355
MATEMATYKA Odkryj, zrozum, zastosuj... klasa 3, szkoła ponadgimnazjalna

Matematyka 3

Embed Size (px)

Citation preview

Page 1: Matematyka 3

MATEMATYKA

Odkryj, zrozum, zastosuj...klasa 3, szkoła ponadgimnazjalna

Page 2: Matematyka 3

Odkryj, zrozum, zastosuj...Podtytuł:Matematyka

Przedmiot:matematyka

Zespół autorski Politechniki Łódzkiej:Jacek Stańdo, Paweł Kwiatkowski, Henryk Dąbrowski , Hanna Drabik-Zalewska, Gertruda Gwóźdź-Łukawska, Agnieszka Zajączkowska , Krzysztof Kisiel, Grzegorz Kusztelak, Dorota Krawczyk - Stań-do, Magdalena Furmaniak, Kinga Pietrasik-Kulińska, Aneta Stasiak, Witold Walas, Wanda Człapińska,Mariusz Doliński, Maciej Furmaniak, Elżbieta Galewska , Kinga Gałązka, Magdalena Górajska, AnnaJeżewska, Dominik Kłys, Agata Krawczyk, Iwona Krawczyk-Kłys, Janusz Kuliński, Paweł Kuliński,Renata Kusztelak, Alicja Laskowska , Piotr Mazur , Bronisław Pabich, Dorota Palka-Rutkowska, JerzyPełczewski, Jolanta Piekarska, Marek Pisarski, Monika Potyrała , Dorota Rogowska , Alina Saganiak,Bartosz Sakowicz, Izabela Sakwa, Sławomir Sapanowski, Jolanta Schilling, Marzena Sławińska, To-masz Stasiak, Katarzyna Szczepaniak, Bożenna Szkopińska, Anna Warężak, Beata Wojciechowska iIzabella Żółtaszek

Format treści:E-podręcznik dla ucznia

Data wydania:11 kwietnia 2016

Typ szkoły:szkoła ponadgimnazjalna

Oznaczenia zadań:A - zadanie z minimalnego poziomu osiągnięcia efektu kształceniaB - zadanie z ogólnego poziomu osiągnięcia efektu kształceniaC - zadania z kreatywnego osiągnięcia efektu kształceniaK - zadanie do osiągnięcia kompetencji

- zadanie do wykonania w zeszycie

Oznaczenia treści:treści rozszerzające

oprawa metodyczna

Page 3: Matematyka 3

ISBN 978-83-65450-40-1E-podręcznik, po uzyskaniu akceptacji ministra właściwego do spraw oświaty i wychowania, zostałdopuszczony do użytku szkolnego na podstawie art. 22 c ust. 2 i 5 Ustawy z dnia 7 września 1991roku o systemie oświaty (Dz. U. Nr 95, poz. 425 z późn. zm.).

Rzeczoznawcy Ministerstwa Edukacji Narodowej:merytoryczno-dydaktyczni – dr hab. Maria Korcz, mgr Agnieszka Pfeiffer, dr hab. WacławZawadowskijęzykowy – dr Iwona Wanda Grygields. podręczników do kształcenia specjalnego – dr Jan Piotr Omieciński

Page 4: Matematyka 3

Spis treściRozdział 1. Stereometria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1. Punkty, proste i płaszczyzny w przestrzeni . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2. Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach . . . . . . . 381.3. Ostrosłup i jego własności . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591.4. Bryły obrotowe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1.4.1. Bryły obrotowe - walec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731.4.2. Bryły obrotowe - stożek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

1.5. Bryły w 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Rozdział 2. Elementy statystyki opisowej . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.1. Średnia, mediana, dominanta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092.2. Miary rozproszenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Rozdział 3. Kombinatoryka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.1. Liczba elementów zbioru skończonego . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333.2. Reguła mnożenia, reguła dodawania . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1513.3. Podzbiory zbioru skończonego (treść podstawowa) . . . . . . . . . . . . . . . . . . . . 1853.4. Podzbiory zbioru skończonego (treść rozszerzona) . . . . . . . . . . . . . . . . . . . . . 2013.5. Zadania . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Rozdział 4. Prawdopodobieństwo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

4.1. Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanieprawdopodobieństw zdarzeń losowych . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2254.2. Klasyczna definicja prawdopodobieństwa (treść rozszerzona) . . . . . . . . . . . . . . . 253

Słowniczek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255Rozdział 5. Odpowiedzi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Rozdział 6. O e-podręczniku . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Odkryj, zrozum, zastosuj...

3

Page 5: Matematyka 3

Rozdział 1. Stereometria

1.1. Punkty, proste i płaszczyzny w przestrzeniObraz przestrzeni, zgodny z tym, jaki tworzy oko ludzkie, jest przedstawiany w malarstwie lub

rysunku za pomocą zasad perspektywy. Dzięki temu sposobowi płaskiego odwzorowania jeste-

śmy w stanie wyobrazić sobie rzeczywisty kształt i wzajemne położenie przedstawianych obiek-

tów przestrzennych.

Takie kompleksowe podejście do związków między obiektami w przestrzeni nie będzie nam po-

trzebne. W kilku kolejnych rozdziałach będziemy badać jedynie wybrane własności pewnych figur

geometrycznych umieszczonych w przestrzeni trójwymiarowej.

W przedstawionych przykładach będziemy się starali przeprowadzić rozumowanie stosowne do

zadanej sytuacji przestrzennej. Wprowadzimy też niezbędne definicje, a kluczowe zależności mię-

dzy omawianymi obiektami podamy jako twierdzenia.

Stereometria

4

Page 6: Matematyka 3

Związki miarowe w figurach przestrzennych będziemy analizować za pomocą rysunków przedsta-

wionych na płaszczyźnie. Przyjmujemy znaną i stosowaną w praktyce szkolnej umowę, że modele

figur przestrzennych (które inaczej nazywamy bryłami) będziemy odwzorowywać na płaszczyźnie

według zasad rzutu równoległego. W ten sposób figury równoległe do kartki będą przystające do

ich obrazów narysowanych na kartce, a figury nierównoległe do kartki zmienią kształt.

Poniżej przedstawiony jest model sześcianu ABCDEFGH narysowany według powyższych zasad.

Jego ściany ABEF i CDHG leżą w płaszczyźnie równoległej do kartki, więc są narysowane jako kwa-

draty, a w przypadku pozostałych ścian narysowane są równoległoboki.

Punkty i proste w przestrzeni

W poniższych przykładach będziemy ilustrowali płaszczyznę w przestrzeni, prezentując jej wybra-

ną część, istotną dla prezentowanych rozważań. Zazwyczaj będzie to prostokąt wycięty z tej płasz-

czyzny. Na rysunku przedstawiona jest płaszczyzna p1 i leżące w niej dwa punkty A i B.

Przykład 1.Rozpatrzmy prostą AB na płaszczyźnie p1.

Zauważmy, że oprócz płaszczyzny p1 są jeszcze inne, w których leży prosta AB.

Punkty, proste i płaszczyzny w przestrzeni

5

Page 7: Matematyka 3

Rozpatrzmy teraz płaszczyznę p2 różną od p1, w której leży punkt A, ale nie leży w niej punkt

B.

Wtedy poza punktem A nie ma na prostej AB takiego punktu, który leży też w płaszczyźnie p2

.

Natomiast jeżeli punkt C leżący w płaszczyźnie p1 leży również w płaszczyźnie p2, to wszystkie

punkty prostej AC leżą zarówno w płaszczyźnie p1, jak i w płaszczyźnie p2.

Zauważmy, że:

• p1 jest jedyną płaszczyzną, do której należą wszystkie trzy punkty A, B i C,

• p1 jest jedyną płaszczyzną, do której należy prosta AB oraz punkt C,

• p1 jest jedyną płaszczyzną, do której należą proste AB i AC.

Uogólniając to spostrzeżenie, stwierdzimy, że płaszczyzna jest wyznaczona jednoznacznie

przez:

• trzy różne punkty niewspółliniowe (zatem stolik na trzech nogach postawiony na podło-

dze jest stabilny - nie będzie się chwiał),

• prostą i punkt, który do niej nie należy,

• dwie proste przecinające się.

Punkty, proste i płaszczyzny w przestrzeni

6

Page 8: Matematyka 3

Dwie płaszczyzny

Twierdzenie: o dwóch różnych płaszczyznachnierównoległych

Jeżeli dwie różne płaszczyzny p1 i p2 mają wspólne dwa różne punkty A i B, to prosta AB leży

zarówno w płaszczyźnie p1, jak i w płaszczyźnie p2. Mówimy wtedy, że prosta AB jest krawę-

dzią przecięcia tych płaszczyzn.

W przestrzeni istnieją również pary płaszczyzn, które nie mają punktów wspólnych.

Definicja: Różne płaszczyzny równoległe

Dwie różne płaszczyzny, które nie mają punktów wspólnych, nazywamy płaszczy-

znami równoległymi.

Możliwe są zatem trzy przypadki, opisujące wzajemne położenie dwóch płaszczyzn:

• dwie płaszczyzny pokrywają się (każdy punkt jednej płaszczyzny należy również do drugiej

płaszczyzny),

• dwie płaszczyzny przecinają się (ich częścią wspólną jest wtedy prosta),

• dwie płaszczyzny nie mają punktów wspólnych (są równoległe).

Punkty, proste i płaszczyzny w przestrzeni

7

Page 9: Matematyka 3

Uwaga. Rozpatrzmy dwie płaszczyzny równoległe p1 i p2 oraz płaszczyznę p3, która nie jest do nich

równoległa. Wówczas płaszczyzna p3 przecina każdą z płaszczyzn p1 oraz p2 wzdłuż prostej − od-

powiednio k lub l.

Te proste leżą w jednej płaszczyźnie p3, ale nie mają punktów wspólnych, ponieważ leżą w płasz-

czyznach równoległych p1 oraz p2. Oznacza to, że proste k i l są także równoległe.

Z drugiej strony: jeżeli w każdej z dwóch płaszczyzn równoległych p1 oraz p2 wybierzemy proste

równoległe odpowiednio k i l, to przez te proste przechodzi dokładnie jedna płaszczyzna.

Zatem płaszczyzna jest wyznaczona jednoznacznie również przez dwie proste równoległe.

Prosta i płaszczyzna

Definicja: prosta równoległa do płaszczyzny

Prosta, która nie leży w płaszczyźnie i nie ma z tą płaszczyzną punktów wspólnych,

jest równoległa do tej płaszczyzny.

Uwaga. Przyjmujemy, że każda prosta leżąca w płaszczyźnie jest także równoległa do tej płaszczy-

zny (jak np. prosta AB z poprzedniego przykładu, która leży w płaszczyźnie p1).

Punkty, proste i płaszczyzny w przestrzeni

8

Page 10: Matematyka 3

Definicja: prosta przebijająca płaszczyznę

Prosta, która nie leży w płaszczyźnie i nie jest do tej płaszczyzny równoległa, ma do-

kładnie jeden punkt wspólny z tą płaszczyzną. Mówimy, że prosta przebija płaszczy-

znę w tym punkcie.

Możliwe są zatem trzy przypadki, opisujące wzajemne położenie prostej i płaszczyzny:

• prosta leży na płaszczyźnie (każdy punkt prostej jest również punktem płaszczyzny),

• prosta przebija płaszczyznę (prosta ma dokładnie jeden punkt wspólny z płaszczyzną),

• prosta jest równoległa do płaszczyzny (prosta i płaszczyzna nie mają punktów wspólnych).

Przykład 2.Na rysunku przedstawiony jest graniastosłup trójkątny ABCDEF o podstawach ABC i DEF.

Rozpatrzmy płaszczyznę p1, w której leży podstawa ABC. Prosta AB leży w tej płaszczy-

źnie, prosta DE jest do niej równoległa, a prosta DC przebija płaszczyznę p1 w punkcie

C.

a)

Punkty, proste i płaszczyzny w przestrzeni

9

Page 11: Matematyka 3

Dwie proste w przestrzeni

Przypomnijmy, że dwie proste przecinające się oraz dwie różne proste równoległe leżą w jednej

płaszczyźnie.Istnieją w przestrzeni pary prostych, które nie mają punktów wspólnych i nie leżą w

jednej płaszczyźnie.

Rozpatrzmy płaszczyznę p2, w której leży ściana boczna BCFE. Prosta FC leży w tej

płaszczyźnie, prosta DA jest do niej równoległa, a prosta DB przebija płaszczyznę p2 w

punkcie B.

b)

Rozpatrzmy płaszczyznę p3, w której leżą punkty A, B oraz F. Trójkąt ABF jest płaskim

przekrojem graniastosłupa ABCDEF płaszczyzną p3. Prosta AB leży w tej płaszczyźnie,

prosta CF przebija ją w punkcie F, a prosta DE jest do płaszczyzny p3 równoległa.

c)

Punkty, proste i płaszczyzny w przestrzeni

10

Page 12: Matematyka 3

Przykład 3.Wybierzmy w przestrzeni punkty A i B oraz taki trzeci punkt C, który nie leży na prostej AB.

Płaszczyznę, którą wyznaczyły punkty A, B, C, oznaczmy przez p.

Rozpatrzmy teraz prostą k, która przebija płaszczyznę p w punkcie C i wybierzmy na prostej

k punkt D różny od C.

Pokażemy, że proste AB i CD nie mają punktów wspólnych.

Gdyby proste AB i CD miały punkt wspólny, to te dwie proste wyznaczałyby płaszczyznę. Po-

nieważ punkty A, B oraz C leżą w płaszczyźnie p, więc to właśnie p byłaby płaszczyzną wy-

znaczoną przez proste AB i CD. Jednakże punkt D nie leży w płaszczyźnie p, co oznacza, że

proste AB i CD nie mają punktów wspólnych i nie leżą w jednej płaszczyźnie. Proste AB i CD

są tak zwanymi prostymi skośnymi.

Definicja: proste skośne w przestrzeni

Dwie proste w przestrzeni, które nie leżą w jednej płaszczyźnie, nazywamy prostymi

skośnymi.

Przykład 4.Na rysunku przedstawiony jest prostopadłościan ABCDEFGH.

Punkty, proste i płaszczyzny w przestrzeni

11

Page 13: Matematyka 3

Wykażemy, że:

proste AB i DH są skośne

Rozpatrzmy płaszczyznę ściany ADHE. W tej płaszczyźnie leżą punkty A, D i H, nato-

miast punkt B w niej nie leży.

Zatem proste AB i DH są skośne.

a)

proste AE i BH są skośne

Rozpatrzmy płaszczyznę ściany ABFE. W tej płaszczyźnie leżą punkty A, B i E, nato-

miast punkt H w niej nie leży. Zatem proste AE i BH są skośne.

b)

Punkty, proste i płaszczyzny w przestrzeni

12

Page 14: Matematyka 3

Możliwe są zatem cztery następujące przypadki opisujące wzajemne położenie dwóch prostych w

przestrzeni:

• proste pokrywają się (każdy punkt jednej prostej należy również do drugiej),

• proste leżą w jednej płaszczyźnie i przecinają się w jednym punkcie,

• proste leżą w jednej płaszczyźnie i nie mają punktów wspólnych (są równoległe),

• proste nie leżą w jednej płaszczyźnie i nie mają punktów wspólnych (są skośne).

Prosta prostopadła do płaszczyzny. Kąt nachylenia

prostej do płaszczyzny

Omówimy teraz pojęcie prostej prostopadłej do płaszczyzny.

W wielu sytuacjach praktycznych użytkujemy sprzęty, w których działaniu widać zastosowanie

modelu pojęcia prostej prostopadłej do płaszczyzny. Każde skrzydła drzwi, okna (o ile nie są uchyl-

ne), bramy czy furtki muszą być zamocowane na zawiasach do pionowego, nieruchomego słupka

ościeżnicy (nazywanej też futryną). Fachowiec, który montuje taką ościeżnicę, musi sprawdzić, czy

słupek jest umocowany w pionie. Za pomocą odpowiednich narzędzi (np. poziomicy) weryfikuje

ustawienie słupka, korzystając z następującej zasady: słupek jest ustawiony pionowo, gdy zostało

ustalone, że jest on prostopadły do poziomu w dwóch różnych kierunkach. Kiedy słupek ościeżni-

cy jest zamocowany pionowo, to niezależnie od tego, jak odchylimy zamocowane do niego skrzy-

dła drzwi, zawsze będziemy mieli pewność, że są one ustawione właściwie (czyli prostopadle do

poziomu).

Formalnie pojęcie prostej prostopadłej do płaszczyzny wprowadzamy za pomocą następującej

definicji.

proste BH i DG są skośne

Rozpatrzmy płaszczyznę ściany DCGH, w której leżą punkty D, G i H. Punkt B nie leży

w płaszczyźnie wyznaczonej przez punkty D, G i H. Zatem proste BH i DG są skośne.

c)

Punkty, proste i płaszczyzny w przestrzeni

13

Page 15: Matematyka 3

Definicja: prostej prostopadłej do płaszczyzny

Prostą k, przebijającą płaszczyznę p w punkcie O nazywamy prostopadłą do tej

płaszczyzny, gdy prosta k jest prostopadła do każdej prostej leżącej w płaszczyźnie

p i przechodzącej przez punkt O.

Twierdzenie: o prostej prostopadłej do płaszczyzny

Rozpatrzmy płaszczyznę p oraz dwie zawarte w tej płaszczyźnie proste l i m, które przecinają

się w punkcie O. Jeżeli prosta k przebija płaszczyznę p w punkcie O tak, że jest prostopadła

zarówno do prostej m, jak i do prostej l, to jest ona prostopadła do każdej prostej leżącej w

płaszczyźnie p i przechodzącej przez punkt O.

Przykład 5.Wybierzmy na prostej k punkt K różny od O. Przez K’ oznaczmy punkt symetryczny do K

względem O.

Rozpatrzmy w płaszczyźnie p dwie proste:

• dowolną prostą n, która przechodzi przez punkt O i jest różna od każdej z prostych k i l,

• dowolną prostą s, która leży w płaszczyźnie p i nie przechodzi przez punkt O.

Przez L, M oraz N oznaczmy punkty, w których prosta s przecina proste odpowiednio l, m i

n.

Wtedy:

• w trójkącie KK’M prosta OM jest prostopadła do KK’ i przechodzi przez środek O tego

boku, zatem jest symetralną boku KK’. Oznacza to, że | MK | = | MK' | .

Punkty, proste i płaszczyzny w przestrzeni

14

Page 16: Matematyka 3

• w trójkącie KK’L prosta OL jest prostopadła do KK’ i przechodzi przez środek O tego bo-

ku, zatem jest symetralną boku KK’. Oznacza to, że | LK | = | LK' | .

Ponieważ | MK | = | MK' | oraz | LK | = | LK' | , więc na mocy cechy bok-bok-bok

stwierdzamy, że trójkąty MKL i MK’L są przystające. Stąd wynikają równości kątów:

| ?KML | = | ?K'ML | oraz | ?KLM | = | ?K'LM | .

Ponieważ | MK | = | MK' | oraz | ?KMN | = | ?K'MN | , więc na mocy cechy bok-kąt-

bok stwierdzamy, że trójkąty MKN i MK’N są przystające. Stąd | NK | = | NK' | , co ozna-

cza, że trójkąt KNK’ jest równoramienny. W tym trójkącie środkowa ON poprowadzona z

wierzchołka między ramionami jest prostopadła do podstawy KK’. Oznacza to, że prosta n

jest prostopadła do prostej k. To spostrzeżenie kończy dowód.

Uwaga. Ponieważ prosta KK’ jest prostopadła do płaszczyzny p, więc każda z płaszczyzn przecho-

dzących przez prostą KK’:

• płaszczyzna wyznaczona przez punkty K, K’ oraz M,

• płaszczyzna wyznaczona przez punkty K, K’ oraz N,

• płaszczyzna wyznaczona przez punkty K, K’ oraz L

jest prostopadła do płaszczyzny p.

Zatem dwie płaszczyzny nazywamy prostopadłymi, jeśli jedna przechodzi przez prostą prostopa-

dłą do drugiej.

Prowadząc prostopadłą na płaszczyznę p z punktu A leżącego poza tą płaszczyzną, przebijamy

płaszczyznę p w punkcie B. Długość odcinka AB wyznacza odległość punktu A od płaszczyzny p. Je-

żeli wybierzemy na płaszczyźnie p dowolny punkt P różny od B, to jego odległość od A jest większa

od długości odcinka AB, co natychmiast wynika z zastosowania twierdzenia Pitagorasa w trójkącie

prostokątnym ABP.

Punkty, proste i płaszczyzny w przestrzeni

15

Page 17: Matematyka 3

Punkt B nazywamy też rzutem prostokątnym punktu A na płaszczyznę p.

Równie oczywiste jest spostrzeżenie, że wszystkie punkty prostej równoległej do danej płaszczy-

zny są równoodległe od tej płaszczyzny.

Jeżeli natomiast dla pewnych dwóch punktów prostej odległości od płaszczyzny są różne, to ta

prosta przebija płaszczyznę.

Zauważmy, że rzutem prostokątnym dowolnej prostej k na płaszczyznę p jest prosta l, którą nie-

kiedy nazywa się śladem prostej k na płaszczyźnie p.

Punkty, proste i płaszczyzny w przestrzeni

16

Page 18: Matematyka 3

Przykład 6.Przy montażu terenowego masztu antenowego stosuje się tzw. odciągi. Są to zazwyczaj linki

stalowe o odpowiedniej wytrzymałości. Jeden koniec odciągu jest połączony z konstrukcją

masztu, a drugi – z podłożem. Do mocowania odciągu w praktyce stosuje się regulowane po-

łączenia przegubowe zarówno od strony podłoża, jak i masztu. Odciągi rozmieszcza się rów-

nomiernie wokół osi masztu, w grupach po trzy lub cztery. Żeby odciągi te jednakowo prze-

nosiły obciążenia poziome, należy zadbać również o to, aby były nachylone do płaszczyzny

podłoża pod takim samym kątem.

Pokażemy, że wszystkie te warunki są zrealizowane, gdy miejsca połączeń odciągów z fun-

damentem znajdują się w wierzchołkach wielokąta foremnego, wpisanego w okrąg o środku

znajdującym się w punkcie mocowania masztu do podłoża.

Rozpatrzmy model masztu z trzema odciągami (jak na rysunku).

Spójrzmy na płaszczyznę p, w której leżą punkty A, B, C i O. Punkty A, B, C znajdują się w

wierzchołkach trójkąta równobocznego, wpisanego w okręg o środku O.

Punkty, proste i płaszczyzny w przestrzeni

17

Page 19: Matematyka 3

Każdy z odcinków: OA, OB, OC jest rzutem prostokątnym odcinka odpowiednio: AW, BW

oraz CW na płaszczyznę p.

Ponieważ | AO | = | BO | = | CO | , więc na mocy cechy bok-kąt-bok trójkąty prosto-

kątne: AOW, BOW, COW są przystające. Oznacza to, że odcinki AW, BW oraz CW są równe,

a także równe są kąty: OAW, OBW, OCW.

Każdy z kątów: OAW, OBW, OCW uznajemy za kąt nachylenia prostej odpowiednio: AW, BW

oraz CW do płaszczyzny p.

Przyjmujemy bowiem następującą umowę.

Punkty, proste i płaszczyzny w przestrzeni

18

Page 20: Matematyka 3

Definicja: kąt nachylenia prostej do płaszczyzny

Rozpatrzmy płaszczyznę p oraz prostą k, która nie jest ani równoległa, ani prosto-

padła do płaszczyzny p. Kątem nachylenia prostej k do płaszczyzny p nazywamy kąt

ostry między tą prostą i jej rzutem prostokątnym l na płaszczyznę p.

Przykład 7.Rozpatrzmy model masztu OW z czterema odciągami AW, BW, CW oraz DW. Przy opisanych

wcześniej założeniach: czworokąt ABCD jest kwadratem, którego przekątne przecinają się w

punkcie O.

Ponieważ | AO | = | BO | = | CO | = | DO | , więc na mocy cechy bok-kąt-bok trój-

kąty prostokątne: AOW, BOW, COW oraz DOW są przystające. Oznacza to, że równe są kąty

nachylenia odcinków AW, BW, CW oraz DW do płaszczyzny, w której leży kwadrat ABCD.

Punkty, proste i płaszczyzny w przestrzeni

19

Page 21: Matematyka 3

Przykład 8.W graniastosłupie prawidłowym trójkątnym ABCDEF podstawami są trójkąty ABC i DEF. Za-

znaczymy kąt, pod jakim przekątna DB ściany bocznej ABCD jest nachylona do ściany bocz-

nej BCFE.

Wyznaczymy rzut prostokątny prostej BD na ścianę BCFE. Postawmy w tym celu graniasto-

słup na tej ścianie.

Zauważmy, że prosta BD przebija ścianę BCFE w punkcie B. Dany graniastosłup jest prosty,

zatem płaszczyzny ścian DEF i BCFE są prostopadłe. Ponadto trójkąt DEF jest równoboczny,

więc rzutem prostokątnym punktu D na ścianę BCFE jest punkt G – środek krawędzi EF. Za-

tem kątem α, pod jakim prosta DB jest nachylona do ściany BCFE, jest kąt DBG.

Punkty, proste i płaszczyzny w przestrzeni

20

Page 22: Matematyka 3

Twierdzenie o trzech prostych prostopadłych

Reguła: o trzech prostych prostopadłych

Rozpatrzmy płaszczyznę p oraz prostą k, która przebija tę płaszczyznę w punkcie P. Oznacz-

my przez l prostą, która jest rzutem prostokątnym prostej k na płaszczyznę p.

Wówczas dowolna prosta m leżąca w płaszczyźnie p jest prostopadła do prostej k wtedy i tyl-

ko wtedy, gdy jest prostopadła do prostej l.

DowódRozpatrzmy na prostej k punkt K różny od P. Jego rzutem prostokątnym jest punkt L, który

leży na prostej l.

Punkty, proste i płaszczyzny w przestrzeni

21

Page 23: Matematyka 3

Wtedy prosta KL jest prostopadła do płaszczyzny p, a więc każda płaszczyzna, która zawiera

prostą KL, jest prostopadła do p. Jedną z takich płaszczyzn jest ta, którą wyznaczają proste k

i l. Nazwijmy tę płaszczyznę p’.

Rozpatrzmy prostą n leżącą w płaszczyźnie p’, przechodzącą przez punkt P i równoległą do

KL.

Ponieważ prosta n jest prostopadła do płaszczyzny p, więc jest również prostopadła do pro-

stej m.

Zatem:

• jeżeli m jest także prostopadła do k, to jest prostopadła do płaszczyzny p’ (bo jest pro-

stopadła do dwóch prostych leżących w tej płaszczyźnie: n oraz k), zatem i do prostej l,

• jeżeli m jest także prostopadła do l, to jest prostopadła do płaszczyzny p’ (bo jest pro-

stopadła do dwóch prostych leżących w tej płaszczyźnie: n oraz l), zatem i do prostej k.

Oznacza to, że prosta m jest prostopadła do prostej k wtedy i tylko wtedy, gdy jest prostopa-

dła do prostej l.

To spostrzeżenie kończy dowód.

Punkty, proste i płaszczyzny w przestrzeni

22

Page 24: Matematyka 3

Przykład 9.Podstawą ostrosłupa ABCDW jest prostokąt ABCD. Krawędź boczna DW jest wysokością tego

ostrosłupa. Wykażemy, że wszystkie ściany boczne tego ostrosłupa są trójkątami prostokąt-

nymi.

Ponieważ krawędź boczna DW jest wysokością tego ostrosłupa, więc prosta DW jest prosto-

padła do płaszczyzny podstawy ABCD danego ostrosłupa. W szczególności DW jest prosto-

padła do prostych DA oraz DC, zatem trójkąty ADW i CDW są prostokątne.

Zauważmy ponadto, że:

• prosta AW przebija płaszczyznę podstawy ostrosłupa w punkcie A, a jej rzutem prosto-

kątnym na tę płaszczyznę jest prosta DA,

• prosta CW przebija płaszczyznę podstawy ostrosłupa w punkcie C, a jej rzutem prosto-

kątnym na tę płaszczyznę jest prosta DC.

Ponieważ ABCD jest prostokątem, więc prosta DA jest prostopadła do prostej AB, a prosta

DC jest prostopadła do prostej CB. Korzystając zatem z twierdzenia o trzech prostych prosto-

padłych, stwierdzamy, że:

• prosta AW jest prostopadła do prostej AB, co oznacza, że trójkąt ABW jest prostokątny,

• prosta CW jest prostopadła do prostej CB, co oznacza, że trójkąt BCW jest prostokątny.

W ten sposób wykazaliśmy, że wszystkie ściany boczne ostrosłupa ABCDW są trójkąta-

mi prostokątnymi.

Punkty, proste i płaszczyzny w przestrzeni

23

Page 25: Matematyka 3

Kąt między dwiema płaszczyznami

Podamy teraz sposób, według którego mierzymy kąt nachylenia płaszczyzny q do płaszczyzny p,

gdy te płaszczyzny nie są ani równoległe, ani prostopadłe.

W tym celu z dowolnego punktu P wybranego na krawędzi k tych płaszczyzn (czyli na prostej,

wzdłuż której przecinają się płaszczyzny p i q) prowadzimy w każdej z tych płaszczyzn prostą pro-

stopadłą do krawędzi k – oznaczmy te proste przez l i m. Mniejszy z kątów utworzonych przez

proste l i m nazywamy kątem nachylenia płaszczyzny p do płaszczyzny q.

Praktycznie dla zmierzenia takiego kąta nachylenia wystarczy zatem zaznaczyć dwie prostopadłe

do krawędzi półproste w stosownych do sytuacji półpłaszczyznach i zmierzyć kąt między nimi.

W tej sytuacji warto przypomnieć pomysł z wcześniejszego przykładu – po otwarciu drzwi zamo-

cowanych do pionowego słupka ościeżnicy możemy, stosując powyższy przepis, bez kłopotu zmie-

rzyć kąt, o jaki skrzydła tych drzwi odchyliły się od płaszczyzny, w której zamocowana jest oścież-

nica.

Przykład 10.Wróćmy do modelu, rozpatrywanego w przykładzie 7. Wykażemy, że każda z czterech płasz-

czyzn ścian bocznych ostrosłupa ABCDW jest nachylona pod tym samym kątem do płaszczy-

zny podstawy ABCD.

• sposób I

Rozpatrzmy dwie płaszczyzny: płaszczyznę p, w której leży kwadrat ABCD, oraz płaszczyznę

q1, w której leżą punkty B, C i W. Oznaczmy przez E środek odcinka BC.

Narysujmy trójkąt BCW na płaszczyźnie, na której leży kwadrat ABCD.

Punkty, proste i płaszczyzny w przestrzeni

24

Page 26: Matematyka 3

Zauważmy, że

• ponieważ punkty B i C są równo oddalone od punktu O, więc O leży na symetralnej od-

cinka BC,

• ponieważ punkty B i C są równo oddalone od punktu W, więc W leży na symetralnej od-

cinka BC.

Zatem w punkcie E, symetralna OW przecina pod kątem prostym odcinek BC.

Oznacza to, że mierząc kąt OEW (oznaczony na rysunku jako α), dowiemy się, pod jakim

kątem płaszczyzna q1 jest nachylona do płaszczyzny p.

Rozpatrzmy z kolei płaszczyzny:

• q2 – w której leżą punkty C, D i W,

• q3 – w której leżą punkty D, A i W,

• q4 – w której leżą punkty A, B i W.

Oznaczmy też środki odcinków CD, DA oraz AB przez odpowiednio F, G oraz H.

Narysujmy teraz każdy z trójkątów: ABW, BCW, CDW i DAW na płaszczyźnie, na której leży

kwadrat ABCD.

Punkty, proste i płaszczyzny w przestrzeni

25

Page 27: Matematyka 3

Rozumując podobnie jak w przypadku płaszczyzn p i q1, stwierdzamy, że:

• kąt nachylenia płaszczyzny q2 do płaszczyzny p ma miarę taką, jak kąt OFW,

• kąt nachylenia płaszczyzny q3 do płaszczyzny p ma miarę taką, jak kąt OGW,

• kąt nachylenia płaszczyzny q4 do płaszczyzny p ma miarę taką, jak kąt OHW.

Ponieważ trójkąty OEW, OFW, OGW oraz OHW mają równe przyprostokątne (są to wysoko-

ści przystających trójkątów równoramiennych ABW, BCW, CDW oraz DAW), a także równe

są odcinki OE, OF, OG oraz OH, to te trójkąty są przystające. Zatem kąty OEW, OFW, OGW

i OHW są równe. Stąd równe są kąty nachylenia płaszczyzn q1, q2, q3 oraz q4 do płaszczyzny

p.

• sposób II

Tym razem pokażemy, że przy ustalaniu miar omawianych kątów dwuściennych można sko-

rzystać z twierdzenia o trzech prostych prostopadłych.

Zauważmy, że prosta OW jest prostopadła do płaszczyzny p, w której leży kwadrat ABCD. Pro-

sta WE przebija płaszczyznę p w punkcie E. Rzutem prostokątnym prostej WE na płaszczyznę

p jest prosta OE. Ponieważ prosta WE jest prostopadła do prostej BC (bo WE jest wysokością

w trójkącie równoramiennym BCW), więc na podstawie twierdzenia o trzech prostych pro-

stopadłych jest również prostopadła do prostej OE. Zatem kąt OEW opisuje kąt nachylenia

płaszczyzny q1 do płaszczyzny p.

Punkty, proste i płaszczyzny w przestrzeni

26

Page 28: Matematyka 3

Korzystając z twierdzenia o trzech prostych prostopadłych, opisujemy kąty nachylenia płasz-

czyzn q2, q3, q4 do płaszczyzny p jako kąty OFW, OGW i OHW. W trójkątach

OEW, OFW, OGW i OHW przyprostokątna OW jest wspólna, a przeciwprostokątne

EW, FW, GW i HW są równe, więc te trójkąty są przystające. Stąd równe są kąty nachylenia

płaszczyzn q1, q2, q3 oraz q4 do płaszczyzny p.

Uwaga.

Podobne rozumowanie pozwala stwierdzić, że w dowolnym ostrosłupie prawidłowym równe

są kąty, pod jakimi każda ze ścian bocznych jest nachylona do płaszczyzny podstawy. W każ-

dym takim ostrosłupie spodek O wysokości poprowadzonej z wierzchołka W ostrosłupa na

podstawę jest bowiem środkiem okręgu opisanego na tej podstawie. Równe są także wyso-

kości ścian bocznych takiego ostrosłupa. Zatem z twierdzenia o trzech prostych prostopa-

dłych otrzymujemy przystawanie trójkątów, w których jeden z kątow ostrych ma miarę kąta

nachylenia ściany bocznej do podstawy. Stąd te kąty nachylenia są równe.

Przykład 11.Podstawą ostrosłupa ABCDW jest kwadrat ABCD. Punkt E jest środkiem krawędzi AD, odci-

nek EW jest wysokością ostrosłupa.

Zaznaczymy kąty nachylenia ścian bocznych: ABW, BCW, CDW oraz DAW tego ostrosłupa

do płaszczyzny podstawy ABCD.

Punkty, proste i płaszczyzny w przestrzeni

27

Page 29: Matematyka 3

Ponieważ prosta WE jest prostopadła do płaszczyzny podstawy ABCD, więc ściana DAW jest

również prostopadła do tej płaszczyzny.

Prosta EA jest rzutem prostokątnym prostej WA na płaszczyznę podstawy ABCD. Ponieważ

podstawą jest kwadrat ABCD, więc prosta EA jest prostopadła do prostej AB. Zatem na pod-

stawie twierdzenia o trzech prostych prostopadłych także prosta WA jest prostopadła do pro-

stej AB. Oznacza to, że kąt WAE jest kątem nachylenia płaszczyzny ściany WAB do płaszczy-

zny podstawy ABCD.

Prosta ED jest rzutem prostokątnym prostej WD na płaszczyznę podstawy ABCD. Proste ED

i DC są prostopadłe, zatem na podstawie twierdzenia o trzech prostych prostopadłych rów-

nież prosta WD jest prostopadła do prostej DC. Oznacza to, że kąt WDE jest kątem nachyle-

nia płaszczyzny ściany WDC do płaszczyzny podstawy ABCD.

Zauważmy, że w przypadku tego ostrosłupa kąty nachylenia dwóch ścian: ABW oraz CDW

do płaszczyzny podstawy ABCD zmierzyliśmy za pomocą kątów płaskich odpowiednio: WAD

i WDA w ścianie DAW.

Punkty, proste i płaszczyzny w przestrzeni

28

Page 30: Matematyka 3

Oznaczmy środek krawędzi BC przez F. Wtedy prosta EF jest rzutem prostokątnym prostej

WF na płaszczyznę podstawy ABCD. Proste EF i BC są prostopadłe, zatem na podstawie twier-

dzenia o trzech prostych prostopadłych również prosta WF jest prostopadła do prostej BC.

Oznacza to, że kąt WFE jest kątem nachylenia płaszczyzny ściany WBC do płaszczyzny pod-

stawy ABCD.

Odkładając każdy z trójkątów: ABW, BCW, CDW oraz DAW na płaszczyznę kwadratu ABCD,

otrzymamy następującą siatkę ostrosłupa ABCDW.

Punkty, proste i płaszczyzny w przestrzeni

29

Page 31: Matematyka 3

Przykład 12.Rozpatrzmy ostrosłup prawidłowy czworokątny ABCDW.

Płaszczyzny ścian ABW oraz CDW mają punkt wspólny W, zatem przecinają się wzdłuż pewnej

prostej przechodzącej przez W. Zaznaczymy krawędź k przecięcia tych płaszczyzn.

Zauważmy, że proste AB i CD są równoległe. Zatem prosta k przechodząca przez W i równo-

legła do jednej z nich jest równoległa także do drugiej.

Oznacza to, że prosta k

• jest równoległa do prostej AB i przechodzi przez punkt W, zatem leży w płaszczyźnie

ściany ABW,

• jest równoległa do prostej CD i przechodzi przez punkt W, zatem leży w płaszczyźnie

ściany CDW.

Płaszczyzny tych ścian nie są, oczywiście, równoległe, zatem prosta k jest szukaną krawędzią

przecięcia płaszczyzn ścian ABW i CDW.

Punkty, proste i płaszczyzny w przestrzeni

30

Page 32: Matematyka 3

Przykład 13.Podstawą ostrosłupa czworokątnego ABCDW jest trapez równoramienny ABCD, w którym

podstawa AB jest krótsza od podstawy CD.

Płaszczyzny ścian ADW oraz BCW mają punkt wspólny W, zatem przecinają się wzdłuż pewnej

prostej przechodzącej przez W. Zaznaczymy krawędź przecięcia tych płaszczyzn.

Zauważmy, że proste AD i BC nie są równoległe. Zatem punkt E, w którym te proste się prze-

cinają, leży jednocześnie w płaszczyźnie ściany ADW (bo każdy punkt prostej AD leży w tej

płaszczyźnie) oraz w płaszczyźnie ściany BCW (bo każdy punkt prostej BC leży w tej płaszczy-

źnie).

Mamy zatem dwa punkty E i W, które należą jednocześnie do płaszczyzny każdej ze ścian:

ADW oraz BCW. Punkty te leżą więc na krawędzi, wzdłuż której przecinają się płaszczyzny

tych ścian. Oznacza to, że prosta WE jest szukaną krawędzią.

Punkty, proste i płaszczyzny w przestrzeni

31

Page 33: Matematyka 3

Przykład 14.Na krawędziach CG oraz HE sześcianu ABCDEFGH wybrano punkty odpowiednio K i L.

Zaznaczymy płaski przekrój tego sześcianu płaszczyzną p, do której należą punkty B, K oraz

L.

