Click here to load reader

View

114Download

0

Embed Size (px)

Module8.3Lesson3ExamplesofDilations.notebook

1

May24,2016

5/24/25Lesson#33:ExamplesofDilationsHW:Page19#35andCRS18duetomorrow

Donow:CompletePage12#2usingOasthecenter(notO`)

Module8.3Lesson3ExamplesofDilations.notebook

2

May24,2016

0

280

Module8.3Lesson3ExamplesofDilations.notebook

3

May24,2016

Module8.3Lesson3ExamplesofDilations.notebook

4

May24,2016

Module8.3Lesson3ExamplesofDilations.notebook

5

May24,2016

How many points would you need to separate the circle into to draw an accurate dilated image? Page15

UseCompass

Module8.3Lesson3ExamplesofDilations.notebook

6

May24,2016

How many points would you need to separate the circle into to draw an accurate dilated image? Page15UseCompass

9

160

Module8.3Lesson3ExamplesofDilations.notebook

7

May24,2016

How many points would you need to separate the circle into to draw an accurate dilated image? Page15

0135

Module8.3Lesson3ExamplesofDilations.notebook

8

May24,2016

Would you be able to produce a circle as an image from the number of points used in this example?

Page15

Module8.3Lesson3ExamplesofDilations.notebook

9

May24,2016

What's wrong with using these points?

Module8.3Lesson3ExamplesofDilations.notebook

10

May24,2016

What about this image. Does it look like a circle?

Module8.3Lesson3ExamplesofDilations.notebook

11

May24,2016

The number of points to dilate that is enough is as many as are needed to produce a dilated image that looks like the original. For curved figures, like this circle, the more points you dilate the better. The location of the points you choose to dilate is also

important.

Module8.3Lesson3ExamplesofDilations.notebook

12

May24,2016

Page16UseCompass

18

118

Module8.3Lesson3ExamplesofDilations.notebook

13

May24,2016

Page16

Module8.3Lesson3ExamplesofDilations.notebook

14

May24,2016

Page16

0152

Module8.3Lesson3ExamplesofDilations.notebook

15

May24,2016

Page16

0144

Module8.3Lesson3ExamplesofDilations.notebook

16

May24,2016

Page16

Module8.3Lesson3ExamplesofDilations.notebook

17

May24,2016

What can we do to map this new triangle, triangle A'B'C', back to the original triangle? Be as specific as possible!

Page17

Module8.3Lesson3ExamplesofDilations.notebook

18

May24,2016

Reverseadilationbyusingascalefactorthat

isthemultiplicativeinverse(reciprocal)ofthefirstscale

Module8.3Lesson3ExamplesofDilations.notebook

19

May24,2016

OriginalDilationscalefactor: 2Scalefactortoreversethedilation:

OriginalDilationscalefactor: 17

Scalefactortoreversethedilation:

OriginalDilationscalefactor: 23

Scalefactortoreversethedilation:

Module8.3Lesson3ExamplesofDilations.notebook

20

May24,2016

Step 1- Measure the distances between point O and A and point O and A'.

|OA| = 6 units|OA'| = 2 units

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

58

Module8.3Lesson3ExamplesofDilations.notebook

21

May24,2016

Step 2- Compare the distances and create an equation! You want to now go from A' to A.

|OA| = 6 units|OA'| = 2 units

Think!!! What can I multiply |OA'| by to give me |OA|.

Module8.3Lesson3ExamplesofDilations.notebook

22

May24,2016

Ifafigureisdilatedbyscalefactor,r,tobringthedilatedfigurebacktotheoriginalsize,wemustdilateitbyascalefactorof.

Ifascalefactorisr=6,thenthebringadilatedfigurebacktotheoriginalsize,thescalefactormustequal________.

(reciprocal)

Module8.3Lesson3ExamplesofDilations.notebook

23

May24,2016

Page17

Module8.3Lesson3ExamplesofDilations.notebook

24

May24,2016

Page18

Module8.3Lesson3ExamplesofDilations.notebook

25

May24,2016

Page18

Module8.3Lesson3ExamplesofDilations.notebook

26

May24,2016

0

122

Module8.3Lesson3ExamplesofDilations.notebook

27

May24,2016

0

152

Module8.3Lesson3ExamplesofDilations.notebook

28

May24,2016

0

127

Module8.3Lesson3ExamplesofDilations.notebook

29

May24,2016

0

127

Module8.3Lesson3ExamplesofDilations.notebook

30

May24,2016

Module8.3Lesson3ExamplesofDilations.notebook

31

May24,2016

Module8.3Lesson3ExamplesofDilations.notebook

32

May24,2016

Page 1: Nov 14-9:08 AMPage 2: May 23-2:15 PMPage 3: May 23-2:18 PMPage 4: May 23-2:18 PMPage 5: Nov 21-10:21 AMPage 6: Nov 21-10:21 AMPage 7: Nov 21-10:21 AMPage 8: Nov 21-10:26 AMPage 9: Nov 21-10:26 AMPage 10: Nov 21-10:27 AMPage 11: Nov 21-10:27 AMPage 12: Nov 21-10:28 AMPage 13: Nov 21-10:28 AMPage 14: Nov 21-10:28 AMPage 15: Nov 21-10:28 AMPage 16: Nov 21-10:28 AMPage 17: Dec 2-10:00 AMPage 18: Oct 16-9:17 AMPage 19: Oct 16-9:54 AMPage 20: Nov 21-10:34 AMPage 21: Nov 21-10:38 AMPage 22: Nov 21-10:42 AMPage 23: Oct 15-8:26 AMPage 24: Oct 15-8:27 AMPage 25: Oct 15-8:27 AMPage 26: Oct 16-8:14 AMPage 27: Oct 16-8:14 AMPage 28: Oct 16-8:14 AMPage 29: Oct 16-8:14 AMPage 30: Oct 16-8:14 AMPage 31: May 23-2:20 PMPage 32: May 23-2:23 PM