28
Scalars in mechanics Photo: Flickr

Scalars in mechanics

Embed Size (px)

DESCRIPTION

An introduction to scalars in mechanics: energy, power & efficiency

Citation preview

Page 1: Scalars in mechanics

Scalars in mechanics

Photo: Flickr

Page 2: Scalars in mechanics

Quantities

Scalars in mechanics 2

Scalar quantities Vector quantities

mass m (kg)

energy E (J)

power P (W)

displacement ๐‘  (๐‘š)

velocity ๐‘ฃ (๐‘š๐‘ โˆ’1)

acceleration ๐‘Ž (๐‘š๐‘ โˆ’2)

force ๐น (๐‘)

momentum ๐‘ (๐‘˜๐‘”๐‘š๐‘ โˆ’1) torque ๐‘‡ (๐‘๐‘š)

โ€ข Magnitude โ€ข Magnitudeโ€ข Directionโ€ข Point of application

Page 3: Scalars in mechanics

History

Scalars in mechanics 3

17th centuryVector mechanics

GallileiHuygensNewtonLeibniz 19th century

Scalar mechanics

DavyRitter

OerstedFaradayKelvin

It was observed that โ€˜natural forcesโ€™ could transform.19th century natural philosophers (later physicists)Searched for a conserved โ€˜natural forceโ€™.

This resulted in the new concept โ€˜ENERGYโ€™

Page 4: Scalars in mechanics

Concept of energy

Scalars in mechanics 4

IT

โ€ข Is transformed in all physical changes

โ€ข Is required to make anything happen

โ€ข Is puts limits to any process or activity

โ€ข Is the most fundamental concept in modern science

pixabay

Page 5: Scalars in mechanics

Concept of work

Scalars in mechanics 5

StudentHotel

HollandISC

you (today)

๐‘  = 4.3๐‘˜๐‘š ๐น๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘

Assume constant ๐‘ฃ๐‘๐‘–๐‘˜๐‘’ = 3 ๐‘š๐‘ โˆ’1 so ฮฃ ๐น = 0 โ‡’

๐น๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ = โˆ’ ๐น๐‘Ÿ๐‘œ๐‘™๐‘™ + ๐น๐‘Ž๐‘–๐‘Ÿ = 12๐œŒ๐ด๐ถ๐ท ๐‘ฃ๐‘๐‘–๐‘˜๐‘’+๐‘ฃ๐‘ค๐‘–๐‘›๐‘‘

2 + ๐ถ๐‘Ÿ๐‘œ๐‘™๐‘™ โˆ™ ๐น๐‘ =

๐น๐‘Ÿ๐‘œ๐‘™๐‘™

๐น๐‘Ž๐‘–๐‘Ÿ+

1

2โˆ™ 1.29 โˆ™ 0.4 โˆ™ 1 โˆ™ 3 + 5 2 + 0.02 โˆ™ 70 โˆ™ 9.81 = 16.5 + 13.7 = 30๐‘

Work done = ๐‘Š = ๐น โˆ™ ๐‘  = 30 โˆ™ 4.3 โˆ™ 103 = 1.3 โˆ™ 105๐ฝ๐‘œ๐‘ข๐‘™๐‘’

Page 6: Scalars in mechanics

Work vs. Impulse

Scalars in mechanics 6

Why not use FORCE TIME as a measure of work?

๐น๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘

๐น๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘

start

same force, same time,โ€ฆsame work?

Impulse is a vector: ๐น โˆ™ ๐‘ก = ๐ผ

Vector Scalar = Vector

Work is a scalar: ๐น โˆ™ ๐‘  = ๐‘Š

Vector Vector= Scalar

Vector โ€˜dotโ€™ product

Page 7: Scalars in mechanics

Force & displacement at an angle

Scalars in mechanics 7

๐น

๐‘ 

๐œƒ

๐นโˆ•โˆ•๐‘ 

๐นโŠฅ๐‘ 

๐‘ 

90ยฐ

๐นโˆ•โˆ•๐‘  = 0

๐นโŠฅ๐‘  = ๐น ๐น

๐‘ 

๐œƒ

๐นโˆ•โˆ•๐‘ 

๐นโŠฅ๐‘ 

๐‘Š = ๐นโˆ•โˆ•๐‘  โ‹… ๐‘  = ๐น โ‹… ๐ถ๐‘œ๐‘ ๐œƒ โˆ™ ๐‘  = ๐น โˆ™ ๐‘  โˆ™ ๐ถ๐‘œ๐‘ ๐œƒ