Do płaszczyzny tego przekroju należy prosta BK. Oznaczmy przez M punkt przecięcia tej pro-

stej z krawędzią FG, wzdłuż której przecinają się płaszczyzny ścian BCGF oraz EHGF. Zatem

punkt M należy do płaszczyzny p, a także leży w płaszczyźnie ściany EHGF. W tej płaszczy-

źnie leży też punkt L, który należy do płaszczyzny przekroju. Oznacza to, że prosta ML należy

do płaszczyzny p. Oznaczmy przez P punkt, w którym prosta ML przecina krawędź EF mię-

dzy płaszczyznami GHEF oraz BAEF. Punkt P należy do płaszczyzny przekroju, a także leży w

płaszczyźnie ściany ABFE. W tej płaszczyźnie leży również punkt B, który należy do płaszczy-

zny p. Zatem prosta PB należy do płaszczyzny przekroju.

Oznaczmy przez N punkt, w którym prosta PM przecina krawędź GH, a przez Q – punkt, w

którym prosta PB przecina krawędź AE.

Wobec tego płaskim przekrojem sześcianu płaszczyzną p, do której należą punkty B, K oraz

L jest pięciokąt BKNLQ.

Punkty, proste i płaszczyzny w przestrzeni

32

Page 34: Matematyka 3

Zauważmy, że proste BK i QL leżą w płaszczyznach równoległych ścian odpowiednio BCGF i

ADHE danego sześcianu. Zatem te proste nie mają punktów wspólnych, a więc są skośne lub

równoległe. Jednocześnie obie te proste leżą w płaszczyźnie p, co oznacza że, są to proste

równoległe.

Rozumując podobnie, można uzasadnić twierdzenie o dwóch płaszczyznach równoległych

przeciętych płaszczyzną.

Twierdzenie: o dwóch płaszczyznach równoległychprzeciętych płaszczyzną

Jeżeli płaszczyzna przecina każdą z dwóch płaszczyzn równoległych, to otrzymane krawędzie

przecięcia są prostymi równoległymi.

Przykład 15.Na podstawie tego twierdzenia stwierdzamy, że również proste BQ i NK są równoległe –

otrzymujemy je w wyniku przecięcia płaszczyzną p dwóch równoległych płaszczyzn: płaszczy-

zny ściany ABFE oraz płaszczyzny ściany CDHG.

Zatem pięciokąt BKNLQ ma dwie pary boków równoległych: BQ | | NK oraz BK | | QL.

Punkty, proste i płaszczyzny w przestrzeni

33

Page 35: Matematyka 3

Przykład 16.Rozpatrzmy sześcian ABCDEFGH, którego krawędź ma długość a. Wykorzystując spostrze-

żenia poczynione w poprzednim przykładzie, można wykazać, że płaski przekrój sześcianu

płaszczyzną p, do której należą środki K, L, M krawędzi, odpowiednio EH, HG oraz GC (zo-

bacz rysunek), jest sześciokątem foremnym.

Do tego przekroju należy bowiem prosta równoległa do prostej KL i przechodząca przez

punkt M. Ta prosta przecina krawędź AE w jej środku N.

Ponieważ ściany ADHE i BCGF są równoległe, więc płaszczyzna p przecina ścianę BCGF

wzdłuż prostej równoległej do KN i przechodzącej przez punkt M. Ta prosta przecina krawędź

BC w jej środku P.

Rozumując podobnie, pokazujemy, że do płaszczyzny przekroju należy prosta równoległa do

prostej KL i przechodząca przez punkt P. Ta prosta przecina krawędź AB w jej środku Q.

Punkty, proste i płaszczyzny w przestrzeni

34

Page 36: Matematyka 3

Zatem przekrojem danego sześcianu jest sześciokąt KLMPQN.

Jego wierzchołki są środkami sześciu krawędzi sześcianu, więc każdy z boków tego sze-

ściokąta ma długośća√2

2 . Zauważmy też, że każda z przekątnych PK, QL i NM sześciokąta

KLMPQN jest odcinkiem łączącym środki przeciwległych (nieskośnych) krawędzi sześcianu,

zatem jest równa przekątnej ściany sześcianu. Stąd każda z tych przekątnych ma długość

a√2. Oznaczmy przez S punkt, w którym przecinają się przekątne PK i QL. Ponieważ czworo-

kąt KLPQ jest równoległobokiem (KL | | PQ oraz | KL | = | PQ | =a√2

2 ), więc S jest środ-

kiem każdego z odcinków PK, QL. Rozumując podobnie, pokazujemy, że czworokąt LMQN

również jest równoległobokiem, co oznacza, że S jest także środkiem odcinka NM. Wobec

tego przekątne PK, QL i NM dzielą sześciokąt KLMPQN na sześć trójkątów równobocznych o

bokua√2

2 . To spostrzeżenie kończy dowód - sześciokąt KLMPQN jest foremny.

Podamy jeszcze jeden sposób uzasadnienia, że sześciokąt KLMPQN jest foremny.

Rozpatrzmy proste KL, MP oraz NQ. Ponieważ leżą one w jednej płaszczyźnie, więc:

• proste KL i MP przecinają się w punkcie X, leżącym na krawędzi FG między płaszczyzna-

mi ścian BCGF oraz EHGF,

• proste MP i QN przecinają się w punkcie Y, leżącym na krawędzi FB między płaszczyzna-

mi ścian CGFB oraz AEFB,

Punkty, proste i płaszczyzny w przestrzeni

35

Page 37: Matematyka 3

• proste QN i KL przecinają się w punkcie Z, leżącym na krawędzi FE między płaszczyzna-

mi ścian GHEF oraz BAEF.

W płaszczyźnie ściany EFGH, na prostej KL leżą punkty X oraz Z.

Ponieważ K i L są środkami krawędzi odpowiednio HG i HE, więc trójkąt HKL jest trój-

kątem prostokątnym i równoramiennym. Zatem w trójkątach prostokątnych KGX i LEZ

kąty ELZ oraz XKG są równe 45 ° , co oznacza, że są to trójkąty równoramienne. Wobec

tego każdy z nich jest przystający do trójkąta HKL. Stąd wynika, że

| XK | = | KL | = | LZ | = √22 a, a więc | XZ | = 3 | KL | =

3√22 a.

Rozumując podobnie pokazujemy, że:

• | XM | = | MP | = | PY | = √22 a, stąd | XY | =

3√22 a,

• | YQ | = | QN | = | NZ | = √22 a, stąd | YZ | =

3√22 a.

Trójkąt XYZ jest więc równoboczny i ma bok długości3√2

2 a. Każdy z trójkątów XML, YPQ oraz

ZKN jest też równoboczny i ma bok długości √22 a. To oznacza, że w sześciokącie KLMPQN każ-

dy z boków jest równy √22 a i każdy z kątów wewnętrznych ma miarę 120 ° Zatem sześciokąt

KLMPQN jest foremny.

Zauważmy przy okazji, że jeżeli płaski przekrój sześcianu jest czworokątem, to płaszczyzna

tego przekroju przecina pewne cztery ściany sześcianu. Ponieważ w sześcianie są trzy pary

Punkty, proste i płaszczyzny w przestrzeni

36

Page 38: Matematyka 3

ścian równoległych, więc wśród tych czterech ścian sześcianu pewne dwie są równoległe. Za-

tem przekrój ten jest trapezem. W szczególności może być rombem, a także może być pro-

stokątem.

Punkty, proste i płaszczyzny w przestrzeni

37

Page 39: Matematyka 3

1.2. Graniastosłup prosty i jego własności. Związkimiarowe w graniastosłupach

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

38

Page 40: Matematyka 3

Definicja: Graniastosłup prosty

Graniastosłup prosty to taki wielościan, którego dwie przystające ściany (podstawy

graniastosłupa) są położone w równoległych płaszczyznach, a pozostałe ściany są

prostokątami.

Aplikacja na epodreczniki.pl

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

39

Page 41: Matematyka 3

Film na epodreczniki.pl

Przykład 1.

Film na epodreczniki.pl

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

40

Page 42: Matematyka 3

Ważne

Podstawą graniastosłupa może być trójkąt, czworokąt i sześciokąt.

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

41

Page 43: Matematyka 3

Ważne

Jeżeli podstawą graniastosłupa jest wielokąt foremny (trójkąt równoboczny, kwadrat, pięcio-

kąt foremny itd.), to mówimy, że taki graniastosłup jest prawidłowy.

Film na epodreczniki.pl

Graniastosłup, którego podstawą jest prostokąt, nazywać będziemy prostopadłościanem.

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

42

Page 44: Matematyka 3

Odcinki w prostopadłościanie

Aplikacja na epodreczniki.pl

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

43

Page 45: Matematyka 3

Kąty w prostopadłościanie

Aplikacja na epodreczniki.pl

Film na epodreczniki.pl

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

44

Page 46: Matematyka 3

Przekroje w prostopadłościanie

Ważne

Sześcian to taki prostopadłościan, którego wszystkie ściany są kwadratami.

Przykład 2.Krawędź sześcianu jest równa 6 cm. Obliczymy długość przekątnej sześcianu.

Aplikacja na epodreczniki.pl

Zauważ, że jeśli podobne obliczenia wykonamy dla dowolnego sześcianu o krawędzi a, to otrzy-

mamy wzór na przekątne sześcianu.

Zapamiętaj

Przekątna sześcianu o krawędzi a jest równa

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

45

Page 47: Matematyka 3

d = a√3

Siatka sześcianu

Film na epodreczniki.pl

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

46

Page 48: Matematyka 3

Siatka sześcianu

Film na epodreczniki.pl

Siatka prostopadłościanu

Film na epodreczniki.pl

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

47

Page 49: Matematyka 3

Siatka prostopadłościanu

Film na epodreczniki.pl

Siatka graniastosłupa

Film na epodreczniki.pl

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

48

Page 50: Matematyka 3

Siatka graniastosłupa

Film na epodreczniki.pl

Przykład 3.Punkty M i K są środkami krawędzi sześcianu. Obliczymy pole powierzchni czworokąta ABKM

.

Odcinki AB i MK leżą na płaszczyznach równoległych i są sobie równe. Podobnie odcinki

AM ? BK oraz | AM | = | BK | . Ponadto odcinek BK leży na płaszczyźnie prostopadłej do

podstawy sześcianu i jest prostopadły do krawędzi AB. Wynika z tego, że czworokąt ABKM

jest prostokątem. Obliczymy długości boków prostokąta ABKM.

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

49

Page 51: Matematyka 3

Aplikacja na epodreczniki.pl

Pole powierzchni całkowitej i objętość

graniastosłupa.

Zapamiętaj

Pole powierzchni całkowitej graniastosłupa jest równe

Pc = 2 ∙ Pp + Pb

gdzie Pp oznacza pole podstawy graniastosłupa, a Pb – pole powierzchni bocznej.

W szczególności pole całkowite

• prostopadłościanu o krawędziach a, b, c jest równe

Pc = 2(ab + ac + bc)• sześcianu o krawędzi a jest równe

Pc = 6a2

• graniastosłupa prawidłowego czworokątnego o krawędzi podstawy a i wysokości H jest

równe

Pc = 2a2 + 4aH

Zapamiętaj

Objętość graniastosłupa jest równa

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

50

Page 52: Matematyka 3

V = Pp ∙ H

gdzie Pp oznacza pole podstawy graniastosłupa, a H – wysokość bryły.

W szczególności objętość

• prostopadłościanu o krawędziach a, b, c jest równa V = abc

• sześcianu o krawędzi a jest równa

V = a3

• graniastosłupa prawidłowego czworokątnego o krawędzi podstawy a i wysokości H jest

równa

V = a2 ∙ H

Przykład 4.Przekątna podstawy sześcianu ma długość 12. Oblicz pole powierzchni całkowitej i objętość

sześcianu.

Przekątna kwadratu jest równa a√2, zatem otrzymujemy równanie a√2 = 12, czyli a = 6√2.

Wynika z tego, że objętość sześcianu jest równa

V = a3 = (6√2)3

= 432√2

a pole powierzchni całkowitej

Pc = 6a2 = 6 ∙ (6√2)2

= 432

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

51

Page 53: Matematyka 3

Przykład 5.W graniastosłupie prawidłowym czworokątnym przekątna podstawy ma długość 6 cm, a

przekątna ściany bocznej 10 cm. Obliczymy pole powierzchni całkowitej graniastosłupa.

Aplikacja na epodreczniki.pl

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

52

Page 54: Matematyka 3

Przykład 6.Oblicz pole powierzchni całkowitej graniastosłupa prawidłowego czworokątnego, którego

krawędź podstawy ma długość 6√2 cm, a przekątna graniastosłupa jest 2 razy dłuższa od

przekątnej podstawy.

Aplikacja na epodreczniki.pl

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

53

Page 55: Matematyka 3

Przykład 7.Przekątna prostopadłościanu ma długość 6 cm i jest nachylona do podstawy pod kątem 30 °

. Pole podstawy prostopadłościanu jest równe 24 cm2 . Oblicz objętość bryły.

Aplikacja na epodreczniki.pl

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

54

Page 56: Matematyka 3

Przykład 8.Podstawą graniastosłupa jest trójkąt równoboczny o polu 12√3 . Przekątna ściany bocznej

jest nachylona do krawędzi podstawy pod kątem 60 ° . Oblicz pole powierzchni całkowitej

bryły.

Aplikacja na epodreczniki.pl

Przykład 9.Objętość graniastosłupa o podstawie kwadratu jest równa 72√3. Przekątna ściany bocznej

jest nachylona do płaszczyzny podstawy pod kątem 30 ° . Obliczymy pole powierzchni całko-

witej graniastosłupa.

Pole powierzchni całkowitej tego graniastosłupa jest równe Pc = 2a2 + 4aH - zatem do jego

obliczenia będzie potrzebna długość krawędzi podstawy i wysokość bryły.

W trójkącie prostokątnym ABA1 mamy:

tg 30 ° =Ha

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

55

Page 57: Matematyka 3

zatem

√33 =

Ha

czyli

H = a√33

Objętość graniastosłupa jest równa V = a2 ∙ H, czyli 72√3 = a2 ∙ H .

Wstawiając wyznaczoną wcześniej wartość H, otrzymamy

72√3 = a3√33 , czyli a3 = 216 .Wynika z tego, że a = 6 oraz

H = a√33 = 6 ∙ √3

3 = 2√3

Zatem pole powierzchni całkowitej jest równe:

Pc = 2a2 + 4aH = 2 ∙ 62 + 4 ∙ 6 ∙ 2√3 = 72 + 48√3

Przykład 10.Objętość graniastosłupa prawidłowego czworokątnego jest równa 75 dm3 . Przekątna pod-

stawy graniastosłupa ma długość 5 dm. Oblicz sinus kąta nachylenia przekątnej graniasto-

słupa do płaszczyzny podstawy.

Aplikacja na epodreczniki.pl

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

56

Page 58: Matematyka 3

Poziom trudności: AZadanie 1.2.1

Pole powierzchni całkowitej graniastosłupa prawidłowego czworokątnego jest równe 286 cm2.

Przekątna podstawy jest równa 4√2 cm. Oblicz objętość tego graniastosłupa

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.2.2

Pole powierzchni całkowitej graniastosłupa prawidłowego czworokątnego jest równe 144 cm2,

a suma długości wszystkich krawędzi jest równa 60 cm . Oblicz objętość tego graniastosłupa.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.2.3Pole podstawy graniastosłupa prawidłowego trójkątnego jest równe 27√3 , a przekątna ściany

bocznej jest nachylona do krawędzi podstawy pod kątem 45 ° . Oblicz objętość graniastosłupa.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.2.4Jedna z krawędzi podstawy prostopadłościanu jest 3 razy większa od drugiej. Przekątna prosto-

padłościanu ma długość 2√5 cm i jest nachylona do podstawy pod kątem 60 ° . Oblicz objętość

prostopadłościanu.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.2.5Przekątna podstawy sześcianu ma długość 5 cm. Oblicz pole powierzchni całkowitej i objętość

sześcianu.

(Pokaż odpowiedź)

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

57

Page 59: Matematyka 3

Poziom trudności: AZadanie 1.2.6

Pole powierzchni całkowitej sześcianu ABCDA1B1C1D1 jest równe 432 cm2. Oblicz pole trójkąta

A1BC1.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 1.2.7Przekątna sześcianu jest o 5 cm dłuższa od jego krawędzi. Oblicz pole powierzchni całkowitej i

objętość sześcianu.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.2.8Oblicz cosinus kąta nachylenia przekątnej sześcianu do płaszczyzny podstawy.

(Pokaż odpowiedź)

Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

58

Page 60: Matematyka 3

1.3. Ostrosłup i jego własności

Definicja: Ostrosłup

Ostrosłup to taki wielościan, którego podstawą jest dowolny wielokąt, a ściany bocz-

ne są trójkątami o wspólnym wierzchołku.

Aplikacja na epodreczniki.pl

Ważne

Podstawą ostrosłupa może być dowolny trójkąt, dowolny czworokąt i dowolny sześciokąt.

Ostrosłup i jego własności

59

Page 61: Matematyka 3

Jeżeli podstawą ostrosłupa jest wielokąt foremny (trójkąt równoboczny, kwadrat, pięciokąt forem-

ny itd...), a spodek wysokości ostrosłupa pokrywa się ze środkiem okręgu opisanego na jego pod-

stawie, to mówimy, że taki ostrosłup jest prawidłowy.

Film na epodreczniki.pl

Ostrosłup i jego własności

60

Page 62: Matematyka 3

Odcinki w ostrosłupie

Przykład 1.Chcąc narysować ostrosłup prosty, po narysowaniu podstawy zaznaczamy wysokość – od-

cinek prostopadły do płaszczyzny podstawy. Koniec wysokości, który nie leży na podstawie,

łączymy z wierzchołkami podstawy.

Film na epodreczniki.pl

Ostrosłup i jego własności

61

Page 63: Matematyka 3

Przykład 2.W przypadku ostrosłupów prawidłowych, po narysowaniu podstawy zaznaczamy spodek wy-

sokości, który jest środkiem okręgu opisanego na podstawie, a następnie rysujemy wysokość

i krawędzie boczne.W ostrosłupie prawidłowym trójkątnym spodek wysokości leży na prze-

cięciu wysokości podstawy.

Film na epodreczniki.pl

Ostrosłup i jego własności

62

Page 64: Matematyka 3

Aplikacja na epodreczniki.pl

Zapamiętaj

• Jeśli wszystkie krawędzie boczne ostrosłupa są równe, to taki ostrosłup nazywamy pro-

stym.

• Ostrosłup, którego wszystkie ściany są trójkątami równobocznym,i nazywać będziemy

czworościanem.

Ostrosłup i jego własności

63

Page 65: Matematyka 3

Kąty w ostrosłupie

Aplikacja na epodreczniki.pl

Pole powierzchni całkowitej i objętość ostrosłupa

Zapamiętaj

Pole powierzchni całkowitej ostrosłupa jest równe

Pc = Pp + Pb

gdzie Pp oznacza pole podstawy graniastosłupa, a Pb – pole powierzchni bocznej.

W szczególności pole całkowite

czworościanu o krawędzi a jest równe

Pc = a2√3

Ostrosłup i jego własności

64

Page 67: Matematyka 3

Zapamiętaj

Objętość ostrosłupa jest równa

V =13P

p∙ H

gdzie Pp oznacza pole podstawy graniastosłupa, a H – wysokość bryły.

W szczególności objętość

• czworościanu o krawędzi a jest równa V =a3√2

12

• ostrosłupa prawidłowego czworokątnego o krawędzi podstawy a i wysokości H jest

równa V =13a2 ∙ H

Przykład 3.Pole podstawy ostrosłupa prawidłowego czworokątnego jest równe 72 cm2. Krawędź bocz-

na ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem α, takim że tgα = 0,6. Ob-

licz objętość tego ostrosłupa.

Aplikacja na epodreczniki.pl

Ostrosłup i jego własności

66

Page 68: Matematyka 3

Przykład 4.Wysokość ostrosłupa prawidłowego czworokątnego jest równa 9 cm, a ściana boczna ostro-

słupa jest nachylona do podstawy po kątem 60 ° . Oblicz pole powierzchni całkowitej tej bry-

ły.

Aplikacja na epodreczniki.pl

Przykład 5.Pole podstawy ostrosłupa prawidłowego czworokątnego jest równe 36 cm2 i stanowi 20%

powierzchni całkowitej tej bryły. Na krawędzi bocznej długości 16 cm wybrano taki punkt P

, że odcinki BP i DP są prostopadłe do krawędzi CS (patrz rysunek). Oblicz pole powierzchni

trójkąta BDP.

Ostrosłup i jego własności

67

Page 69: Matematyka 3

Przykład 6.

Aplikacja na epodreczniki.pl

Przykład 7.Podstawą ostrosłupa jest prostokąt, którego boki pozostają w stosunku 2 : 3. Trójkąt ACS jest

równoboczny, a jego pole jest równe 27√3 dm2. Oblicz objętość ostrosłupa.

Aplikacja na epodreczniki.pl

Ostrosłup i jego własności

68

Page 70: Matematyka 3

Przykład 8.Podstawą ostrosłupa jest trójkąt równoboczny, którego wysokość jest równa 9√3 cm. Krawę-

dź boczna ostrosłupa jest nachylona do podstawy pod kątem 60 ° . Oblicz objętość ostrosłu-

pa.

Aplikacja na epodreczniki.pl

Ostrosłup i jego własności

69

Page 71: Matematyka 3

Przykład 9.Objętość ostrosłupa prawidłowego czworokątnego jest równa 9√3 dm3. Ściana boczna jest

nachylona do podstawy pod kątem α, którego tgα =94 . Oblicz pole powierzchni bocznej tego

ostrosłupa.

Aplikacja na epodreczniki.pl

Poziom trudności: AZadanie 1.3.1Na rysunkach przedstawiono ostrosłupy prawidłowe. Oblicz objętość każdego z ostrosłupów.

(Pokaż odpowiedź)

Ostrosłup i jego własności

70

Page 72: Matematyka 3

Poziom trudności: AZadanie 1.3.2Podstawą ostrosłupa jest prostokąt. Oblicz objętość tego ostrosłupa.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.3.3Wysokość ściany bocznej czworościanu foremnego jest równa 9 cm. Oblicz pole powierzchni

całkowitej i objętość tego czworościanu.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.3.4Wysokość ostrosłupa prawidłowego czworokątnego jest równa 2√3, a wysokość ściany bocznej

jest równa 4. Oblicz objętość ostrosłupa.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.3.5Podstawą ostrosłupa jest kwadrat o przekątnej długości 12 cm. Krawędź boczna ostrosłupa

jest nachylona do płaszczyzny podstawy pod kątem 60 ° . Oblicz objętość ostrosłupa.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.3.6Ściana boczna ostrosłupa prawidłowego czworokątnego jest nachylona do płaszczyzny podsta-

wy pod kątem α, którego sin α =34 . Oblicz pole powierzchni całkowitej tego ostrosłupa, wiedząc,

że jego wysokość jest równa 15 dm.

(Pokaż odpowiedź)

Ostrosłup i jego własności

71

Page 73: Matematyka 3

Poziom trudności: AZadanie 1.3.7Wysokość ściany bocznej ostrosłupa prawidłowego czworokątnego jest równa krawędzi pod-

stawy. Pole powierzchni całkowitej tej bryły jest równe 48 dm2. Oblicz objętość tego ostrosłupa.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.3.8

Podstawą ostrosłupa jest trójkąt równoboczny o polu 64√3 cm2, a ściany boczne są trójkątami

prostokątnymi. Oblicz objętość ostrosłupa.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.3.9

Podstawą ostrosłupa jest prostokąt o polu 30 cm2, w którym jeden z boków jest o 40% krótszy

od drugiego. Krawędź boczna ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem

60 ° . Oblicz objętość ostrosłupa.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.3.10

Podstawą ostrosłupa jest sześciokąt foremny o polu równym 24√3 cm2. Objętość ostrosłupa

jest równa 48√3cm3.Oblicz sinus kąta nachylenia krawędzi bocznej do płaszczyzny podstawy.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 1.3.11-14

Aplikacja na epodreczniki.pl

Ostrosłup i jego własności

72

Page 74: Matematyka 3

1.4. Bryły obrotowe

1.4.1. Bryły obrotowe - walec

Bryły obrotowe – walec

Bryły obrotowe powstają w wyniku obrotu figury płaskiej dookoła prostej będącej osią obrotu. W

tym rozdziale zajmiemy się trzema bryłami obrotowymi: walcem, stożkiem i kulą.

Bryły obrotowe

73

Page 75: Matematyka 3

Definicja: Walec

Walec jest to bryła, która powstała w wyniku obrotu prostokąta dookoła prostej za-

wierającej jeden z boków prostokąta.

Aplikacja na epodreczniki.pl

Bryły obrotowe - walec

74

Page 77: Matematyka 3

Zapamiętaj

• Pole powierzchni całkowitej walca jest równe:

Pc = 2PP + Pb = 2 ∙ πr2 + 2πr ∙ H = 2πr(r + h)• Objętość walca jest równa:

V = πr2H

Film na epodreczniki.pl

Bryły obrotowe - walec

76

Page 79: Matematyka 3

Przykład 1.Oblicz objętość walca powstałego w wyniku obrotu prostokąta o bokach 12 cm i 16 cm wokół

dłuższego boku.

Aplikacja na epodreczniki.pl

Film na epodreczniki.pl

Bryły obrotowe - walec

78

Page 80: Matematyka 3

Przykład 2.Przekrój osiowy walca jest kwadratem, którego przekątna jest równa 24√6. Oblicz objętość

walca.

Aplikacja na epodreczniki.pl

Bryły obrotowe - walec

79

Page 81: Matematyka 3

Przykład 3.Objętość walca jest równa 729π cm3, a średnica podstawy walca jest 2 razy dłuższa od jego

wysokości. Oblicz pole powierzchni całkowitej tego walca.

Aplikacja na epodreczniki.pl

Bryły obrotowe - walec

80

Page 82: Matematyka 3

Przykład 4.Powierzchnia boczna walca jest kwadratem o przekątnej długości 8√2 cm. Oblicz objętość te-

go walca.

Aplikacja na epodreczniki.pl

Bryły obrotowe - walec

81

Page 83: Matematyka 3

Przykład 5.Podstawą walca jest koło o średnicy 12√3 dm. Przekątna przekroju osiowego walca jest na-

chylona do płaszczyzny podstawy pod kątem 60 ° . Oblicz pole powierzchni bocznej tego wal-

ca.

Aplikacja na epodreczniki.pl

Poziom trudności: AZadanie 1.4.1.1Prostokąt o bokach 9 cm i 12 cm obraca się wokół dłuższego boku. Oblicz objętość i pole po-

wierzchni całkowitej walca, który powstanie w wyniku tego obrotu.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.4.1.2

Kwadrat o polu 256 cm2 obraca się wokół boku. Oblicz pole powierzchni całkowitej walca otrzy-

manego w wyniku tego obrotu.

(Pokaż odpowiedź)

Bryły obrotowe - walec

82

Page 84: Matematyka 3

Poziom trudności: AZadanie 1.4.1.3Walec o promieniu 5 cm powstał w wyniku obrotu prostokąta, którego przekątna jest równa

13 cm. Oblicz objętość walca.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.4.1.4Przekątna przekroju osiowego walca ma długość 6√3 i jest nachylona do płaszczyzny podstawy

walca pod kątem 60 ° . Oblicz objętość i pole powierzchni całkowitej walca.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.4.1.5Oblicz objętość walca, którego wysokość jest równa 14 cm, a pole powierzchni bocznej

112π cm2.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.4.1.6

Przekrój osiowy walca jest kwadratem o polu 180 cm2. Oblicz objętość i pole powierzchni cał-

kowitej walca.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 1.4.1.7

Pole podstawy walca jest równe 18π cm2 i stanowi 30% pola powierzchni bocznej. Oblicz obję-

tość tego walca.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 1.4.1.880% naczynia w kształcie walca o średnicy 8 cm i wysokości 15 cm jest wypełnione wodą. Ile

sześciennych kostek o krawędzi 2 cm można wrzucić do tego naczynia, tak aby woda nie wylała

się z niego?

(Pokaż odpowiedź)

Bryły obrotowe - walec

83

Page 85: Matematyka 3

Poziom trudności: AZadanie 1.4.1.9-11

Aplikacja na epodreczniki.pl

Bryły obrotowe - walec

84

Page 86: Matematyka 3

1.4.2. Bryły obrotowe - stożek

Definicja: Stożek

Stożek to bryła, która powstała w wyniku obrotu trójkąta prostokątnego dookoła

prostej zawierającej jedną z przyprostokątnych.

Aplikacja na epodreczniki.pl

Aplikacja na epodreczniki.pl

Bryły obrotowe - stożek

85

Page 87: Matematyka 3

Zapamiętaj

• Pole powierzchni całkowitej stożka jest równe:

Pc = πr2 + πrl = πr(r + l)• Objętość stożka jest równa:

V =13πr2H

Siatka stożka

Film na epodreczniki.pl

Bryły obrotowe - stożek

86

Page 88: Matematyka 3

Siatka stożka

Film na epodreczniki.pl

Przykład 1.Trójkąt prostokątny o przyprostokątnych 4 cm i 9 cm obraca się wokół dłuższego boku. Ob-

licz pole powierzchni całkowitej i objętość otrzymanego w ten sposób stożka.

Aplikacja na epodreczniki.pl

Bryły obrotowe - stożek

87

Page 89: Matematyka 3

Przykład 2.Przykrój osiowy stożka jest trójkątem prostokątnym, którego przeciwprostokątna jest równa

8 cm. Oblicz objętość i pole powierzchni bocznej stożka.

Aplikacja na epodreczniki.pl

Bryły obrotowe - stożek

88

Page 90: Matematyka 3

Przykład 3.Pole podstawy stożka jest równe 48π cm2 , a jego tworząca jest nachylona do płaszczyzny

podstawy pod kątem α , takim, że tgα =47 . Oblicz objętość stożka.

Aplikacja na epodreczniki.pl

Bryły obrotowe - stożek

89

Page 91: Matematyka 3

Przykład 4.

Oblicz objętość stożka, którego powierzchnia boczna jest wycinkiem koła stanowiącym23 koła

o promieniu 9 cm.

Aplikacja na epodreczniki.pl

Poziom trudności: BZadanie 1.4.2.1

Przekrój osiowy stożka jest trójkątem równobocznym o polu 48√3 dm2. Oblicz pole powierzch-

ni bocznej i objętość tego stożka.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 1.4.2.2Trójkąt o przeciwprostokątnej długości 8√3 cm obrócono wokół prostej zawierającej jedną z

przyprostokątnych. Kąt rozwarcia otrzymanego w ten sposób stożka jest równy 60 ° . Oblicz

objętość i pole powierzchni całkowitej tego stożka.

(Pokaż odpowiedź)

Bryły obrotowe - stożek

90

Page 92: Matematyka 3

Poziom trudności: BZadanie 1.4.2.3Powierzchnia boczna stożka po rozwinięciu na płaszczyźnie jest półkolem o promieniu 14 cm.

Oblicz objętość stożka.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 1.4.2.4Koło o średnicy 24 cm podzielono na dwa wycinki koła w ten sposób, że jeden z nich stanowi15 drugiego. Z obu wycinków utworzono powierzchnie boczne stożków. Niech V1 oznacza obję-

tość stożka utworzonego z większego wycinka, V2 – objętość stożka utworzonego z mniejszego

wycinka. Wyznacz stosunekV1V2

.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 1.4.2.5

Podstawą stożka jest koło o polu 12π cm2. Pole powierzchni bocznej jest 2 razy większe od pola

podstawy. Oblicz sinus kąta nachylenia tworzącej stożka do płaszczyzny podstawy.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 1.4.2.6Walec i stożek mają równe promienie podstawy r i wysokości H. Oblicz stosunek pola po-

wierzchni bocznej walca do pola powierzchni bocznej stożka.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 1.4.2.7Trójkąt prostokątny o przyprostokątnych 3 cm i 4 cm obraca się wokół przeciwprostokątnej.

Oblicz objętość otrzymanej w ten sposób bryły.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 1.4.2.8Stożek o promieniu podstawy 2 cm i wysokości 8 cm przecięto płaszczyzną równoległą do pod-

stawy przechodzącą przez środek wysokości stożka. Oblicz stosunek objętości brył na jakie zo-

stał podzielony stożek.

(Pokaż odpowiedź)

Bryły obrotowe - stożek

91

Page 93: Matematyka 3

Poziom trudności: AZadanie 1.4.2.9-10

Aplikacja na epodreczniki.pl

Bryły obrotowe - stożek

92

Page 94: Matematyka 3

1.5. Bryły w 3DPrzekrój kuli

Film na epodreczniki.pl

Bryły w 3D

93

Page 98: Matematyka 3

Siatka prostopadłościanu. Wzór na pole prostopadłościanu.

Film na epodreczniki.pl

Siatka stożka

Film na epodreczniki.pl

Bryły w 3D

97

Page 110: Matematyka 3

Rozdział 2. Elementy statystykiopisowej

2.1. Średnia, mediana, dominantaPróbując poznać fragment otaczającego nas świata możemy zastosować metody ilościowe albo

jakościowe.

Przeprowadzając badania ilościowe, mamy do czynienia ze zbiorami danych. Jeżeli tych danych

jest kilka, to możemy stwierdzić, która jest największa, która najmniejsza, która występuje najczę-

ściej itp. Jednak, żeby wyciągnąć wniosek o jakimś zjawisku, potrzebujemy tych danych dużo wię-

cej. Im więcej danych zbierzemy, tym trafniejsze będzie nasze wnioskowanie. Oczywiście najlepiej

byłoby mieć wszystkie informacje, co zwykle jest niemożliwe lub bardzo kosztowne. Dlatego naj-

częściej bierzemy pod uwagę jedynie niektóre dane z tzw. próby. Na przykład producent spodni

męskich przeznaczonych na rynek polski powinien dysponować informacją o zapotrzebowaniu na

poszczególne rozmiary spodni. Dobrze przeprowadzone badania ilościowe pozwolą z dużą traf-

nością odpowiedzieć na to pytanie.

Przykład 1.Zapytaliśmy uczniów pewnej szkoły, ile godzin przeznaczają tygodniowo na naukę. Każdą

otrzymaną odpowiedź zanotowaliśmy, zapisując też informację o płci ucznia i o klasie. Otrzy-

mane dane zestawiliśmy w tabeli.

Nr badanego ucznia Płeć Klasa Liczba godzin tygodniowo przeznaczonych na naukę

1. k Ia 9

2. m IIb 13

3. m Ic 10

... ... ... ...

Nasza tabela składa się z 384 wierszy. Bezpośrednia obserwacja takiej tabeli niewiele daje.

Danych jest zbyt wiele, żeby je przyswoić i wyciągnąć z nich wnioski. Dane te wymagają pew-

nego zorganizowania w zależności od tego, co chcemy z nich wywnioskować. Gdy chcemy

odpowiedzieć na pytanie, czy dziewczęta poświęcają tygodniowo na naukę więcej czasu niż

chłopcy, to musimy pogrupować nasze dane ze względu na płeć. Gdy interesuje nas, której

klasy uczniowie poświęcają najwięcej czasu na naukę, pogrupujemy je ze względu na klasę.

Oczywiście samo pogrupowanie danych jeszcze nie rozwiązuje problemu. Aby porównać in-

teresującą nas wielkość, w każdej z wyodrębnionych grup, obliczamy pewną liczbę, reprezen-

tującą tę wielkość. Tego typu liczby nazywamy parametrami danych statystycznych, czy też

statystykami.

Zacznijmy od takich parametrów, które w pewien sposób wyznaczają „środek” danej próby,

Elementy statystyki opisowej

109

Page 111: Matematyka 3

czyli są tzw. miarami tendencji centralnej. Należą do nich różnego rodzaju średnie, mediana

i dominanta.

Definicja: Średnia arytmetyczna

Średnią arytmetyczną liczb rzeczywistych x1, x2, … , xn nazywamy liczbę

−x =

x1 + x2 + … + xnn .

Przykład 2.W celu ustalenia średniej ceny sprzedaży pewnej książki zbadano jej cenę w ośmiu księ-

garniach. Ceny te były równe:

34,00 zł; 36,90 zł; 29,99 zł; 30,00 zł; 32,35 zł; 36,00 zł; 38,90 zł; 31,00 zł. Średnia cena tej

książki jest więc równa:

−x =

34 + 36,90 + 29,99 + 30 + 32,35 + 36 + 38,90 + 318 =

269,148 = 33,64 (zł)

Średniej często używa się, żeby stworzyć jakiś wzorzec. Jeżeli obliczę, na podstawie rachun-

ków z ostatniego roku, że średnia miesięczna opłata w moim mieszkaniu za energię elek-

tryczną wynosi 102 zł, to mogę przewidywać, że w kolejnych miesiącach też zapłacę oko-

ło 100 zł miesięcznie, przy założeniu, że warunki nie zmienią się (nie kupię nowego sprzę-

tu elektrycznego, nie zmieni się cena prądu itp). Średnia jest wielkością, z którą wygodnie

jest porównywać konkretne dane. Jeżeli z badań przeprowadzonych na grupie 100 tys. lice-

alistów wynika, że średnio poświęcają na naukę 63 minuty dziennie, to możesz oszacować,

czy uczysz się więcej, czy mniej niż przeciętny licealista.

Przykład 3.Średnia cena pięciu filmów zakupionych przez pana Kowalskiego jest równa 24 zł. Po doku-

pieniu szóstego filmu, średnia cena wzrosła do 26 zł. Ile kosztował szósty z filmów?

Za pięć filmów zapłacono 24 ∙ 5 zł = 120 zł. Oznaczmy cenę szóstego filmu przez x. Wtedy

średnia cena zakupu filmu jest równa120 + x

6 zł. Cenę tę mamy podaną, jest ona równa 26 zł.

Pozostaje rozwiązać równanie

120 + x6 = 26.

Stąd 120 + x = 156, czyli x = 36 zł.

Zauważ, że jeżeli średnia arytmetyczna pewnych liczb jest równa−x i dodasz do nich liczbę

a >−x , to po dodaniu średnia nowego zestawu liczb zwiększy się. Jeżeli dodasz liczbę a <

−x

, to średnia nowego zestawu liczb zmniejszy się. Jeżeli dodamy a =−x , to średnia nie ulegnie

zmianie.

Średnia, mediana, dominanta

110

Page 112: Matematyka 3

Przykład 4.W pewnej szkole są trzy klasy trzecie. Średni wynik próbnej matury uczniów klasy IIIa, liczącej

30 osób, jest równy 20 punktów, średni wynik klasy IIIb, liczącej 20 uczniów, jest równy 40

punktów, a średni wynik klasy IIIc, liczącej 25 uczniów, to 30 punktów. Ile jest równy średni

wynik próbnej matury w całej szkole?

Zaczniemy od zsumowania liczby punktów uzyskanych z tej matury przez wszystkich uczniów

w szkole. Klasa IIIa: 30 ∙ 20 = 600 punktów.

• Klasa IIIb: 20 ∙ 40 = 800 punktów.

• Klasa IIIc: 25 ∙ 30 = 750 punktów.

W sumie w całej szkole uczniowie zdobyli 2150 punktów. Ponieważ uczniów w klasach trze-

cich tej szkoły jest 30 + 20 + 25 = 75, więc szukana średnia jest równa2150

75 ≈ 28,67.

Zauważ, że średnia ta nie jest średnią arytmetyczną podanych średnich w poszczególnych

klasach, czyli nie jest ona równa:

20 + 40 + 303 = 30.

Tak jest, gdyż liczby osób w klasach są różne. Średni wynik klasy III a w większym stopniu

wpływa na obliczony średni wynik szkoły niż wynik każdej z pozostałych dwóch klas, ponie-

waż klasa IIIa jest najliczniejsza. Spośród wszystkich 75 uczniów klas trzecich tej szkoły 30 to

uczniowie klasy IIIa, więc możemy przyjąć, że mamy 30 uczniów, z których każdy ma wynik 20

punktów. Analogicznie możemy przyjąć, że mamy 20 uczniów z wynikiem średnim 40 punk-

tów i 25 uczniów z wynikiem 30 punktów. Średni wynik jest więc równy:

−x w =

30 składników?

