clay, Clayey Peat,Sand, Humus Clay, Peat, Sandy Clay, and Silty Sand. Out of this database two images from each are shown in figure 2.

(a) Clay

(b) Clayey Peat

(c) Clayey Sand

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

linear), band rationing, spatial filtering, Fourier principal components analysis, and

texture transformation (Jensen, 1996). Two of these techniques; Vegetation Indices developed under the band rationing technique and Principal Components Analysis will be considered briefly as they were used

Image classification using Support vector Machine Support vector machine (SVM) in machine learning are supervised models associated with respect to learning algorithms. These are mainly used for analysing the data for regression and classification.

a set of training examples, it belongs to either one a support vector machine

algorithm for training generates a model which tells the new thing falls in to which category by a non-probabilistic binary classifier. SVM model is the

ample on depiction of points in space which is mapped. Thus, the data of different types are separated by as wide as possible. The new data are mapped and categorized according to which part of the group they fall on. Support Vector Regression:

The image dataset used are clay, Clayey Peat, Clayey Humus Clay, Peat, Sandy Clay, and Silty Sand.

Out of this database two images from each are shown

(d) Humus Clay

(e) Peat

(f) Sandy Clay

(g) Silty SandFigure 2: Soil classification database

The algorithm proposed here may have significant improvement over some of the other past soil classification systems. Binary classification: binary classifier (Table:1) is used to govern whether the soil type is sandy or not. Support vector machine (SVM) do the classification of the non-sandy soil. Theclassified here Majority of the misclassified objects are relayed near to the segmentboundary Measurements spottedthus can be decided that classifiers was excellent.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Oct 2018 Page: 506

Humus Clay

Peat

Sandy Clay

Silty Sand

Figure 2: Soil classification database

The algorithm proposed here may have significant improvement over some of the other past soil

Binary classification: binary classifier (Table:1) is govern whether the soil type is sandy or not.

(SVM) do the classification soil. The soil types are better

classified here Majority of the misclassified objects the segment line. Near the segment

Measurements spotted as often noisy and thus can be decided that the enactment of the

Page 4: Soil Classification Using Image Processing and Modified SVM Classifier

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

IV. CONCLUSION These Different techniques has been used and SVM classifier is found to outperform over all other techniques. REFERENCES 1. F. Ellis, “The Determinants of Rural Livelihood

Diversification in Developing Countries,” Agric. Econ., vol. 51, no. 2, pp. 2892008.

2. H. Nagendra, D. K. Munroe, and J. Southworth, “From pattern to process: landscape fragmentation

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018

been used and SVM classifier is found to outperform over all other

F. Ellis, “The Determinants of Rural Livelihood Diversification in Developing Countries,” J.

, vol. 51, no. 2, pp. 289–302, Nov.

H. Nagendra, D. K. Munroe, and J. Southworth, “From pattern to process: landscape fragmentation

and the analysis of land use/land cover change,” Agric. Ecosyst. Environ., vol. 101, no. 2111–115, Feb. 2004.

3. H. Yuan, C. Van Der Wiele, and S. Khorram,Automated Artificial Neural Network System for Land Use/Land Cover Classification from Landsat TM Imagery,” Remote Sens.243–265, Jul. 2009.

4. T. M. Lillesand and T. M. Lillesand, sensing and image interpretation

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Oct 2018 Page: 507

and the analysis of land use/land cover change,” , vol. 101, no. 2–3, pp.

H. Yuan, C. Van Der Wiele, and S. Khorram, “An Automated Artificial Neural Network System for Land Use/Land Cover Classification from Landsat

Remote Sens., vol. 1, no. 3, pp.

T. M. Lillesand and T. M. Lillesand, Remote sensing and image interpretation. 2003.