Nett driving forceProvides energy

W > 0

Nett inhibiting forceWithdraws energy

W < 0

No driving forceNo energy transferred

W = 0

Page 8: Scalars in mechanics

Non-constant forces

Scalars in mechanics 8

๐น pulling force

๐‘  ๐‘ 

๐น

๐‘ ๐‘š๐‘Ž๐‘ฅ

๐น๐‘š๐‘Ž๐‘ฅ

๐น๐‘Ž๐‘ฃ๐‘”

๐‘Š = ๐น๐‘Ž๐‘ฃ๐‘” โˆ™ ๐‘ 

๐‘Š = 0

๐‘ 

๐น โˆ™ ๐‘‘๐‘ 

๐‘Š = 0

๐‘ 

๐น โˆ™ ๐ถ๐‘œ๐‘ ๐œƒ โˆ™ ๐‘‘๐‘ 

๐‘Š = 0

๐‘ 

๐น โˆ™ ๐‘‘ ๐‘ 

more general

more generalwith angle

complete formas vector dot product

W=Area

Page 9: Scalars in mechanics

Work transforms energy

Scalars in mechanics 9

wikimedia

Page 10: Scalars in mechanics

Work transforms energy

Scalars in mechanics 10

wikimedia

Work by the resistant force of the target transforms kinetic energy of the arrow to heat in the target.

1 2 3

๐ธ๐‘โ„Ž ๐ธ๐‘ ๐ธ๐‘˜ ๐‘„

3

Work by the elastic force transforms elastic potential energy in the bow to kinetic energy of the arrow.

2

Work by the pulling force transforms chemical potential energy in master Kimโ€™s arm to elastic potential energy in the string.

1

Page 11: Scalars in mechanics

Gravitational (potential) energy

Scalars in mechanics 11

+โ„Ž1

โ„Ž2

๐‘š โˆ™ ๐‘”

๐น

๐‘Š = ๐น โˆ™ ๐‘  = ๐‘š โˆ™ ๐‘” โˆ™ โ„Ž2 โˆ’ โ„Ž1 = โˆ†๐ธ๐‘

To lift the object, the average lifting force needs to equal ๐‘š โˆ™ ๐‘”The lifting force performs positive workGravitational potential energy is built up

Strictly ๐ธ๐‘ = 0 at the Earthโ€™s centre.

Since this is not practical, we set ๐ธ๐‘ = 0 and โ„Ž = 0

at the lowest point in your context.

Page 12: Scalars in mechanics

Gravitational (potential) energy

Scalars in mechanics 12

โ„Ž1

โ„Ž2

๐‘š โˆ™ ๐‘”

๐น

๐‘š = 10๐‘˜๐‘”๐‘” = 9.81๐‘š๐‘ โˆ’2

โ„Ž1 = 5.0๐‘šโ„Ž2 = 7.0๐‘š

To lift the object from the floor to โ„Ž1, the lifting force performs work:๐‘Š = ๐‘š โˆ™ ๐‘” โˆ™ โ„Ž1 = 10 โˆ™ 9.81 โˆ™ 5.0 = 4.9 โˆ™ 10

2๐ฝ

Arrived at โ„Ž1the object has a potential energy ๐ธ๐‘ = 4.9 โˆ™ 102๐ฝ

To lift the object from โ„Ž1 to โ„Ž2, the lifting force performs work:๐‘Š = ๐‘š โˆ™ ๐‘” โˆ™ โ„Ž2 โˆ’ โ„Ž1 = 10 โˆ™ 9.81 โˆ™ 2.0 = 2.0 โˆ™ 102๐ฝ