20 + 20 + … + 20 +

20 składników?

40 + 40 + … + 40 +

25 składników?

30 + 30 + … + 3030 + 20 + 25 =

20 ∙ 0 + 40 ∙ 20 + 30 ∙ 2530 + 20 + 25 =

215075 ≈ 28,67.

Liczebności, z jakimi występowały wyniki 20, 40 i 30, a więc liczby 30, 20 i 25, są wagami tych

wyników, a obliczona średnia to średnia ważona.

Definicja: Średnia ważona

Średnią ważoną liczb x1, x2, … , xn, którym przyporządkowane są odpowiednio do-

datnie wagi w1, w2, … , wn, nazywamy liczbę−x w =

x1 ∙ w1 + x2 ∙ w2 + … + xn ∙ wnw1 + w2 + … +wn

.

Ważne

UwagaNiekiedy wygodniej jest zapisać wzór w postaci:

−x w =

w1w1 + w2 + … +wn

∙ x1 +w2

w1 + w2 + … +wn∙ x2 + … +

wnw1 + w2 + … +wn

∙ xn

Średnia, mediana, dominanta

111

Page 113: Matematyka 3

Wtedy przyjmujemy, że wagami, z jakimi występują liczby x1, x2, … , xn, są ułamki:

u1 =w1

w1 + w2 + … +wn, u2 =

w2w1 + w2 + … +wn

, ...un =wn

w1 + w2 + … +wn

Ułamki te są dodatnie i ich suma jest równa 1. Zatem

−x w = u1 ∙ x1 + u2 ∙ x2 + … + un ∙ xn,

gdzie u1 + u2 + … + un = 1.

Jeżeli liczymy średnie z dwóch równolicznych grup danych, to średnia ze wszystkich liczb jest śred-

nią arytmetyczną średniej policzonej w pierwszej grupie i średniej policzonej w drugiej grupie. Je-

żeli jednak grupy nie są równoliczne, to średnia wszystkich liczb najczęściej nie jest średnią z poli-

czonych wcześniej średnich w każdej grupie.

Przykład 5.Aby zaliczyć przedmiot „Matematyka” na pewnym kierunku studiów, student musi uzyskać

3 oceny: z ćwiczeń, laboratorium i egzaminu, przy czym każda z ocen musi być pozytywna

(co najmniej równa 3). Wówczas ocena z przedmiotu „Matematyka” jest średnią ważoną tych

trzech ocen: ocena z ćwiczeń ma wagę 3, z laboratorium − wagę 1, a ocena z egzaminu −wagę 4. W tabeli zestawiono oceny cząstkowe Tomka i Michała. Jaką ocenę otrzyma każdy z

nich na zaliczenie?

ćwiczenia laboratorium egzamin

Tomek 3 5 3,5

Michał 3,5 3 5

Średnia ważona ocen Tomka jest równa−x w =

3 ? 3 + 5 ? 1 + 3,5 ? 43 + 1 + 4 =

288 = 3,5.

Średnia ważona ocen Michała jest równa−x w =

3,5 ? 3 + 3 ? 1 + 5 ? 43 + 1 + 4 =

33,58 = 4,19.

Zwróć uwagę, że mimo iż obaj chłopcy cząstkowe oceny mieli takie same, czyli 3, 3,5 oraz 5

na koniec dostaną inną ocenę. Tak jest dlatego, gdyż Tomek ma najwyższą ocenę z labora-

torium, czyli tę o najniższej wadze, za to Michał najwyższą ocenę ma z egzaminu, czyli tę o

najwyższej wadze.

Średnia arytmetyczna ma pewne wady. Bardzo duży wpływ na nią mają wartości skrajne,

czyli te największe i najmniejsze, zwłaszcza jeżeli są wyraźnie większe albo mniejsze od po-

zostałych. W takich przypadkach średnia nie oddaje prawdziwego poziomu interesującej nas

wielkości.

Średnia, mediana, dominanta

112

Page 114: Matematyka 3

Przykład 6.Chcemy rozpocząć pracę w pewnej firmie. Dowiadujemy się, że średnia pensja w tej firmie to

1380 zł. Czy należy się spodziewać, że będziemy zarabiać około 1300 − 1400 zł? Otóż nieko-

niecznie. Gdyby w tej firmie pracowało 9 osób, z których 8 to szeregowi pracownicy o zarob-

kach odpowiednio: 720 zł, 800 zł, 850 zł, 850 zł, 900 zł, 900 zł, 950 zł i 950 zł oraz 1 pre-

zes, którego zarobki to 5500 zł, to średnia pensja w tej firmie jest równa 1380 zł. Należy przy-

puszczać, że nowo zatrudniony pracownik w takiej firmie nie będzie zarabiał więcej niż naj-

więcej zarabiający aktualnie pracownik szeregowy, a więc 950 zł.

W takich przypadkach, gdy wyniki skrajne znacznie odbiegają od pozostałych i w efekcie za-

burzają średnią, lepiej posłużyć się inną miarą tendencji centralnej. Możemy np. obliczyć me-

dianę.

Definicja: Mediana

Medianą (wartością środkową) uporządkowanego w kolejności niemalejącej zbioru

n liczb x1 ≤ x2 ≤ x3 ≤ … ≤ xn jest:

• dla nieparzystej liczby n środkowy wyraz ciągu, czyli wyraz xn + 12

,

• dla parzystej liczby n średnia arytmetyczna dwóch środkowych wyrazów ciągu,

czyli12 (xn

2

+ xn2

+ 1).

Przykład 7.Policzmy medianę zarobków w firmie z przykładu 6. Pensje już są ustawione w ciąg niemale-

jący

720 ≤ 800 ≤ 850 ≤ 850 ≤ 900 ≤ 900 ≤ 950 ≤ 950 ≤ 5500.

Medianę liczymy z 9 liczb, czyli środkową jest stojąca na pozycji piątej. Mediana jest więc rów-

na 900. Wielkość ta dużo lepiej, niż średnia arytmetyczna oddaje realia zarobków szerego-

wych pracowników w rozważanej firmie.

Przykład 8.Średnia arytmetyczna zestawu danych: 4, 5, 8, 3, 3, 11,12, x jest równa 7. Oblicz medianę

tego zestawu danych.

Suma danych liczb jest równa: 4 + 5 + 8 + 3 + 3 + 11 + 12 + x = 46 + x. Ponieważ średnia aryt-

metyczna tych danych jest równa 7, otrzymujemy równanie46 + x

8 = 7, stąd 46 + x = 56. Mamy

więc x = 10. Ustawiamy dane liczby w niemalejący ciąg

3 ≤ 3 ≤ 4 ≤ 5 ≤ 8 ≤ 10 ≤ 11 ≤ 12

Liczba wyrazów ciągu jest równa 8, a więc jest parzysta. Stąd mediana jest równa średniej

Średnia, mediana, dominanta

113

Page 115: Matematyka 3

arytmetycznej wyrazów stojących na dwóch środkowych pozycjach. W tym przypadku na

czwartej i piątej. Jest więc równa5 + 8

2 =132 = 6,5.

• Innym sposobem na zmniejszenie wrażliwości średniej na wyniki skrajne jest odrzuce-

nie pewnej liczby największych i najmniejszych danych i policzenie średniej z pozosta-

łych danych. Taka średnia nosi nazwę średniej ucinanej (obciętej). Spotykamy ją w li-

czeniu noty końcowej przyznawanej przez sędziów w wielu dyscyplinach sportowych,

np. w skokach narciarskich, jeździe figurowej na lodzie, czy gimnastyce artystycznej.

• Sposobem na znalezienie „środka” danej próby jest podanie tzw. dominanty. Przydaje

się ona szczególnie w tych przypadkach, gdy opisywane wielkości nie mają wartości

liczbowej, czyli nie można policzyć dla nich średniej czy mediany.

Definicja: Dominanta

Dominantą (modą, wartością najczęstszą) nazywamy tę wartość, która występuje w

próbie najczęściej.

Przykład 9.W sondzie ulicznej stu losowo wybranym osobom zadano pytanie: jaką herbatę piją najchęt-

niej? Wyniki badania przedstawiono na diagramie.

Dominantą tego badania jest herbata czarna.

Średnia, mediana, dominanta

114

Page 116: Matematyka 3

Przykład 10.W pewnym domu kultury prowadzone są zajęcia plastyczne, w których bierze udział 90 dzie-

ci. Porównaj ze sobą średnią wieku, medianę i dominantę uczestników tych zajęć.

Średnia wieku uczestników jest równa:

−x w =

7 ∙ 7 + 8 ∙ 13 + 9 ∙ 23 + 10 ∙ 21 + 11 ∙ 14 + 12 ∙ 5 + 13 ∙ 2 + 14 ∙ 890 =

92290 = 10,24

Dominantą jest wiek 9 lat. Medianą będzie średnia arytmetyczna wieku stojącego na 45 i

46 pozycji w niemalejącym ciągu wieku uczestników. Zauważmy, że jeżeli zsumujemy liczby

siedmio-, ośmio- i dziewięciolatków, otrzymamy 40 osób, czyli od pozycji 41 do pozycji 61 bę-

dzie stała wartość 10 lat, więc mediana jest równa 10.

Średnie, mediana, dominanta, czyli statystyki

wyznaczające środek zestawu danych. Zadania

Poziom trudności: AZadanie 2.1.1Średnia arytmetyczna liczb: x, 12, 10, 5, 8, 8 jest równa 8. Wtedy mediana jest równa

a) 11

b) 9

c) 8

d) 6

(Pokaż odpowiedź)

Średnia, mediana, dominanta

115

Page 117: Matematyka 3

Poziom trudności: AZadanie 2.1.2Mediana zestawu danych: 4, 12,14, a, 5, 7 jest równa 9. Wówczas

a) a = 11

b) a = 9

c) a = 8

d) a = 6

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.1.3Rzucono kością sześć razy i otrzymano wyniki: 2, 3, 6, 1, 3, 2. Wtedy

a) nie istnieje mediana tego zestawu danych

b) średnia arytmetyczna jest większa niż mediana

c) mediana jest większa niż średnia arytmetyczna

d) mediana i średnia arytmetyczna są sobie równe

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.1.4W pewnej grupie rodzin zbadano liczbę dzieci i dane przedstawiono na wykresie.

Mediana przedstawionych na wykresie danych jest równa

a) 10

b) 2,5

c) 2,4

Średnia, mediana, dominanta

116

Page 118: Matematyka 3

d) 2

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.1.5Mediana liczb: 4, 6, 10, x, 8, 5, 9 wynosi 6. Wtedy liczba x spełnia warunek

a) x > 6

b) x ≤ 6

c) x ? (6,8)

d) x = 7

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.1.6Średnia ważona liczb: x, 5, 8 z wagami odpowiednio: 5, 3, 2 jest równa 8,1. Wtedy liczba x jest

równa

a) 14

b) 12

c) 10

d) 8

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.1.7

Aplikacja na epodreczniki.pl

Poziom trudności: AZadanie 2.1.8-9

Aplikacja na epodreczniki.pl

Średnia, mediana, dominanta

117

Page 119: Matematyka 3

Poziom trudności: AZadanie 2.1.10Wyniki sprawdzianu z matematyki i z języka polskiego w klasie III c są przedstawione na diagra-

mie

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.1.11W tabeli zestawiono oceny z matematyki na koniec roku uczniów pewnej klasy.

Ocena 1 2 3 4 5 6

Liczba ocen 0 3 12 10 x 1

Oblicz liczbę piątek, jeżeli średnia ocen z matematyki w tej klasie jest równa 3,5.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.1.12W sklepie przygotowano mieszankę trzech rodzajów cukierków składającą się z 14 kg cukier-

ków w cenie 12 zł za kg, 9 kg cukierków w cenie 14 zł za kg oraz 7 kg cukierków w cenie 18 zł za

kg. Ile powinien kosztować 1 kg mieszanki?

(Pokaż odpowiedź)

Ilu uczniów ze sprawdzianu z matematyki otrzymało ocenę wyższą niż średnia ocen?a)

Ilu uczniów ze sprawdzianu z języka polskiego otrzymało ocenę niższą niż mediana

ocen?

b)

Średnia, mediana, dominanta

118

Page 120: Matematyka 3

Poziom trudności: AZadanie 2.1.13Średni staż pracy 10 robotników w pewnym zakładzie jest równy 7 lat. Jeżeli dodać do badanych

brygadzistę, to średni wiek pracy zwiększy się do 9 lat. Ile lat pracuje w tym zakładzie brygadzi-

sta?

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.1.14Średnia wieku uczestników wycieczki wynosiła 14 lat. Jeżeli doliczymy do tej średniej wiek opie-

kuna, który ma 40 lat, to średnia zwiększy się do 15 lat. Ilu było uczestników wycieczki?

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.1.15W pewnej firmie średnia pensja jest równa 2000 zł. O ile procent zwiększy się średnia pensja,

jeżeli każdy z pracowników dostanie podwyżkę?

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.1.16W celu zakupienia obuwia dla zawodników drużyny piłkarskiej sprawdzono rozmiary obuwia

poszczególnych zawodników i dane umieszczono na diagramie.

Oblicz medianę, modę i średnią arytmetyczną rozmiaru.

(Pokaż odpowiedź)

o 500 zła)

o 10%b)

Średnia, mediana, dominanta

119

Page 121: Matematyka 3

Poziom trudności: AZadanie 2.1.17W pewnej szkole dwie klasy trzecie napisały próbną maturę z matematyki. W klasie IIIa, liczącej

30 uczniów, średni wynik z tej matury wyniósł 60%, a w klasie III b, liczącej 20 uczniów średni

wynik z tej matury wyniósł 80%. Jaki jest średni wynik z próbnej matury w tej szkole?

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.1.18

Aplikacja na epodreczniki.pl

Poziom trudności: AZadanie 2.1.19Średnia arytmetyczna trzech liczb: a, b, c jest równa 8. Oblicz, ile wynosi średnia arytmetyczna

podanych liczb:

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.1.20Trzech uczniów napisało maturę z matematyki, zdobywając średnio 40 punktów na 50 możli-

wych. Mediana ich wyników jest równa 50 punktów. Ile punktów zdobyli poszczególni ucznio-

wie na maturze z matematyki?

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.1.21Małgosia na koniec roku szkolnego, uzyskała średnią ocen 4,4. Spośród dziesięciu przedmio-

tów otrzymała tylko jedną 3, a poza tym same 4 i 5. Oblicz, ile 5 na świadectwie miała Małgosia.

(Pokaż odpowiedź)

3a, 3b, 3ca)

a + 1, b + 2, c + 3b)

a, b, c, 6c)

Średnia, mediana, dominanta

120

Page 122: Matematyka 3

2.2. Miary rozproszenia

Przykład 1.Właściciel dwóch sklepów z odzieżą, położonych w różnych miejscach miasta, próbuje usta-

lić, które bluzki sprzedają się najlepiej w każdym z jego sklepów, przy czym bierze pod uwagę

jedynie cenę bluzki. Chce w ten sposób ustalić, jaki towar powinien zamówić. Zanotował, że

podczas ostatniego dnia w pierwszym sklepie sprzedano kolejno bluzki w cenach (zaokrąglo-

nych do pełnych dziesiątek złotych): 10 zł, 80 zł, 20 zł, 20 zł, 90 zł, 10 zł, 90 zł, 80 zł.

W tym samym czasie w drugim sklepie sprzedano kolejno bluzki w cenach (zaokrąglonych

do pełnych dziesiątek złotych):

50 zł, 50 zł, 40 zł, 60 zł, 50 zł, 40 zł, 60 zł, 50 zł, 50 zł, 50 zł.

Ceny te, po uporządkowaniu w kolejności niemalejącej, zapisał w następującej tabeli:

1 sklep 10 zł 10 zł 20 zł 20 zł 80 zł 80 zł 90 zł 90 zł

2 sklep 40 zł 40 zł 50 zł 50 zł 50 zł 50 zł 50 zł 50 zł 60 zł 60 zł

Zauważmy, że średnia cena zakupionej bluzki oraz mediana są takie same w obu sklepach.

W pierwszym sklepie

−x =

10 + 10 + 20 + 20 + 80 + 80 + 90 + 908 =

4008 = 50

oraz mediana jest równa

20 + 802 = 50.

W drugim sklepie

−x =

40 + 40 + 50 + 50 + 50 + 50 + 50 + 50 + 60 + 6010 =

50010 = 50

oraz mediana jest równa

50 + 502 = 50.

Na podstawie tych danych można wysnuć wnioski, że w obu sklepach sprzedaż wygląda po-

dobnie.

Zilustrujmy jednak te dane na wykresach.

Miary rozproszenia

121

Page 123: Matematyka 3

Na pierwszym wykresie dane znajdują się w sporej odległości od średniej x = 50, na drugim

skupiają się wokół niej. W pierwszym zestawie danych są kwoty bardzo małe i bardzo duże w

stosunku do średniej. Może to oznaczać, że do sklepu przychodzą zarówno zamożni klienci,

jak i wydający na ubrania minimum pieniędzy. W drugim sklepie większość danych jest bliska

średniej i medianie. Może to oznaczać, że klienci drugiego sklepu to ludzie średnio zamożni,

którzy wybierają towar przeciętny, nie za drogi i nie za tani.

Właściciel sklepów przeprowadził podobne badanie przez kilka kolejnych dni i wnioski po-

wtarzały się. Zdecydował się więc do pierwszego sklepu zamówić bluzki bardzo tanie i droż-

sze, zaś do drugiego takie, których cena jest bliska 50 zł.

Przykład 2.Pewna firma zajmuje się prowadzeniem szkoleń. Po każdym ze szkoleń uczestnicy oceniają

trenera prowadzącego szkolenie. Ocena ta jest liczbą całkowitą od 1 (najniższa ocena) do 10.

Jedno ze szkoleń, w którym wzięło udział 20 uczestników, prowadzone było przez dwóch tre-

nerów. Na poniższym wykresie przedstawiono otrzymane przez nich oceny.

Obliczmy średnią ocenę, jaką otrzymał każdy z trenerów.

Trener 1:−x1 =

1 ? 2 + 2 ? 2 + 3 ? 1 + 4 ? 2 + 7 ? 1 + 8 ? 2 + 9 ? 5 + 10 ? 520 =

13520 = 6,75.

Trener 2:−x2 =

6 ? 8 + 7 ? 9 + 8 ? 320 =

13520 = 6,75.

Średnie oceny są takie same. Wykres natomiast wskazuje na inne rozkłady poszczególnych

ocen jednostkowych. Trener 1 otrzymał oceny prawie z całej skali. Są one rozproszone w sto-

sunku do oceny średniej, a więc część uczestników szkolenia oceniła go bardzo wysoko, a

część bardzo nisko. Trener 2 otrzymał jedynie oceny 6, 7 i 8, a więc skupione wokół średniej.

Może nie jest idealny (nie otrzymał 10), ale ludziom się na ogół podobał i nie wzbudzał nega-

tywnych odczuć.

Oczywiście, jeżeli zestaw danych jest większy to trudniej zaobserwować jego strukturę. Po-

dobnie jak w przypadku tendencji centralnej, tak i w tym przypadku posłużymy się pewnymi

statystykami. Do oceny koncentracji badanych danych służą miary rozproszenia. Najprostszą

miarą rozproszenia jest rozstęp, czyli różnica pomiędzy największą i najmniejszą wartością.

R = xmax − xmin

Miary rozproszenia

122

Page 124: Matematyka 3

Dużą zaletą tej charakterystyki jest łatwość jej wyznaczania. Jednak nie informuje nas ona,

jak w przedziale ?xmin, xmax? o długości R są rozłożone poszczególne dane. Czy np. są sku-

pione wokół jednego punktu, czy rozrzucone w tym przedziale. Rozstęp mówi tylko o tym,

jaką długość ma najkrótszy przedział zawierający wszystkie dane.

Przykład 3.Obliczmy rozstęp dla każdej z wielkości występujących w poprzednich dwóch przykła-

dach.Dla pierwszego sklepu R = 90 − 10 = 80, a dla drugiego R = 60 − 40 = 20. Zauważymy

więc, że różnica w cenie najdroższej i najtańszej bluzki w pierwszym sklepie wynosi 80 zł, zaś

w drugim 20 zł, czyli jest cztery razy mniejsza. Zatem w drugim sklepie ceny są bardziej sku-

pione.

W drugim przykładzie dla pierwszego trenera R = 10 − 1 = 9, a dla drugiego R = 8 − 6 = 2. Tu-

taj także rozstęp wyników drugiego trenera jest mniejszy niż pierwszego.

Najczęściej jednak potrzebujemy dokładniejszej analizy rozproszenia danych. Zauważmy,

że dla tego samego rozstępu dane mogą układać się bardzo różnie. Na przykład rozstąp

w zestawie danych: 1 , 3, 3, 3, 3, 3, 3, 3, 5 jest równy 4 i jest taki sam, jak w zestawie:

1, 1, 2, 2, 3, 4, 4, 5, 5. Jednak w pierwszym zestawie, poza danymi skrajnymi, wystę-

puje wielokrotnie ta sama wartość 3, a w drugim zestawie występują wszystkie wartości cał-

kowite od 1 do 5 i prawie każda tak samo często. Spróbujemy skonstruować taki wskaźnik,

który pozwoli nam odróżnić te dwie sytuacje.

Zajmiemy się więc badaniem odległości każdej danej od średniej. Przypomnijmy, że odległo-

ść między dwiema liczbami na osi liczbowej to wartość bezwzględna różnicy tych liczb. Zatem

odchylenie liczby xi od średniej−x , to

| xi −−x | .

Obliczmy odchylenia średnich cen bluzek z przykładu pierwszego w każdym z dwóch skle-

pów. Wyniki zapiszmy w tabeli.

Miary rozproszenia

123

Page 125: Matematyka 3

I sklep II sklep

Cena

bluzki

xi

Odchylenie od średniej

| xi −−x | = | xi − 50 |

Cena

bluzki

xi

Odchylenie od średniej

| xi −−x | = | xi − 50 |

10 40 40 10

10 40 40 10

20 30 50 0

20 30 50 0

80 30 50 0

80 30 50 0

90 40 60 10

90 40 60 10

Obliczmy teraz średnią arytmetyczną znalezionych odchyleń w każdym ze sklepów.

W pierwszym sklepie:40 + 40 + 30 + 30 + 30 + 30 + 40 + 40

8 =280

8 = 35.

W drugim sklepie:10 + 10 + 10 + 10

8 =408 = 5.

Obliczone przez nas wielkości to tak zwane odchylenia przeciętne.

Definicja: Odchylenie przeciętne

Odchyleniem przeciętnym liczb x1, x2, … , xn nazywamy liczbę

| x1 −−x | + | x2 −

−x | + … + | xn −

−x |

n

Zatem w pierwszym sklepie odchylenie przeciętne jest wyższe niż w drugim, co potwierdza naszą

wcześniejszą obserwację, że w pierwszym sklepie ceny leżą dalej od średniej, a w drugim znajdują

się bliżej średniej.

W statystyce częściej od odchylenia przeciętnego wykorzystuje się tzw. odchylenie standardowe.

Definicja: Odchylenie standardowe

Odchyleniem standardowym σ liczb x1, x2, … , xn nazywamy liczbę

Miary rozproszenia

124

Page 126: Matematyka 3

σ = √ (x1 −−x )

2+ (x2 −

−x )

2+ … + (xn −

−x )

2

n

Kwadrat tej wielkości nazywamy wariancją i oznaczamy symbolem σ2, czyli

σ2 =(x1 −

−x )

2+ (x2 −

−x )

2+ … + (xn −

−x )

2

n

Wariancja i odchylenie standardowe niosą dokładnie te same informacje. Wygodniej używać od-

chylenia standardowego, ponieważ wariancja jest podawana w jednostkach kwadratowych, a od-

chylenie standardowe dokładnie w tych samych jednostkach, co analizowane dane.

Obliczanie odchylenia standardowego, czy też wariancji jest uciążliwe w sytuacji, gdy−x jest liczbą

niecałkowitą i ma albo długie rozwinięcie dziesiętne, albo nawet nieskończone. Podamy teraz

wzór, który sprawia, że obliczenia są znacznie wygodniejsze.

Twierdzenie: Wariancja liczb

Wariancja liczb x1, x2, … , xn jest równa

σ2 =x1

2 + x22 + … + xn

2

n − ( −x )

2

DowódPrzekształcając wzór z definicji wariancji ,otrzymujemy

σ2 =(x1 −

−x )

2+ (x2 −

−x )

2+ … + (xn −

−x )

2

n =

=x

12 − 2x1 ?

−x + ( −

x )2

+ x22 − 2x2 ?

−x + ( −

x )2

+ … + xn2 − 2xn ?

−x + ( −

x )2

n =

=x

12 + x

22 + … + x

n2

n − 2−x

x1 + x2 + … xnn +

n ? ( −x )

2

n =

=x

12 + x

22 + … + x

n2

n − 2 ? ( −x )

2

+ ( −x )

2

=x

12 + x

22 + … + x

n2

n − ( −x )

2

Miary rozproszenia

125

Page 127: Matematyka 3

Przykład 4.W tabeli przedstawiono kwoty rachunków za telefon, jakie zapłaciła Małgosia w kolejnych

miesiącach.

styczeń luty marzec kwiecień maj czerwiec

63 zł 41 zł 35 zł 67 zł 60 zł 52 zł

Obliczymy wariancję i odchylenie standardowe tych wydatków z dokładnością do 1 zł. Śred-

nia wydatków na telefon Małgosi jest równa−x =

63 + 41 + 35 + 67 + 60 + 526 =

3186 = 53 (zł)

W kolejnych miesiącach odchylenie od średniej jest równe:

styczeń luty marzec kwiecień maj czerwiec

xi 63 zł 41 zł 35 zł 67 zł 60 zł 52 zł

| xi −−x | 10 12 18 14 7 1

Wariancja jest więc równa:

σ2 =102 + 122 + 182 + 142+72 + 12

6 =100 + 144 + 324 + 196 + 49 + 1

6 =814

6 = 135, (6) ≈ 136

a odchylenie standardowe

σ = √136 ≈ 12.

Przykład 5.Wyniki pewnego badania umieszczono w tabeli.

Wynik 4 5 6 7 8

Częstość 5 2 4 6 3

Obliczymy wariancję i odchylenie standardowe w tym badaniu.

Zaczniemy od policzenia średniej

−x =

5 ∙ 4 + 2 ∙ 5 + 4 ∙ 6 + 6 ∙ 7 + 3 ? 85 + 2 + 4 + 6 + 3 =

12020 = 6.

• sposób I

Obliczymy wariancję, korzystając ze wzoru podanego w twierdzeniu. W tym celu obliczymy

średnią kwadratów otrzymanych wyników

5 ∙ 42 + 2 ∙ 52 + 4 ∙ 62 + 6 ∙ 72 + 3 ∙ 82

5 + 2 + 4 + 6 + 3 =76020 = 38.

Miary rozproszenia

126

Page 128: Matematyka 3

Stąd wariancja jest równa σ2 = 38 − ( −x )

2

= 38 − 36 = 2 i odchylenie standardowe σ = √2.

• sposób II

Obliczymy wariancję, posługując się definicją. Odchylenia poszczególnych wyników od śred-

niej zamieścimy w tabeli.

wynik xi 4 5 6 7 8

odchylenie

| xi −−x | | 4 − 6 | = 2 | 5 − 6 | = 1 | 6 − 6 | = 0 | 7 − 6 | = 1 | 8 − 6 | = 2

częstość 5 2 4 6 3

Podstawiając wyniki do wzoru na wariancję, otrzymujemy:

σ2 =5 ? 22 + 2 ? 12 + 4 ? 02 + 6 ? 12 + 3 ? 22

5 + 2 + 4 + 6 + 3 =4020 = 2

Przykład 6.W pewnej szkole przeprowadzono ankietę, w której zadano uczniom pytanie „Ile książek

przeczytałeś/łaś w ciągu ostatnich dwóch tygodni?”. Wyniki ankiety przedstawiono na diagra-

mie.

Obliczymy wariancję i odchylenie standardowe otrzymanych wyników.

Dla otrzymanych wyników możemy przyjąć następujące wagi

1 książka 2 książki 3 książki 4 książki Suma wag

0,1 0,4 0,3 0,2 1

Średnia ważona otrzymanych wyników jest równa

Miary rozproszenia

127

Page 129: Matematyka 3

−x w = 0,1 ∙ 1 + 0,4 ∙ 2 + 0,3 ∙ 3 + 0,2 ∙ 4 = 0,1 + 0,8 + 0,9 + 0,8 = 2,6.

Licząc wariancję, posłużymy się wzorem z twierdzenia

σ2 =0,1 ∙ 12 + 0,4 ∙ 22 + 0,3 ∙ 32 + 0,2 ∙ 42

1 − (2,6)2

= 0,1 + 1,6 + 2,7 + 3,2 − 6,76 = 0,84.

Wtedy odchylenie standardowe jest równe σ ≈ 0,92.

Przykład 7.Michał przeprowadził doświadczenie, w którym mierzył m.in. czas ruchu pewnego ciała. Wy-

konał doświadczenie 10 razy i otrzymał następujące wyniki w sekundach:

doświadczenie 1 2 3 4 5 6 7 8 9 10

wynik 10,23 10,45 9,98 9,67 10,05 10,14 9,48 9,92 10,31 10,26

Wyznacz średni czas ruchu ciała oraz odchylenie standardowe w tym doświadczeniu. Ile wy-

ników jest większych od średniego lub mniejszych od średniego czasu o więcej niż jedno od-

chylenie standardowe?

Poziom trudności: AZadanie 2.2.1Odchylenie standardowe zestawu liczb: 5 , 7, 11, 13 jest równe

a) 10

b) 9

c) 8

d) √10

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.2.2Wariancja zestawu liczb: 4, 7, 9, 20 jest równa

a) 146

b) 36,5

c) 12

d) 10

(Pokaż odpowiedź)

Miary rozproszenia

128

Page 130: Matematyka 3

Poziom trudności: AZadanie 2.2.3Jeżeli odchylenie standardowe pewnego zestawu danych jest równe 4√2, to wariancja jest rów-

na

a) 32

b) 8

c) 2√2

d) 24√2

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.2.4Największe odchylenie standardowe ma zestaw liczb

a) 10,12,14, 12

b) 15,15,15,15

c) 1, 2, 9,10,11

d) 1,2, 4,6, 7

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.2.5przedstawiono wyniki, jakie osiągnęło dwóch skoczków narciarskich podczas przygotowań do

zawodów.

(Pokaż odpowiedź)

Który z nich ma wyższą średnią długość skoków?a)

Który ze skoczków skacze bardziej stabilnie?

1 skok 2 skok 3 skok 4 skok 5 skok 6 skok 7 skok 8 skok

1 zawodnik 115 119 116 125 123 122 115 125

2 zawodnik 120 115 116 121 123 124 115 118

b)

Miary rozproszenia

129

Page 131: Matematyka 3

Poziom trudności: AZadanie 2.2.6

Aplikacja na epodreczniki.pl

Poziom trudności: AZadanie 2.2.7-12

Aplikacja na epodreczniki.pl

Poziom trudności: AZadanie 2.2.13W pewnym badaniu statystycznym otrzymano następujące wyniki: 15,12,17,10,13,8, 10,16. Ile

z tych wyników różni się od średniej o więcej niż jedno odchylenie standardowe?

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.2.14Tomek każdego dnia rano, jadąc do szkoły, porównywał czas przyjazdu tramwaju z informacją

umieszczoną na przystanku. Przez kolejne dni informację notował w zeszycie. Odchylenie do-

datnie oznacza, że tramwaj przyjechał później, a odchylenie ujemne, że przyjechał wcześniej.

Jakie było odchylenie przeciętne przyjazdu tramwaju?

poniedziałek wtorek środa czwartek piątek

−3,5 min 2 min 1,5 min −1 min 2 min

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.2.15

Aplikacja na epodreczniki.pl

Poziom trudności: AZadanie 2.2.16Magda, przygotowując się do matury, postanowiła sprawdzić, ile godzin dziennie przeznacza

na naukę. W tym celu przez dwa tygodnie codziennie zapisywała wyniki w tabeli, a następnie

Miary rozproszenia

130

Page 132: Matematyka 3

zaznaczyła je na wykresie. Oblicz średnią liczbę czasu poświęconego na naukę i odchylenie

standardowe w pierwszym tygodniu, w drugim oraz w całym okresie dwóch tygodni.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.2.17Odpowiedz na pytania.

(Pokaż odpowiedź)

Jaka jest wariancja i jakie jest odchylenie standardowe zestawu liczb: 2, 4, 6, 8, 10? Jak

zmienią się wariancja i odchylenie standardowe, jeżeli każdą z podanych liczb zwiększy-

my dwa razy?

a)

Średnia arytmetyczna zestawu pięciu liczb: a, b, c, d, e jest równa−x , a odchylenie stan-

dardowe σ. Jak zmienią się te dwa wskaźniki, gdy każdą z liczb tego zestawu zwiększymy

trzy razy?

b)

Miary rozproszenia

131

Page 133: Matematyka 3

Poziom trudności: AZadanie 2.2.18W pewnej szkole przeprowadzono badanie dotyczące liczby dzieci w rodzinach uczniów. Wyniki

przedstawiono na diagramie.

Oblicz wariancję i odchylenie standardowe otrzymanych wyników.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 2.2.19Na lekcji fizyki przeprowadzono doświadczenie, podczas którego mierzono temperaturę pew-

nej próbki umieszczonej w określonych warunkach. Wyniki zapisano w tabeli.

nr próbki 1 2 3 4 5 6 7 8 9 10

temperatura 23,12 23,71 22,93 23,34 23,19 23,45 23,65 23,74 23,48 23,62

Oblicz średnią temperaturę oraz wariancję i odchylenie standardowe w tym badaniu. Każdy z

otrzymanych wyników podaj z dokładnością do 0,01.

Miary rozproszenia

132

Page 134: Matematyka 3

Rozdział 3. Kombinatoryka

3.1. Liczba elementów zbioru skończonego

Liczba elementów zbioru skończonego

W poniższych przykładach zajmiemy się obliczaniem liczby elementów pewnych zbiorów skończo-

nych.

Zauważmy na wstępie, że w zbiorze, do którego należą wszystkie kolejne liczby naturalne od 1 do

n, jest n elementów.

Przykład 1.Do klasy pierwszej przyjęto 35 uczniów. Zatem w dzienniku lekcyjnym powinni być oni wpi-

sani w porządku alfabetycznym, otrzymując numery: 1, 2, 3, … , 34, 35.

Przykład 2.W zbiorze A = {1, 2, 3, … , 1674, 1675} kolejnych liczb naturalnych od 1 do 1675 jest 1675

elementów.

Uwaga. Liczbę elementów zbioru A będziemy oznaczać symbolem | A | . Wobec tego liczbę

elementów zbioru A z powyższego przykładu zapiszemy symbolicznie: | A | = 1675.

Przykład 3.Ustalimy, ile jest elementów w zbiorze {12, 13, 14, … , 26, 27} kolejnych liczb naturalnych

od 12 do 27.

• sposób I

Można wypisać wszystkie elementy tego zbioru i po prostu policzyć, ile ich jest.

Warto zauważyć, że numerując dla porządku kolejne elementy tego zbioru

(1) – 12

(2) – 13

(3) – 14

ustawiamy je w ciąg, w którym numer elementu jest niezmiennie o 11 mniejszy od tego ele-

mentu.

Takie numerowanie zakończy się więc przyporządkowaniem liczbie 27 numeru 16 (bo

27 − 11 = 16), co oznacza, że w zbiorze {12, 13, 14, … , 26, 27} jest 16 elementów.

Uwaga. Ciąg, którego własności wykorzystaliśmy przy obliczaniu elementów danego zbioru

jest ciągiem arytmetycznym, o pierwszym wyrazie 12 i różnicy 1. Można go więc opisać wzo-

rem ogólnym n + 11, gdzie n = 1, 2, 3, ..., 16.

• sposób II

Kombinatoryka

133

Page 135: Matematyka 3

Zauważmy, że zbiór {1, 2, 3, … , 26, 27}, liczący 27 elementów, możemy podzielić na dwa

rozłączne podzbiory:

liczb mniejszych od 12:

{1, 2, 3, … , 11}, który ma 11 elementów

oraz liczb od 12 do 27:

{12, 13, 14, … , 26, 27}.Oznacza to, że zbiór {12, 13, 14, … , 26, 27} ma 27 − 11 = 16 elementów.

Zasada równoliczności

W sposobie I w poprzednim przykładzie, aby stwierdzić, że w zbiorze {12, 13, 14, … , 26, 27}jest 16 elementów, ponumerowaliśmy elementy tego zbioru od 1 do 16, co oznacza, że ustaliliśmy

wzajemnie jednoznaczne przyporządkowanie między elementami zbiorów

{12, 13, 14, … , 26, 27} oraz {1, 2, 3, … , 15, 16}.Zastosowaliśmy w ten sposób zasadę równoliczności.

Zasada równolicznościDwa zbiory A i B są równoliczne (mają tyle samo elementów), jeżeli ich

elementy można przyporządkować wzajemnie jednoznacznie, to znaczy, że każdemu elementowi

zbioru A przyporządkujemy dokładnie jeden element zbioru B oraz każdemu elementowi zbioru

B przyporządkujemy dokładnie jeden element zbioru A.

Przykład 4.Korzystając z pomysłów z poprzedniego przykładu, wykażemy, że w zbiorze kolejnych liczb

naturalnych od k do l:

{k, k + 1, k + 2, ..., l − 1, l}

jest l − k + 1 elementów.

• sposób I

Ustawiamy kolejne elementy zbioru {k, k + 1, k + 2, ..., l − 1, l} w taki ciąg (an), że a1 = k

, a2 = k + 1, i tak dalej co 1, do ostatniego wyrazu równego l. W tym ciągu numer wyrazu jest

więc niezmiennie o k − 1 mniejszy od tego wyrazu, zatem jego ostatni wyraz to al − (k − 1) = l.

Wobec tego taki ciąg (an) jest określony dla n = 1, 2, ..., l − k + 1, czyli ma l − k + 1 wyrazów.

Uwaga. Ciąg arytmetyczny (an) o wyrazie pierwszym a1 = k i różnicy 1 jest określony wzorem

ogólnym an = k + n − 1. Gdy an = l, to k + n − 1 = l, stąd n = l − k + 1.

• sposób II

Zauważmy, że zbiór {1, 2, ..., l − 1, l}, liczący l elementów, możemy podzielić na dwa roz-

łączne podzbiory:

liczb mniejszych od k:

{1, 2, ..., k − 2, k − 1}, który ma k − 1 elementów

Liczba elementów zbioru skończonego

134

Page 136: Matematyka 3

oraz liczb od k do l:

{k, k + 1, k + 2, ..., l − 1, l}.Oznacza to, że zbiór {k, k + 1, k + 2, ..., l − 1, l} ma l − (k − 1) = l − k + 1 elementów.

Przykład 5.Sprawdzimy, czy zbiory:

A = {20, 21, 22, … , 73, 74},

B = {136, 137, 138, … , 189, 190},

C = {1, 2, 3, … , 54, 55}

są równoliczne.

Zbiór C ma 55 elementów, liczba elementów zbioru A to | A | = 74 − (20 − 1) = 55, a liczba

elementów zbioru B to | B | = 190 − (136 − 1) = 55. Zatem zbiory A, B i C są równoliczne.

Reguła dodawania

W przykładzie 3, w sposobie II, aby stwierdzić, że w zbiorze {12, 13, 14, … , 26, 27} jest 16 ele-

mentów, podzieliliśmy zbiór {1, 2, 3, … , 26, 27} na dwa podzbiory: {1, 2, 3, … , 10, 11} oraz

{12, 13, 14, … , 26, 27}. Skorzystaliśmy z tego, że usuwając ze zbioru {1, 2, 3, … , 26, 27},który ma 27 elementów, podzbiór jedenastoelementowy {1, 2, 3, … , 10, 11}, dostaliśmy pod-

zbiór {12, 13, 14, … , 26, 27}, który ma 16 elementów.

