46
Karn Udomsangpetch Mahidol Wittayanusorn School Academic Year 2007 Representations of Fibonac ir Relation with the Golde Mathematical Department

RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Embed Size (px)

DESCRIPTION

He tenido que repetir este slide porque el original no se veía bien

Citation preview

Page 1: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Karn Udomsangpetch

Mahidol Wittayanusorn SchoolAcademic Year 2007

Geometric Representations of Fibonacci SequenceAnd Their Relation with the Golden Spiral

Mathematical Department

Page 2: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Project Mentors

Mr. Suwat Sriyotee

Ms. Rangsima Sairuttanatongkum

Page 3: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Fibonacci sequence has been the center of study for mathematicians worldwide for over the centuries. It possesses various properties, algebraically and geometrically.

This project aims at extending the knowledge regarding the geometric representation of the sequence by using other geometric shape; equilateral triangle, right triangle, square, pentagon, and hexagon.

Introduction

Page 4: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Moreover, the relationship between the newly created representations and the golden spiral, in which is related to the former representation, will also be studied.

The former representation has led to the discovery of new properties of Fibonacci sequence. It will be of highest honor should these new representations of this project pave a new route for others in unearthing new knowledge about the sequence.

Introduction

Page 5: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Objective

To construct new representations for Fibonacci sequence by using equilateral triangle, right triangle, square, pentagon, and hexagon respectively.

To study the relationship between the new representations and the golden spiral.

Page 6: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

The Geometer’s Sketchpad Microsoft Office Excel 2003 Compass Try Square and Straight Edge Graphing paper sheet

Programs and Equipments

Page 7: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

The representations are first designed and drawn on the graphing paper, using geometric method; translation, reflection, and rotation.

Calculate and search for the relationship with the golden spiral.

Construct the representations in The Geometer’s Sketchpad.

Conclude the result of the study.

Methods

Page 8: RepresentacióN De La Secuencia GeoméTrica De Fibonacci
Page 9: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

The golden ratio is an irrational number of the form which is about 1.61803

It is also the answer to the quadratic equation

Leading to the following properties

Golden Ratio

1 5

2

1 1 1 1

1

2 1 0x x

Page 10: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Golden Ratio in GeometryC

A B

D

AB

BC

1

1

1

1 1

21

Golden Rectangle

Inflation of Golden Rectangle

Page 11: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

1

1

11

1

1

1

11

1

Pentagon with 1 unit side length Golden Triangle

Golden Ratio in Geometry

Page 12: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Golden Spiral in Golden Rectangle and Triangle

Golden Spiral inscribed in golden rectangle and golden triangle

Page 13: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Fibonacci sequence has a recursive relation of the form

when and

The sequence is as follow

1, 1, 2, 3, 5, 8, 13, …

Fibonacci Sequence

2 1n n nF F F 1n 1 2 1F F

Page 14: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

7 8 1.60008 13 1.62509 21 1.6153

10 34 1.619011 55 1.617612 89 1.618113 144 1.617914 233 1.618015 377 1.6180

Ratio between Successive Terms

n nF 1n nF F

Page 15: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

1n nF F

n1110987654

1.7

1.6

1.5

1

lim n

nn

F

F

Ratio between Successive Terms

Page 16: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Whirling Rectangles Diagram

2

1

2

1

3

The diagram is constructed by using squares whose sizes correspond with each terms of Fibonacci sequence.

Page 17: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Whirling Rectangles Diagram

The diagram can be inscribed with a spiral. This spiral is called “Fibonacci Spiral”.

Page 18: RepresentacióN De La Secuencia GeoméTrica De Fibonacci
Page 19: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Fibonacci Spiral on Polar Coordinate

10 5 5

6

4

2

2

Page 20: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

2

2

OE

D

B

C A

1,

2,

4

OA OB

AD

BE

2 2

2 21 2

5 D

OD OA AD

r

ˆtan 2

ˆ arctan 2

arctan 2D

ADAOD

AO

AOD

The coordinate of D is 5, arctan 2

Fibonacci Spiral on Polar Coordinate

Page 21: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Point Polar CoordinateA

B

C

D

E

F

G

,r

1,0

1, 2

1,

5, arctan 2

117,arctan 4

137,arctan( )5 2

285,arctan( )9

Fibonacci Spiral on Polar Coordinate

Page 22: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

J

H

F

A

I G

E

DC

B

K

Geometric Representation from Squares

Page 23: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

J

H

F

A

I G

E

DC

B

K

รู�ปที่�� ความยาวด้ านสี่��เหลี่��ยมจั�ตุ�รู�สี่

2 1 13 2 24 3 35 5 46 8 5

nnF

2

2 2

3 2

5 2

8 2

Geometric Representation from Squares

Page 24: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

edge length2,3 13,4 14,5 25,6 3

, 1n n 1n nF F

AE 2

FG 2

HI 2 2

JK 3 2

J

H

F

A

I G

E

DC

B

K

Geometric Representation from Squares

Page 25: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

6

4

2

2

4

10 5 5

F

E

D

A

B

C

G

Geometric Representation from Squares

Page 26: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

2

2

O

E

D

A

B

C

1OA

2AD

2 2

2 21 2

5 D

OD OA AD

r

2ˆtan1

ˆ arctan 2

arctan 2D

ADAOD

AO

AOD

Geometric Representation from Squares

The coordinate of D is 5, arctan 2

Page 27: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Geometric Representation from Squares