Arrived at โ„Ž2the object has a new potential energy: ๐ธ๐‘ = 4.9 โˆ™ 10

2๐ฝ + 2.0 โˆ™ 102๐ฝ = 6.9 โˆ™ 102๐ฝ

Example

๐ธ๐‘ = 4.9 โˆ™ 102๐ฝ

๐ธ๐‘ = 6.9 โˆ™ 102๐ฝ

๐ธ๐‘ = 0

4.9 โˆ™ 102๐ฝWork done

2.0 โˆ™ 102๐ฝWork done

Page 13: Scalars in mechanics

Elastic (potential) energy

Scalars in mechanics 13

๐‘ 

๐น

๐น๐‘š๐‘Ž๐‘ฅ

๐น = ๐ถ โˆ™ ๐‘ 

๐‘ 

๐น๐‘š๐‘Ž๐‘ฅ2

๐‘Š = ๐น๐‘Ž๐‘ฃ๐‘” โˆ™ ๐‘  =1

2๐ถ โˆ™ ๐‘  โˆ™ ๐‘  =

1

2๐ถ๐‘ 2 = โˆ†๐ธ๐‘

To pull the object, the average pulling force equals 1

2๐ถ โˆ™ ๐‘ 

The pulling force performs positive workElastic potential energy is built up

๐‘ 

Page 14: Scalars in mechanics

Elastic (potential) energy

Scalars in mechanics 14

๐น = ๐ถ โˆ™ ๐‘ 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9 10

F (N

)

s (cm)

Example with spring ๐ถ = 0.20๐‘/๐‘๐‘š

The spring starts without potential energy: ๐ธ๐‘ = 0

To extend the spring 4.0 ๐‘๐‘š, the pulling force does work:

๐‘Š = ๐น๐‘Ž๐‘ฃ๐‘” โˆ™ ๐‘  =0 + 0.8

2โˆ™ 0.040 = 0.016๐ฝ

The spring then has a potential energy: ๐ธ๐‘ = 0.016๐ฝ

To extend the spring 3.0 ๐‘๐‘š more, the pulling force does work:

๐‘Š = ๐น๐‘Ž๐‘ฃ๐‘” โˆ™ ๐‘  =0.8 + 1.4

2โˆ™ 0.030 = 0.033๐ฝ

The spring then has a new potential energy: ๐ธ๐‘ = 0.016 + 0.033 = 0.049๐ฝ

Area =1st W

Area =2nd W

Page 15: Scalars in mechanics

Kinetic energy

Scalars in mechanics 15

๐‘ก

๐‘ฃ1

๐‘ก1 ๐‘ก2

๐‘ฃ2

โˆ†๐‘ฃ

โˆ†๐‘ก

Total work done on an object โ‰กWork done by the overall force !

ฮฃ๐‘Š = ฮฃ๐น โˆ™ ๐‘  = ๐‘š โˆ™ ๐‘Ž โˆ™ ๐‘ 

= ๐‘š โˆ™๐‘ฃ2 โˆ’ ๐‘ฃ1โˆ†๐‘ก

โˆ™๐‘ฃ2 + ๐‘ฃ12

โˆ™ โˆ†๐‘ก

= ๐‘š โˆ™โˆ†๐‘ฃ

โˆ†๐‘กโˆ™ ๐‘ฃ๐‘Ž๐‘ฃ๐‘” โˆ™ โˆ†๐‘ก

=๐‘š

2โˆ™ ๐‘ฃ2 โˆ’ ๐‘ฃ1 โˆ™ ๐‘ฃ2 + ๐‘ฃ1

=1

2๐‘š๐‘ฃ2

2 โˆ’1

2๐‘š๐‘ฃ1

2 = โˆ†๐ธ๐‘˜ฮฃ๐‘Š = ฮ”๐ธ๐‘˜

Page 16: Scalars in mechanics

2nd law of Newton (rephrased)

Scalars in mechanics 16

Vector mechanics: the acceleration of an object equals the overall force divided by its mass

Scalar mechanics: the increase of objectโ€™s kinetic energy equals the overall work done on the object

ฮฃ๐‘Š = ฮ”๐ธ๐‘˜

ฮฃ ๐น = ๐‘š ๐‘Ž

Page 17: Scalars in mechanics

Energy transfer & efficiency

Scalars in mechanics 17

Photo: wikimedia

Aggregate

GeneratorEfficiency ๐œ‚2

๐ธ๐‘โ„Ž

๐‘Š

๐‘„1

๐ธ๐‘’