Załóżmy teraz, że w wyniku podziału (rozbicia) zbioru otrzymaliśmy dwa podzbiory A i B. Wtedy

ten zbiór jest sumą dwóch zbiorów rozłącznych A i B. Tak otrzymany zbiór opisujemy, używając

symbolu sumy zbiorów: A ? B.

Rozumując podobnie jak powyżej, możemy stwierdzić, że liczba | A ? B | elementów zbioru

A ? B jest sumą liczb | A | i | B | , które opisują liczby elementów jego podzbiorów A i B, otrzy-

manych w wyniku tego podziału:

| A ? B | = | A | + | B | .

Przykład 6.Obliczymy, ile jest wszystkich liczb dwucyfrowych, które dzielą się przez 3.

Wszystkich liczb dwucyfrowych, czyli liczb ze zbioru {10, 11, 12, … , 98, 99}, jest

99 − 9 = 90.

Zauważmy teraz, że wśród trzech kolejnych liczb naturalnych jest dokładnie jedna podzielna

przez 3, jest dokładnie jedna, która przy dzieleniu przez 3 daje resztę 1 oraz jest dokładnie

jedna, która przy dzieleniu przez 3 daje resztę 2.

Liczba elementów zbioru skończonego

135

Page 137: Matematyka 3

Ponieważ13 ? 90 = 30, więc zbiór liczb dwucyfrowych możemy rozbić na 30 podzbiorów trzy-

elementowych

{10, 11, 12}, {13, 14, 15}, {16, 17, 18}, … , {97, 98, 99}

takich, że w każdym z nich znajdzie się dokładnie jedna liczba podzielna przez 3. Oznacza to,

że jest 30 wszystkich liczb dwucyfrowych, które dzielą się przez 3.

Przykład 7.Korzystając z wniosków zapisanych w poprzednim przykładzie, wykażemy, że w każdym ze

zbiorów: liczb dwucyfrowych, które przy dzieleniu przez 3 dają resztę 1 oraz liczb dwucyfro-

wych, które przy dzieleniu przez 3 dają resztę 2, jest 30 elementów.

Korzystamy z rozbicia zbioru {10, 11, 12, … , 98, 99} liczb dwucyfrowych na trzy podzbio-

ry:

A0 = {12, 15, ..., 99} – zbiór liczb podzielnych przez 3,

A1 = {10, 13, ..., 97} - zbiór liczb, które przy dzieleniu przez 3 dają resztę 1,

A2 = {11, 14, ..., 98} - zbiór liczb, które przy dzieleniu przez 3 dają resztę 2.

Podzbiory te są parami rozłączne (bo rozdzielaliśmy ich elementy ze względu na resztę z

dzielenia przez 3) oraz równoliczne (jednoznaczne przyporządkowanie między ich elementa-

mi gwarantuje podział na trzydzieści podzbiorów trzyelementowych – wykorzystaliśmy ten

podział w przykładzie 6).

Podsumowując:

• jest 90 wszystkich liczb dwucyfrowych, czyli liczb w zbiorze A0 ? A1 ? A2:

| A0 ? A1 ? A2 | = 90

• zbiór liczb dwucyfrowych można rozbić na trzy podzbiory A0, A1, A2, które są parami

rozłączne, stąd

| A0 ? A1 ? A2 | = | A0 | + | A1 | + | A2 |

• otrzymane podzbiory są równoliczne, a więc

| A0 | = | A1 | = | A2 |

Wynika z tego, że każdy z tych podzbiorów ma 30 elementów:

| A0 | = | A1 | = | A2 | =13 ∙ 90 = 30

Uwaga. Powyżej stwierdziliśmy, że zbiory A0, A1, A2 są parami rozłączne. Oznacza to, że

każda z par zbiorów: A0 i A1, A1 i A2 oraz A0 i A2 nie ma elementu wspólnego. Używając sym-

bolu iloczynu (części wspólnej) zbiorów oraz symbolu zbioru pustego (?), następująco zapisu-

jemy fakt, że zbiory A0, A1, A2 są parami rozłączne:

A0 ∩ A1 = ? i A1 ∩ A2 = ? i A0 ∩ A2 = ?.

Liczba elementów zbioru skończonego

136

Page 138: Matematyka 3

Przykład 8.Obliczymy, ile jest wszystkich liczb trzycyfrowych, które dzielą się przez 7.

• sposób I

Każdą liczbę podzielną przez 7 możemy zapisać w postaci 7n, gdzie n jest liczbą całkowitą.

Wystarczy zatem obliczyć, ile jest wszystkich całkowitych n, które spełniają układ nierówności

7n ≥ 100 i 7n ≤ 999.

Ponieważ 7n ≥ 100 dla n ≥ 1007 = 14

27 oraz 7n ≤ 999 dla n ≤ 999

7 = 14257 , więc

n = 15, 16, 17, ..., 141, 142.

Wynika z tego, że najmniejszą liczbą trzycyfrową, która dzieli się przez 7, jest 15 ? 7 = 105, a

największą 142 ? 7 = 994.

W zbiorze {15, 16, 17, ..., 141, 142} jest 142 − 14 = 128 elementów, więc dokładnie tyle

jest liczb trzycyfrowych, które dzielą się przez 7.

• sposób II

Wszystkich liczb trzycyfrowych, czyli liczb ze zbioru {100, 101, 102, … , 998, 999}, jest

999 − 99 = 900.

Zauważmy teraz, że wśród siedmiu kolejnych liczb naturalnych jest dokładnie po jednej

liczbie dla każdej z możliwych reszt z dzielenia przez 7 : 0, 1, 2, 3, 4, 5, 6. Ponieważ

900 = 128 ? 7 + 4, więc jeżeli ze zbioru liczb trzycyfrowych wyjmiemy podzbiór czteroelemen-

towy {100, 101, 102, 103}, to pozostały podzbiór, liczący 896 elementów, możemy rozbić

na 128 podzbiorów siedmioelementowych – w każdym z nich znajdzie się dokładnie jedna

liczba podzielna przez 7:

{104, 105, 106, 107, 108, 109, 110}, … , {993, 994, 995, 996, 997, 998, 999}.

Sprawdzamy, że żadna z liczb ze zbioru {100, 101, 102, 103} nie dzieli się przez 7, zatem

jest dokładnie 128 liczb trzycyfrowych, które dzielą się przez 7.

• sposób III

Zbiór {100, 101, 102, … , 998, 999} wszystkich liczb trzycyfrowych jest podzbiorem zbioru

{1, 2, 3, … , 998, 999} wszystkich liczb naturalnych od 1 do 999.

Ponieważ 999 = 142 ? 7 + 5, więc jeżeli ze zbioru liczb naturalnych od 1 do 999 wyjmiemy

podzbiór pięcioelementowy {995, 996, 997, 998, 999}, to pozostałe 994 liczby możemy

rozdzielić do 142 podzbiorów siedmioelementowych:

{1, 2, 3, 4, 5, 6, 7}, {8, 9, 10, 11, 12, 13, 14}, … , {988, 989, 990, 991, 992, 993, 994}.

W każdym z nich jako ostatnia zapisana jest jedyna w takim podzbiorze liczba podzielna

przez 7. Zatem bez sprawdzania możemy stwierdzić, że wśród liczb ze zbioru

{995, 996, 997, 998, 999} nie ma liczby podzielnej przez 7.

Skoro 99 = 14 ? 7 + 1, więc jeżeli ze zbioru liczb naturalnych od 1 do 99 wyjmiemy liczbę 99,

to pozostałe 98 liczb możemy rozdzielić do 14 podzbiorów siedmioelementowych:

{1, 2, 3, 4, 5, 6, 7}, {8, 9, 10, 11, 12, 13, 14}, … , {92, 93, 94, 95, 96, 97, 98}.

Liczba elementów zbioru skończonego

137

Page 139: Matematyka 3

Oznacza to, że w zbiorze liczb naturalnych od 1 do 99 jest dokładnie 14 liczb podzielnych

przez 7.

Wobec tego w zbiorze liczb naturalnych od 100 do 999 jest ich 142 − 14 = 128.

Uwaga. Zauważmy, że wykorzystane w rozwiązaniu liczby 142 i 14 otrzymaliśmy, przybliżając

z niedomiarem ułamki odpowiednio999

7 = 14257 oraz

997 = 14

27 .

Dowolnej liczbie rzeczywistej x można jednoznacznie przypisać jej część całkowitą (zwaną też

cechą lub podłogą tej liczby), która oznacza największą liczbę całkowitą, która nie jest więk-

sza od x. Część całkowita liczby x oznaczana jest symbolem ?x?.

Stosując to oznaczenie, zapiszemy, że liczb trzycyfrowych podzielnych przez 7 jest

?9997 ? − ?99

7 ? = ?14257? − ?14

27? = 142 − 14 = 128.

Rozumując w podobny sposób jak w ostatnim sposobie rozwiązania, stwierdzimy np., że

• wszystkich liczb czterocyfrowych podzielnych przez 11 jest

?999911 ? − ?999

11 ? = ?909? − ?909

11? = 909 − 90 = 819,

• wszystkich liczb pięciocyfrowych podzielnych przez 17 jest

?9999917 ? − ?9999

17 ? = ?58825

17? − ?5883

17? = 5882 − 588 = 5294,

• a wszystkich liczb sześciocyfrowych podzielnych przez 29 jest

?99999929 ? − ?99999

29 ? = ?344822129? − ?3448

729? = 34482 − 3448 = 31034.

Podamy teraz wzór, pozwalający obliczyć liczbę elementów sumy n zbiorów rozłącznych.

Do jego uzasadnienia wystarczy przeprowadzić podobne rozumowanie, jak stosowane w po-

przednich przykładach.

Własność: Liczba elementów sumy n zbiorówrozłącznych

Jeżeli zbiory A1, A2, ..., An są parami rozłączne, to liczba elementów zbioru

A1 ? A2 ? ... ? An jest równa sumie liczb elementów każdego ze zbiorów A1, A2, ..., An:

| A1 ? A2 ? ... ? An | = | A1 | + | A2 | + ... + | An | .

Regułę, która jest zapisana w powyższym wzorze, nazywamy regułą dodawania.

Liczba elementów zbioru skończonego

138

Page 140: Matematyka 3

Przykład 9.Obliczymy, ile jest liczb dwucyfrowych, które są podzielne przez 2 lub są podzielne przez 5.

Oznaczmy:

A2 - zbiór liczb dwucyfrowych podzielnych przez 2,

A5 - zbiór liczb dwucyfrowych podzielnych przez 5.

Mamy obliczyć, ile jest liczb dwucyfrowych, które są podzielne przez 2 lub przez 5, czyli war-

tość | A2 ? A5 | .

Zauważmy, że:

• wśród dwóch kolejnych liczb naturalnych jest dokładnie jedna parzysta i dokładnie jed-

na nieparzysta. Ponieważ da się rozbić zbiór liczb dwucyfrowych na takie podzbiory

dwuelementowe, że w każdym z nich znajdzie się dokładnie jedna liczba podzielna

przez 2, więc | A2 | =12 ? 90 = 45.

• wśród pięciu kolejnych liczb naturalnych jest dokładnie jedna podzielna przez 5. Ponie-

waż da się rozbić zbiór liczb dwucyfrowych na takie podzbiory pięcioelementowe, że w

każdym z nich znajdzie się dokładnie jedna liczba podzielna przez 5, więc

| A5 | =15 ? 90 = 18.

Zbiory A2 oraz A5 nie są jednak rozłączne – wśród liczb dwucyfrowych są takie, które dzielą

się zarówno przez 2, jak i przez 5, taką jest np. 10. Ponieważ liczba całkowita dzieli się przez

2 i przez 5 wtedy i tylko wtedy, gdy dzieli się przez 10, więc musimy jeszcze obliczyć, ile jest

liczb dwucyfrowych podzielnych przez 10.

Liczb tych jest 9, co można sprawdzić, wypisując je wszystkie lub zauważając, że takich liczb

jest1

10 ? 90 = 9.

Przedstawimy teraz trzy pomysły na dokończenie rozwiązania przykładu 9.

• sposób I

Zbiór A2 ? A5 rozbijemy na trzy rozłączne podzbiory:

• zbiór liczb dwucyfrowych podzielnych przez 2 i przez 5.

Jest to zbiór liczb podzielnych przez 10, zatem takich liczb jest 9.

• zbiór tych liczb dwucyfrowych, które dzielą się przez 2 i nie dzielą się przez 5.

Zbiór liczb dwucyfrowych podzielnych przez 2 możemy rozbić na dwa podzbiory: podzbiór

liczb podzielnych przez 5 i podzbiór liczb niepodzielnych przez 5. Wszystkich liczb dwucyfro-

wych podzielnych przez 2 jest 45, tych spośród nich, które są dodatkowo podzielne przez

5, jest 9, zatem liczb dwucyfrowych, które dzielą się przez 2 i nie dzielą się przez 5, jest

45 − 9 = 36.

• zbiór tych liczb dwucyfrowych, które dzielą się przez 5 i nie dzielą się przez 2.

Zbiór liczb dwucyfrowych podzielnych przez 5 możemy rozbić na dwa podzbiory: podzbiór

liczb parzystych i podzbiór liczb nieparzystych. Wszystkich liczb dwucyfrowych podzielnych

przez 5, jest 18, tych spośród nich, które są dodatkowo podzielne przez 2, jest 9, zatem liczb

dwucyfrowych, które dzielą się przez 5 i nie dzielą się przez 2, jest 18 − 9 = 9.

Ostatecznie stwierdzamy, że wszystkich liczb dwucyfrowych, które są podzielne przez 2 lub

przez 5, jest

Liczba elementów zbioru skończonego

139

Page 141: Matematyka 3

| A2 ? A5 | = 9 + 36 + 9 = 54.

• sposób II

Obliczając liczbę tych liczb dwucyfrowych, które dzielą się przez 2 i nie dzielą się przez 5, moż-

na zauważyć, że zbiór parzystych liczb dwucyfrowych da się rozbić na pięć podzbiorów ze

względu na resztę z dzielenia przez 5. Obliczymy wtedy, że szukane przez nas liczby są ele-

mentami 4 z tych 5 podzbiorów, zatem ich liczba to

45 ? 45 = 36

Analogiczny pomysł można zastosować do ustalenia, ile jest liczb dwucyfrowych, które są po-

dzielne przez 2 lub przez 5.

Rozbijemy mianowicie zbiór liczb dwucyfrowych na 10 podzbiorów ze względu na resztę

z dzielenia przez 10. W każdym z tych podzbiorów jest1

10 ? 90 = 9 elementów. Wyróżnimy

wśród tych podzbiorów dwie grupy:

(1) podzbiory, w których znajdują się liczby dające przy dzieleniu przez 10 jedną z reszt:

0, 2, 4, 5, 6 lub 8,

(2) podzbiory, w których znajdują się liczby dające przy dzieleniu przez 10 jedną z reszt:

1, 3, 7, 9.

Zauważmy, że każda z liczb, która znalazła się w dowolnym z podzbiorów grupy (1) dzieli się

przez 2 lub przez 5, a każda z liczb, które są w dowolnym z podzbiorów grupy (2) jest liczbą

niepodzielną ani przez 2, ani przez 5.

Zatem

| A2 ? A5 | =6

10 ? 90 = 54.

• sposób III

Obliczyliśmy wcześniej, że liczb dwucyfrowych podzielnych przez 2 jest | A2 | = 45, liczb

dwucyfrowych podzielnych przez 5 jest | A5 | = 18, liczb dwucyfrowych podzielnych jed-

nocześnie przez 2 i przez 5 jest | A2 ∩ A9 | = 9.

Każda liczba należącą do tego ostatniego zbioru jest również elementem każdego ze zbiorów

A2 oraz A5. Wypisując zatem wszystkie liczby dwucyfrowe podzielne przez 2 oraz wszystkie

liczby dwucyfrowe podzielne przez 5, wypiszemy dokładnie dwa razy każdą z liczb po-

dzielnych przez 10, a każdą inną – dokładnie raz. Oznacza to, że jeśli od sumy

| A2 | + | A5 | = 45 + 18 = 63 odejmiemy liczbę | A2 ∩ A9 | = 9, to ustalimy, ile jest

liczb dwucyfrowych podzielnych przez 2 lub 5:

| A2 ? A5 | = | A2 | + | A5 | − | A2 ∩ A5 | = 45 + 18 − 9 = 54.

Rozumując podobnie jak w ostatnim sposobie rozwiązania przykładu 9, możemy stwierdzić,

że dla dowolnych dwóch zbiorów A i B liczba | A ? B | elementów należących do zbioru A

Liczba elementów zbioru skończonego

140

Page 142: Matematyka 3

lub do zbioru B jest równa sumie liczb | A | i | B | , pomniejszonej o liczbę | A ∩ B |elementów należących jednocześnie do zbioru A i do zbioru B:

| A ? B | = | A | + | B | − | A ∩ B | .

Przykład 10.W konkursie matematycznym uczestniczyło 132 uczniów. Siedmiu spośród nich nie rozwi-

ązało żadnego z dwóch pierwszych zadań, 98 uczestników rozwiązało zadanie pierwsze, a 55

z nich rozwiązało zadanie drugie. Ustalimy, ilu jest uczestników tego konkursu, którzy rozwi-

ązali oba zadania: pierwsze i drugie.

Z treści zadania wynika, że liczba uczestników konkursu, którzy rozwiązali zadanie pierwsze

lub zadanie drugie, jest równa

132 − 7 = 125.

Przyjmiemy teraz następujące oznaczenia: uczestników konkursu, którzy rozwiązali zadania

pierwsze, przypiszemy do zbioru A, a tych uczestników, którzy rozwiązali zadania drugie – do

zbioru B.

Wiemy, że | A ? B | = 125, | A | = 98 i | B | = 55.

Ponieważ | A ? B | = | A | + | B | − | A ∩ B | , więc 125 = 98 + 55 − | A ∩ B | , stąd

| A ∩ B | = 98 + 55 − 125 = 28, co oznacza, że 28 uczestników tego konkursu rozwiązało

oba zadania: pierwsze i drugie.

Przykład 11.W konkursie matematycznym, w którym uczestnicy mieli do rozwiązania trzy zadania, uczest-

niczyło 49 uczniów. Zadanie pierwsze rozwiązało 34 uczniów, zadanie drugie – 27, zadanie

trzecie – 18. Ponadto: zadanie pierwsze i drugie rozwiązało 19 uczniów, zadanie drugie i trze-

cie – 10 uczniów, zadanie pierwsze i trzecie – 13 uczniów, a 8 uczniów rozwiązało wszystkie

trzy zadania.

Ustalimy, ilu jest uczestników tego konkursu, którzy nie rozwiązali żadnego z trzech zadań.

Oznaczamy literami P, D, T zbiory uczniów, którzy rozwiązali odpowiednio pierwsze, drugie

i trzecie zadanie.

Przedstawimy rozwiązanie, korzystając z poniższego diagramu:

Liczba elementów zbioru skończonego

141

Page 143: Matematyka 3

Wpisujemy w odpowiednie miejsce diagramu liczbę uczestników, którzy:

• rozwiązali wszystkie trzy zadania (jest ich 8),

• rozwiązali zadania 1 i 2, ale nie rozwiązali zadania 3 (jest ich 19 − 8 = 11),

• rozwiązali zadania 1 i 3, ale nie rozwiązali zadania 2 (jest ich 13 − 8 = 5),

• rozwiązali zadania 2 i 3, ale nie rozwiązali zadania 1 (jest ich 10 − 8 = 2),

• rozwiązali tylko zadanie 1 (jest ich 34 − (11 + 8 + 5) = 10),

• rozwiązali tylko zadanie 2 (jest ich 27 − (11 + 8 + 2) = 6),

• rozwiązali tylko zadanie 3 (jest ich 18 − (5 + 8 + 2) = 3).

Wobec tego wszystkich uczestników tego konkursu, którzy rozwiązali co najmniej jedno

zadanie, było

8 + 11 + 5 + 2 + 10 + 6 + 3 = 45.

Zatem 4 uczestników konkursu nie rozwiązało żadnego z trzech zadań. To zadanie moż-

na też rozwiązać, rozumując w następujący sposób. Wybieramy po kolei wszystkie ele-

menty zbiorów: najpierw P, potem D i następnie T – jest ich razem

| P | + | D | + | T | = 34 + 27 + 18 = 79.

Na diagramie zaznaczamy „ + ” w każdym miejscu, z którego wzięliśmy wszystkie ele-

menty

Zauważamy, że elementy należące do części wspólnej każdych dwóch zbiorów obliczyli-

śmy za dużo razy – poprawiamy wynik, odejmując od niego liczby | P ∩ D | ,

| D ∩ T | i | P ∩ T | :

Liczba elementów zbioru skończonego

142

Page 144: Matematyka 3

| P | + | D | + | T | − ( | P ∩ D | + | D ∩ T | + | P ∩ T | ) = (34 + 27 + 18) − (19 + 10 + 13) = 79 − 42 = 37

Na diagramie zabieramy „ + ” z każdego miejsca, z którego elementy usunęliśmy.

Zatem pozostaje jeszcze tylko dodać elementy części wspólnej wszystkich trzech zbio-

rów tak, żeby każdy element sumy był policzony dokładnie raz.

Ponieważ | P ∩ D ∩ T | = 8, więc otrzymujemy, że liczba elementów zbioru P ? D ? T,

czyli liczba uczestników konkursu, którzy rozwiązali co najmniej jedno zadanie, jest rów-

na

| P ? D ? T | = | P | + | D | + | T | − ( | P ∩ D | + | D ∩ T | + | P ∩ T | ) + | P ∩ D ∩ T | = 79 − 42 + 8 = 45

.Oznacza to, że 4 uczestników konkursu nie rozwiązało żadnego z trzech zadań.

Wskazówka

Znamy już wzór na liczbę elementów sumy dwóch zbiorów

| A ? B | = | A | + | B | − | A ∩ B |

Korzystając z powyższego sposobu rozwiązania, możemy zapisać wzór na liczbę elementów

sumy A ? B ? C trzech zbiorów A, B i C:

Liczba elementów zbioru skończonego

143

Page 145: Matematyka 3

| A ? B ? C | = | A | + | B | + | C | − ( | A ∩ B | + | B ∩ C | + | A ∩ C | ) + | A ∩ B ∩ C |

Obydwa zapisane powyżej wzory są szczególnymi przypadkami zastosowania tzw. zasady

włączeń i wyłączeń.

Poziom trudności: AZadanie 3.1.1Wszystkich liczb trzycyfrowych większych od 200 i mniejszych od 500 jest

a) 298

b) 299

c) 300

d) 301

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.2W klasie IIIa jest 33 uczniów. Na wycieczkę do Gdańska pojechało 25 z nich, a na wycieczkę

do Rzeszowa pojechało ich 28, przy czym dokładnie trzech uczniów tej klasy nie pojechało na

żadną z tych dwóch wycieczek. Ile uczniów tej klasy było na obu wycieczkach: w Gdańsku i w

Rzeszowie?

a) 23

b) 25

c) 28

d) 30

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.3Ile jest elementów zbioru {11, 15, 19, … , 95, 99} wszystkich liczb dwucyfrowych, które przy

dzieleniu przez 4 dają resztę 3?

a) 25

b) 24

c) 23

Liczba elementów zbioru skończonego

144

Page 146: Matematyka 3

d) 22

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.4Kasia znalazła książkę, z której ktoś wyrwał kartki. Kiedy Kasia otworzyła książkę w zniszczonej

części, z lewej strony odczytała numer 98, a z prawej – 353. Ile kartek zostało wyrwanych z tej

książki w tym miejscu?

a) 127

b) 128

c) 254

d) 255

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.5Wszystkich liczb dwucyfrowych, które są podzielne przez 9 lub przez 10, jest

a) 10

b) 18

c) 19

d) 20

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.6Oblicz, ile jest elementów w zbiorze:

(Pokaż odpowiedź)

A –liczb naturalnych od 27 do 62: A = {27, 28, 29, … , 61, 62}a)

B – dwucyfrowych liczb nieparzystych: B = {11, 13, 15, … , 97, 99}b)

C – liczb dwucyfrowych podzielnych przez 6: C = {12, 18, 24, … , 90, 96}c)

D – liczb trzycyfrowych podzielnych przez 5: D = {100, 105, 110, … , 990, 995}d)

Liczba elementów zbioru skończonego

145

Page 147: Matematyka 3

Poziom trudności: AZadanie 3.1.7Oblicz, ile jest elementów w zbiorze:

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.8Piotruś pomagał dziadkowi porządkować książki. Zdejmując z górnej półki opasły tom starej

encyklopedii, nie zdołał utrzymać książki w ręku, a ta, upadając, rozerwała się. Podnosząc część,

która oddzieliła się od reszty książki, Piotruś zauważył, że na jej pierwszej stronie jest numer

306, a na ostatniej numer zapisany za pomocą tych samych cyfr. Ile kartek liczyła ta wyrwana

część encyklopedii? Odpowiedź uzasadnij.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.9Bieg uliczny ukończyło 2015 osób. Liczba zawodników, którzy przybiegli za Markiem, jest 18 ra-

zy większa od liczby tych startujących, którzy przybiegli przed nim, natomiast Jola ukończyła za-

wody dokładnie w połowie stawki. Ile osób zajęło w tym biegu miejsca między Markiem a Jolą?

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.10Oblicz, ile jest:

A1 – liczb trzycyfrowych, które przy dzieleniu przez 10 dają resztę 1:

A1 = {101, 111, … , 991}a)

A3 – liczb trzycyfrowych, które przy dzieleniu przez 10 dają resztę 3:

A3 = {103, 113, … , 993}b)

A6 – liczb trzycyfrowych, które przy dzieleniu przez 10 dają resztę 6:

A6 = {106, 116, … , 996}c)

A8 – liczb trzycyfrowych, które przy dzieleniu przez 10 dają resztę 8:

A8 = {108, 118, … , 998}d)

wszystkich liczb dwucyfrowych, które dzielą się przez 20.a)

wszystkich liczb dwucyfrowych, które dzielą się przez 4.b)

wszystkich liczb trzycyfrowych, które dzielą się przez 25.c)

Liczba elementów zbioru skończonego

146

Page 148: Matematyka 3

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.11Oblicz, ile jest:

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.12Oblicz, ile jest liczb

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.13Wiadomo, że wśród 100 uczestników pewnego międzynarodowego konkursu matematycznego

80 zna język angielski, 50 zna język francuski, 40 zna język niemiecki, a 21 zna język rosyjski.

Wykaż, że pewien uczestnik tego konkursu, który zna język angielski, zna również:

(Pokaż odpowiedź)

wszystkich liczb trzycyfrowych, które dzielą się przez 8.d)

wszystkich liczb trzycyfrowych, które dzielą się przez 11.a)

wszystkich liczb trzycyfrowych, które dzielą się przez 17.b)

wszystkich liczb czterocyfrowych, które dzielą się przez 19.c)

wszystkich liczb czterocyfrowych, które dzielą się przez 23.d)

dwucyfrowych, które są podzielne przez 2 lub są podzielne przez 10a)

dwucyfrowych, które są podzielne przez 3 lub są podzielne przez 9b)

trzycyfrowych, które są podzielne przez 5 lub są podzielne przez 15c)

trzycyfrowych, które są podzielne przez 25 lub są podzielne przez 75d)

język francuskia)

język niemieckib)

język rosyjskic)

Liczba elementów zbioru skończonego

147

Page 149: Matematyka 3

Poziom trudności: AZadanie 3.1.14W klasie III b jest 33 uczniów, z czego 19 to chłopcy. Wiadomo, że 15 uczniów tej klasy chodzi

na zajęcia kółka matematycznego. Wykaż, że w zajęciach tego kółka bierze udział co najmniej

jeden chłopiec.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.15Na piątkowe zajęcia w domu kultury zapisało się 51 osób. W tym dniu odbywają się tam tylko

zajęcia koła plastycznego (od 15.00 do 17.00), na które zapisało się 38 osób, oraz zajęcia koła

teatralnego (17.30 do 19.00), na które zapisało się 16 osób. Ile osób planuje uczęszczać w piątki

na zajęcia obu tych kół?

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.16Oblicz, ile jest liczb

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.17Każdy z 70 uczestników warsztatów matematycznych miał określić, co chciałby robić we wtorek

po kolacji. Do wyboru były zajęcia w sali gimnastycznej oraz gry i zabawy w świetlicy. 56 osób

zgłosiło chęć udziału na zajęciach w sali gimnastycznej, 38 – w grach i zabawach w świetlicy,

przy czym 26 osób zgłosiło się i na zajęcia w sali gimnastycznej, i na zajęcia w świetlicy. Ilu

uczestników tych warsztatów postanowiło po kolacji zostać w pokoju?

(Pokaż odpowiedź)

dwucyfrowych, które są podzielne przez 2 lub są podzielne przez 9a)

dwucyfrowych, które są podzielne przez 3 lub są podzielne przez 10b)

trzycyfrowych, które są podzielne przez 6 lub są podzielne przez 75c)

trzycyfrowych, które są podzielne przez 25 lub są podzielne przez 60d)

Liczba elementów zbioru skończonego

148

Page 150: Matematyka 3

Poziom trudności: AZadanie 3.1.18

Ze zbioru {1, 2, 3, … , 999, 1000} wszystkich liczb naturalnych od 1 do 1000 usunięto naj-

pierw wszystkie liczby podzielne przez 4, a następnie spośród reszty usunięto wszystkie liczby

podzielne przez 5. Ile liczb pozostało?

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.19Do pracy w samorządzie szkolnym zgłosiło się trzech kandydatów: A, B i C. Za pomocą głosowa-

nia na szkolnej stronie internetowej przeprowadzono sondaż na temat popularności tych kan-

dydatów. W stosownym formularzu należało dokonać wyboru, do którego zachęcano następu-

jąco: „Spośród kandydatów A, B, C wybierz tych, którzy według Ciebie zasługują na wybór do

samorządu szkolnego”. Opiekun strony internetowej przygotował raport, w którym podał, że:

w sondażu oddano 370 głosów,

na kandydata A oddano 200 głosów,

na kandydata B oddano 211 głosów,

na kandydata C oddano 134 głosy,

kandydata A i kandydata B wskazało 68 głosujących,

kandydata B i kandydata C wskazało 73 głosujących,

kandydata A i kandydata C wskazało 86 głosujących,

wszystkich trzech kandydatów wskazało 56 głosujących.

Wykaż, że w tym raporcie jest błąd.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.20Oblicz, ile jest liczb trzycyfrowych, które dzielą się przez 2 lub przez 3, lub przez 5.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.21Wiadomo, że wśród 20 laureatów pewnego międzynarodowego konkursu matematycznego 15

zna język angielski, 14 zna język francuski, a 12 zna język niemiecki. Wykaż, że pewien laureat

tego konkursu zna każdy z tych trzech języków.

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.1.22Jarek, Darek i Marek, przygotowując się do sprawdzianu z matematyki, rozwiązali wspólnymi

siłami wszystkie 90 zadań poleconych przez nauczyciela. Jarek rozwiązał 70 zadań, Darek – 60,

Liczba elementów zbioru skończonego

149

Page 151: Matematyka 3

a Marek – 40. Chłopcy uznali, że zadania, które rozwiązali wszyscy, były łatwe, ale zadania roz-

wiązane tylko przez jedną osobę były trudne. Wykaż, że zadań trudnych było o 10 więcej niż

zadań łatwych.

(Pokaż odpowiedź)

Liczba elementów zbioru skończonego

150

Page 152: Matematyka 3

3.2. Reguła mnożenia, reguła dodawaniaReguła mnożenia

Przykład 1.W pudełku jest 11 kul, ponumerowanych od 1 do 11. Z tego pudełka losujemy jedną kulę,

zapisujemy jej numer i wrzucamy wylosowaną kulę z powrotem do pudełka. Następnie ope-

rację losowania powtarzamy, zapisując wynik drugiego losowania.

Obliczymy, ile jest wszystkich możliwych wyników takiego doświadczenia.

Pojedynczy wynik takiego doświadczenia zapisujemy, notując dwie liczby: najpierw wynik

pierwszego losowania −w1, a następnie wynik drugiego losowania −w2.

Wszystkie możliwe wyniki doświadczenia możemy przedstawić np. za pomocą tabeli.

1 2 3 4 5 6 7 8 9 10 11

1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) (1, 9) (1, 10) (1, 11)

2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8) (2, 9) (2, 10) (2, 11)

3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (3, 8) (3, 9) (3, 10) (3, 11)

4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7) (4, 8) (4, 9) (4, 10) (4, 11)

5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7) (5, 8) (5, 9) (5, 10) (5, 11)

6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (6, 7) (6, 8) (6, 9) (6, 10) (6, 11)

7 (7, 1) (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7) (7, 8) (7, 9) (7, 10) (7, 11)

8 (8, 1) (8, 2) (8, 3) (8, 4) (8, 5) (8, 6) (8, 7) (8, 8) (8, 9) (8, 10) (8, 11)

9 (9, 1) (9, 2) (9, 3) (9, 4) (9, 5) (9, 6) (9, 7) (9, 8) (9, 9) (9, 10) (9, 11)

10 (10, 1) (10, 2) (10, 3) (10, 4) (10, 5) (10, 6) (10, 7) (10, 8) (10, 9) (10, 10) (10, 11)

11 (11, 1) (11, 2) (11, 3) (11, 4) (11, 5) (11, 6) (11, 7) (11, 8) (11, 9) (11, 10) (11, 11)

Każdy wynik doświadczenia został w powyższej tabeli utożsamiony z przyporządkowaną mu

parą liczb (w1, w2). Jeżeli np. w pierwszym losowaniu otrzymamy 3, a w drugim 8, to wy-

nik tego losowania zapiszemy jako (3, 8). Z kolei zapisanie pary (11, 2) to informacja, że za

pierwszym razem wylosowano 11, a za drugim – 2.

Ponieważ rozpatrywane doświadczenie losowe to wykonanie jedna po drugiej dwóch czyn-

ności, polegających za każdym razem na wyborze jednego elementu z jedenastoelemento-

Reguła mnożenia, reguła dodawania

151

Page 153: Matematyka 3

wego zbioru {1, 2, 3, … , 11}, to wszystkich możliwych wyników tego doświadczenia jest

11 ∙ 11 = 121.

Przykład 2.Ustalimy, ile dodatnich dzielników całkowitych ma każda z liczb: 72, 360 oraz 1410.

Skorzystamy z zapisu każdej z tych liczb w postaci rozkładu na czynniki pierwsze.

Ponieważ 72 = 23 ? 32, więc każdy dodatni czynnik całkowity liczby 72 jest liczbą postaci

2n ? 3m, przy czym n jest liczbą ze zbioru {0, 1, 2, 3}, natomiast m jest liczbą ze zbioru

{0, 1, 2}. Zauważmy, że wybór dzielnika liczby 72 polega na wykonaniu dwóch czynności:

wyborze wykładnika dla czynnika 2 – co można zrobić na 4 sposoby, a następnie na wyborze

wykładnika dla czynnika 3 - co można zrobić na 3 sposoby.

Korzystając z reguły mnożenia, stwierdzamy, że 72 ma 4 ? 3 = 12 dzielników, które przedsta-

wia poniższa tabela.

30 31 32

20 20 ? 30 = 1 20 ? 31 = 3 20 ? 32 = 9

21 21 ? 30 = 2 21 ? 31 = 6 21 ? 32 = 18

22 22 ? 30 = 4 22 ? 31 = 12 22 ? 32 = 36

23 23 ? 30 = 8 23 ? 31 = 24 23 ? 32 = 72

Ponieważ 360 = 23 ? 32 ? 5, więc każdy dodatni czynnik całkowity liczby 360 jest liczbą postaci

2n ? 3m ? 5k, przy czym n jest liczbą ze zbioru {0, 1, 2, 3}, m jest liczbą ze zbioru {0, 1, 2}, natomiast k jest liczbą ze zbioru {0, 1}. Zauważmy, że wybór dzielnika liczby 360 polega na

wykonaniu trzech czynności, z których pierwsza może skończyć się na jeden z 4 sposobów,

druga - na jeden z 3 sposobów, a trzecia - na jeden z 2 sposobów.

Jeżeli najpierw rozpatrzymy wszystkie przypadki związane z wykonaniem dwóch pierwszych

czynności (jest ich 12), a następnie wykonamy trzecią czynność, to dostaniemy 24 możliwo-

ści.

Korzystając z reguły mnożenia, stwierdzamy, że 360 ma 4 ? 3 ? 2 = 24 dodatnie dzielniki cał-

kowite , które przedstawia poniższa tabela.

20 ? 30 21 ? 30 22 ? 30 23 ? 30 20 ? 31 21 ? 31 22 ? 31 23 ? 31 20 ? 32 21 ? 32 22 ? 32 23 ? 32

50 1 2 4 8 3 6 12 24 9 18 36 72

51 5 10 20 40 15 30 60 120 45 90 180 360

Ponieważ 1410 = 2 ? 3 ? 5 ? 47, więc każdy dodatni czynnik całkowity liczby 1410 jest liczbą

postaci 2n ? 3m ? 5k ? 47l, przy czym każda z liczb n, m, k, l wybierana jest ze zbioru {0, 1}

Reguła mnożenia, reguła dodawania

152

Page 154: Matematyka 3

. Zauważmy, że wybór dzielnika liczby 1410 polega na wykonaniu czterech czynności, z któ-

rych każda może skończyć się na jeden z 2 sposobów.

Korzystając z reguły mnożenia, stwierdzamy, że 1410 ma 2 ? 2 ? 2 ? 2 = 16 dzielników.

Reguła mnożenia

Rozumując podobnie jak w przedstawionych powyżej przykładach, stwierdzimy, że:

• liczba wszystkich możliwych wyników doświadczenia, które polega na wykonaniu po kolei

dwóch czynności, z których pierwsza może zakończyć się na jeden z n sposobów, druga – na

jeden z m sposobów, jest równa mn,

• liczba wszystkich możliwych wyników doświadczenia, które polega na wykonaniu po kolei

trzech czynności, z których pierwsza może zakończyć się na jeden z n sposobów, druga – na

jeden z m sposobów, a trzecia – na jeden z k sposobów, jest równa kmn.

Zasada, którą w podobnych przypadkach stosujemy, nazywa się regułą mnożenia.

Twierdzenie: Reguła mnożenia

Liczba wszystkich możliwych wyników doświadczenia, które polega na wykonaniu po kolei n

czynności, z których pierwsza może zakończyć się na jeden z k1 sposobów, druga – na jeden

z k2 sposobów, trzecia – na jeden z k3 sposobów i tak dalej do n − tej czynności, która może

zakończyć się na jeden z kn sposobów, jest równa

k1 ? k2 ? k3 ? ... ? kn

Powołując się na regułę mnożenia, można pokazać, że liczba n, która w rozkładzie na czynniki

pierwsze daje się zapisać w postaci

n = p1α1 ? p2

α2 ? ... ? pkαk,

gdzie p1, p2, ..., pk są różnymi liczbami pierwszymi, a α1, α2, ..., αk są dodatnimi liczba-

mi całkowitymi,

ma

(α1 + 1) ? (α2 + 1) ? ... ? ( αk + 1)

dodatnich dzielników całkowitych.