Page 28: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Geometric Representation from Right Triangles

H

F

E

D

A

B

C

G

IJ

K

Starting from AHB and CHB whose side lengths are 1 unit, other triangles are created on the basis of the two triangles constructed before them.

Page 29: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

H A

B

CH

D

A

B

C

I

H

E

D

A

B

C

I

H

F

E

D

A

B

C

IJ

K

H

F

E

D

A

B

C

G

Geometric Representation from Right Triangles

Page 30: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Calculating in the same manner as the first representation, the relation with the spiral is as seen.

Geometric Representation from Right Triangles

Page 31: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

I

H

F

G

E

JD

A

CB

L K

Each triangles’ size correspond to each terms of Fibonacci sequence. Starting at BCD and BCA the representation is constructed.

Geometric Representation from Equilateral Triangles

Page 32: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

JD

A

CB

G

E

JD

A

CB

H

F

G

E

JD

A

CB

I

H

F

G

E

JD

A

CB

K

I

H

F

G

E

JD

A

CB

L K

Geometric Representation from Equilateral Triangles

Page 33: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

No relation is found between the representation and the spiral.

Geometric Representation from Equilateral Triangles

Page 34: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Geometric Representation from Pentagons

The construction starts with two 2 one-unit-pentagons. The representation whirls off in an anticlockwise direction.

Each of the pentagons’ sizes correspond with each terms of the Fibonacci sequence.

Page 35: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Geometric Representation from Pentagons

Page 36: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Calculate the coordinate of each reference points on the representation in the same manner as the former representations.

Geometric Representation from Pentagons

Page 37: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Geometric Representation from Hexagons

The construction starts with two 2 one-unit-hexagons. The representation whirls off in an anticlockwise direction.

Each of the hexagons’ sizes correspond with each terms of the Fibonacci sequence.

Page 38: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

1H

D

FA

I

G

B

C

E

1H

LD

FAK

JI

G

B

C

E

2

1H

M

N

LD

FAK

JI

G

B

C

E

2

1H

M

N

LD

FAK

JI

G

B

C

E

3

2

1H

M

N

LD

FAK

JI

G

B

C

E

Geometric Representation from Hexagons

Page 39: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Geometric Representation from Hexagons

Page 40: RepresentacióN De La Secuencia GeoméTrica De Fibonacci
Page 41: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Conclusion

From the experiment, it is found that squares, right triangles, equilateral triangles, pentagons, and hexagons can all be used to construct geometric representations of Fibonacci sequence with side lengths corresponding to each terms of the sequence. However, only the representations from squares and right triangles possess relationship with the golden spiral.

Page 42: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

DiscussionAlthough all the representations can be

successfully constructed, the processes are far more complicated than that of the whirling rectangle diagram. Moreover the relationship with the golden spiral is far less obvious than the former diagram.

The reason for the representations which share no relation with the spiral is that their turning angles are not 90 degree, while that of the spiral is exactly 90.

Page 43: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

SuggestionThis project can be extended in order to find a

generalized method in constructing the geometric representation of Fibonacci sequence for any n-gons shape. The representation from octagon has been constructed with slight error in the process as in the figure.

Page 44: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Suggestion

Page 45: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Reference

Dunlap, Richard A. (1997). The Golden Ratio and Fibonacci Numbers. 5th edition. Singapore: World Publishing Co. Pte. Ltd.Smith, Robert T. (2006). Calculus: Concepts & Connections. New York, NY. McGraw-Hill Publishing Companiess, Inc.Maxfield, J. E. & Maxfield, M. W. (1972). Discovering number theory. Philadelphia, PA: W. B. Saunders Co.Gardner, M. (1961). The second scientific American book of mathematical puzzles and diversions. New York, NY: Simon and Schuster.

Page 46: RepresentacióN De La Secuencia GeoméTrica De Fibonacci

Freitag, Mark. Phi: That Golden Number[Online]. Available http://jwilson.coe.uga.edu/EMT669/Student.Folders/Frietag.Mark/Homepag e/Goldenratio/

ggoldenrati.html. (2000)ERBAS, Ayhan K. Spira Mirabilis [Online]. Department of

Math Education: University of Georgia. http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Erbas/KURSATgeome trypro/golden%20spiral/llogspira-history.html

Reference