๐‘„2

Chemical 100J Work 30J

Heat 70J

Heat 8J

Electric 22J

Flows out of the system

The engine converts chemical energy to work with an efficiency

๐œ‚1 =๐‘Š

๐ธ๐‘โ„Ž=30

100= 0.30 (30%)

The generator converts work to electrical energy with an efficiency

๐œ‚2 =๐ธ๐‘’๐‘Š=22

30= 0.73 (73%)

Overall efficiency =๐œ‚ = ๐œ‚1 โˆ™ ๐œ‚2 =

0.30 โˆ™ 0.73 = 0.22 (22%)

EngineEfficiency ๐œ‚1

Page 18: Scalars in mechanics

Energy conservation

Scalars in mechanics 18

EngineEfficiency ๐œ‚1

GeneratorEfficiency ๐œ‚2

๐ธ๐‘โ„Ž

๐‘Š

๐‘„1

๐ธ๐‘’

๐‘„2

Chemical 100J Work 30J

Heat 70J

Heat 8J

Electric 22J

Surrounding air

Aggregate

Closed system

Loss for the aggregate

First law of thermodynamics (energy conservation law): In a closed system the total energy is conserved

Page 19: Scalars in mechanics

Conservation of energy โ€“ Example I

Scalars in mechanics 19

A ball is thrown vertically upwards with a velocity of 8.0 m/s. Which height will the ball reach (above the point of release)?

๐ธ๐ด = ๐ธ๐ต๐ธ๐‘๐ด + ๐ธ๐‘˜๐ด = ๐ธ๐‘๐ต + ๐ธ๐‘˜๐ต

0 +1

2๐‘š๐‘ฃ๐ด

2 = ๐‘š๐‘”โ„Ž๐ต + 0

1

2๐‘ฃ๐ด2 = ๐‘”โ„Ž๐ต

1

2โˆ™ 8.02 = 9.81 โˆ™ โ„Ž๐ต

โ„Ž๐ต = 3.3๐‘š

Strategy:

Indicate 2 points:A = point of releaseB = highest point

Set โ„Ž = 0 in A (lowest point)So, in A there is NO potential energy

In B there is no kinetic energy

Solve the energy conservation law

B

A

๐‘ฃ๐ด

โ„Ž๐ด = 0

๐‘ฃ๐ต = 0

Solution:

Page 20: Scalars in mechanics

Conservation of energy โ€“ Example II

Scalars in mechanics 20

๐ธ๐ด = ๐ธ๐ต

๐ธ๐‘๐ด + ๐ธ๐‘˜๐ด = ๐ธ๐‘๐ต + ๐ธ๐‘˜๐ต

0 +1

2๐‘š๐‘ฃ๐ด

2 = ๐‘š๐‘”โ„Ž๐ต +1

2๐‘š๐‘ฃ๐ต

2

1

2๐‘ฃ๐ด2 = ๐‘”โ„Ž๐ต +

1

2๐‘ฃ๐ต2

1

2โˆ™ 8.02 = 9.81 โˆ™ 2.0 +

1

2โˆ™ ๐‘ฃ๐ต2

๐‘ฃ๐ต = 5.0๐‘š๐‘ โˆ’1

Strategy:

Indicate again 2 points:A = point of releaseB = highest point

Set โ„Ž = 0 in A (lowest point)So, in A there is NO potential energy

In B there is both potential and kinetic energy

Solve the energy conservation law

B

A

๐‘ฃ๐ด

โ„Ž๐ด = 0

Solution:

A ball is thrown upwards with a velocity of 8.0 m/s at a certain angle.The ball climbs 2.0 m. Calculate the magnitude of the velocity at the highest point

๐‘ฃ๐ต

โ„Ž๐ต

Page 21: Scalars in mechanics

Making work easier (but not less) - I

Scalars in mechanics 21

โ„Ž1

โ„Ž2

100๐‘˜๐‘” โˆ™ 9.81๐‘š๐‘ โˆ’2

๐น1

โˆ†โ„Ž = 2.0๐‘š๐น2 ๐‘ 

There is NO other force than weight.Only the vertical displacement requires work.