Przykład 3.Ustalimy, ile jest wszystkich możliwych wyników doświadczenia, które polega na:

siedmiokrotnym rzucie symetryczną monetą.W pojedynczym rzucie symetryczną mo-

netą możemy otrzymać jeden z dwóch wyników: „orzeł” lub „reszka”. Doświadczenie

polega więc na siedmiokrotnym powtórzeniu czynności, która za każdym razem może

skończyć się na jeden z 2 sposobów. Korzystając z reguły mnożenia, stwierdzamy, że

a)

Reguła mnożenia, reguła dodawania

153

Page 155: Matematyka 3

Wariacje z powtórzeniami

W doświadczeniach rozpatrywanych w poprzednim przykładzie mieliśmy do czynienia z tym sa-

mym schematem: każde z nich polegało na k- krotnym powtórzeniu czynności, która za każdym

razem mogła się skończyć na jeden z n sposobów. Korzystając z reguły mnożenia, stwierdzamy,

że liczba wszystkich wyników w doświadczeniu tego typu jest równa

n ? n ? ... ? n?

k czynników

= nk

Doświadczenie polegające na k–krotnym powtórzeniu czynności, która za każdym razem mogła

się skończyć na jeden z n sposobów, nazywa się zwyczajowo k– wyrazową wariacją z powtórze-

niami zbioru n-elementowego.

Modelem dla tego typu doświadczenia jest k–wyrazowy ciąg o elementach wybieranych dowolnie

ze zbioru n–elementowego (czyli z powtórzeniami – dowolny element zbioru może wystąpić wie-

lokrotnie w ciągu).

Na podstawie spostrzeżenia poczynionego powyżej formułujemy twierdzenie.

liczba wszystkich wyników jest równa

2 ? 2 ? 2 ? 2 ? 2 ? 2 ? 2 = 27 = 128.

pięciokrotnym rzucie symetryczną sześcienną kostką do gry.W pojedynczym rzucie sy-

metryczną sześcienną kostką do gry możemy otrzymać jeden z sześciu wyników:

1, 2, 3, 4, 5 lub 6 oczek. Doświadczenie polega więc na pięciokrotnym powtórzeniu

czynności, która za każdym razem może skończyć się na jeden z 6 sposobów. Korzy-

stając z reguły mnożenia, stwierdzamy, że liczba wszystkich wyników jest równa

6 ? 6 ? 6 ? 6 ? 6 = 65 = 7776

b)

zapisaniu liczby trzycyfrowej, utworzonej wyłącznie za pomocą cyfr ze zbioru

{1, 2, 3, 4, 5, 6, 7, 8} (cyfry mogą się powtarzać).

Wybierając każdą cyfrę takiej liczby, możemy otrzymać jeden z ośmiu wyników. Ozna-

cza to, że doświadczenie polega na trzykrotnym powtórzeniu czynności, która za każ-

dym razem może skończyć się na jeden z 8 sposobów. Korzystając z reguły mnożenia,

stwierdzamy, że liczba wszystkich wyników jest równa

8 ? 8 ? 8 = 83 = 512

c)

rozmieszczeniu 4 różnych notatników w 7 różnych teczkach.

Wyboru teczki dla każdego z czterech notatników możemy dokonać na 7 sposobów.

Doświadczenie polega więc na czterokrotnym powtórzeniu czynności, która za każdym

razem może skończyć się na jeden z 7 sposobów. Korzystając z reguły mnożenia,

stwierdzamy, że liczba wszystkich wyników jest równa

7 ? 7 ? 7 ? 7 = 74 = 2401

d)

Reguła mnożenia, reguła dodawania

154

Page 156: Matematyka 3

Własność: liczba k-wyrazowych wariacji zpowtórzeniami zbioru n-elementowego

Liczba wszystkich k– wyrazowych wariacji z powtórzeniami zbioru n– elementowego jest rów-

na nk.

Przykład 4.Stosując twierdzenie o liczbie wariacji z powtórzeniami, obliczymy, że:

Przykład 5.Obliczymy sumę wszystkich liczb dwucyfrowych zapisanych wyłącznie za pomocą cyfr

1, 2, 3, 4, 5 (cyfry mogą się powtarzać).

Wszystkich liczb dwucyfrowych zapisanych wyłącznie za pomocą cyfr 1, 2, 3, 4, 5 jest do-

kładnie tyle, ile dwuelementowych ciągów (c1, c2), gdzie c1 oraz c2 to liczby wybrane ze zbio-

ru {1, 2, 3, 4, 5}, z powtórzeniami. Jest ich zatem 5 ? 5 = 25.

Sumę tych wszystkich liczb obliczymy dwoma sposobami.

• sposób I

Wypisujemy wszystkie liczby w tabeli, przy czym elementy c1, c2 pary (c1, c2) to dla konkret-

nej liczby odpowiednio cyfra dziesiątek oraz cyfra jedności.

liczba wszystkich możliwych wyników trzykrotnego rzutu kostką sześcienną to 63 = 216

,

a)

liczba wszystkich możliwych wyników pięciokrotnego rzutu monetą to 25 = 32,b)

liczba wszystkich możliwych liczb 4-cyfrowych utworzonych z cyfr {1, 2, 3, 4, 5} to

54 = 625,

c)

liczba wszystkich możliwych sposobów umieszczenia 10 różnych długopisów w 4 róż-

nych szufladach to 410 = 1048576,

d)

liczba wszystkich możliwych sposobów umieszczenia 7 różnych kul w 6 różnych pudeł-

kach (zakładamy, że w każdym pudełku zmieści się co najmniej 7 takich kul) to

67 = 279936.

e)

Reguła mnożenia, reguła dodawania

155

Page 157: Matematyka 3

1 2 3 4 5

1 11 12 13 14 15

2 21 22 23 24 25

3 31 32 33 34 35

4 41 42 43 44 45

5 51 52 53 54 55

Sumujemy liczby dwucyfrowe w kolejnych wierszach. Zauważamy przy tym, że:

• wszystkie liczby występujące w tym samym wierszu mają tę samą cyfrę dziesiątek,

• cyfry jedności tych liczb są różnymi liczbami ze zbioru {1, 2, 3, 4, 5}.

1 2 3 4 5

1 11 12 13 14 15 suma: 5 ? 10 + (1 + 2 + 3 + 4 + 5)

2 21 22 23 24 25 suma: 5 ? 20 + (1 + 2 + 3 + 4 + 5)

3 31 32 33 34 35 suma: 5 ? 30 + (1 + 2 + 3 + 4 + 5)

4 41 42 43 44 45 suma: 5 ? 40 + (1 + 2 + 3 + 4 + 5)

5 51 52 53 54 55 suma: 5 ? 50 + (1 + 2 + 3 + 4 + 5)

razem 5 ? 10 + 5 ? 20 + 5 ? 30 + 5 ? 40 + 5 ? 50 + 5 ? (1 + 2 + 3 + 4 + 5)

Na koniec dodajemy wszystkie otrzymane sumy i otrzymujemy

5 ? (10 + 20 + 30 + 40 + 50) + 5 ? (1 + 2 + 3 + 4 + 5)Oznacza to, że suma wszystkich liczb dwucyfrowych zapisanych wyłącznie za pomocą

cyfr 1, 2, 3, 4, 5 jest równa

5 ? 10 ? (1 + 2 + 3 + 4 + 5) + 5 ? (1 + 2 + 3 + 4 + 5) = 5 ? (10 + 1) ? (1 + 2 + 3 + 4 + 5) = 5 ? 11 ? 15 = 825

• sposób II

Oznaczmy przez S sumę wszystkich liczb dwucyfrowych zapisanych wyłącznie za pomocą

cyfr 1, 2, 3, 4, 5.

Podobnie jak poprzednio wypisujemy wszystkie liczby w tabeli, przy czym do każdej z nich

dopisujemy teraz drugą liczbę dwucyfrową, w następujący sposób: do liczby opisanej przez

parę (c1, c2) dopisujemy liczbę opisaną przez parę (6 − c1, 6 − c2).

Reguła mnożenia, reguła dodawania

156

Page 158: Matematyka 3

1 2 3 4 5

1 11, 55 12, 54 13, 53 14, 52 15, 51

2 21, 45 22, 44 23, 43 24, 42 25, 41

3 31, 35 32, 34 33, 33 34, 32 35, 31

4 41, 25 42, 24 43, 23 44, 22 45, 21

5 51, 15 52, 14 53, 13 54, 12 55, 11

Zauważmy, że:

• istnieje wzajemnie jednoznaczne przyporządkowanie: liczby wyznaczonej przez parę

(c1, c2) do liczby wyznaczonej przez parę (6 − c1, 6 − c2), a ponadto suma takich

dwóch liczb jest w każdym przypadku równa 66,

• każda z liczb dwucyfrowych zapisanych wyłącznie za pomocą cyfr 1, 2, 3, 4, 5 jest

przyporządkowana do dokładnie jednej pary (6 − c1, 6 − c2), gdzie c1 oraz c2 to liczby

wybrane ze zbioru {1, 2, 3, 4, 5}.

Oznacza to, że dodając wszystkie liczby dwucyfrowe wpisane w ten sposób do tabeli:

• dodamy sumy par liczb wpisanych w 25 komórkach tabeli, czyli 25 razy liczbę 66,

• dokładnie dwa razy obliczymy każdy składnik sumy S.

Stąd

2S = 25 ? 66

a więc

S =12 ? 25 ? 66 = 25 ? 33 = 825

Przykład 6.Obliczymy sumę S wszystkich liczb trzycyfrowych zapisanych wyłącznie za pomocą cyfr

1, 2, 3, 4, 5 (cyfry mogą się powtarzać).

Wszystkich liczb trzycyfrowych zapisanych wyłącznie za pomocą cyfr 1, 2, 3, 4, 5 jest do-

kładnie tyle, ile trzyelementowych ciągów (c1, c2, c3), gdzie c1, c2 oraz c3 to liczby wybrane

ze zbioru {1, 2, 3, 4, 5}, z powtórzeniami. Tych liczb jest zatem 5 ? 5 ? 5 = 125.

Ich sumę obliczymy dwoma sposobami.

• sposób I

Sumujemy otrzymane liczby trzycyfrowe, dzieląc je na 5 grup ze względu na cyfrę setek. Za-

uważamy, że jest 25 liczb w każdej takiej grupie. Przy czym dla ustalonej cyfry setek dopisane

do niej cyfry tworzą wszystkie możliwe liczby dwucyfrowe zapisane wyłącznie za pomocą cyfr

1, 2, 3, 4, 5.

Zatem:

Reguła mnożenia, reguła dodawania

157

Page 159: Matematyka 3

• sumując wszystkie liczby z cyfrą setek równą 1, otrzymamy

25 ? 100 + 5 ? (10 + 20 + 30 + 40 + 50) + 5 ? (1 + 2 + 3 + 4 + 5)

• sumując wszystkie liczby z cyfrą setek równą 2, otrzymamy

25 ? 200 + 5 ? (10 + 20 + 30 + 40 + 50) + 5 ? (1 + 2 + 3 + 4 + 5)

• sumując wszystkie liczby z cyfrą setek równą 3, otrzymamy

25 ? 300 + 5 ? (10 + 20 + 30 + 40 + 50) + 5 ? (1 + 2 + 3 + 4 + 5)

• sumując wszystkie liczby z cyfrą setek równą 4, otrzymamy

25 ? 400 + 5 ? (10 + 20 + 30 + 40 + 50) + 5 ? (1 + 2 + 3 + 4 + 5)

• sumując wszystkie liczby z cyfrą setek równą 5, otrzymamy

25 ? 500 + 5 ? (10 + 20 + 30 + 40 + 50) + 5 ? (1 + 2 + 3 + 4 + 5).Oznacza to, że

S = 25 ? (100 + 200 + 300 + 400 + 500) + 5 ? 5 ? (10 + 20 + 30 + 40 + 50) + 5 ? 5 ? (1 + 2 + 3 + 4 + 5) =

= 25 ? 111 ? (1 + 2 + 3 + 4 + 5) = 25 ? 111 ? 15 = 41625

Zauważmy, że w tej sumie otrzymaliśmy 25 razy każdą liczbę z ustaloną cyfrą na kolejnych

miejscach zapisu dziesiętnego: jako cyfrę setek, jako cyfrę dziesiątek oraz jako cyfrę jedności.

Mając to na uwadze, można było od razu zapisać sumę S w postaci

S = 25 ? (100 + 200 + 300 + 400 + 500) + 25 ? (10 + 20 + 30 + 40 + 50) + 25 ? (1 + 2 + 3 + 4 + 5).

• sposób II

Wypisujemy wszystkie liczby trzycyfrowe zapisane wyłącznie za pomocą cyfr 1, 2, 3, 4, 5

i do każdej z nich dopisujemy teraz drugą liczbę trzycyfrową, w następujący sposób: do

liczby opisanej przez trójkę (c1, c2, c3) dopisujemy liczbę opisaną przez trójkę

(6 − c1, 6 − c2, 6 − c3).Zauważmy, że

• istnieje wzajemnie jednoznaczne przyporządkowanie: liczby wyznaczonej przez trójkę

(c1, c2, c3) do liczby wyznaczonej przez trójkę (6 − c1, 6 − c2, 6 − c3), a ponadto suma

takich dwóch liczb jest w każdym przypadku równa 666,

• każda z liczb trzycyfrowych zapisanych wyłącznie za pomocą cyfr 1, 2, 3, 4, 5 jest

przyporządkowana do dokładnie jednej trójki (6 − c1, 6 − c2, 6 − c3), gdzie c1, c2 oraz c3

to liczby wybrane ze zbioru {1, 2, 3, 4, 5}.

Oznacza to, że dodając wszystkie wypisane w ten sposób liczby trzycyfrowe:

• dodamy sumy par liczb wpisanych w 125 przypadkach, czyli 125 razy liczbę 666,

Reguła mnożenia, reguła dodawania

158

Page 160: Matematyka 3

• dokładnie dwa razy obliczymy każdy składnik sumy S.

Stąd

2S = 125 ? 666

a więc

S =12 ? 125 ? 666 = 125 ? 333 = 41625

Zastosowanie reguły mnożenia oraz reguły

dodawania

Przykład 7.Rzucamy dwa razy symetryczną sześcienną kostką do gry. Obliczymy, ile jest wszystkich wy-

ników doświadczenia, polegającego na tym, że

suma liczb wyrzuconych oczek jest parzysta.W poniższej tabeli przedstawiamy wszyst-

kie możliwe wyniki dwukrotnego rzutu kostką. Zaznaczamy te, dla których suma liczb

wyrzuconych oczek jest parzysta.

1 2 3 4 5 6

1 x x x 3 możliwości

2 x x x 3 możliwości

3 x x x 3 możliwości

4 x x x 3 możliwości

5 x x x 3 możliwości

6 x x x 3 możliwości

Razem: (3 + 3 + 3) + (3 + 3 + 3) = 3 ∙ 3 + 3 ∙ 3 = 18

Zatem wszystkich takich wyników jest 18.

Zauważmy przy okazji, że warto od razu podzielić wyniki pojedynczego rzutu ze wzglę-

du na parzystość liczby wyrzuconych oczek:

wynik pojedynczego rzutu

{1, 2, 3, 4, 5, 6}

wyniki nieparzyste

{1, 3, 5}wyniki parzyste

{2, 4, 6}

6 możliwości 3 możliwości 3 możliwości

a)

Reguła mnożenia, reguła dodawania

159

Page 161: Matematyka 3

• do każdej z 3 nieparzystych liczb oczek wyrzuconych za pierwszym razem musimy za

drugim razem wyrzucić jedną z 3 nieparzystych liczb oczek, co daje łącznie 3 ∙ 3 = 9

możliwości,

• do każdej z 3 parzystych liczb oczek wyrzuconych za pierwszym razem musimy za dru-

gim razem wyrzucić jedną z 3 parzystych liczb oczek, co daje łącznie 3 ∙ 3 = 9 możliwo-

ści.

Wobec tego w sumie otrzymujemy 3 ∙ 3 + 3 ∙ 3 = 18 wyników, dla których suma liczb

wyrzuconych oczek jest parzysta.

• do każdej z 3 parzystych liczb oczek wyrzuconych za pierwszym razem możemy za dru-

gim razem wyrzucić dowolną liczbę oczek, co daje łącznie 3 ∙ 6 = 18 możliwości,

• do każdej z 3 nieparzystych liczb oczek wyrzuconych za pierwszym razem możemy za

drugim razem wyrzucić jedną z 3 parzystych liczb oczek, co daje łącznie 3 ∙ 3 = 9 możli-

wości.

Wobec tego w sumie otrzymujemy 3 ∙ 6 + 3 ∙ 3 = 27 wyników, dla których iloczyn liczb

wyrzuconych oczek jest parzysty.

Zauważmy przy okazji, że zbiór wszystkich wyników dwukrotnego rzutu kostką można

rozbić na dwa podzbiory:

A – tych wyników, dla których iloczyn liczb wyrzuconych oczek jest nieparzysty,

B – tych wyników, dla których iloczyn liczb wyrzuconych oczek jest parzysty.

Wtedy

| A ? B | = | A | + | B |przy czym | A ? B | = 6 ? 6 = 36 (tyle jest wszystkich możliwych wyników dwukrotnego

rzutu kostką) oraz | A | = 3 ? 3 = 9 (tyle jest wyników dwukrotnego rzutu kostką, dla

których iloczyn liczb wyrzuconych oczek jest nieparzysty). Zatem

36 = 9 + | B |stąd

| B | = 36 − 9 = 27

Przy zliczaniu konkretnych możliwości skorzystamy z tego podziału oraz zastosujemy

dwie poznane zasady: regułę mnożenia i regułę dodawania.

Zauważmy, że aby suma liczb wyrzuconych oczek była parzysta, musimy w obu rzu-

tach otrzymać liczby oczek tej samej parzystości. Oznacza to, że:

Iloczyn liczb wyrzuconych oczek jest liczbą nieparzystą.Aby iloczyn liczb wyrzuconych

oczek był nieparzysty, w obu rzutach musimy otrzymać liczbę nieparzystą. Zatem do

każdej z 3 nieparzystych liczb oczek wyrzuconych za pierwszym razem musimy za dru-

gim razem wyrzucić jedną z 3 nieparzystych liczb oczek, co daje łącznie 3 ∙ 3 = 9 moż-

liwości.

a)

Iloczyn liczb wyrzuconych oczek jest parzysty.Aby iloczyn liczb wyrzuconych oczek był

parzysty, w co najmniej jednym z rzutów musimy otrzymać parzystą liczbę oczek.

Oznacza to, że:

b)

Iloczyn liczb wyrzuconych oczek jest podzielny przez 6.a)

Reguła mnożenia, reguła dodawania

160

Page 162: Matematyka 3

Tym razem zaznaczamy w tabeli te wyniki, dla których iloczyn liczb wyrzuconych oczek jest

podzielny przez 6.

w1 / w2 1 2 3 4 5 6

1 x 1 możliwość

2 x 2 możliwości

3 x x x 3 możliwości

4 x x 2 możliwości

5 x 1 możliwość

6 x x x x x x 6 możliwości

Razem: 1 + 2 + 3 + 2 + 1 + 6 = 2 ∙ 1 + 2 ∙ 2 + 1 ∙ 3 + 1 ∙ 6 = 15

Zatem wszystkich takich wyników jest 15.

Podsumowując zauważmy, że można wyniki pojedynczego rzutu podzielić na przypadki ze

względu na to, jaką resztę z dzielenia przez 6 daje wyrzucona liczba oczek.

Wtedy:

• jeżeli za pierwszym razem wyrzucimy 6 oczek, to liczba oczek wyrzuconych za drugim

razem jest dowolna , co daje łącznie 1 ∙ 6 = 6 możliwości,

• jeżeli za pierwszym razem wyrzucimy 2 lub 4 oczka, to za drugim razem musimy wyrzu-

cić 3 lub 6 oczek (czyli liczbę oczek, która dzieli się przez 3), co daje łącznie 2 ∙ 2 = 4

możliwości,

• jeżeli za pierwszym razem wyrzucimy 3 oczka, to za drugim razem musimy wyrzucić

2, 4 lub 6 oczek (czyli liczbę oczek, która dzieli się przez 2), co daje łącznie 1 ∙ 3 = 3

możliwości,

• jeżeli za pierwszym razem wyrzucimy 1 lub 5 oczek, to za drugim razem musimy wyrzu-

cić 6 oczek (czyli liczbę oczek, która dzieli się przez 6), co daje łącznie 2 ∙ 1 = 2 możliwo-

ści.

Zatem wszystkich takich wyników jest 1 ∙ 6 + 2 ∙ 2 + 1 ∙ 3 + 2 ∙ 1 = 15.

Przykład 8.W pudełku jest 17 kul, ponumerowanych od 1 do 17. Z tego pudełka losujemy dwa razy po

jednej kuli, przy czym po losowaniu wrzucamy wylosowaną kulę z powrotem do pudełka.

Inaczej mówiąc: ze zbioru {1, 2, 3, ... , 16, 17} losujemy dwa razy po jednej liczbie, ze

zwracaniem.

Obliczymy, ile jest wszystkich wyników doświadczenia.

Suma wylosowanych liczb jest parzysta.Dzielimy wyniki pojedynczego losowania ze

względu na parzystość wylosowanej liczby:

a)

Reguła mnożenia, reguła dodawania

161

Page 163: Matematyka 3

• do każdej z 9 liczb nieparzystych wylosowanych za pierwszym razem musimy za dru-

gim razem ponownie wylosować jedną z 9 liczb nieparzystych, co daje łącznie 9 ∙ 9 = 81

możliwości,

• do każdej z 8 liczb nieparzystych wylosowanych za pierwszym razem musimy za dru-

gim razem ponownie wylosować jedną z 8 liczb nieparzystych, co daje łącznie 8 ∙ 8 = 64

możliwości.

Wobec tego łącznie otrzymujemy 9 ∙ 9 + 8 ∙ 8 = 81 + 64 = 145 wyników, dla których

suma wylosowanych liczb jest parzysta.

• sposób I

Posłużymy się metodą tabeli.

Rozpatrzmy najpierw wzorcową tabelę, w której opisane są przypadki odpowiadające

wszystkim możliwym wynikom losowania ze względu na resztę z dzielenia przez 6.

Zaznaczamy w niej te, dla których iloczyn liczb wyrzuconych oczek jest podzielny przez

6.

wynik pojedynczego

losowania

{1, 2, 3, … , 16, 17}

wyniki nieparzyste

{1, 3, 5, 7, 9, 11, 13, 15, 17}wyniki parzyste

{2, 4, 6, 8, 10, 12, 14, 16}

17 możliwości 9 możliwości 8 możliwości

Zauważmy, że aby suma wylosowanych liczb była parzysta, musimy w obu rzutach

otrzymać liczby tej samej parzystości. Oznacza to, że:

Iloczyn wylosowanych liczb jest parzysty.Zbiór wszystkich wyników dwukrotnego loso-

wania ze zwracaniem ze zbioru {1, 2, 3, ... , 16, 17} można rozbić na dwa pod-

zbiory:

A – tych wyników, dla których iloczyn wylosowanych liczb jest nieparzysty,

B – tych wyników, dla których iloczyn wylosowanych liczb jest parzysty.

Wtedy

| A ? B | = | A | + | B | ,

przy czym | A ? B | = 17 ? 17 = 289 (tyle jest wszystkich możliwych wyników takiego

losowania) oraz | A | = 9 ? 9 = 81 (tyle jest wyników, dla których iloczyn wylosowa-

nych liczb jest nieparzysty).

Zatem | B | = 289 − 81 = 208, co oznacza, że jest 208 wyników tego doświadczenia,

dla których iloczyn wylosowanych liczb jest parzysty.

a)

Iloczyn wylosowanych liczb jest podzielny przez 6?b)

Reguła mnożenia, reguła dodawania

162

Page 164: Matematyka 3

w1 / w2reszta 1 reszta 2 reszta 3 reszta 4 reszta 5 reszta 0

reszta 1 x

reszta 2 x x

reszta 3 x x x

reszta 4 x x

reszta 5 x

reszta 0 x x x x x x

Wszystkich takich wyników jest 15.Dzielimy teraz wyniki obu losowań na trzy podzbiory:

{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12} oraz {13, 14, 15, 16, 17}. W zbiorczej tabeli

zliczamy wszystkie możliwości w 9 przypadkach, dla każdego z nich odczytując liczbę

możliwości ze wzorcowej tabeli.

w1 / w2 {1, 2, 3, 4, 5, 6} {7, 8, 9, 10, 11, 12} {13, 14, 15, 16, 17}

{1, 2, 3, 4, 5, 6} 15 możliwości 15 możliwości15 – 6 = 9 możli-

wości

{7, 8, 9, 10, 11, 12} 15 możliwości 15 możliwości15 – 6 = 9 możli-

wości

{13, 14, 15, 16, 17}15 – 6 = 9 moż-

liwości

15 – 6 = 9 możliwo-

ści4 możliwości

Mamy więc:

• 4 przypadki, które dają 15 wyników z iloczynem liczb podzielnym przez 6,

• 4 przypadki, które dają 9 wyników z iloczynem liczb podzielnym przez 6,

• oraz 1 przypadek, który daje 4 wyniki z iloczynem liczb podzielnym przez 6.

Łącznie otrzymujemy 4 ∙ 15 + 4 ∙ 9 + 1 ∙ 4 = 60 + 36 + 4 = 100 wyników, dla których ilo-

czyn wylosowanych liczb jest podzielny przez 6.

Uwaga. Można też było rozbudować zbiorczą tabelę do postaci.

Reguła mnożenia, reguła dodawania

163

Page 165: Matematyka 3

w1 / w2 {1, 2, 3, 4, 5, 6} {7, 8, 9, 10, 11, 12} {13, 14, 15, 16, 17, 18}

{1, 2, 3, 4, 5, 6} 15 możliwości 15 możliwości 15 możliwości

{7, 8, 9, 10, 11, 12} 15 możliwości 15 możliwości 15 możliwości

{13, 14, 15, 16, 17, 18} 15 możliwości 15 możliwości 15 możliwości

Zauważmy, że wśród wszystkich wyznaczonych w niej 9 ∙ 15 = 135 możliwości niepotrzebne

nam są wszystkie te, w których przynajmniej raz wylosowano liczbę 18. Tych niepotrzebnych

przypadków jest 18 + 18 – 1 = 35, a więc jest 135 – 35 = 100 wyników, dla których iloczyn

wylosowanych liczb jest podzielny przez 6.

• sposób II

Podzielimy wyniki pojedynczego losowania na przypadki ze względu na to, jaką resztę z

dzielenia przez 6 daje wylosowana liczba, przy czym grupujemy je jak poniżej:

wynik pojedynczego

losowania

{1, 2, 3, … , 16, 17}

wyniki po-

dzielne

przez 6

{6, 12}

wyniki po-

dzielne przez

3 i niepodziel-

ne przez 6

{3, 9, 15}

wyniki podzielne

przez 2 i niepodzielne

przez 6

{2, 4, 8, 10, 14, 16}

pozostałe wyniki

{1, 5, 7, 11, 13, 17}

17 możliwości2 możliwo-

ści3 możliwości 6 możliwości 6 możliwości

Obliczamy, odwołując się do tych przypadków:

• jeżeli za pierwszym razem wylosujemy jedną z liczb: 6 lub 12, to liczba wylosowana za

drugim razem jest dowolna, co daje łącznie 2 ∙ 17 = 34 możliwości,

• jeżeli za pierwszym razem wylosujemy jedną z liczb: 3, 9 lub 15, to za drugim razem

musimy wylosować liczbę parzystą, co daje łącznie 3 ∙ (2 + 6) = 24 możliwości,

• jeżeli za pierwszym razem wylosujemy jedną z liczb: 2, 4, 8, 10, 14 lub 16, to za dru-

gim razem musimy wylosować liczbę podzielną przez 3, co daje łącznie 6(2 + 3) = 30

możliwości,

• jeżeli za pierwszym razem wylosujemy jedną z liczb: 1, 5, 7, 11, 13 lub 17, to za dru-

gim razem musimy wylosować liczbę podzielną przez 6, co daje łącznie 6 ∙ 2 = 12 możli-

wości.

Łącznie otrzymujemy 2 ∙ 17 + 3 ∙ 8 + 6 ∙ 5 + 6 ∙ 2 = 34 + 24 + 30 + 12 = 100 wyników, dla

których iloczyn wylosowanych liczb jest podzielny przez 6.

Przykład 9.Obliczymy, ile jest czterocyfrowych liczb naturalnych, w których zapisie:

Reguła mnożenia, reguła dodawania

164

Page 166: Matematyka 3

• parzysta jest jedynie cyfra tysięcy: wtedy na miejscu cyfry tysięcy musi wystąpić jedna z

cyfr: 2, 4, 6 lub 8 (4 możliwości), a na każdym z pozostałych miejsc musi wystąpić cyfra

nieparzysta (za każdym razem mamy 5 możliwości).

Zatem wszystkich możliwości jest 4 ∙ 5 ∙ 5 ∙ 5 = 500,

• parzysta jest jedynie cyfra setek: wtedy na miejscu cyfry setek musi wystąpić cyfra pa-

rzysta (5 możliwości), a na każdym z pozostałych miejsc musi wystąpić cyfra nieparzy-

sta (za każdym razem mamy 5 możliwości). Oznacza to, że wszystkich możliwości jest

5 ∙ 5 ∙ 5 ∙ 5 = 625,

• parzysta jest jedynie cyfra dziesiątek: wtedy na miejscu cyfry dziesiątek musi wystąpić

cyfra parzysta (5 możliwości), a na każdym z pozostałych miejsc musi wystąpić cyfra

nieparzysta (za każdym razem mamy 5 możliwości). Oznacza to, że wszystkich możliwo-

ści jest 5 ∙ 5 ∙ 5 ∙ 5 = 625,

• parzysta jest jedynie cyfra jedności: wtedy na miejscu cyfry jedności musi wystąpić cy-

fra parzysta (5 możliwości), a na każdym z pozostałych miejsc musi wystąpić cyfra nie-

parzysta (za każdym razem mamy 5 możliwości). Oznacza to, że wszystkich możliwości

jest 5 ∙ 5 ∙ 5 ∙ 5 = 625.

Ostatecznie stwierdzamy, że jest 500 + 3 ? 625 = 2375 czterocyfrowych liczb natural-

nych, w których dokładnie jedna cyfra jest parzysta.

cyfra jedności jest parzysta.W zapisie każdej z takich liczb na miejscu cyfry tysięcy mo-

że wystąpić dowolna cyfra różna od zera (9 możliwości), na miejscu cyfry setek – do-

wolna cyfra (10 możliwości), na miejscu cyfry dziesiątek – dowolna cyfra (10 możliwo-

ści), a na miejscu cyfry jedności musi wystąpić jedna z cyfr: 0, 2, 4, 6 lub 8 (5 możli-

wości). Do obliczenia wszystkich możliwości stosujemy regułę mnożenia:

9 ∙ 10 ∙ 10 ∙ 5 = 4500.

Uwaga. Czterocyfrowa liczba naturalna ma na miejscu cyfry jedności cyfrę parzystą

wtedy i tylko wtedy, gdy jest liczbą parzystą. Ponieważ czterocyfrowych liczb parzy-

stych jest12 ? 9000 = 4500, więc dokładnie tyle jest czterocyfrowych liczb naturalnych,

w których zapisie cyfra jedności jest parzysta.

a)

cyfra tysięcy jest parzysta.W zapisie każdej z takich liczb na miejscu cyfry tysięcy może

wystąpić jedna z cyfr: 2, 4, 6 lub 8 (4 możliwości), a na każdym z miejsc: cyfry setek,

cyfry dziesiątek oraz cyfry jedności należy wstawić dowolnie wybraną cyfrę (za każdym

razem mamy 10 możliwości).

Do obliczenia wszystkich możliwości stosujemy regułę mnożenia:

4 ∙ 10 ∙ 10 ∙ 10 = 4000.

b)

dokładnie jedna cyfra jest parzysta.Rozpatrujemy przypadki:c)

cyfra dziesiątek jest o 2 większa od cyfry setek.

W zapisie każdej z szukanych liczb na miejscu cyfry tysięcy może wystąpić dowolna cy-

fra różna od zera (9 możliwości), a na miejscu cyfr jedności – dowolna cyfra (10 możli-

wości). Ponieważ cyfra dziesiątek jest o 2 większa od cyfry setek, więc na miejscu cyfry

dziesiątek może wystąpić jedna z cyfr: 9, 8, 7, 6, 5, 4, 3, 2 i wtedy na miejscu cyfry

setek wystąpi cyfra odpowiednio 7, 6, 5, 4, 3, 2, 1, 0, tzn. możliwych jest 8 liczb

a)

Reguła mnożenia, reguła dodawania

165

Page 167: Matematyka 3

Wynika z tego, że jest 9 ∙ 10 ∙ 8 = 720 liczb naturalnych czterocyfrowych, w których cyfra

dziesiątek jest o 2 większa od cyfry setek.

Przykład 10.Obliczymy, ile jest liczb naturalnych czterocyfrowych, w których zapisie nie występuje 0, jest

dokładnie jedna cyfra 4 i dokładnie jedna cyfra nieparzysta.

Szkic rozwiązania.

Podzielmy zbiór {1, 2, 3, 4, 5, 6, 7, 8, 9} jak poniżej, zgodnie z warunkami podanymi w

zadaniu.

cyfry do wyboru

{1, 2, 3, 4, 5, 6, 7, 8, 9}

cyfra 4

{4}

cyfry nieparzyste (np)

{1, 3, 5, 7, 9}

pozostałe cyfry

{2, 6, 8}

9 elementów 1 element 5 elementów 3 elementy

Najpierw wybierzemy dwa miejsca, na których ustawimy odpowiednio: cyfrę 4 oraz cyfrę nie-

parzystą.

Możliwe wybory opiszemy, wskazując miejsce w czteroelementowym ciągu, zgodne z przy-

porządkowaniem do odpowiedniego rzędu. Wybory te ilustruje poniższa tabelka.

Miejsce dla cyfry 4/

miejsce dla cyfry nieparzy-

stej

rząd tysięcy rząd setekrząd dziesi-

ątek

rząd jedno-

ści

rząd tysięcy (np , 4 , _ , _ ) (np , _ , 4 , _ ) (np , _ , _ , 4 )

rząd setek (4 , np , _ , _ ) ( _ , np , 4 , _ ) ( _ , np , _ , 4 )

rząd dziesiątek (4 , _ , np , _ ) ( _ , 4 , np , _ ) ( _ , _ , np , 4 )

rząd jedności (4 , _ , _ , np) ( _ , 4 , _ , np ) ( _ , _ , 4 , np )

Takich możliwości jest więc 4 ∙ 3, bo wybieramy te dwa miejsca bez powtórzeń (nie jest, oczy-

wiście, możliwe, żeby na tym samym miejscu zapisana była cyfra 4 i jednocześnie cyfra nie-

parzysta).

W każdym z tych 12 przypadków pozostaje nam wstawić konkretne cyfry w trzy miejsca (cyfra

4 swoje miejsce już zajęła):

• jedno dla cyfry nieparzystej – jest 5 takich możliwości,

• dwa pozostałe miejsca; w każde z nich musimy wstawić cyfrę parzystą ze zbioru

{2, 6, 8} – jest 3 ∙ 3 = 9 takich możliwości.

Zatem w sumie mamy 3 ∙ 4 = 12 rozłącznych przypadków wyboru miejsc dla cyfr wyróżnio-

nych w treści zadania (jak w tabelce), a w każdym z nich mamy 5 ∙ 3 ∙ 3 możliwości wstawie-

nia odpowiednich cyfr.

Korzystając z reguły mnożenia, ostatecznie otrzymujemy

dwucyfrowych utworzonych przez cyfrę setek i cyfrę dziesiątek:

97, 86, 75, 64, 53, 42, 31, 20.

Reguła mnożenia, reguła dodawania

166

Page 168: Matematyka 3

(3 ∙ 4) ∙ (5 ∙ 3 ∙ 3) = 12 45 = 540

liczb naturalnych czterocyfrowych, w których zapisie nie występuje 0, jest dokładnie jedna

cyfra 4 i dokładnie jedna cyfra nieparzysta.

Uwaga. Powyższe zliczanie możemy też rozłożyć na trzy etapy:

(1) wybór miejsca dla cyfry 4 i zapisanie tej cyfry (4 możliwości),

(2) wybór miejsca dla cyfry nieparzystej i zapisanie tej cyfry (3 ∙ 5 możliwości),

(3) zapisanie cyfr na pozostałych dwóch miejsc (3 ∙ 3 możliwości).

Ponieważ wyborów tych dokonujemy niezależnie, to korzystając z reguły mnożenia, oblicza-

my, że szukanych liczb jest

4 ? 3 ? 5 ? 3 ? 3 = 540

Zliczając w poprzednim przykładzie wszystkie możliwości wyboru miejsc, na których należało

ustawić cyfrę 4 oraz cyfrę nieparzystą, opisywaliśmy wybór dwóch miejsc z czterech dostęp-

nych, bez powtórzeń.

W kolejnych przykładach zajmiemy się obliczaniem wszystkich możliwych wyborów dokony-

wanych w pewnych sytuacjach, przy czym za każdym razem bez powtórzeń.

Przykład 11.Obliczymy, ile jest:

liczb dwucyfrowych o różnych cyfrach, w których nie występuje cyfra 0.

Zliczanie rozkładamy na dwa etapy:

(1) zapisanie cyfry dziesiątek (9 możliwości),

(2) zapisanie cyfry jedności, różnej od cyfry dziesiątek (8 możliwości).

Zatem szukanych liczb dwucyfrowych o różnych cyfrach, w których nie występuje cyfra

0, jest

9 ? 8 = 72. Wybory i wszystkie utworzone w ich wyniku liczby można przedstawić w ta-

beli.

a)

Reguła mnożenia, reguła dodawania

167

Page 169: Matematyka 3

Zliczanie rozkładamy na pięć etapów:

(1) zapisanie cyfry dziesiątek tysięcy (7 możliwości),

c1 / c2 1 2 3 4 5 6 7 8 9

1 12 13 14 15 16 17 18 19

2 21 23 24 25 26 27 28 29

3 31 32 34 35 36 37 38 39

4 41 42 43 45 46 47 48 49

5 51 52 53 54 56 57 58 59

6 61 62 63 64 65 67 68 69

7 71 72 73 74 75 76 78 79

8 81 82 83 84 85 86 87 89

9 91 92 93 94 95 96 97 98

liczb trzycyfrowych o różnych cyfrach, w których nie występuje ani cyfra 0, ani cyfra 5.

Zliczanie rozkładamy na trzy etapy:

(1) zapisanie cyfry setek (8 możliwości),

(2) zapisanie cyfry dziesiątek, różnej od cyfry setek (7 możliwości),

(3) zapisanie cyfry jedności, różnej od cyfry setek i od cyfry dziesiątek (6 możliwości).

Zatem szukanych liczb trzycyfrowych o różnych cyfrach, w których nie występuje ani

cyfra 0, ani cyfra 5, jest

8 ? 7 ? 6 = 336

b)

liczb czterocyfrowych o różnych cyfrach, w zapisie których nie występuje żadna z cyfr:

0, 2, 4.

Zliczanie rozkładamy na cztery etapy:

(1) zapisanie cyfry tysięcy (7 możliwości),

(2) zapisanie cyfry setek, różnej od cyfry tysięcy (6 możliwości),

(3) zapisanie cyfry dziesiątek, różnej od cyfry tysięcy i od cyfry setek (5 możliwości),

(4) zapisanie cyfry jedności, różnej od każdej z trzech cyfr zapisanych wcześniej (4

możliwości),

Zatem szukanych liczb czterocyfrowych o różnych cyfrach, w zapisie których nie wystę-

puje żadna z cyfr: 0, 2, 4, jest

7 ? 6 ? 5 ? 4 = 840

c)

liczb pięciocyfrowych o różnych cyfrach, w zapisie których występują wyłącznie cyfry

1, 2, 3, 4, 5, 6, 7.

d)

Reguła mnożenia, reguła dodawania

168

Page 170: Matematyka 3

(2) zapisanie cyfry tysięcy, różnej od cyfry dziesiątek tysięcy (6 możliwości),

(3) zapisanie cyfry setek, różnej od cyfr: tysięcy oraz dziesiątek tysięcy (5 możliwości),

(4) zapisanie cyfry dziesiątek, różnej od każdej z trzech cyfr zapisanych wcześniej (4 możliwo-

ści),

(5) zapisanie cyfry jedności, różnej od każdej z czterech cyfr zapisanych wcześniej (3 możli-

wości).

