Click here to load reader
View
114
Download
0
Embed Size (px)
Module8.3Lesson3ExamplesofDilations.notebook
1
May24,2016
5/24/25Lesson#33:ExamplesofDilationsHW:Page19#35andCRS18duetomorrow
Donow:CompletePage12#2usingOasthecenter(notO`)
Module8.3Lesson3ExamplesofDilations.notebook
2
May24,2016
0
280
Module8.3Lesson3ExamplesofDilations.notebook
3
May24,2016
Module8.3Lesson3ExamplesofDilations.notebook
4
May24,2016
Module8.3Lesson3ExamplesofDilations.notebook
5
May24,2016
How many points would you need to separate the circle into to draw an accurate dilated image? Page15
UseCompass
Module8.3Lesson3ExamplesofDilations.notebook
6
May24,2016
How many points would you need to separate the circle into to draw an accurate dilated image? Page15UseCompass
9
160
Module8.3Lesson3ExamplesofDilations.notebook
7
May24,2016
How many points would you need to separate the circle into to draw an accurate dilated image? Page15
0135
Module8.3Lesson3ExamplesofDilations.notebook
8
May24,2016
Would you be able to produce a circle as an image from the number of points used in this example?
Page15
Module8.3Lesson3ExamplesofDilations.notebook
9
May24,2016
What's wrong with using these points?
Module8.3Lesson3ExamplesofDilations.notebook
10
May24,2016
What about this image. Does it look like a circle?
Module8.3Lesson3ExamplesofDilations.notebook
11
May24,2016
The number of points to dilate that is enough is as many as are needed to produce a dilated image that looks like the original. For curved figures, like this circle, the more points you dilate the better. The location of the points you choose to dilate is also
important.
Module8.3Lesson3ExamplesofDilations.notebook
12
May24,2016
Page16UseCompass
18
118
Module8.3Lesson3ExamplesofDilations.notebook
13
May24,2016
Page16
Module8.3Lesson3ExamplesofDilations.notebook
14
May24,2016
Page16
0152
Module8.3Lesson3ExamplesofDilations.notebook
15
May24,2016
Page16
0144
Module8.3Lesson3ExamplesofDilations.notebook
16
May24,2016
Page16
Module8.3Lesson3ExamplesofDilations.notebook
17
May24,2016
What can we do to map this new triangle, triangle A'B'C', back to the original triangle? Be as specific as possible!
Page17
Module8.3Lesson3ExamplesofDilations.notebook
18
May24,2016
Reverseadilationbyusingascalefactorthat
isthemultiplicativeinverse(reciprocal)ofthefirstscale
Module8.3Lesson3ExamplesofDilations.notebook
19
May24,2016
OriginalDilationscalefactor: 2Scalefactortoreversethedilation:
OriginalDilationscalefactor: 17
Scalefactortoreversethedilation:
OriginalDilationscalefactor: 23
Scalefactortoreversethedilation:
Module8.3Lesson3ExamplesofDilations.notebook
20
May24,2016
Step 1- Measure the distances between point O and A and point O and A'.
|OA| = 6 units|OA'| = 2 units
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
0
1
2
3
4
5
58
Module8.3Lesson3ExamplesofDilations.notebook
21
May24,2016
Step 2- Compare the distances and create an equation! You want to now go from A' to A.
|OA| = 6 units|OA'| = 2 units
Think!!! What can I multiply |OA'| by to give me |OA|.
Module8.3Lesson3ExamplesofDilations.notebook
22
May24,2016
Ifafigureisdilatedbyscalefactor,r,tobringthedilatedfigurebacktotheoriginalsize,wemustdilateitbyascalefactorof.
Ifascalefactorisr=6,thenthebringadilatedfigurebacktotheoriginalsize,thescalefactormustequal________.
(reciprocal)
Module8.3Lesson3ExamplesofDilations.notebook
23
May24,2016
Page17
Module8.3Lesson3ExamplesofDilations.notebook
24
May24,2016
Page18
Module8.3Lesson3ExamplesofDilations.notebook
25
May24,2016
Page18
Module8.3Lesson3ExamplesofDilations.notebook
26
May24,2016
0
122
Module8.3Lesson3ExamplesofDilations.notebook
27
May24,2016
0
152
Module8.3Lesson3ExamplesofDilations.notebook
28
May24,2016
0
127
Module8.3Lesson3ExamplesofDilations.notebook
29
May24,2016
0
127
Module8.3Lesson3ExamplesofDilations.notebook
30
May24,2016
Module8.3Lesson3ExamplesofDilations.notebook
31
May24,2016
Module8.3Lesson3ExamplesofDilations.notebook
32
May24,2016
Page 1: Nov 14-9:08 AMPage 2: May 23-2:15 PMPage 3: May 23-2:18 PMPage 4: May 23-2:18 PMPage 5: Nov 21-10:21 AMPage 6: Nov 21-10:21 AMPage 7: Nov 21-10:21 AMPage 8: Nov 21-10:26 AMPage 9: Nov 21-10:26 AMPage 10: Nov 21-10:27 AMPage 11: Nov 21-10:27 AMPage 12: Nov 21-10:28 AMPage 13: Nov 21-10:28 AMPage 14: Nov 21-10:28 AMPage 15: Nov 21-10:28 AMPage 16: Nov 21-10:28 AMPage 17: Dec 2-10:00 AMPage 18: Oct 16-9:17 AMPage 19: Oct 16-9:54 AMPage 20: Nov 21-10:34 AMPage 21: Nov 21-10:38 AMPage 22: Nov 21-10:42 AMPage 23: Oct 15-8:26 AMPage 24: Oct 15-8:27 AMPage 25: Oct 15-8:27 AMPage 26: Oct 16-8:14 AMPage 27: Oct 16-8:14 AMPage 28: Oct 16-8:14 AMPage 29: Oct 16-8:14 AMPage 30: Oct 16-8:14 AMPage 31: May 23-2:20 PMPage 32: May 23-2:23 PM