โˆ†๐ธ๐‘ = ๐น1 โˆ™ โˆ†โ„Ž = ๐น2 โˆ™ ๐‘ 

981๐‘ โˆ™ 2.0๐‘š = ๐น2 โˆ™ 6.0๐‘š

๐น2 = 3.3 โˆ™ 102๐‘

Feels like 33kg

Page 22: Scalars in mechanics

Making work easier (but not less) - II

Scalars in mechanics 22

= 40๐‘ 120๐‘

The pulley block carries the weight on 3 ropes.The load must be lifted 10 m up.

The weight is split in 3. One only needs to pull with 40๐‘ !

But!!

โˆ†๐ธ๐‘ = 120๐‘ โˆ™ 10๐‘š = 40๐‘ โˆ™ 30๐‘š

You need to haul in 30 m of rope

Page 23: Scalars in mechanics

Collisions

Scalars in mechanics 23

Elastic

Partlyinelastic

Before After ฮฃ ๐‘ ฮฃ๐ธ๐‘˜ฮฃ๐ธ

Conservation of

Totallyinelastic

+ heat

++ heat

Page 24: Scalars in mechanics

Power

Scalars in mechanics 24

๐‘ƒ =ฮ”๐ธ

ฮ”๐‘ก

Power is the rate of energy conversion

1๐‘Š๐‘Ž๐‘ก๐‘ก = 1๐ฝ/๐‘ 

๐‘ƒ =ฮ”๐‘Š

ฮ”๐‘ก=๐น โˆ™ โˆ†๐‘ 

โˆ†๐‘ก= ๐น โˆ™

โˆ†๐‘ 

โˆ†๐‘ก= ๐น โˆ™ ๐‘ฃ

Page 25: Scalars in mechanics

Power

Scalars in mechanics 25

๐น๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘

๐น๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘ฃ

A car travels at a constant velocity ๐‘ฃ. Newton: ๐น๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ = ๐น๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’

The required power to keep the car driving at this velocity equals:

๐‘ƒ =ฮ”๐‘Š

ฮ”๐‘ก=๐น๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ โˆ™ โˆ†๐‘ 

โˆ†๐‘ก= ๐น๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ โˆ™

โˆ†๐‘ 

โˆ†๐‘ก= ๐น๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ โˆ™ ๐‘ฃ = ๐น๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ โˆ™ ๐‘ฃ

Page 26: Scalars in mechanics

Power - Example

Scalars in mechanics 26

๐น๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘

๐น๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘ฃ

A BMW 7-series car has:Drag coefficient ๐ถ๐ท = 0.30Frontal area ๐ด = 2.2๐‘š2

Calculate the mechanical power required to drive 160 km/h.

๐‘ฃ = 160๐‘˜๐‘šโ„Žโˆ’1 =160

3.6๐‘š๐‘ โˆ’1 = 44.4๐‘š๐‘ โˆ’1

Density of air = 1.29 ๐‘˜๐‘”๐‘šโˆ’3

๐น๐‘Ž๐‘–๐‘Ÿ =1

2๐œŒ๐ด๐ถ๐ท๐‘ฃ

2 =1

2โˆ™ 1.29 โˆ™ 2.2 โˆ™ 0.30 โˆ™ 44.42

๐น๐‘Ž๐‘–๐‘Ÿ = 841๐‘

๐‘ฃ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก โ‡’ ๐น๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ = ๐น๐‘Ž๐‘–๐‘Ÿ

๐‘ƒ = ๐น๐‘Ž๐‘–๐‘Ÿ โˆ™ ๐‘ฃ = 841 โˆ™ 44.4 = 37 โˆ™ 103๐‘Š = 37๐‘˜๐‘Š

Solution

Page 27: Scalars in mechanics

Power & efficiency

Scalars in mechanics 27

๐œ‚ =๐ธ๐‘ข๐‘ ๐‘’๐‘“๐‘ข๐‘™

๐ธ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™=

๐ธ๐‘ข๐‘ ๐‘’๐‘“๐‘ข๐‘™ ๐‘ก

๐ธ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ก=๐‘ƒ๐‘ข๐‘ ๐‘’๐‘“๐‘ข๐‘™

๐‘ƒ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™

Efficiency can be related to a ratio of energies or a ratio of powers. Look at the context and choose!

Page 28: Scalars in mechanics

END

Scalars in mechanics 28

DisclaimerThis document is meant to be apprehended through professional teacher mediation (โ€˜live in classโ€™) together with a physics text book, preferably on IB level.