Zatem szukanych liczb pięciocyfrowych o różnych cyfrach, w zapisie których występują wy-

łącznie cyfry 1, 2, 3, 4, 5, 6, 7, jest

7 ? 6 ? 5 ? 4 ? 3 = 2520

Przykład 12.Flagę, taką jak pokazana na rysunku, należy zszyć z trzech jednakowych pasów kolorowej tka-

niny. Kolory pasów górnego, środkowego i dolnego mają być parami różne. Obliczymy, ile ta-

kich różnych flag można utworzyć, mając do dyspozycji tkaniny w sześciu różnych kolorach.

Zliczanie liczby flag rozkładamy na trzy etapy:

(1) wybór koloru dla górnego pasa (6 możliwości),

(2) wybór koloru dla środkowego pasa (5 możliwości),

(3) wybór koloru dla dolnego pasa (4 możliwości).

Zatem liczba wszystkich możliwych takich flag jest równa

6 ? 5 ? 4 = 120

Wariacje bez powtórzeń

W ostatnich przykładach mieliśmy do czynienia z doświadczeniami polegającymi na wyborze ko-

lejno pewnej liczby elementów z ustalonego zbioru, przy czym wybierane elementy nie mogły się

powtarzać.Załóżmy, że mamy do czynienia z doświadczeniem polegającym na wyborze kolejno k

elementów ze zbioru n-elementowego, bez powtórzeń (k jest liczbą całkowitą spełniającą układ

nierówności 1 ≤ k ≤ n).

Rozumując podobnie jak w tych przykładach, rozłóżmy doświadczenie na k etapów. Wtedy w ko-

lejnych etapach od pierwszego do ostatniego (o numerze k) liczby możliwości będą równe od-

Reguła mnożenia, reguła dodawania

169

Page 171: Matematyka 3

powiednio n, n − 1, n − 2 aż do n − (k − 1). Stosując regułę mnożenia, stwierdzamy, że wszystkich

możliwych wyników takiego doświadczenia jest

n ? (n − 1) ? (n − 2) ? ... ? (n − k + 1)?

k czynników

.

Doświadczenie polegające na wyborze kolejno k – elementów ze zbioru n-elementowego, bez po-

wtórzeń, gdzie k jest liczbą całkowitą spełniającą warunek 1 ≤ k ≤ n, nazywa się zwyczajowo k -wy-

razową wariacją bez powtórzeń zbioru n − elementowego.

Modelem dla tego typu doświadczenia jest k–wyrazowy ciąg o elementach wybranych ze zbioru

n – elementowego bez powtórzeń.

Na podstawie spostrzeżenia poczynionego powyżej formułujemy twierdzenie.

Własność: liczba k-wyrazowych wariacji bezpowtórzeń zbioru n-elementowego

Liczba wszystkich k-wyrazowych wariacji bez powtórzeń zbioru n-elementowego jest równa

n ? (n − 1) ? (n − 2) ? … ? (n − k + 1)?

k czynników

Ważne

Uwaga. Iloczyn kolejnych liczb naturalnych od 1 do n

1 ? 2 ? 3 ? ... ? n

nazywa się silnią liczby n i oznacza się symbolem n!, co czytamy „ n silnia”.

Zauważmy, że jeśli liczbę

n ? (n − 1) ? (n − 2) ? ... ? (n − k + 1)?

k czynników

pomnożymy i jednocześnie podzielimy przez iloczyn kolejnych liczb naturalnych od 1 do n − k

, czyli przez liczbę (n − k) !, to stwierdzimy, że liczba wszystkich k-wyrazowych wariacji bez po-

wtórzeń zbioru n-elementowego jest równa

n ? (n − 1) ? (n − 2) ? ... ? (n − k + 1) ?(n − k) !

(n − k) !=

n ? (n − 1) ? (n − 2) ? ... ? (n − k + 1) ? (n − k) ? (n − k − 1) ? ... ? 1

(n − k) !=

n!

(n − k) !

.

Przykład 13.Korzystając z twierdzenia o liczbie wszystkich wariacji bez powtórzeń, obliczymy, że

Reguła mnożenia, reguła dodawania

170

Page 172: Matematyka 3

liczba wszystkich sposobów, na jakie Jaś i Małgosia mogą usiąść na dwóch spośród

siedmiu wolnych miejsc w kinie, jest równa 7 ? 6 = 42, co można też zapisać jako7!5! .

a)

liczba wszystkich możliwych trzyliterowych napisów o różnych literach wybranych ze

zbioru {a, e, j, k, m} jest równa 5 ? 4 ? 3 = 60. Tę liczbę można też zapisać jako5!2! .

b)

liczba wszystkich możliwych sposobów rozmieszczenia 4 różnych kul w 6 różnych pu-

dełkach tak, żeby w każdym pudełku znalazła się co najwyżej jedna kula, jest równa

6 ? 5 ? 4 ? 3 = 360, co można też zapisać jako6!2! .

c)

liczba wszystkich możliwych wyborów 3 osób: przewodniczącego, zastępcy i skarbnika

do samorządu 32-osobowej klasy to 32 ? 31 ? 30 = 29760. Otrzymany wynik można też

zapisać w postaci32!29! .

d)

liczba wszystkich możliwych sposobów wylosowania kolejno 5 kart (jedna po drugiej) z

brydżowej talii 52 kart to 52 ? 51 ? 50 ? 49 ? 48 = 311875200. Otrzymany wynik można

też zapisać jako52!47! .

e)

liczba wszystkich możliwych sposobów, na które grupa 6 dziewczynek może zająć

miejsca w sześcioosobowym rzędzie, to 6 ? 5 ? 4 ? 3 ? 2 ? 1 = 720. Ten wynik można też

zapisać w postaci 6 !.

f)

liczba wszystkich możliwych napisów otrzymanych z przestawiania liter wyrazu „płot”

to 4 ? 3 ? 2 ? 1 = 24. Otrzymany wynik można też zapisać jako 4!.

g)

Reguła mnożenia, reguła dodawania

171

Page 173: Matematyka 3

Permutacje

Film na epodreczniki.pl

W poprzednim przykładzie – w podpunkcie f) rozpatrywaliśmy sześciowyrazową wariację bez po-

wtórzeń zbioru sześcioelementowego,

– w podpunkcie g) rozpatrywaliśmy czterowyrazową wariację bez powtórzeń zbioru czteroele-

mentowego.

W przypadku k = n wariację bez powtórzeń nazywamy permutacją zbioru n -elementowego.

Zatem permutacją zbioru n-elementowego nazywamy każdy ciąg utworzony ze wszystkich wy-

razów tego zbioru, a liczba wszystkich permutacji zbioru n-elementowego jest równa

n ? (n − 1) ? (n − 2) ? ... ? 1 = n!.

Przykład 14.Obliczymy, ile jest wszystkich takich liczb pięciocyfrowych o różnych cyfrach zapisanych za

pomocą cyfr 1, 2, 3, 4, 5, w których zapisie

cyfra 1 zapisana jest na pierwszym miejscu od lewej.

Zapisujemy cyfrę 1 na pierwszym miejscu od lewej. Pozostaje nam rozmieścić pozosta-

łe 4 cyfry na 4 miejscach, co można zrobić na 4 ? 3 ? 2 ? 1 = 24 sposoby. Oznacza to, że

są 24 takie liczby.

a)

między cyframi 1 oraz 2 zapisane są trzy inne cyfry.

Z treści zadania wynika, że cyfry 1 oraz 2 muszą zająć dwa skrajne miejsca, a pozostałe

trzy cyfry trzeba wpisać na trzech miejscach między nimi. Wobec tego cyfry 1 i 2 zapi-

b)

Reguła mnożenia, reguła dodawania

172

Page 174: Matematyka 3

• sposób I

Zliczanie rozkładamy na trzy etapy:

• wybór miejsca dla cyfry 1 i zapisanie tej cyfry,

• wybór miejsca dla cyfry 2 i zapisanie tej cyfry,

• zapisanie pozostałych trzech cyfr.

Mamy dwa istotnie różne przypadki:

• jeżeli cyfrę 1 zapiszemy na jednym z dwóch skrajnych miejsc, to cyfrę 2 będziemy mogli

zapisać na jednym z trzech miejsc, a wtedy pozostałe trzy cyfry rozmieszczamy na

trzech dostępnych miejscach na 3! sposobów. W tym przypadku mamy więc

2 ? 3 ? 3! = 36 sposobów zapisu takich liczb.

• jeżeli cyfrę 1 zapiszemy na miejscu drugim, trzecim lub czwartym, to cyfrę 2 będziemy

mogli zapisać na jednym z dwóch miejsc, a wtedy pozostałe trzy cyfry rozmieszczamy

na trzech dostępnych miejscach na 3! sposobów. W tym przypadku mamy więc

3 ? 2 ? 3! = 36 sposobów zapisu takich liczb.

Wobec tego wszystkich takich liczb jest 36 + 36 = 72.

• sposób II

Zauważamy, że wszystkich liczb pięciocyfrowych o różnych cyfrach zapisanych za po-

mocą cyfr 1, 2, 3, 4, 5 jest 5 ? 4 ? 3 ? 2 ? 1 = 120. W zapisie każdej z tych liczb cyfry

1, 2 są zapisane obok siebie albo nie są zapisane obok siebie. Dla ustalenia, ile jest

liczb w drugim przypadku, wystarczy więc obliczyć, ile jest takich liczb, w których cyfry

1, 2 są zapisane obok siebie.

Zliczanie rozkładamy na dwa etapy:

− wybór dwóch miejsc dla cyfr 1, 2 oraz zapisanie tych cyfr,

− zapisanie pozostałych trzech cyfr.

Mamy cztery możliwości wyboru sąsiednich miejsc dla cyfr 1, 2: pierwsze i drugie lub

drugie i trzecie, lub trzecie i czwarte, lub czwarte i piąte. W każdym z tych czterech przy-

padków cyfry 1, 2 możemy zapisać na wybranych miejscach na dwa sposoby. W dru-

gim etapie zapisujemy pozostałe trzy cyfry na trzech dostępnych miejscach, co można

zrobić na 3! sposobów. Oznacza to, że wszystkich takich liczb pięciocyfrowych, w któ-

rych cyfry 1, 2 są zapisane obok siebie, jest 4 ? 2 ? 3! = 48. Stąd wszystkich takich liczb

pięciocyfrowych, w których cyfry 1, 2 nie są zapisane obok siebie, jest 120 − 48 = 72.

Uwaga. Zliczanie wszystkich możliwych liczb pięciocyfrowych o różnych cyfrach zapisa-

nych za pomocą cyfr 1, 2, 3, 4, 5, w których cyfry 1, 2 są zapisane obok siebie, moż-

na przeprowadzić w następujący sposób:

Dwie sąsiadujące cyfry 1, 2 zapisujemy jako jeden nowy obiekt, który oznaczamy jako

np. x. Następnie obliczamy liczbę możliwych rozmieszczeń 4 elementów: bloku x oraz

cyfr 3, 4, 5 – takich rozmieszczeń jest 4! = 24. W każdym z nich trzeba jeszcze zamie-

nić x na zapisane obok siebie cyfry 1, 2, co można zrobić na 2 sposoby. Ostatecznie

stwierdzamy, że wszystkich możliwych liczb pięciocyfrowych o różnych cyfrach zapisa-

szemy na dwa sposoby, a w każdym z tych przypadków cyfry 3, 4, 5 zapiszemy na

3 ? 2 ? 1 = 6 sposobów. Zatem wszystkich takich liczb jest 2 ? 6 = 12.

cyfry 1 oraz 2 nie są zapisane obok siebie.c)

Reguła mnożenia, reguła dodawania

173

Page 175: Matematyka 3

nych za pomocą cyfr 1, 2, 3, 4, 5, w których cyfry 1, 2 są zapisane obok siebie, jest

2 ? 24 = 48.

• sposób I

Numerujemy od lewej miejsca, na których można zapisać cyfry takiej liczby pięciocyfrowej:

(1), (2), (3), (4), (5) .

Zliczanie rozkładamy na dwa etapy:

• wybór miejsc dla cyfr 1, 2 oraz zapisanie tych cyfr,

• zapisanie pozostałych trzech cyfr.

Ponieważ numer miejsca dla cyfry 1 musi być mniejszy od numeru miejsca dla cyfry 2, więc:

• jeżeli cyfrę 1 zapiszemy na miejscu (1), to dla cyfry 2 zostają do wyboru 4 miejsca,

• jeżeli cyfrę 1 zapiszemy na miejscu (2), to dla cyfry 2 zostają do wyboru 3 miejsca,

• jeżeli cyfrę 1 zapiszemy na miejscu (3), to dla cyfry 2 zostają do wyboru 2 miejsca,

• jeżeli cyfrę 1 zapiszemy na miejscu (4), to dla cyfry 2 zostaje do wyboru 1 miejsce,

• cyfry 1 nie można zapisać na miejscu (5).

Oznacza to, że jest dokładnie 4 + 3 + 2 + 1 = 10 możliwości wyboru miejsc i zapisania cyfr 1, 2

. W każdym z tych przypadków pozostaje nam zapisać cyfry 3, 4, 5 na pozostałych trzech

miejscach, co można zrobić na 3! = 6 sposobów. Zatem wszystkich liczb pięciocyfrowych o

różnych cyfrach, zapisanych za pomocą cyfr 1, 2, 3, 4, 5, w których cyfra 1 jest zapisana

przed cyfrą 2 (patrząc od lewej) jest 10 ? 6 = 60.

• sposób II

Rozbijemy zbiór liczb pięciocyfrowych o różnych cyfrach zapisanych za pomocą cyfr

1, 2, 3, 4, 5 na dwa podzbiory:

A – tych liczb, w których cyfra 1 jest zapisana przed cyfrą 2,

B – tych liczb, w których cyfra 2 jest zapisana przed cyfrą 1.

Ponieważ:

• zbiory te są rozłączne, więc | A ? B | = | A | + | B | ,

• wszystkich liczb pięciocyfrowych o różnych cyfrach zapisanych za pomocą cyfr

1, 2, 3, 4, 5 jest 5 ? 4 ? 3 ? 2 ? 1 = 120, więc | A ? B | = | A | + | B | = 120.

Zauważmy, że:

• wybierając dowolną liczbę ze zbioru A i zamieniając w jej zapisie miejscami cyfry 1, 2,

otrzymamy pewną (dokładnie jedną) liczbę ze zbioru B,

• wybierając dowolną liczbę ze zbioru B i zamieniając w jej zapisie miejscami cyfry 1, 2,

otrzymamy pewną (dokładnie jedną) liczbę ze zbioru A.

Wobec tego zbiory A i B są równoliczne, co oznacza, że | A | =12 ? 120 = 60.

Zatem wszystkich liczb pięciocyfrowych o różnych cyfrach zapisanych za pomocą cyfr

1, 2, 3, 4, 5, w których cyfra 1 jest zapisana przed cyfrą 2 (patrząc od lewej), jest12 ? 120 = 60.

cyfra 1 jest zapisana przed cyfrą 2 (patrząc od lewej).a)

Reguła mnożenia, reguła dodawania

174

Page 176: Matematyka 3

Poziom trudności: AZadanie 3.2.1W karcie dań jest 6 zup i 7 drugich dań. Na ile sposobów można zamówić obiad składający się

z jednej zupy i jednego drugiego dania?

a) 49

b) 42

c) 36

d) 13

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.2.2Wybieramy liczbę a ze zbioru A = {1, 2, 3, 4, 5} oraz liczbę b ze zbioru

B = {6, 7, 8, 9, 10}. Ile jest takich par (a, b), że iloczyn a ? b jest liczbą nieparzystą?

a) 10

b) 9

c) 6

d) 5

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.2.3Ile jest wszystkich liczb naturalnych trzycyfrowych, w których jedynie cyfra setek jest nieparzy-

sta, a cyfra dziesiątek i cyfra jedności są równe?

a) 500

b) 125

c) 25

d) 15

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.2.4Liczba wszystkich możliwych wyników trzykrotnego rzutu monetą jest równa

Reguła mnożenia, reguła dodawania

175

Page 177: Matematyka 3

a) 9

b) 8

c) 6

d) 3

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.2.5Ile dodatnich dzielników całkowitych ma liczba 24 ? 53?

a) 7

b) 9

c) 12

d) 20

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.2.6Liczba wszystkich sposobów, na jakie Adaś, Basia i Celinka mogą usiąść na trzech spośród pię-

ciu wolnych miejsc w kinie, jest równa

a) 12

b) 15

c) 45

d) 60

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.2.7Suma wszystkich liczb naturalnych dwucyfrowych zapisanych wyłącznie za pomocą cyfr 1, 2, 3

(cyfry mogą się powtarzać) jest równa

a) 66

b) 132

c) 198

d) 396

(Pokaż odpowiedź)

Reguła mnożenia, reguła dodawania

176

Page 178: Matematyka 3

Poziom trudności: AZadanie 3.2.8Siedmioosobowa grupa, czworo dorosłych i troje dzieci, wykupiła bilety na ten sam seans do

kina, przy czym wybrali miejsca od 10 do 16 w dwudziestym rzędzie. Liczba wszystkich sposo-

bów, na jakie mogą oni zająć miejsca tak, aby każde z dzieci siedziało pomiędzy dorosłymi, jest

równa

a) 144

b) 30

c) 12

d) 7

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.9

Ze zbioru liczb {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} losujemy dwa razy po jednej liczbie ze zwraca-

niem. Ile jest wszystkich takich wyników tego losowania, że pierwsza wylosowana liczba jest

podzielna przez 3 i druga wylosowana liczba jest parzysta?

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.10Oblicz, ile jest wszystkich liczb naturalnych dwucyfrowych zapisanych wyłącznie za pomocą cyfr

1, 2, 3, 4, 5, 6, 7, wiedząc, że:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.11W każdym z dwóch różnych pojemników znajdują się trzy kule, z których jedna jest biała, druga

– czarna, a trzecia - zielona. Z każdego pojemnika losujemy jedną kulę. Ile jest wszystkich moż-

liwych wyników tego losowania, w których uzyskamy:

(Pokaż odpowiedź)

cyfry mogą się powtarzać.a)

cyfry są różneb)

kule różnych kolorów?a)

co najmniej jedną kulę białą?b)

Reguła mnożenia, reguła dodawania

177

Page 179: Matematyka 3

Poziom trudności: BZadanie 3.2.12Oblicz, na ile sposobów Ewa i Ola mogą zająć miejsca w kinie, jeżeli wybierają spośród

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.13Oblicz, ile jest wszystkich liczb naturalnych dwucyfrowych zapisanych wyłącznie za pomocą cyfr

0, 1, 2, 3, 4, 5, wiedząc, że:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.14Rozpatrujemy wszystkie prostokąty, których boki zawierają się w liniach siatki dzielącej prosto-

kąt o wymiarach 4 i 8 na kwadraty jednostkowe.

Oblicz, ile jest wśród nich

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.15Oblicz, ile dzielników naturalnych ma liczba:

8 wolnych miejsc.a)

12 wolnych miejsc.b)

cyfry mogą się powtarzać,a)

cyfry są różne.b)

wszystkich kwadratów o boku 1.a)

wszystkich kwadratów o boku 2.b)

wszystkich kwadratów o boku 3.c)

wszystkich kwadratów o boku 4.d)

Reguła mnożenia, reguła dodawania

178

Page 180: Matematyka 3

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.16

Wybieramy liczbę a ze zbioru A = {1, 2, 3, 4, 5, 6, 7} oraz liczbę b ze zbioru

B = {2, 3, 4, 5, 6, 7, 8}. Ile jest takich par (a, b), że:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.17

Ze zbioru liczb {1, 2, 3, 4, 5, 6, 7, 8, 9} losujemy dwa razy po jednej liczbie ze zwracaniem.

Ile jest wszystkich takich wyników tego losowania, że pierwsza z wylosowanych liczb jest więk-

sza od drugiej i różnica między nimi jest mniejsza niż 3?

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.18Rzucamy dwukrotnie sześcienną kostką do gry. Ile jest wszystkich takich wyników tego do-

świadczenia, że

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.19Z pojemnika, w którym jest 10 losów: trzy wygrywające i siedem pustych, losujemy dwa razy po

jednym losie, bez zwracania. Oblicz, na ile sposobów możemy wylosować:

25 ? 114a)

36 ? 173b)

3969c)

4000d)

suma a + b jest liczbą parzystą?a)

iloczyn a ? b jest liczbą parzystą?b)

największa wyrzucona liczba oczek nie jest większa od 4?a)

największa wyrzucona liczba oczek jest równa 4?b)

dwa losy wygrywającea)

Reguła mnożenia, reguła dodawania

179

Page 181: Matematyka 3

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.20

Ze zbioru liczb {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} losujemy dwa razy po jednej liczbie bez zwraca-

nia. Załóżmy, że liczba wylosowana za pierwszym razem to x, a za drugim – y. Ile jest wszystkich

takich wyników tego losowania, że | y − x | < 2?

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.21Rzucamy dwukrotnie sześcienną kostką do gry. Oblicz, ile jest wszystkich wyników tego do-

świadczenia, takich że

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.22

Ze zbioru liczb {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} losujemy dwa razy po jednej

liczbie bez zwracania. Ile jest wszystkich wyników tego losowania, takich że iloczyn wylosowa-

nych liczb jest podzielny przez 6?

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.23Oblicz sumę S wszystkich liczb naturalnych dwucyfrowych, zapisanych wyłącznie za pomocą

cyfr

dokładnie jeden los wygrywającyb)

co najmniej jeden los wygrywającyc)

co najmniej raz wypadła liczba oczek równa 5 i suma liczb wyrzuconych oczek jest po-

dzielna przez 3.

a)

co najmniej raz wypadła liczba oczek równa 5 lub suma liczb wyrzuconych oczek jest po-

dzielna przez 3.

b)

1, 2, 3 (cyfry mogą się powtarzać).a)

1, 2, 3, 4, 5, 6 (cyfry mogą się powtarzać).b)

1, 2, 3, 4, 5, 6, 7 (cyfry mogą się powtarzać).c)

Reguła mnożenia, reguła dodawania

180

Page 182: Matematyka 3

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.24W pudełku jest 17 kul, ponumerowanych od 1 do 17. Z tego pudełka losujemy dwa razy po jed-

nej kuli ze zwracaniem. Oblicz, ile jest wszystkich takich wyników tego doświadczenia, że:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.25Oblicz, ile jest wszystkich liczb naturalnych:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.26Oblicz, ile jest wszystkich liczb naturalnych trzycyfrowych, zapisanych wyłącznie za pomocą cyfr

0, 1, 2, 3, 4, wiedząc, że:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.27Oblicz, ile jest wszystkich liczb trzycyfrowych, których iloczyn cyfr jest równy:

1, 2, 3, 4, 5, 6, 7, 8, 9 (cyfry mogą się powtarzać).d)

suma wylosowanych liczb jest parzysta.a)

iloczyn wylosowanych liczb jest parzysty.b)

iloczyn wylosowanych liczb jest podzielny przez 6.c)

trzycyfrowych o różnych cyfrach, zapisanych wyłącznie za pomocą cyfr 4, 5, 6, 7, 8, 9.a)

czterocyfrowych, zapisanych wyłącznie za pomocą cyfr 1, 2, 4, 8, wiedząc, że cyfry mo-

gą się powtarzać.

b)

pięciocyfrowych, zapisanych wyłącznie za pomocą cyfr 1, 2, 3.c)

cyfry mogą się powtarzaća)

cyfry muszą być różneb)

6a)

9b)

Reguła mnożenia, reguła dodawania

181

Page 183: Matematyka 3

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.28Oblicz, ile jest wszystkich liczb naturalnych trzycyfrowych, w których

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.29Oblicz, ile jest wszystkich nieparzystych liczb pięciocyfrowych, których suma cyfr jest równa 4.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.30Rozpatrujemy wszystkie liczby naturalne sześciocyfrowe, które można zapisać przy użyciu cyfr

2, 3, 4. Ile jest wśród nich takich liczb, których:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.31Oblicz, ile dzielników naturalnych ma liczba

(Pokaż odpowiedź)

10c)

12d)

cyfra jedności jest o 4 mniejsza od cyfry dziesiątek.a)

cyfra setek jest o 2 większa od cyfry jedności.b)

cyfry dziesiątek i setek są równe.c)

tylko pierwsza i ostatnia cyfra są nieparzyste?a)

każde dwie sąsiednie cyfry różnią się o 2?b)

każde dwie sąsiednie cyfry różnią się o 1?c)

23 ? 32 ? 5a)

54 ? 112 ? 193 ? 3b)

1620c)

6468d)

Reguła mnożenia, reguła dodawania

182

Page 184: Matematyka 3

Poziom trudności: BZadanie 3.2.32Mamy do dyspozycji trzy pudełka: białe, czarne i żółte. W białym jest 7 kul, ponumerowanych

od 1 do 7, w czarnym jest 5 kul, ponumerowanych od 1 do 5, a w żółtym są 4 kule, ponumero-

wane od 1 do 4. Z każdego pudełka losujemy jedną kulę. Ile jest wszystkich możliwości wyloso-

wania w ten sposób trójki liczb, których iloczyn jest podzielny przez 5?

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.33Rozpatrzmy trzykrotny rzut sześcienną kostką do gry. Oblicz, ile jest wszystkich takich wyników

tego doświadczenia, że

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.34Ile jest wszystkich liczb naturalnych trzycyfrowych o różnych cyfrach, które są większe od 642 i

dzielą się przez 5?

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.35Oblicz, ile jest liczb naturalnych trzycyfrowych, w których zapisie nie występuje 0, jest dokładnie

jedna cyfra 9 i dokładnie jedna cyfra parzysta.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.36Oblicz, ile jest wszystkich liczb naturalnych sześciocyfrowych o różnych cyfrach zapisanych za

pomocą cyfr 1, 2, 3, 4, 5, 6, w których

(Pokaż odpowiedź)

w każdym rzucie otrzymamy inną liczbę oczeka)

otrzymamy parzysty iloczyn liczb wyrzuconych oczekb)

dokładnie raz wypadnie liczba oczek podzielna przez 3c)

cyfry 1, 2, 3 oraz 4 stoją obok siebie, zapisane w kolejności rosnąceja)

suma cyfr zapisanych na miejscach pierwszym i ostatnim jest równa 11b)

suma każdych dwóch sąsiednich cyfr jest nieparzystac)

Reguła mnożenia, reguła dodawania

183

Page 185: Matematyka 3

Poziom trudności: BZadanie 3.2.37Oblicz, ile jest wszystkich liczb naturalnych siedmiocyfrowych o różnych cyfrach zapisanych za

pomocą cyfr 1, 2, 3, 4, 5, 6, 7, w których zapisie

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.2.38Oblicz sumę S wszystkich liczb naturalnych

(Pokaż odpowiedź)

żadne dwie cyfry nieparzyste nie stoją obok siebie.a)

cyfra 5 jest zapisana przed cyfrą 6 i cyfra 6 jest zapisana przed cyfrą 7.b)

czterocyfrowych, zapisanych wyłącznie za pomocą cyfr 1, 2, 3, 4, 5, 6, 7 (cyfry mogą

się powtarzać).

a)

trzycyfrowych, zapisanych wyłącznie za pomocą cyfr 0, 1, 2, 3, 4, 5, 6 (cyfry mogą się

powtarzać).

b)

Reguła mnożenia, reguła dodawania

184

Page 186: Matematyka 3

3.3. Podzbiory zbioru skończonego (treśćpodstawowa)W tym rozdziale zajmiemy się podzbiorami zbioru skończonego.

Podzbiory dwuelementowe zbioru skończonego

Przykład 1.Obliczymy, na ile sposobów można wybrać dwóch graczy spośród 7 zawodników.

Oznaczmy zawodników przez z1, z2, z3, z4, z5, z6, z7.

• sposób I

Wypisujemy wszystkie możliwe do wybrania pary graczy, czyli dwuelementowe podzbiory

siedmioelementowego zbioru {z1, z2, z3, z4, z5, z6, z7}. Zapisujemy je tak, aby wskaźnik

pierwszego wypisanego zawodnika był mniejszy od wskaźnika drugiego z nich (w ten sposób

unikniemy powtórzeń).

Wtedy

• zawodnika z1 przypiszemy do sześciu zawodników: {z1, z2}, {z1, z3}, {z1, z4}, {z1, z5}, {z1,

z6},{z1, z7},

• zawodnika z2 przypiszemy do pięciu zawodników: {z2, z3}, {z2, z4}, {z2, z5}, {z2, z6},{z2, z7

},

• zawodnika z3 przypiszemy do czterech zawodników: {z3, z4}, {z3, z5}, {z3, z6},{z3, z7},

• zawodnika z4 przypiszemy do trzech zawodników: {z4, z5}, {z4, z6},{z4, z7},

• zawodnika z5 przypiszemy do dwóch zawodników: {z5, z6},{z5, z7},

• zawodnika z6 przypiszemy do jednego zawodnika: {z6, z7}.

Zatem wszystkich możliwych par jest 6 + 5 + 4 + 3 + 2 + 1 = 21.

• sposób II

Wypiszmy pary zawodników, stosując metodę tabeli. Odrzucamy pola, które nie opisują ta-

kiej pary.

Podzbiory zbioru skończonego (treść podstawowa)

185

Page 187: Matematyka 3

z1 z2 z3 z4 z5 z6 z7

z1 {z1, z2} {z1, z3} z1, z4} {z1, z5} {z1, z6} {z1, z7}

z2 {z1, z2} {z2, z3} {z2, z4} {z2, z5} {z2, z6} {z2, z7}

z3 {z1, z3} {z2, z3} {z3, z4} {z3, z5} {z3, z6} {z3, z7}

z4 {z1, z4} {z2, z4} {z3, z4} {z4, z5} {z4, z6} {z4, z7}

z5 {z1, z5} {z2, z5} {z3, z5} {z4, z5} {z5, z6} {z5, z7}

z6 {z1, z6} {z2, z6} {z3, z6} {z4, z6} {z5, z6} {z6, z7}

z7 {z1, z7} {z2, z7} {z3, z7} {z4, z7} {z5, z7} {z6, z7}

W tabeli mamy więc wypełnione 6 ? 7 = 42 pola. Zauważmy, że każda para została tu wypisa-

na dokładnie dwa razy. Oznacza to, że wszystkich par jest6 ∙ 7

2 = 21.

• sposób III

Oznaczmy przez x liczbę wszystkich możliwych par graczy.

Liczbę wszystkich możliwych uporządkowanych par graczy możemy obliczyć następującymi

dwoma sposobami.

• Do każdego z siedmiu zawodników dobieramy drugiego do pary na 6 sposobów. W ten

sposób otrzymaliśmy 6 ? 7 par uporządkowanych.

• W każdej z x par graczy możemy na dwa sposoby ustalić kolejność, co daje 2x wszyst-

kich uporządkowanych par graczy.

Otrzymujemy więc równość

2x = 6 ? 7

stąd

x =6 ? 7

2 = 21

Uwaga. Wykorzystując podobne rozumowanie, pokażemy, że liczba wszystkich dwuelemen-

towych podzbiorów, które można wybrać ze zbioru A = {a1, a2, ..., an}, liczącego n elemen-

tów jest równa

n ? (n − 1)2

Jeśli przez x oznaczymy liczbę wszystkich możliwych podzbiorów dwuelementowych zbioru

Podzbiory zbioru skończonego (treść podstawowa)

186

Page 188: Matematyka 3

A, to liczba wszystkich możliwych uporządkowanych par elementów tego zbioru jest z jednej

strony równa

n ? (n − 1)

bo do każdego z n elementów drugi do pary możemy dobrać na n − 1 sposobów,

a z drugiej strony – jest równa

2x

bo w każdym z x dwuelementowych podzbiorów zbioru A możemy na dwa sposoby ustalić

kolejność elementów.

Otrzymujemy więc równość

2x = n ? (n − 1)

stąd

x =n ? (n − 1)

2 .

Przykład 2.Korzystając ze wzoru na liczbę dwuelementowych podzbiorów zbioru n − elementowego, ob-

liczymy, że:

• dwóch graczy spośród 11 zawodników można wybrać na11 ? 10

2 = 55 sposobów,

• liczba wszystkich meczów w turnieju, do którego zgłosiło się 9 drużyn i każda drużyna

ma rozegrać z każdą inną dokładnie jeden mecz, jest równa9 ? 8

2 = 36,

• dwuosobową delegację z klasy liczącej 25 uczniów można wybrać na25 ? 24

2 = 300 spo-

sobów.

Przykład 3.

n ? (n − 3)2

Wszystkich możliwych odcinków, które powstały z połączenia par wierzchołków n − kąta wy-

pukłego jestn ? (n − 1)

2 . Każdy z tych odcinków jest albo przekątną tego wielokąta, albo jego

bokiem. Ponieważ boków jest n, więc przekątnych jest

Obliczymy, ile przekątnych ma jedenastokąt wypukły.Rozpatrzmy wszystkie możliwe

odcinki, które powstały z połączenia par wierzchołków jedenastokąta wypukłego. Jest

ich łącznie11 ? 10

2 = 55. Każdy z tych odcinków jest albo bokiem tego jedenastokąta, albo jego

przekątną. Ponieważ boków jest 11, więc przekątnych jest

55 − 11 = 44.

a)

Pokażemy, że liczba wszystkich przekątnych n − kąta wypukłego, jest równab)

Podzbiory zbioru skończonego (treść podstawowa)

187

Page 189: Matematyka 3

n ? (n − 1)2 − n =

n2 − n − 2n2 =

n2 − 3n2 =

n ? (n − 3)2

Przykład 4.Do szkolnego turnieju halowej piłki nożnej zgłosiło się 6 drużyn. Turniej rozegrano systemem

„każdy z każdym”, bez rewanżów. W każdym meczu przyznawano punkty według zasady: w

przypadku remisu obie drużyny otrzymują po 1 punkcie, a w meczu rozstrzygniętym zwy-

cięzca otrzymuje 3 punkty, a przegrany – 0 punktów. Po zakończeniu turnieju okazało się, że

drużyny uczestniczące w turnieju zdobyły w sumie 37 punktów. Ustalimy, ile meczów pod-

czas tego turnieju zakończyło się wynikiem remisowym.

W turnieju rozgrywanym systemem „każdy z każdym”, bez rewanżów meczów jest tyle, ile

wszystkich możliwości dobrania drużyn w pary. W przypadku tego szkolnego turnieju liczba

meczów to liczba dwuelementowych podzbiorów zbioru sześcioelementowego, czyli

6 ? 52 = 15

Oznaczmy przez x liczbę meczów remisowych w tym turnieju. Wtedy liczba meczów rozstrzy-

gniętych to 15 − x.

Ponieważ każdy mecz remisowy wnosił do ogólnej sumy 2 punkty, a mecz rozstrzygnięty – 3

punkty, więc otrzymujemy równanie

2x + 3 ? (15 − x) = 37

Stąd

2x + 45 − 3x = 37

a więc

x = 8

Oznacza to, że 8 meczów w tym turnieju zakończyło się wynikiem remisowym.

Przykład 5.Obliczymy, ile jest wszystkich wyników siedmiokrotnego rzutu monetą, w których dokładnie

dwa razy wypadł orzeł.Ponumerujemy rzuty od 1 do 7. Dwa z tych numerów odpowiadają

wyrzuceniu orła. Jest7 ? 6

2 = 21 możliwości wyboru dwóch numerów z siedmiu, co oznacza,

że jest 21 wszystkich wyników siedmiokrotnego rzutu monetą, w których dokładnie dwa razy

wypadł orzeł.

Przykład 6.Obliczymy:

ile jest trzycyfrowych liczb naturalnych, w których cyfra jedności jest mniejsza od cyfry

dziesiątek.Ponieważ w rzędzie setek takiej liczby trzycyfrowej może być zapisana do-

a)

Podzbiory zbioru skończonego (treść podstawowa)

188

Page 190: Matematyka 3

• w zapisie tej liczby nie występuje cyfra 0,

• cyfra setek jest większa od cyfry tysięcy,

• cyfra jedności jest większa od cyfry dziesiątek.

Liczbę czterocyfrową, spełniającą warunki zadania, rozdzielamy na dwie dwucyfrowe, przy

czym podział jest między cyfrą setek a cyfrą tysięcy.

Otrzymane liczby dwucyfrowe mają spełniać dwa warunki: w ich zapisie nie występuje cyfra

0, cyfra jedności jest większa od cyfry dziesiątek.

Rozumując podobnie, jak w podpunkcie a), zauważamy, że liczb dwucyfrowych, w których za-

pisie nie występuje 0 i cyfra jedności jest większa od cyfry dziesiątek, jest dokładnie tyle, ile

dwuelementowych podzbiorów dziewięcioelementowego zbioru {1, 2, … , 9}. Oznacza to,

że jest ich

9 ? 82 = 36

Wobec tego dwie pierwsze cyfry liczby czterocyfrowej spełniającej warunki zadania można

zapisać na 36 sposobów i dwie ostatnie również na 36 sposobów, zatem liczb czterocyfro-

wych, które spełniają jednocześnie podane trzy warunki, jest

36 ? 36 = 1296

Przykład 7.W klasie jest 34 uczniów, przy czym chłopców jest o 6 więcej niż dziewczynek. Obliczymy, na

ile sposobów można wybrać z tej klasy czteroosobową delegację, w której znajdą się dokład-

nie dwie dziewczynki.

Ponieważ delegacja jest czteroosobowa, więc oprócz dwóch dziewczynek muszą się w niej

znaleźć jeszcze dwaj chłopcy.

wolna cyfra różna od zera, więc możemy ją wybrać na 9 sposobów.

Zauważmy teraz, że jeżeli ze zbioru cyfr {0, 1, 2, … , 9} wybierzemy dwuelementowy

podzbiór, to cyfry w ten sposób wybrane można na jeden sposób zapisać w kolejności

malejącej. Zatem każdemu takiemu podzbiorowi można wzajemnie jednoznacznie

przyporządkować liczbę dwucyfrową, której cyfra jedności jest mniejsza od cyfry dzie-

siątek.

Jeżeli np. wybierzemy podzbiór {2, 5}, to taką liczbą jest 52, a dla liczby 83 takim pod-

zbiorem jest {3, 8}.Oznacza to, że liczb dwucyfrowych, w których cyfra jedności jest mniejsza od cyfry

dziesiątek jest dokładnie tyle, ile dwuelementowych podzbiorów dziesięcioelemento-

wego zbioru cyfr {0, 1, 2, … , 9}, czyli10 ? 9

2 = 45. Ponieważ kolejnych wyborów dokonujemy niezależnie, więc korzystając z

reguły mnożenia, stwierdzamy, że liczb trzycyfrowych, w których cyfra jedności jest

mniejsza od cyfry dziesiątek, jest

9 ? 45 = 405

ile jest czterocyfrowych liczb naturalnych, spełniających jednocześnie trzy następujące

warunki:

b)

Podzbiory zbioru skończonego (treść podstawowa)

189

Page 191: Matematyka 3

Obliczamy, że dziewczynek jest w tej klasie 14, a chłopców jest 20.

Parę dziewczynek z tej klasy wybierzemy zatem na14 ? 13

2 = 91 sposobów, a parę chłopców –

na20 ? 19

2 = 190 sposobów.

Wyborów tych dokonujemy niezależnie, zatem, korzystając z reguły mnożenia, obliczamy, że

wszystkich możliwych czteroosobowych delegacji z tej klasy, w której znajdą się dokładnie

dwie dziewczynki, jest

91 ? 190 = 17290.

Przykład 8.W pewnej grze losowej zakreślamy 4 liczby wybrane ze zbioru {1, 2, 3, … , 24, 25}. Wy-

brane liczby są następnie porównywane z czterema wylosowanymi z tego samego zbioru

przez maszynę losującą. Ile jest możliwości zakreślenia takich 4 liczb, wśród których dokład-

nie dwie będą trafione?

Z treści zadania wynika, że dwie zakreślone liczby miały być trafione, czyli były w zbiorze 4

wylosowanych, a pozostałe dwie zakreślone były w zbiorze 21 niewylosowanych.

Dwie wylosowane liczby możemy trafić na4 ? 3

2 = 6 sposobów, a pozostałe dwie możemy wy-

brać na21 ? 20

2 = 210 sposobów. Oznacza to, że wszystkich możliwości zakreślenia takich 4

liczb, wśród których dokładnie dwie będą trafione jest

210 ? 6 = 1260

Przykład 9.Proste k i l są równoległe. Na prostej k zaznaczono 4 punkty, a na prostej l – 5 punktów.

Obliczymy, ile jest wszystkich trójkątów, których wierzchołkami są trzy spośród zaznaczonych

punktów.

Zauważmy, że trójkąt jest jednoznacznie wyznaczony przez ustalenie trzech jego wierzchoł-

ków.

Ponieważ trzy punkty leżące na jednej prostej nie są wierzchołkami trójkąta, więc trójkąty

możemy utworzyć jedynie na dwa sposoby:

na prostej k wybieramy dwa różne punkty, a do każdej takiej pary dobieramy trzeci

punkt na prostej l albo

1)

Podzbiory zbioru skończonego (treść podstawowa)

190

Page 192: Matematyka 3

Parę wierzchołków na prostej k możemy wybrać na4 ? 3

2 = 6 sposobów, a trzeci wierzchołek

na prostej l na 5 sposobów. Zatem w przypadku (1) wszystkich trójkątów jest 6 ? 5 = 30.

Parę wierzchołków na prostej l możemy wybrać na5 ? 4

2 = 10 sposobów, a trzeci wierzchołek

na prostej k na 4 sposoby. Oznacza to, że w przypadku (2) wszystkich trójkątów jest

10 ? 4 = 40.

Wobec tego wszystkich trójkątów, których wierzchołkami są trzy spośród zaznaczonych

punktów, jest

30 + 40 = 70

Przykład 10.Sześć dziewcząt bierze udział w szkolnej wycieczce. Obliczymy, na ile sposobów można je za-

kwaterować w trzech dwuosobowych pokojach.Zakwaterowanie rozkładamy na trzy etapy:

Korzystając z reguły mnożenia obliczamy, że szukanych możliwości zakwaterowania sześciu

dziewcząt w trzech dwuosobowych pokojach, jest 15 ? 6 = 90.

Przykład 11.Obliczymy, ile jest:

• sposób I

Rozróżniamy dwa przypadki:

(1) na pierwszym miejscu zapisana jest cyfra parzysta albo

na prostej l wybieramy dwa różne punkty, a do każdej takiej pary dobieramy trzeci

punkt na prostej k.

2)

wybieramy parę dziewczynek do pierwszego pokoju, co możemy zrobić na6 ? 5

2 = 15

sposobów,

1)

wybieramy kolejne dwie dziewczynki do drugiego pokoju, co możemy zrobić na4 ? 3

2 = 6 sposobów.

2)

kwaterujemy piątą i szóstą dziewczynkę w trzecim pokoju.3)

wszystkich liczb naturalnych sześciocyfrowych, w zapisie których nie występuje zero i

na dokładnie dwóch miejscach stoją cyfry nieparzyste.Zliczanie rozkładamy na dwa

etapy:

(1) wybór dwóch miejsc z sześciu dla cyfr nieparzystych (mamy6 ? 5

2 = 15 możliwości)

oraz zapisanie tych cyfr (mamy 5 ? 5 = 25 możliwości),

(2) zapisanie pozostałych czterech cyfr (mamy 4 ? 4 ? 4 ? 4 = 256 możliwości),

Zatem jest 15 ? 25 ? 256 = 96000 takich liczb sześciocyfrowych.

a)

wszystkich liczb naturalnych pięciocyfrowych, w zapisie których na dokładnie dwóch

miejscach stoją cyfry parzyste.

b)

Podzbiory zbioru skończonego (treść podstawowa)

191

Page 193: Matematyka 3

(2) na pierwszym miejscu jest cyfra nieparzysta.

W pierwszym przypadku: mamy 4 możliwości zapisu pierwszej cyfry, z kolejnych czte-

rech miejsc mamy wybrać jedno dla cyfry parzystej (4 możliwości) i zapisać tę cyfrę (5

możliwości), a na każdym z pozostałych trzech miejscach zapisać cyfrę nieparzystą (

5 ? 5 ? 5 = 125 możliwości). Takich liczb jest 4 ? 4 ? 5 ? 125 = 10000.

W drugim przypadku: mamy 5 możliwości zapisu pierwszej cyfry, z kolejnych czterech

miejsc mamy wybrać dwa dla cyfry parzystej (4 ? 3

2 = 6 możliwości) i zapisać te liczby (

5 ? 5 = 25 możliwości), a na pozostałych dwóch miejscach zapisać cyfry nieparzyste (

5 ? 5 = 25 możliwości). Takich liczb jest 5 ? 6 ? 25 ? 25 = 18750.

Oznacza to, że jest 10000 + 18750 = 28750 liczb pięciocyfrowych spełniających warunki

zadania.

• sposób II

Wypisujemy kolejno jedna za drugą pięć cyfr, wybierając każdą cyfrę spośród dziesięciu

możliwych (dopuszczamy 0 na początkowych miejscach), przy czym na dokładnie

dwóch miejscach zapisujemy cyfrę parzystą.

Mamy5 ? 4

2 = 10 możliwości wyboru dwóch miejsc dla cyfr parzystych, cyfry te możemy

zapisać na 5 ? 5 = 25 sposobów, a na pozostałych trzech miejscach cyfry nieparzyste za-

piszemy na 5 ? 5 ? 5 = 125 sposobów.

Zatem jest 10 ? 25 ? 125 = 31250 ciągów o 5 cyfrach, w których dokładnie dwie cyfry są

parzyste.

Są wśród nich takie, w których cyfra 0 zapisana jest na pierwszym miejscu. W każdym z

takich ciągów na jednym z kolejnych czterech miejsc znajduje się cyfra parzysta (miej-

sce dla niej można wybrać na 4 sposoby, a zapisać ją – na 5 sposobów), a na trzech po-

zostałych –cyfry nieparzyste (można je zapisać na 5 ? 5 ? 5 = 125 sposobów). Oznacza

to, że jest 4 ? 5 ? 125 = 2500 takich ciągów.

Stąd wynika, że jest 31250 − 2500 = 28750 liczb pięciocyfrowych spełniających warunki

zadania.

Przykład 12.Obliczymy:

ile jest wszystkich wyników czterokrotnego rzutu sześcienną kostką do gry, w których

dokładnie dwa razy wypadła parzysta liczba oczek.Rozpatrzmy ciąg kolejnych czterech

rzutów kostką sześcienną. Zliczanie rozkładamy na dwa etapy:

1) wybór tych dwóch z czterech numerów rzutów, dla których wypadła parzysta liczba

oczek (mamy4 ? 3

2 = 6 możliwości) i rozmieszczenie parzystych liczb oczek na tych

dwóch miejscach (mamy 3 ? 3 = 9 możliwości),

2) rozmieszczenie nieparzystych liczb oczek na pozostałych miejscach (mamy 3 ? 3 = 9

możliwości).

Oznacza to, że jest 6 ? 9 ? 9 = 486 wszystkich wyników czterokrotnego rzutu sześcien-

ną kostką do gry, w których dokładnie dwa razy wypadła parzysta liczba oczek.

a)

ile jest wszystkich wyników pięciokrotnego rzutu sześcienną kostką do gry, w których

dokładnie dwa razy wypadła szóstka.Rozpatrzmy ciąg kolejnych pięciu rzutów kostką

sześcienną. Zliczanie rozkładamy na dwa etapy:

b)

Podzbiory zbioru skończonego (treść podstawowa)

192

Page 194: Matematyka 3

Przykład 13.Obliczymy, ile jest wszystkich liczb naturalnych siedmiocyfrowych, których suma cyfr jest

równa 11 i w zapisie których wszystkie cyfry są nieparzyste.

Rozróżniamy dwa przypadki:

• W pierwszym przypadku: wybieramy jedno miejsce, na którym zapisujemy piątkę (7

możliwości), a na pozostałych sześciu miejscach zapisujemy jedynki. Zatem jest 7 takich

liczb.

• W drugim przypadku: wybieramy dwa miejsca z siedmiu, na których zapiszemy trójki (7 ? 6

2 = 21 możliwości), a na pozostałych pięciu miejscach zapisujemy jedynki. Oznacza

to, że jest 21 takich liczb.

Stąd wynika, że jest 7 + 21 = 28 wszystkich liczb naturalnych siedmiocyfrowych, których

suma cyfr jest równa 11 i w zapisie których wszystkie cyfry są nieparzyste.

Uwaga. Otrzymany wynik to liczba wszystkich dwuelementowych podzbiorów zbioru

ośmioelementowego

28 =8 ? 7

2 . Tyle jest np. wyników ośmiokrotnego rzutu monetą, w którym wypadły do-

kładnie dwa orły.

Można pokazać, że każdy z wyników ośmiokrotnego rzutu monetą, w którym wypadły

dokładnie dwa orły, odpowiada dokładnie jednej liczbie spełniającej warunki zadania i

odwrotnie – każda liczba spełniająca warunki zadania odpowiada dokładnie jednemu

1) wybór tych dwóch z pięciu numerów rzutów, dla których wypadła szóstka (mamy5 ? 4

2 = 10 możliwości) i rozmieszczenie dwóch szóstek na tych dwóch miejscach,

2) rozmieszczenie innych liczb oczek na pozostałych trzech miejscach (mamy

5 ? 5 ? 5 = 125 możliwości).

Oznacza to, że jest 10 ? 125 = 1250 wszystkich wyników pięciokrotnego rzutu sześcien-

ną kostką do gry, w których dokładnie dwa razy wypadła szóstka.

ile jest wszystkich wyników sześciokrotnego rzutu sześcienną kostką do gry, w których

wypadła dokładnie jedna jedynka i dokładnie dwie dwójki.Rozpatrzmy ciąg kolejnych

sześciu rzutów kostką sześcienną. Zliczanie rozkładamy na trzy etapy:

1) wybór jednego z sześciu numerów rzutów, w którym wypadła jedynka (mamy 6

możliwości) i rozmieszczenie jedynki na tym miejscu,

2) wybór tych dwóch z pozostałych pięciu numerów rzutów, w których wypadły dwójki

(mamy5 ? 4

2 = 10 możliwości) i rozmieszczenie dwójek na tych miejscach,

3) rozmieszczenie innych liczb oczek na pozostałych trzech miejscach (mamy

4 ? 4 ? 4 = 64 możliwości).

Oznacza to, że jest 6 ? 10 ? 64 = 3840 wszystkich wyników sześciokrotnego rzutu sze-

ścienną kostką do gry, w których wypadła dokładnie jedna jedynka i dokładnie dwie

dwójki.

c)

w zapisie takiej liczby jest jedna piątka i sześć jedynek albo1)

w zapisie takiej liczby są dwie trójki i pięć jedynek.2)

Podzbiory zbioru skończonego (treść podstawowa)

193

Page 195: Matematyka 3

wynikowi ośmiokrotnego rzutu monetą, w którym wypadły dokładnie dwa orły.

Rozwiążemy w tym celu następujące zadanie.

Ustal, ile rozwiązań w dodatnich liczbach nieparzystych ma równanie

c1 + c2 + c3 + c4 + c5 + c6 + c7 = 11. Zauważmy, że wtedy każda liczba w ciągu

(c1, c2, c3, c4, c5, c6, c7) jest nieparzysta, żadna z nich nie jest większa od 10, zatem ciąg

ten tworzą kolejne cyfry liczby naturalnej siedmiocyfrowej, której suma cyfr jest równa

11 i w jej zapisie wszystkie cyfry są nieparzyste.

Ponieważ każda z liczb zapisanych po lewej stronie jest nieparzysta, więc przyjmując

c1 = 2x1 + 1, c2 = 2x2 + 1, …, c7 = 2x7 + 1, można równanie zapisać w postaci

(2x1 + 1) + (2x2 + 1) + (2x3 + 1) + (2x4 + 1) + (2x5 + 1) + (2x6 + 1) + (2x7 + 1) = 11,

gdzie każda z liczb x1, x2, ..., x7 jest nieujemną liczbą całkowitą.

Po przekształceniu otrzymujemy równanie

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 2

Naszym zadaniem jest wyznaczenie liczby wszystkich rozwiązań tego równania w nieujem-

nych liczbach całkowitych.

Rozpatrzmy teraz wszystkie możliwe wyniki ośmiokrotnego rzutu monetą, w których wypa-

dły dokładnie dwa orły. Oznaczmy:

x1 - liczbę orłów uzyskanych w kolejnych rzutach do momentu, w którym wyrzucono pierw-

szą reszkę,

x2 - liczbę orłów uzyskanych w kolejnych rzutach od momentu, w którym wyrzucono pierw-

szą reszkę, do momentu, w którym wyrzucono drugą reszkę,

x3 - liczbę orłów uzyskanych w kolejnych rzutach od momentu, w którym wyrzucono drugą

reszkę, do momentu, w którym wyrzucono trzecią reszkę,

x4 - liczbę orłów uzyskanych w kolejnych rzutach od momentu, w którym wyrzucono trzecią

reszkę, do momentu, w którym wyrzucono czwartą reszkę,

x5 - liczbę orłów uzyskanych w kolejnych rzutach od momentu, w którym wyrzucono czwartą

reszkę, do momentu, w którym wyrzucono piątą reszkę,

x6 - liczbę orłów uzyskanych w kolejnych rzutach od momentu, w którym wyrzucono piątą

reszkę, do momentu, w którym wyrzucono szóstą reszkę,

x7 - liczbę orłów uzyskanych w kolejnych rzutach od momentu, w którym wyrzucono szóstą

reszkę.

Zauważmy, że:

• każdemu wynikowi takiego rzutu monetą odpowiada dokładnie jeden ciąg

(x1, x2, x3, x4, x5, x6, x7), temu ciągowi - dokładnie jeden ciąg (c1, c2, c3, c4, c5, c6, c7),który to ciąg koduje dokładnie jedną liczbę siedmiocyfrową. Np. jeżeli w kolejnych rzu-

tach dostaliśmy: (orzeł, reszka, reszka, reszka, reszka, orzeł, reszka, reszka), to

(x1 = 1, x2 = 0, x3 = 0, x4 = 0, x5 = 1, x6 = 0, x7 = 0)

a więc

(c1 = 3, c2 = 1, c3 = 1, c4 = 1, c5 = 3, c6 = 1, c7 = 1),

Podzbiory zbioru skończonego (treść podstawowa)

194

Page 196: Matematyka 3

Oznacza to, że ten wynik rzutu monetą koduje dokładnie jedną liczbę 3111311.

• Na odwrót, każdej liczbie spełniającej warunki zadania odpowiada jeden ciąg

(c1, c2, c3, c4, c5, c6, c7), temu ciągowi odpowiada jeden ciąg (x1, x2, x3, x4, x5, x6, x7),któremu odpowiada jeden wynik ośmiokrotnego rzutu monetą, w którym wypadły do-

kładnie dwa orły. Np. liczbie 1151111 odpowiada ciąg

(c1 = 1, c2 = 1, c3 = 5, c4 = 1, c5 = 1, c6 = 1, c7 = 1)

a temu – ciąg

(x1 = 0, x2 = 0, x3 = 2, x4 = 0, x5 = 0, x6 = 0, x7 = 0), stąd mamy odpowiadający ciąg rzutów

(reszka, reszka, orzeł, orzeł, reszka, reszka, reszka, reszka).

Zatem wszystkich liczb naturalnych siedmiocyfrowych, których suma cyfr jest równa 11 i w

zapisie których wszystkie cyfry są nieparzyste, jest tyle samo, co wyników ośmiokrotnego

rzutu monetą, w którym wypadły dokładnie dwa orły. Tych wyników jest8 ? 7

2 = 28.

Przykład 14.Obliczymy, ile jest wszystkich liczb naturalnych ośmiocyfrowych, których iloczyn cyfr jest rów-

ny 18.

Rozkładamy liczbę 18 na czynniki pierwsze: 18 = 2 ? 3 ? 3. Oznacza to, że możliwe są trzy

przypadki:

• W pierwszym przypadku: wybieramy jedno miejsce, na którym zapisujemy dwójkę (8

możliwości), z pozostałych siedmiu miejsc wybieramy dwa, na których zapisujemy trójki

(7 ? 6

2 = 21 możliwości), a na pozostałych pięciu miejscach zapisujemy jedynki. Oznacza

to, że jest 8 ? 21 = 168 takich liczb.

• W drugim przypadku: wybieramy jedno miejsce, na którym zapisujemy dwójkę (8 moż-

liwości), z pozostałych siedmiu miejsc wybieramy jedno, na którym zapisujemy dziewi-

ątkę (7 możliwości) , a na pozostałych sześciu miejscach zapisujemy jedynki. Zatem jest

8 ? 7 = 56 takich liczb.

• W trzecim przypadku: wybieramy jedno miejsce, na którym zapisujemy trójkę (8 możli-

wości), z pozostałych siedmiu miejsc wybieramy jedno, na którym zapisujemy szóstkę

(7 możliwości) , a na pozostałych sześciu miejscach zapisujemy jedynki. Jest więc

8 ? 7 = 56 takich liczb.

Stąd wynika, że jest 168 + 56 + 56 = 280 wszystkich liczb naturalnych ośmiocyfrowych,

których iloczyn cyfr jest równy 18.

wśród cyfr tej liczby jest jedna dwójka, dwie trójki i pięć jedynek,1)

wśród cyfr tej liczby jest jedna dwójka, jedna dziewiątka i sześć jedynek,2)

wśród cyfr tej liczby jest jedna trójka, jedna szóstka i sześć jedynek.3)

Podzbiory zbioru skończonego (treść podstawowa)

195

Page 197: Matematyka 3

Przykład 15.Obliczymy, ile jest wszystkich liczb naturalnych pięciocyfrowych, w zapisie których występuje

dokładnie dwa razy cyfra 0 i dokładnie dwa razy cyfra 1.

• sposób I

Rozróżniamy dwa przypadki:

• W pierwszym przypadku: zapisujemy 1 na pierwszym miejscu. Z kolejnych czterech

miejsc mamy wybrać jedno dla jedynki (4 możliwości) i zapisać na nim jedynkę. Z pozo-

stałych trzech miejsc wybrać dwa dla zer (3 możliwości) i zapisać na nich zera, a na

ostatnim pozostałym miejscu zapisać cyfrę różną od 0 i od 1 (8 możliwości). Takich liczb

jest więc 4 ? 3 ? 8 = 96.

• W drugim przypadku: mamy 8 możliwości zapisu pierwszej cyfry, z kolejnych czterech

miejsc mamy wybrać dwa dla jedynek (4 ? 3

2 = 6 możliwości) i zapisać te jedynki, a na po-

zostałych dwóch miejscach zapisać zera. Zatem jest 8 ? 6 = 48 takich liczb.

Oznacza to, że jest 96 + 48 = 144 wszystkich liczb naturalnych pięciocyfrowych, w zapi-

sie których występuje dokładnie dwa razy cyfra 0 i dokładnie dwa razy występuje cyfra

1.

• sposób II

Zliczanie rozkładamy na trzy etapy, pamiętając o tym, że zera nie możemy zapisać na pierw-

szym miejscu (w rzędzie dziesiątek tysięcy):

• sposób III

Wypisujemy kolejno jedna za drugą pięć cyfr, wybierając każdą cyfrę spośród dziesięciu moż-

liwych (dopuszczamy 0 na początkowych miejscach), przy czym na dokładnie dwóch miej-

scach zapisujemy cyfrę 0 i na dokładnie dwóch miejscach zapisujemy cyfrę 1.

Mamy5 ? 4

2 = 10 możliwości wyboru dwóch miejsc dla zer, na pozostałych trzech miejscach

zapiszemy dwie jedynki na 3 sposoby, a na ostatnim z pozostałych miejsc zapiszemy cyfrę

różną od 0 i od 1 na 8 sposobów. Takich ciągów o 5 cyfrach jest zatem 10 ? 3 ? 8 = 240.

Są wśród nich takie, w których cyfra 0 zapisana jest na pierwszym miejscu. W każdym z takich

ciągów na kolejnych czterech miejscach znajduje się jeszcze jedna cyfra 0 (miejsce dla niej

na pierwszym miejscu zapisana jest cyfra 1,1)

na pierwszym miejscu jest cyfra różna od 0 i od 1.2)

wybieramy dwa z czterech miejsc, na których możemy wstawić zera (4 ? 3

2 = 6 możliwo-

ści) i zapisujemy zera na tych miejscach,

a)

wybieramy te dwa z pozostałych trzech miejsc, na których zapiszemy jedynki (3 możli-

wości) i zapisujemy jedynki na tych miejscach,

b)

na ostatnim pozostałym miejscu zapisujemy cyfrę różną od 0 i od 1 (8 możliwości).

Zatem jest 6 ? 3 ? 8 = 144 wszystkich takich liczb naturalnych pięciocyfrowych.

c)

Podzbiory zbioru skończonego (treść podstawowa)

196

Page 198: Matematyka 3

można wybrać na 4 sposoby), na pozostałych trzech miejscach są dwie jedynki (można je za-

pisać na 3 sposoby), a na ostatnim z pozostałych miejsc jest cyfra różna od 0 i od 1, którą

można zapisać na 8 sposobów. Oznacza to, że jest 4 ? 3 ? 8 = 96 takich ciągów z zerem na

pierwszym miejscu.

Stąd wynika, że liczb pięciocyfrowych spełniających warunki zadania jest 240 − 96 = 144.

Przykład 16.Do pracy w samorządzie szkolnym zgłosiło się 5 osób: Agnieszka, Beata, Czarek, Darek i Ewa.

W głosowaniu każdy z uczniów tej szkoły ma się wypowiedzieć na temat przydatności do pra-

cy w samorządzie każdej osoby spośród tych pięciorga zgłoszonych. Głosujący dostaje kartkę

z danymi pięciorga kandydatów:

i podejmuje decyzję, wpisując „x” w kratkę przy danych wybranego kandydata lub pozosta-

wiając kratkę pustą, jeśli danej osoby do samorządu nie zgłasza.

Obliczymy, ile jest wszystkich możliwych wyników takiego głosowania.sposób I

Przy każdym z 5 kandydatów głosujący ma podjąć decyzję na 2 sposoby: zgłaszając

kandydata do samorządu, zostawia znak „x” albo pozostawia pustą kratkę, kiedy danej

osoby do samorządu nie zgłasza.

Na przykład:

– osoba która zgłosiła do samorządu tylko Beatę, Darka i Ewę zostawiła na kartce na-

stępujący ciąg znaków , x, , x, x,

– osoba, która zostawiła na kartce ciąg znaków , , x, x, zagłosowała tylko na Czar-

ka i Darka.

Zatem wynik głosowania można utożsamić z pięcioelementowym ciągiem o elemen-

tach wybranych ze zbioru dwuelementowego: {x, }.Wobec tego wszystkich możliwych wyników tego głosowania jest

2 ? 2 ? 2 ? 2 ? 2 = 25 = 32.

sposób II

a)

Podzbiory zbioru skończonego (treść podstawowa)

197

Page 199: Matematyka 3

{B, C, D, E}, {A, C, D, E}, {A, B, D, E}, {A, B, C, E}, {A, B, C, D}.– jest 1 wynik głoso-

wania, w którym wybrano do samorządu każdą ze zgłoszonych osób. Odpowiadający takie-

mu wynikowi podzbiór to zbiór {A, B, C, D, E}, który jest (oczywiście) dopełnieniem zbioru

pustego do zbioru {A, B, C, D, E}.Zatem wszystkich możliwych wyników głosowania jest

2 ? (1 + 5 + 10) = 32

Oznaczymy następująco wybory dokonywane w głosowaniu:

A – oddano głos na Agnieszkę,

B – oddano głos na Beatę,

C – oddano głos na Czarka,

D – oddano głos na Darka,

E – oddano głos na Ewę.

Zauważmy, że wynik głosowania jest wyborem konkretnego podzbioru ze zbioru

{A, B, C, D, E}. Podzielimy te podzbiory ze względu na ich liczbę elementów. Wtedy:

– jest 1 wynik głosowania, w którym nie wybrano do samorządu żadnej ze zgłoszonych

osób. Odpowiadający takiemu wynikowi podzbiór to zbiór pusty: ,

– jest 5 wyników głosowania, w których wybrano do samorządu 1 ze zgłoszonych

osób. Odpowiadające takim wynikom podzbiory to

{A}, {B}, {C}, {D}, {E},– jest 10 wyników głosowania, w których wybrano do samorządu 2 spośród zgłoszo-

nych osób. Odpowiadające takim wynikom podzbiory to

{A, B}, {A, C}, {A, D}, {A, E}, {B, C}, {B, D}, {B, E}, {C, D}, {C, E}, {D, E},– jest również 10 wyników głosowania, w których wybrano do samorządu 3 spośród

zgłoszonych osób. Podzbiory odpowiadające takim wynikom głosowania można po-

traktować jako dopełnienia do zbioru {A, B, C, D, E} wypisanych powyżej podzbio-

rów 2-elementowych (np. dopełnieniem podzbioru 2 − elementowego {B, C} jest pod-

zbiór 3 − elementowy {A, D, E}). W ten sposób otrzymujemy wzajemnie jednoznaczne

przyporządkowanie między dwuelementowymi a trzyelementowymi podzbiorami

zbioru pięcioelementowego, skąd wynika, że jest tyle samo podzbiorów dwuelemento-

wych i podzbiorów trzyelementowych zbioru pięcioelementowego.

Odpowiadające takim wynikom podzbiory to

{C, D, E}, {B, D, E}, {B, C, E}, {B, C, D}, {A, D, E}, {A, C, E}, {A, C, D}, {A, B, E}, {A, B, D}, {A, B, C}.

– jest 5 wyników głosowania, w których wybrano do samorządu 4 spośród zgłoszonych

osób. Traktując te podzbiory jako dopełnienia do zbioru {A, B, C, D, E} wypisanych

powyżej podzbiorów jednoelementowych, zauważymy, że jest tyle samo podzbiorów

czteroelementowych i podzbiorów jednoelementowych zbioru pięcioelementowego.

Podzbiory czteroelementowe rozpatrywanego zbioru pięcioelementowego to

Wykażemy, że w klasie 3b, liczącej 35 uczniów znajdą się 2 osoby, które w tym głoso-

waniu oddały głosy na tych samych kandydatów.

Wybierzmy dowolne 32 osoby spośród 35 uczniów klasy 3b. Jeżeli któreś dwie z nich

zagłosowały tak samo, to właśnie te wskazujemy jako szukaną parę. W przeciwnym ra-

zie te 32 osoby wyczerpały wszystkie możliwe wyniki głosowania, a więc kolejna, trzy-

a)

Podzbiory zbioru skończonego (treść podstawowa)

198

Page 200: Matematyka 3

Przykład 17.Obliczymy, ile jest:

Przykład 18.W pudełku znajduje się sześć kul ponumerowanych od 1 do 6. Z tego pudełka losujemy do-

wolnie wybrane kule. Ile jest możliwości wylosowania w ten sposób takich kul, że suma nu-

merów: najmniejszego i największego z zapisanych na tych wylosowanych kulach jest równa

dziesta trzecia osoba wypełniła kartkę do głosowania tak samo, jak jedna z wybranych

32 osób. To spostrzeżenie kończy dowód.

wszystkich wyników pięciokrotnego rzutu monetą, w których wypadło mniej orłów niż

reszek.sposób I

Rozróżniamy trzy przypadki:

(1) ani razu nie wypadł orzeł (wtedy w każdym rzucie wypadła reszka) – jest jedna taka

możliwość,

(2) wypadł dokładnie jeden orzeł (wtedy wypadły jeszcze 4 reszki) – takich możliwości

jest 5,

(3) wypadły dokładnie dwa orły (wtedy wypadły jeszcze 3 reszki) – takich możliwości

jest5 ? 4

2 = 10.

Stąd wynika, że jest 1 + 5 + 10 = 16 wszystkich wyników pięciokrotnego rzutu monetą,

w których wypadło mniej orłów niż reszek.

sposób II

Skorzystamy z reguły równoliczności.

Jest 2 ? 2 ? 2 ? 2 ? 2 = 25 = 32 wszystkich wyników pięciokrotnego rzutu monetą. Można

je podzielić na dwie rozłączne grupy:

(1) tych wyników, w których wypadło mniej orłów niż reszek,

(2) tych wyników, w których wypadło mniej reszek niż orłów.

Biorąc dowolny wynik z pierwszej grupy i zamieniając każdego orła na reszkę oraz każ-

dą reszkę na orła dostaniemy jeden wynik z drugiej grupy. Postępując analogicznie z

wynikiem z drugiej grupy dostaniemy jeden wynik z pierwszej grupy. Zatem wyniki te

można połączyć w pary, co oznacza, że dokładnie połowa wszystkich wyników pięcio-

krotnego rzutu monetą to te, w których orłów jest mniej niż reszek. Jest ich więc12 ? 32 = 16.

a)

wszystkich wyników dziewięciokrotnego rzutu monetą, w których wypadło więcej or-

łów niż reszek.Jest 2 ? 2 ? 2 ? 2 ? 2 ? 2 ? 2 ? 2 ? 2 = 29 = 512 wszystkich wyników dzie-

więciokrotnego rzutu monetą. Można je podzielić na dwie rozłączne grupy:

(1) tych wyników, w których wypadło więcej orłów niż reszek,

(2) tych wyników, w których wypadło więcej reszek niż orłów.

Rozumując podobnie jak w II sposobie rozwiązania poprzedniego podpunktu, stwier-

dzimy, że pojedyncze wyniki z obu tych grup można połączyć w pary. Oznacza to, że

dokładnie połowa wszystkich wyników dziewięciokrotnego rzutu monetą to te, w któ-

rych orłów jest więcej niż reszek. Wyników tych jest zatem12 ? 512 = 256.

b)

Podzbiory zbioru skończonego (treść podstawowa)

199

Page 201: Matematyka 3

7?

Zauważmy, że w sposób opisany w treści zadania sumę numerów równą 7 można otrzymać:

• gdy najmniejszy z numerów jest równy 1 i największy jest równy 6,

• gdy najmniejszy z numerów jest równy 2 i największy jest równy 5,

• gdy najmniejszy z numerów jest równy 3 i największy jest równy 4.

Rozróżniamy zatem trzy rozłączne przypadki:

W pierwszym przypadku wraz z wylosowanymi dwiema kulami można wylosować dowolny

podzbiór ze zbioru czterech pozostałych kul. Ponieważ decyzji o wyborze każdej z tych 4

kul możemy dokonać na 2 sposoby, więc łącznie w tym przypadku jest 2 ? 2 ? 2 ? 2 = 24 = 16

możliwości wylosowania kul.

W drugim przypadku wraz z wylosowanymi dwiema kulami można wylosować dowolny pod-

zbiór ze zbioru, w którym są dwie kule: kula z numerem 3 oraz kula z numerem 4. Zatem w

tym przypadku są 2 ? 2 = 22 = 4 możliwości wylosowania kul.

W trzecim przypadku mamy jeden sposób wylosowania kul.

Oznacza to, że jest 16 + 4 + 1 = 21 wszystkich możliwości wylosowania kul w sposób opisany

w treści zadania.

wśród wylosowanych znalazły się kule o numerach 1 oraz 6,1)

wśród wylosowanych nie ma żadnej z kul o numerach 1, 6 i znalazły się kule o nume-

rach 2 oraz 5,

2)

wylosowano tylko dwie kule: z numerem 3 oraz z numerem 4.3)

Podzbiory zbioru skończonego (treść podstawowa)

200

Page 202: Matematyka 3

3.4. Podzbiory zbioru skończonego (treśćrozszerzona)Liczba wszystkich podzbiorów zbioru

skończonego

Można obliczyć, ile jest wszystkich podzbiorów pewnych zbiorów skończonych.

• pewien zbiór dwuelementowy ma 22 = 4 podzbiory,

• pewien zbiór czteroelementowy ma 24 = 16 podzbiorów,

• pewien zbiór pięcioelementowy ma 25 = 32 podzbiory,

• pewien podzbiór dziewięcioelementowy ma 29 = 512 podzbiorów.

Ustalając liczbę podzbiorów zauważaliśmy, że w stosunku do każdego elementu zbioru możemy

na dwa sposoby podjąć decyzję o jego wyborze do tworzonego podzbioru.

Przykład 1.

Rozpatrzmy teraz zbiór A = {a1, a2, ..., an}, który ma n elementów. Dowolny podzbiór

zbioru A tworzymy, podejmując decyzję, czy każdy z kolejnych elementów zbioru A:

a1, a2, ..., an należy do tego podzbioru, czy nie należy. Można to zrobić na

2 ? 2 ? ... ? 2?

n czynników

= 2n sposobów.

Zatem liczba wszystkich podzbiorów zbioru A, który ma n elementów, jest równa 2n.

Liczba kombinacji

W przykładach prezentowanych w tym rozdziale często spotykaliśmy się z koniecznością oblicze-

nia, na ile sposobów możemy z ustalonego zbioru wybrać podzbiór o konkretnej liczbie elemen-

tów.

Przykład 2.

Rozpatrzmy zbiór A = {a1, a2, ..., an}, który ma n elementów. Wtedy, jak to już pokazywali-

śmy w rozwiązaniach przykładów tego rozdziału:

• jest jeden podzbiór zbioru A, do którego nie wybierzemy żadnego elementu ze zbioru A

(tym podzbiorem jest zbiór pusty),

• jest jeden podzbiór zbioru A, do którego wybierzemy każdy element zbioru A (tym pod-

zbiorem jest cały zbiór A),

• jest n wszystkich podzbiorów jednoelementowych zbioru A,

• jestn ? (n − 1)

2 wszystkich podzbiorów dwuelementowych zbioru A.

Rozumując podobnie jak w rozwiązaniu metodą dopełniania podzbiorów do całego zbioru i

zasadą równoliczności, stwierdzimy też, że

Podzbiory zbioru skończonego (treść rozszerzona)

201

Page 203: Matematyka 3

• jest n wszystkich podzbiorów (n − 1)-elementowych zbioru A,

• jestn ? (n − 1)

2 wszystkich podzbiorów (n − 2)-elementowych zbioru A.

Definicja: liczba k–elementowych podzbiorówzbioru n–elementowego

Rozpatrzmy zbiór A = {a1, a2, ..., an}, który ma n (n ≥ 1) elementów.

Symbolem ( n

k ) oznaczamy liczbę jego wszystkich podzbiorów k–elementowych

(k ≥ 0 i k ≤ n) .

Zapis symboliczny ( n

k ) odczytujemy „n po k”, stąd np.:

• ( 5

2 ) czytamy „pięć po dwa”,

• ( 7

1 ) czytamy „siedem po jeden”,

• ( 6

0 ) czytamy „sześć po zero”.

Stosując to oznaczenie, stwierdzimy, że:

( n

0 ) = ( n

n ) = 1

( n

1 ) = ( n

n − 1 ) = n

( n

2 ) = ( n

n − 2 ) =n ? (n − 1)

2 ,

Podzbiory zbioru skończonego (treść rozszerzona)

202

Page 204: Matematyka 3

gdy n ≥ 2

W szczególności:

( 5

2 ) =5 ? 4

2 = 10, ( 5

3 ) = 10,

( 7

1 ) = 7, ( 7

6 ) = 7,

( 6

0 ) = ( 6

6 ) = 1

Rozszerza się też (z czego my nie będziemy korzystać) stosowanie tego symbolu na:

• podzbiór pusty zbioru pustego, przyjmując ( 0

0 ) = 1,

• przypadek, gdy k > n, wtedy przyjmujemy ( n

k ) = 0.

Kombinacje

Definicja: k-elementowa kombinacja zbioru n-elementowego

Każdy k-elementowy podzbiór zbioru n-elementowego (0 ≤ k ≤ n) nazywa się zwy-

czajowo k-elementową kombinacją zbioru n-elementowego.

Pokażemy, że liczba wszystkich k – elementowych podzbiorów, które można wybrać ze zbioru

A = {a1, a2, ..., an} liczącego n elementów, jest równan!

k! ? (n − k) !. Przypomnijmy, że przez ( n

k )umówiliśmy się oznaczać liczbę wszystkich możliwych k – elementowych podzbiorów zbioru A.

Podzbiory zbioru skończonego (treść rozszerzona)

203

Page 205: Matematyka 3

Dla dowodu zauważmy, że liczba wszystkich możliwych k – elementowych ciągów utworzonych z

różnych elementów zbioru A jest z jednej strony równa

n ? (n − 1) ? (n − 2) ? ... ? (n − k + 1)?

k czynników

=n!

(n − k) !

a z drugiej strony – jest równa

k ? (k − 1) ? (k − 2) ? ... ? 1?

k czynników

? ( n

k )ponieważ w każdym z k–elementowych podzbiorów zbioru A możemy ustalić kolejność elemen-

tów na

k! = k ? (k − 1) ? (k − 2) ? ... ? 1?

k czynników

sposobów.

Otrzymujemy więc równość

n!

(n − k) != k! ? ( n

k )stąd

( n

k ) =n!

k! ? (n − k) !

Na podstawie spostrzeżenia poczynionego powyżej mamy twierdzenie.

Twierdzenie: liczba k-elementowych kombinacjizbioru n-elementowego

Liczba ( n

k ) wszystkich k-elementowych kombinacji zbioru n − elementowego jest równa

n!

k! ? (n − k) !=

n ? (n − 1) ? (n − 2) ? ... ? (n − k + 1)k ? (k − 1) ? (k − 2) ? ... ? 1

.

Podzbiory zbioru skończonego (treść rozszerzona)

204

Page 206: Matematyka 3

Uwaga. Stosując metodę dopełniania podzbiorów do całego zbioru i korzystając z zasady

równoliczności, stwierdzimy, że dla dowolnych liczb całkowitych n, k (0 ≤ k ≤ n) zachodzi

równość

( n

k ) = ( n

n − k )Tę tożsamość można również wykazać algebraicznie.

Ponieważ

( n

k ) =n!

k! ? (n − k) !

oraz

( n

n − k ) =n!

(n − k)! ? (n − (n − k)) !=

n!

(n − k)! ? k!

więc

( n

k ) = ( n

n − k ).

Przykład 3.Pokażemy kilka zastosowań twierdzenia o liczbie kombinacji.

Do turnieju koszykówki, rozgrywanego systemem „każdy z każdym” (bez rewanżów),

zgłosiło się 12 drużyn.

Liczba wszystkich meczów do rozegrania w tym turnieju jest zatem równa ( 12

2 ), czyli

12 ? 112 = 66.

a)

Z pudełka, w którym znajduje się 20 kul ponumerowanych od 1 do 20 mamy wyloso-

wać 3 kule.

Każdy wynik takiego losowania to trzyelementowy podzbiór zbioru dwudziestoele-

mentowego, zatem liczba sposobów, na które można to zrobić, jest równa ( 20

3 ). Ta

liczba jest więc równa20!

3! ? 17! =20 ? 19 ? 18

3 ? 2 ? 1 = 1140.

b)

Podzbiory zbioru skończonego (treść rozszerzona)

205

Page 207: Matematyka 3

Przykład 4.Rozpatrzmy równanie

x1 + x2 + x3 + x4 + x5 + x6 = 10

gdzie każda z liczb x1, x2, x3, x4, x5, x6 jest całkowita i nieujemna.

Wykażemy, że jest 3003 wszystkich rozwiązań tego równania.

Skorzystamy z pomysłu przedstawionego w Uwadze do podpunktu a) przykładu 13.

Rozpatrzmy pomocniczo wszystkie wyniki piętnastokrotnego rzutu monetą, w których wypa-

dło dokładnie 10 orłów. Oznaczmy przez:

x1 – liczbę orłów uzyskanych w kolejnych rzutach do momentu, w którym wyrzucono pierw-

szą reszkę,

x2 – liczbę orłów uzyskanych w kolejnych rzutach od momentu, w którym wyrzucono pierw-

szą reszkę, do momentu, w którym wyrzucono drugą reszkę,

x3 – liczbę orłów uzyskanych w kolejnych rzutach od momentu, w którym wyrzucono drugą

reszkę, do momentu, w którym wyrzucono trzecią reszkę,

x4 – liczbę orłów uzyskanych w kolejnych rzutach od momentu, w którym wyrzucono trzecią

Na okręgu zaznaczono 11 różnych punktów. Obliczamy, ile jest wszystkich czworo-

kątów wypukłych, których wierzchołkami są punkty wybrane spośród tych zaznaczo-

nych.

Ponieważ wybierając dowolne cztery z tych jedenastu punktów na dokładnie jeden

sposób, połączymy je tak, aby otrzymać kolejne boki czworokąta wypukłego, więc szu-

kana liczba wszystkich czworokątów to ( 11

4 ), co jest równe11!

4! ? 7! =11 ? 10 ? 9 ? 8

4 ? 3 ? 2 ? 1 = 330.

c)

Spośród uczniów 37 − osobowej klasy należy wybrać 5-osobową delegację.

Można to zrobić na ( 37

5 ) sposobów, co jest równe

37!5! ? 32! =

37 ? 36 ? 35 ? 34 ? 335 ? 4 ? 3 ? 2 ? 1 = 435 897 (to prawie pół miliona sposobów).

d)

W pewnej grze losowej należy wybrać 6 liczb ze zbioru {1, 2, 3, ..., 49}. Liczba sposo-

bów, na które można tego dokonać jest równa ( 49

6 ), czyli

49!6! ? 43! =

49 ? 48 ? 47 ? 46 ? 45 ? 446 ? 5 ? 4 ? 3 ? 2 ? 1 = 13 983 816 (to liczba bliska 14 milionom).

e)

W rozdaniu brydżowym gracz otrzymuje 13 kart wybranych losowo z talii 52 kart. Licz-

ba wszystkich układów kart możliwych do otrzymania przez brydżystę jest więc równa

( 52

13 ), czyli52!

13! ? 39! =52 ? 51 ? 50 ? 49 ? 48 ? 47 ? 46 ? 45 ? 44 ? 43 ? 42 ? 41 ? 40

13 ? 12 ? 11 ? 10 ? 9 ? 8 ? 7 ? 6 ? 5 ? 4 ? 3 ? 2 ? 1 = 635 013 559 600

(to ponad 635 miliardów układów).

f)

Podzbiory zbioru skończonego (treść rozszerzona)

206

Page 208: Matematyka 3

reszkę, do momentu, w którym wyrzucono czwartą reszkę,

x5 – liczbę orłów uzyskanych w kolejnych rzutach od momentu, w którym wyrzucono czwartą

reszkę, do momentu, w którym wyrzucono piątą reszkę,

x6 – liczbę orłów uzyskanych w kolejnych rzutach od momentu, w którym wyrzucono piątą

reszkę.

Wtedy

• każdemu wynikowi takiego rzutu monetą odpowiada dokładnie jeden ciąg

(x1, x2, x3, x4, x5, x6),• każdemu ciągowi (x1, x2, x3, x4, x5, x6) odpowiada jeden wynik piętnastokrotnego

rzutu monetą, w którym wypadło dokładnie 10 orłów.

Ponieważ jest ( 15

10 ) =15!

10! ? 5! =15 ? 14 ? 13 ? 12 ? 11

5 ? 4 ? 3 ? 2 ? 1 = 3003 wszystkich wyników piętnastokrotne-

go rzutu monetą, w których wypadło dokładnie 10 orłów, więc również tyle jest rozwiązań

równania x1 + x2 + x3 + x4 + x5 + x6 = 10 w nieujemnych liczbach całkowitych.

Rozumując podobnie, można też wykazać, że równanie x1 + x2 + x3 + ... + xn = k, gdzie k jest

dodatnią liczbą całkowitą, a każda z liczb x1, x2, x3, ..., xn jest całkowita i nieujemna, ma

dokładnie ( n + k − 1

k ) rozwiązań.

Współczynniki dwumianowe, wzór dwumianowy

Newtona

Przykład 5.Wykażemy, że dla dowolnej liczby rzeczywistej x:

(x + 1)4

= x4 + 4x3 + 6x2 + 4x + 1

• sposób I (algebraiczny)

Zapisujemy równość

(x + 1)4

= (x + 1) ? (x + 1) ? (x + 1) ? (x + 1).Po wymnożeniu wyrażeń zapisanych w nawiasach po prawej stronie tej równości i po-

grupowaniu wyrazów podobnych otrzymamy wyrażenie (wielomian zmiennej x), w któ-

rym wystąpią jednomiany zmiennej x.

Czynność taką można wykonać, korzystając ze wzoru na sześcian sumy:

(x + 1)4

= ((x + 1) ? (x + 1) ? (x + 1)) ? (x + 1) = (x + 1)3

? (x + 1) = (x3 + 3x2 + 3x + 1) ? (x + 1) =

= (x3 + 3x2 + 3x + 1) ? x + (x3 + 3x2 + 3x + 1) ? 1 =

x4 + 3x3 + 3x2 + x + x3 + 3x2 + 3x + 1 = x4 + 4x3 + 6x2 + 4x + 1lub ze wzoru skróconego

mnożenia na kwadrat sumy:

Podzbiory zbioru skończonego (treść rozszerzona)

207

Page 209: Matematyka 3

(x + 1)4

= ((x + 1)2)

2= (x2 + 2x + 1)

2= (x2 + (2x + 1))

2= (x2)

2+ 2 ? x2 ? (2x + 1) + (2x + 1)

2=

= x4 + 4x3 + 2x2 + 4x2 + 4x + 1 = x4 + 4x3 + 6x2 + 4x + 1.

• sposób II (kombinatoryczny)

Zauważmy, że mnożąc wyrażenia wybierane z każdego z kolejnych nawiasów iloczynu

(x + 1) ? (x + 1) ? (x + 1) ? (x + 1), dostaniemy za każdym razem mnożenie czterech czyn-

ników. Wynikiem każdego takiego mnożenia jest wyrażenie xk, gdzie k jest równe

4, 3, 2, 1 lub 0. Wykonajmy więc wszystkie możliwe mnożenia wyrażeń wybieranych z

kolejnych nawiasów – możemy to zrobić na 24 = 16 sposobów.

Rozróżniamy pięć przypadków:

ze wszystkich nawiasów wybraliśmy x – można to zrobić na jeden sposób, a w wyniku

otrzymamy x4, co można też zapisać jako ( 4

4 ) ? x4 ? 10,

1)

z dokładnie trzech nawiasów wybraliśmy x – wtedy z dokładnie jednego nawiasu wy-

braliśmy 1, a więc można to zrobić na 4 sposoby. Zatem łącznie otrzymamy 4x3, co

można też zapisać jako ( 4

3 ) ? x3 ? 11,

2)

z dokładnie dwóch nawiasów wybraliśmy x – można to zrobić na4 ? 3

2 = 6 sposobów.

Łącznie otrzymamy więc 6x2, co można też zapisać jako ( 4

2 ) ? x2 ? 12,

3)

z dokładnie jednego nawiasu wybraliśmy x – można to zrobić na 4 sposoby. Łącznie

otrzymamy więc 4x, co można też zapisać jako ( 4

1 ) ? x1 ? 13,

4)

z żadnego z nawiasów nie wybraliśmy x – można to zrobić na 1 sposób. Wtedy z każ-

dego z nawiasów musimy wybrać jedynkę, więc w wyniku mnożenia otrzymamy 1, co

można też zapisać jako ( 4

0 ) ? x0 ? 14.

Ostatecznie stwierdzamy, że

(x + 1)4

= x4 + 4x3 + 6x2 + 4x + 1.Otrzymaną tożsamość możemy też zapisać w postaci

(x + 1)4

= ( 4

4 ) ? x4 ? 10 + ( 4

3 ) ? x3 ? 11 + ( 4

2 ) ? x2 ? 12 + ( 4

1 ) ? x1 ? 13 + ( 4

0 ) ? x0 ? 14

5)

Podzbiory zbioru skończonego (treść rozszerzona)

208

Page 210: Matematyka 3

Przykład 6.Wykażemy, że dla dowolnej liczby rzeczywistej x:

(x + 1)5

= x5 + 5x4 + 10x3 + 10x2 + 5x + 1.

• sposób I (algebraiczny)

(x + 1)5

= (x + 1)4

? (x + 1) = (x4 + 4x3 + 6x2 + 4x + 1) ? (x + 1)

= x5 + 4x4 + 6x3 + 4x2 + x + x4 + 4x3 + 6x2 + 4x + 1 = x5 + 5x4 + 10x3 + 10x2 + 5x + 1.

• sposób II (kombinatoryczny)

Zauważmy, że mnożąc wyrażenia wybierane z każdego z kolejnych nawiasów iloczynu

(x + 1) ? (x + 1) ? (x + 1) ? (x + 1) ? (x + 1)dostaniemy za każdym razem do pomnożenia pięć czynników, przy czym każdy z nich

to x albo 1. Zatem wynikiem każdego takiego mnożenia jest wyrażenie xk, gdzie k jest

równe 5, 4, 3, 2, 1 lub 0. Wykonajmy więc wszystkie możliwe mnożenia wyrażeń wy-

bieranych z kolejnych nawiasów – możemy to zrobić na 25 = 32 sposoby.

Rozróżniamy sześć przypadków:

ze wszystkich nawiasów wybraliśmy x – można to zrobić na jeden sposób, a w wyniku

otrzymamy x5, co można też zapisać jako ( 5

5 ) ? x5 ? 10,

1)

z dokładnie czterech nawiasów wybraliśmy x – wtedy z dokładnie jednego nawiasu

wybraliśmy 1, a więc można to zrobić na 5 sposobów. Zatem łącznie otrzymamy 5x4,

co można też zapisać jako ( 5

4 ) ? x4 ? 11,

2)

z dokładnie trzech nawiasów wybraliśmy x – można to zrobić na ( 5

3 ) =5 ? 4 ? 3

3 ? 2 = 10

sposobów. Łącznie otrzymamy więc 10x3, co można też zapisać jako ( 5

3 ) ? x3 ? 12,

3)

z dokładnie dwóch nawiasów wybraliśmy x – można to zrobić na5 ? 4

2 = 10 sposobów.

Łącznie otrzymamy więc 10x2, co można też zapisać jako ( 5

2 ) ? x3 ? 12,

4)

Podzbiory zbioru skończonego (treść rozszerzona)

209

Page 211: Matematyka 3

Przykład 7.Wykażemy, że dla dowolnej liczby rzeczywistej x:

(x + 1)7

= x7 + 7x6 + 21x5 + 35x4 + 35x3 + 21x2 + 7x + 1

• sposób I

Najpierw pokazujemy, że

(x + 1)6

= (x + 1)5

? (x + 1) = (x5 + 5x4 + 10x3 + 10x2 + 5x + 1) ? (x + 1) = x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x + 1

.

Stąd

(x + 1)7

= (x + 1)6

? (x + 1) = (x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x + 1) ? (x + 1) =

= x7 + 7x6 + 21x5 + 35x4 + 35x3 + 21x2 + 7x + 1.

• sposób II

Korzystając z pomysłów przedstawionych w sposobie II rozwiązania poprzednich pod-

punktów, pokazujemy, że

(x + 1)7

=

= ( 7

7 ) ? x7 ? 10 + ( 7

6 ) ? x6 ? 11 + ( 7

5 ) ? x5 ? 12 + ( 7

4 ) ? x4 ? 13 + ( 7

3 ) ? x3 ? 14 + ( 7

2 ) ? x2 ? 15 + ( 7

1 ) ? x1 ? 16 + ( 7

0 ) ? x0 ? 17

.

z dokładnie jednego nawiasu wybraliśmy x – można to zrobić na 5 sposobów. Łącznie

otrzymamy więc 5x, co można też zapisać jako ( 5

1 ) ? x1 ? 14,

5)

z żadnego z nawiasów nie wybraliśmy x – można to zrobić na 1 sposób. Wtedy z każ-

dego z nawiasów musimy wybrać jedynkę, więc w wyniku mnożenia otrzymamy 1, co

można też zapisać jako ( 5

0 ) ? x0 ? 15.

Ostatecznie stwierdzamy, że

(x + 1)5

= x5 + 5x4 + 10x3 + 10x2 + 5x + 1.

Otrzymaną tożsamość możemy też zapisać w postaci

(x + 1)5

= ( 5

5 ) ? x5 ? 10 + ( 5

4 ) ? x4 ? 11 + ( 5

3 ) ? x3 ? 12 + ( 5

2 ) ? x2 ? 13 + ( 5

1 ) ? x1 ? 14 + ( 5

0 ) ? x0 ? 15

.

6)

Podzbiory zbioru skończonego (treść rozszerzona)

210

Page 212: Matematyka 3

Ponieważ ( 7

7 ) = ( 7

0 ) = 1, ( 7

6 ) = ( 7

1 ) = 7, ( 7

5 ) = ( 7

2 ) =7 ? 6

2 = 21, ( 7

4 ) = ( 7

3 ) =7 ? 6 ? 53 ? 2 ? 1 = 35,

więc otrzymujemy

(x + 1)7

= x7 + 7x6 + 21x5 + 35x4 + 35x3 + 21x2 + 7x + 1.

Rozumując podobnie jak w sposobie II rozwiązań przedstawionych w powyższym przykła-

dzie, można pokazać, że dla dowolnej dodatniej liczby całkowitej n oraz dowolnych liczb cał-

kowitych a oraz b prawdziwa jest równość

(a + b)n

= ( n

0 )an + ( n

1 ) an − 1b + ( n

2 ) an − 2b2 + ... + ( n

n − 1 ) a1bn − 1 + ( n

n ) bn.

Wzór ten jest nazywany wzorem dwumianowym Newtona.

W szczególności dla a = b = 1 otrzymujemy

2n = ( n

0 ) + ( n

1 ) + ( n

2 ) + ... + ( n

n − 1 ) + ( n

n ).Otrzymana równość uzasadnia znany nam już fakt, że liczba wszystkich podzbiorów zbioru n

–elementowego jest równa 2n.

Podzbiory zbioru skończonego (treść rozszerzona)

211

Page 213: Matematyka 3

3.5. Zadania

Poziom trudności: AZadanie 3.5.1Do szkolnego turnieju koszykówki zgłosiło się 14 drużyn. Ile trzeba rozegrać meczów, jeżeli tur-

niej toczy się według systemu „każdy z każdym”, bez rewanżów?

a) 13

b) 28

c) 91

d) 182

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.5.2Na ile sposobów można wybrać dwóch graczy spośród 15 zawodników?

a) 29

b) 105

c) 210

d) 225

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.5.3Ile jest wszystkich liczb naturalnych dziesięciocyfrowych, których suma cyfr jest równa 2?

a) 20

b) 11

c) 10

d) 9

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.5.4Ile wszystkich przekątnych ma dziesięciokąt foremny?

a) 45

Zadania

212

Page 214: Matematyka 3

b) 35

c) 17

d) 10

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.5.5Ze zbioru {1, 2, 3, 4, 5, 6, 7, 8, 9} losujemy jednocześnie dwie liczby. Ile jest możliwości wy-

losowania w ten sposób takiej pary liczb, której suma jest parzysta?

a) 16

b) 12

c) 10

d) 9

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.5.6Liczba uczniów pewnej klasy jest 15 razy mniejsza od liczby wszystkich par, możliwych do wy-

boru spośród uczniów tej klasy. Ilu jest uczniów w tej klasie?

a) 28

b) 29

c) 30

d) 31

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.5.7Ile jest wszystkich wyników trzykrotnego rzutu kostką sześcienną, w których dokładnie dwa ra-

zy wypadła szóstka?

a) 36

b) 30

c) 18

d) 15

(Pokaż odpowiedź)

Zadania

213

Page 215: Matematyka 3

Poziom trudności: AZadanie 3.5.8W pewnej grupie jest 10 chłopców i 9 dziewczynek. Na ile sposobów można z tej grupy wybrać

trzyosobowy zespół, w którym znajdzie się co najmniej jedna dziewczynka i co najmniej jeden

chłopiec?

a) 180

b) 360

c) 765

d) 1530

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.5.9Ile jest pięciocyfrowych liczb naturalnych o sumie cyfr równej 12, których każda cyfra jest nie-

parzysta?

a) więcej niż 1000

b) 4720

c) 2360

d) mniej niż 1000

(Pokaż odpowiedź)

Poziom trudności: AZadanie 3.5.10Na okręgu zaznaczono 8 różnych punktów. Ile jest wszystkich trójkątów, których każdy wierz-

chołek jest jednym z tych wybranych punktów?

a) 512

b) 336

c) 56

d) 24

(Pokaż odpowiedź)

Zadania

214

Page 216: Matematyka 3

Poziom trudności: BZadanie 3.5.11Test powtórzeniowy składa się z 14 zadań testowych. Po wybraniu prawidłowej odpowiedzi za

każde z zadań można otrzymać 1 punkt, w przeciwnym przypadku za zadanie otrzymuje się 0

punktów. Oblicz, na ile sposobów można tak wypełnić kartę odpowiedzi do tego testu, żeby

otrzymać:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.12Oblicz:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.13Oblicz, ile jest wszystkich takich wyników:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.14

(Pokaż odpowiedź)

1 punkta)

2 punktyb)

12 punktówc)

13 punktówd)

ile trzeba będzie rozegrać wszystkich meczów w turnieju, do którego zgłosiło się 13 dru-

żyn i każda drużyna ma rozegrać z każdą inną dokładnie jeden mecz.

a)

na ile sposobów można wybrać dwuosobową delegację z klasy liczącej 31 uczniów.b)

ośmiokrotnego rzutu monetą, że dokładnie dwa razy wypadł orzeł.a)

ośmiokrotnego rzutu monetą, że dokładnie sześć razy wypadła reszka.b)

dziewięciokrotnego rzutu monetą, że dokładnie dwa razy wypadła reszka.c)

dziewięciokrotnego rzutu monetą, że dokładnie siedem razy wypadł orzeł.d)

Spośród ośmiu chłopców pewnej klasy nauczyciel chce wylosować sześciu. Na ile sposo-

bów może to zrobić?

a)

Spośród dwudziestu dziewcząt pewnej klasy nauczyciel chce wybrać osiemnaście. Na ile

sposobów może to zrobić?

b)

Zadania

215

Page 217: Matematyka 3

Poziom trudności: BZadanie 3.5.15Oblicz liczbę wszystkich przekątnych

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.16Ilu zawodników liczy drużyna, z której 2 graczy można wybrać na 136 sposobów?

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.17Pewien wielokąt foremny ma 20 przekątnych. Ile boków ma ten wielokąt?

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.18Do szkolnego turnieju halowej piłki ręcznej zgłosiło się 6 drużyn: D1, D2, D3, D4, D5 i D6. Każ-

da drużyna ma rozegrać z każdą inną dokładnie jeden mecz. W każdym meczu przyznawano

punkty w następujący sposób: w przypadku remisu obie drużyny otrzymują po 1 punkcie, a

w meczu rozstrzygniętym zwycięzca otrzymuje 2 punkty. Po zakończeniu turnieju okazało się,

że: drużyna D1 zdobyła 6 punktów, drużyna D2 – 3 punkty, drużyna D3 – 8 punktów, drużyna

D4 – 1 punkt, a drużyna D5 zdobyła o 2 punkty więcej niż drużyna D6. Które miejsce w turnieju

zajęła drużyna D6?

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.19W osiedlowym turnieju piłki nożnej, rozgrywanym systemem „każdy z każdym” (bez rewanżów)

wystąpiło 12 zespołów. Każda drużyna za zwycięstwo w meczu otrzymywała 1 punkt, za remis

– 0,5 punktu, a przegrana nie zwiększała konta punktowego zespołu. Dwa zespoły: „Kosiarze”

i „Przecinaki” zajęły w tym turnieju miejsca ex aequo 10 i 11 (żadna inna drużyna nie dzieliła

z nimi tych miejsc), zdobywając po 5,5 punktu. Wykaż, że drużyna, która zajęła w tym turnieju

ostatnie miejsce, wygrała co najwyżej jeden mecz.

(Pokaż odpowiedź)

siedmiokąta wypukłego.a)

szesnastokąta wypukłego.b)

Zadania

216

Page 218: Matematyka 3

Poziom trudności: BZadanie 3.5.20W turnieju gry w koszykówkę każda drużyna miała rozegrać z każdą inną dokładnie jeden mecz.

Po zakończeniu tego turnieju okazało się, że drużyny, które nie wygrały żadnego meczu, stano-

wią 10% wszystkich drużyn. Oblicz, ile meczów rozegrano w tym turnieju. Pamiętaj, że w koszy-

kówce każdy mecz musi zostać rozstrzygnięty.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.21W gimnazjalnym turnieju piłkarskim wystąpiła pewna liczba drużyn. Turniej rozgrywano meto-

dą „każdy z każdym”, bez rewanżów. Po zakończeniu okazało się, że dokładnie 60% drużyn ro-

zegrało co najmniej jeden mecz remisowy, a dokładnie56 pozostałych co najmniej jeden mecz

przegrało. Ile meczów rozegrano w tym turnieju?

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.22

Ze zbioru liczb {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} losujemy trzy razy po jednej liczbie ze zwra-

caniem. Oblicz, ile jest takich wyników tego losowania, że pierwsza z wylosowanych liczb jest

większa od drugiej, a druga jest równa trzeciej z tych liczb.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.23Oblicz:

(Pokaż odpowiedź)

ile jest wszystkich wyników dwukrotnego rzutu kostką sześcienną, w których liczba oczek

uzyskanych w pierwszym rzucie jest mniejsza od liczby oczek uzyskanych w drugim rzu-

cie.

a)

ile jest wszystkich wyników trzykrotnego rzutu kostką sześcienną, w których liczba oczek

uzyskanych w trzecim rzucie jest większa od liczby oczek uzyskanych w drugim rzucie.

b)

Zadania

217

Page 219: Matematyka 3

Poziom trudności: BZadanie 3.5.24W trapezie ABCD na podstawie AB wybrano punkty E i F, a na podstawie CD wybrano punkt G.

Oblicz, ile jest wszystkich:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.25W klasie jest 33 uczniów, przy czym chłopców jest o 3 mniej niż dziewczynek. Oblicz, na ile spo-

sobów można wybrać z tej klasy:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.26Proste k i l są równoległe i różne. Rozpatrzmy dziesięć punktów: 5 z nich zaznaczono na prostej

k, 4 kolejne zaznaczono na prostej l, a dziesiątym jest punkt A. Ten punkt spełnia jednocześnie

dwa warunki:

Oblicz, ile jest wszystkich trójkątów, których wierzchołkami są trzy spośród zaznaczonych punk-

tów.

(Pokaż odpowiedź)

trójkątów, których każdy wierzchołek został wybrany spośród punktów

A, B, C, D, E, F, G.

a)

trapezów, których każdy wierzchołek został wybrany spośród punktów

A, B, C, D, E, F, G.

b)

trzyosobową delegację, w której znajdzie się dokładnie jedna dziewczynka.a)

czteroosobową delegację, w której znajdą się dokładnie dwaj chłopcy.b)

nie leży na żadnej z prostych k, l,a)

żadna z prostych, przechodzących przez każde dwa inne punkty wybrane spośród dzie-

więciu zaznaczonych, nie przechodzi przez punkt A.

b)

Zadania

218

Page 220: Matematyka 3

Poziom trudności: BZadanie 3.5.27Oblicz:

cyfra setek jest większa od cyfry jedności,

cyfra tysięcy jest większa od cyfry dziesiątek.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.28Oblicz, ile jest wszystkich prostokątów, których boki zawierają się w liniach siatki prostokąta o

wymiarach 6 na 4, podzielonego na kwadraty jednostkowe.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.29Oblicz, ile jest wszystkich liczb naturalnych dziewięciocyfrowych, których iloczyn cyfr jest równy

12.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.30Oblicz, ile jest wszystkich wyników pięciokrotnego rzutu sześcienną kostką do gry, w których

parzysta liczba oczek wypadła więcej razy niż nieparzysta liczba oczek.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.31Ile jest wszystkich liczb naturalnych:

(Pokaż odpowiedź)

ile jest liczb czterocyfrowych, w których cyfra setek jest mniejsza od cyfry jedności.a)

ile jest liczb pięciocyfrowych, spełniających jednocześnie dwa następujące warunki:b)

pięciocyfrowych o wszystkich cyfrach nieparzystych, których suma cyfr jest równa 11.a)

sześciocyfrowych, których suma cyfr jest równa 3.b)

nieparzystych siedmiocyfrowych, których suma cyfr jest równa 4.c)

ośmiocyfrowych o wszystkich cyfrach parzystych, których suma cyfr jest równa 6.d)

Zadania

219

Page 221: Matematyka 3

Poziom trudności: BZadanie 3.5.32

Liczby ze zbioru {1, 2, 3, 4, 5, 6, 7, 8, 9} ustawiamy w losowej kolejności w szeregu, two-

rząc liczbę dziewięciocyfrową o różnych cyfrach. Oblicz, ile jest możliwości uzyskania w ten spo-

sób liczby, której cyfry spełniają jednocześnie cztery warunki:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.33W pudełku jest 25 ponumerowanych losów, w tym 5 wygrywających. Z tego pudełka wybieramy

losowo 4 losy. Na ile sposobów można wylosować co najmniej 1 los wygrywający?

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.34

Dany jest prostokąt ABCD, w którym | AB | = 5, | AD | = 8. Prostokąt ten podzielono linia-

mi siatki na kwadraty jednostkowe. Ile jest wszystkich najkrótszych dróg prowadzących po li-

niach siatki od punktu A do punktu C?

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.35W kopercie znajduje się 10 kartek ponumerowanych od 1 do 10. Z tej koperty losujemy dowol-

nie wybraną liczbę kartek. Ile jest możliwości wylosowania w ten sposób takich kartek, że suma

numerów: najmniejszego i największego zapisanych na tych wylosowanych kartkach jest rów-

na 10?

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.36Wykaż, że

cyfra 1 stoi przed cyfrą 2a)

cyfra 3 stoi przed cyfrą 4b)

cyfra 5 stoi przed cyfrą 6c)

cyfra 7 stoi przed cyfrą 8d)

dla dowolnej liczby rzeczywistej x: (2x + 3)4

= 16x4 + 96x3 + 216x2 + 216x + 81a)

Zadania

220

Page 222: Matematyka 3

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.37Oblicz, ile jest:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.38Oblicz, ile jest:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.39Dwunastu chłopców bierze udział w szkolnej wycieczce. Oblicz, na ile sposobów można ich za-

kwaterować w czterech trzyosobowych pokojach.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.40

Ze zbioru {1, 2, 3, ..., 22} losujemy jednocześnie pięć liczb. Oblicz, ile jest wszystkich możli-

wości wylosowania takich pięciu liczb, których:

dla dowolnej liczby rzeczywistej x: (x − 2)5

= x5 − 10x4 + 40x3 − 80x2 + 80x − 32.b)

dla dowolnych liczb rzeczywistych a i b: (2a +12b)

4= 16a4 + 16a3b + 6a2b2 + ab3 +

116b4.

c)

dla dowolnych liczb rzeczywistych a i b:

(a − b)6

= a6 − 6a5b + 15a2b4 − 20a3b3 + 15a4b2 − 6a5b + b6.

d)

wszystkich liczb naturalnych ośmiocyfrowych, w zapisie których nie występuje zero i na

dokładnie trzech miejscach stoją cyfry nieparzyste.

a)

wszystkich liczb naturalnych siedmiocyfrowych, w zapisie których na dokładnie czterech

miejscach stoją cyfry parzyste.

b)

trzycyfrowych liczb naturalnych, spełniających jednocześnie dwa następujące warunki:(1)

cyfra setek jest większa od cyfry dziesiątek,(2) cyfra dziesiątek jest większa od cyfry jed-

ności.

a)

sześciocyfrowych liczb naturalnych, spełniających jednocześnie trzy następujące warun-

ki:(1) cyfra tysięcy jest większa od cyfry setek,(2) cyfra setek jest większa od cyfry dziesi-

ątek,(3) cyfra dziesiątek jest większa od cyfry jedności.

b)

Zadania

221

Page 223: Matematyka 3

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.41W talii 52 kart do brydża jest po 13 kart w każdym z czterech kolorów: trefl, karo, kier, pik. W

każdym kolorze jest jeden as, a także trzy figury: król, dama, walet oraz 9 kart numerowanych

od 2 do 10. W rozdaniu brydżowym każdy z czterech graczy otrzymuje po 13 kart wybranych

losowo z talii. Oblicz, na ile sposobów gracz może w takim rozdaniu dostać:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.42Oblicz, na ile sposobów można podzielić:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.43Oblicz, ile jest wszystkich liczb naturalnych:

(Pokaż odpowiedź)

iloczyn jest parzysty.a)

suma jest parzysta.b)

dokładnie 10 pików i dokładnie 2 kierya)

trzy asy, trzy króle, trzy damy i trzy waletyb)

10 graczy na dwie pięcioosobowe drużyny: „Niebieską” i „Żółtą”.a)

10 graczy na dwie pięcioosobowe drużyny.b)

12 graczy na 3 równoliczne drużyny: „Niebieską”, „Żółtą” i „Czerwoną”.c)

12 graczy na 3 równoliczne drużyny.d)

dziesięciocyfrowych, których suma cyfr jest równa 4.a)

piętnastocyfrowych o wszystkich cyfrach parzystych, których suma cyfr jest równa 10.b)

dwudziestocyfrowych o wszystkich cyfrach nieparzystych, których suma cyfr jest równa

28.

c)

stucyfrowych o wszystkich cyfrach nieparzystych, których suma cyfr jest równa 123.d)

Zadania

222

Page 224: Matematyka 3

Poziom trudności: BZadanie 3.5.44Oblicz, ile jest wszystkich wyników:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.45Z pudełka, w którym znajduje się 20 kul ponumerowanych od 1 do 20 losujemy równocześnie 3

kule. Oblicz, ile jest wszystkich możliwych wyników tego losowania, w których suma numerów

wylosowanych kul jest podzielna przez 3.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.46W szufladzie znajduje się 5 par rękawiczek, każde dwie pary są w różnych kolorach. Z pudełka

losujemy 3 rękawiczki. Oblicz, ile jest takich wyników tego losowania, że:

(Pokaż odpowiedź)

siedmiokrotnego rzutu sześcienną kostką do gry, w których dokładnie dwa razy wypadło

jedno oczko i dokładnie trzy razy wypadło sześć oczek.

a)

dziesięciokrotnego rzutu sześcienną kostką do gry, w których dokładnie trzy razy wypa-

dło jedno oczko i dokładnie cztery razy wypadła parzysta liczba oczek.

b)

ośmiokrotnego rzutu kostką sześcienną, w których iloczyn liczb wyrzuconych oczek jest

równy 20.

c)

siedmiokrotnego rzutu kostką sześcienną, w których suma liczb wyrzuconych oczek jest

równa 12.

d)

wśród wylosowanych nie będzie żadnej pary rękawiczek.a)

wśród wylosowanych będzie dokładnie jedna para rękawiczek.b)

Zadania

223

Page 225: Matematyka 3

Poziom trudności: BZadanie 3.5.47W pudełku znajduje się 30 kul ponumerowanych od 1 do 30. Z pudełka losujemy 7 kul. Oblicz,

ile jest takich wyników tego losowania, że:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.48W pewnej grze losowej gracz typuje 5 liczb spośród 32 początkowych dodatnich liczb całkowi-

tych. Na ile sposobów można wytypować 5 liczb w tej grze tak, aby nie było wśród nich dwóch

kolejnych?

(Pokaż odpowiedź)

Poziom trudności: BZadanie 3.5.49Z dziesięciu liter alfabetu: a, b, c, d, e, A, B, C, D, E tworzymy dziesięcioliterowy napis, w

którym każda z tych liter występuje dokładnie raz. Oblicz, ile jest takich napisów, w których lite-

ra A znajdzie się przed B, B przed C, C przed D oraz D przed E, a ponadto odpowiednia mała

litera będzie zapisana przed taką samą dużą.Te warunki spełnia np. napis baAcBdCeDE.

(Pokaż odpowiedź)

wśród wylosowanych nie będzie żadnej pary kul, których suma numerów jest równa 31.a)

wśród wylosowanych będzie dokładnie jedna para kul, których suma numerów jest rów-

na 31.

b)

wśród wylosowanych będą dokładnie 2 pary kul, których suma numerów jest równa 31.c)

wśród wylosowanych będą dokładnie 3 pary kul, których suma numerów jest równa 31.d)

Zadania

224

Page 226: Matematyka 3

Rozdział 4. Prawdopodobieństwo

4.1. Klasyczna definicja prawdopodobieństwa.Własności prawdopodobieństwa. Obliczanieprawdopodobieństw zdarzeń losowych

Przykład 1.Zdarza się, że w wypowiedziach dotyczących przewidywania wyniku jakiegoś zdarzenia sza-

cowany jest wynik tego zdarzenia. Spotykamy się więc z następującymi sformułowaniami „po

pierwszym meczu nasze szanse na awans oceniam na 75 procent” czy „sądzę, że moje szan-

se na pierwszą nagrodę są mniejsze niż jeden do dziesięciu”, czy też „jestem przekonany, że

zachwyt przy ocenie naszej oferty wyrazi co najmniej dwóch na trzech klientów naszego skle-

pu”.

Podając liczby:34 ,

110 ,

23 oceniamy, na ile zajście zdarzenia, którego wynik nie jest znany, jest

zbliżone do prawdy (prawdopodobne).

W tym rozdziale wprowadzimy umowy, które pozwolą nam obliczać prawdopodobieństwa

zdarzeń w pewnych nieskomplikowanych sytuacjach przy zastosowaniu formalnie opisanych

metod. W przykładach będziemy analizować wyniki doświadczeń losowych.

Przykład 2.Każdy z nas spotkał się z sytuacją, w której przy podjęciu pewnej decyzji wybieramy wynik

losowania. Na przykład w amerykańskiej zawodowej lidze koszykówki NBA nabór nowych

zawodników odbywa się w tak zwanej loterii draftowej. Według obowiązujących przepisów

przystępuje do niej 14 zespołów z najgorszym bilansem zwycięstw z poprzedniego sezonu,

przy czym zespoły te są ustawiane w kolejności od najgorszego bilansu do najlepszego. W

tej loterii losuje się spośród 1000 kul, przy czym 250 z nich przydzielonych jest pierwszemu

zespołowi z tego zestawienia, 199 – drugiemu, a 138 – trzeciemu itd. W ten sposób najgorszy

zespół ma 25% szans na wylosowanie pierwszego numeru. Powiemy więc, że prawdopodo-

bieństwo, że najgorszy zespół wylosuje pierwszy numer w loterii draftowej jest równe14 .

Jednak największe szanse nie gwarantują pierwszego numeru w takiej loterii. W 2008 roku

pierwszy numer w drafcie wylosowała drużyna Chicago Bulls, która w losowaniu miała przy-

dzielone 17 kul. Zatem przed losowaniem ocenilibyśmy prawdopodobieństwo, że właśnie ta

drużyna wylosuje pierwszy numer jako równe17

1000 .

Prawdopodobieństwo

225

Page 227: Matematyka 3

Pojęcie prawdopodobieństwa

Film na epodreczniki.pl

Film na epodreczniki.pl

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

226

Page 228: Matematyka 3

Film na epodreczniki.pl

Film na epodreczniki.pl

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

227

Page 229: Matematyka 3

Film na epodreczniki.pl

Film na epodreczniki.pl

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

228

Page 230: Matematyka 3

Film na epodreczniki.pl

Przykład 3.W pewnej szóstej klasie dawno temu spotkali się trzej uczniowie: Janek, Piotrek i Andrzej.

Zdarzyło się, że wszyscy korzystali z obiadów w szkolnej stołówce. Do każdego obiadu był

tam serwowany deser. Na początku roku szkolnego Janek zaproponował Piotrkowi następu-

jącą zabawę: „Do końca roku szkolnego będziemy przychodzili na obiady. Niech w tym cza-

sie o podziale naszych deserów zdecyduje los. Codziennie przed obiadem Andrzej rzuci dwa

razy monetą. Jeśli raz wypadnie orzeł i raz wypadnie reszka, to ja zjem dwa desery: twój i

mój. Jeśli dwa razy wypadnie orzeł, to Ty zjesz te dwa desery. Natomiast jeśli wypadnie dwa

razy reszka, to każdy zje swój deser. Jak widzisz, umowa jest uczciwa, bo poza tymi trzema

przypadkami innego wyniku dwóch rzutów monetą nie ma, a patrząc na te przypadki łącznie,

każdy z nas ma równe szanse. Ja w jednym przypadku dostanę dwa desery, w drugim – żad-

nego, a w trzecim – jeden. I ty także: w jednym przypadku dostaniesz dwa desery, w innym

– żadnego, a w jeszcze innym – jeden. Nie pomyśl sobie, że w zmowie z Andrzejem szykuje-

my jakąś sztuczkę z monetą. Gdybyś chciał, to możemy się umówić, że monetę do rzucania

będziemy wybierali wspólnie, a przy rzucaniu będziemy się zmieniali. To jak, zgadzasz się na

taki układ? Mielibyśmy niezłą zabawę przed obiadem.”Piotrek chwilę pomyślał, a następnie

odmówił. Od razu też wytłumaczył Jankowi, dlaczego uważa, że taka umowa wcale nie jest

uczciwa.

Podamy argumenty, które przemawiają za tym, że Piotrek powinien odrzucić pomysł Jan-

ka.Dwukrotny rzut monetą to doświadczenie, które polega na wykonaniu po kolei dwóch

czynności. Każda z nich może skończyć się na jeden z dwóch sposobów: albo wypadnie

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

229

Page 231: Matematyka 3

orzeł, albo wypadnie reszka. Na podstawie reguły mnożenia stwierdzamy, że liczba wszyst-

kich możliwych wyników dwukrotnego rzutu kostką jest równa

2 ? 2 = 4.

Wszystkie wyniki takiego doświadczenia można przedstawić w tabeli

I rzut/II rzuty Orzeł Reszka

orzeł (orzeł, orzeł) (orzeł, reszka)

reszka (reszka, orzeł) (reszka, reszka)

Lub za pomocą drzewa:

Z tabeli możemy też odczytać dwuelementowe ciągi, które opisują wszystkie możliwe wyniki

dwukrotnego rzutu monetą:

(orzeł, orzeł), (orzeł, reszka), (reszka, orzeł), (reszka, reszka).

Są więc dokładnie cztery możliwe wyniki dwukrotnego rzutu monetą. Pewnie i bez powyż-

szego opisu potrafi to uzasadnić każdy, kto zrozumiał podstawowe zasady obowiązujące w

kombinatoryce (omawialiśmy je w poprzednich rozdziałach).

Typowa moneta znajdująca się w obiegu może być uznana za symetryczną. Oznacza to, że

przy dużej liczbie rzutów taką monetą średnio połowa z nich skończy się wyrzuceniem orła,

a połowa – reszki. Zatem i każdy z czterech wyników dwukrotnego rzutu monetą będzie wy-

padał średnio tak samo często, jak każdy z pozostałych.

Wracamy do zabawy opisanej w poprzednim przykładzie. Jak już zauważyliśmy: wbrew suge-

stiom Janka mamy do rozpatrzenia nie trzy, a cztery przypadki. Popatrzmy na rozdział dese-

rów w każdym z tych przypadków:

• (orzeł, orzeł) – Piotrek zje dwa desery, Janek – żadnego,

• (orzeł, reszka) – Piotrek nie zje żadnego deseru, a Janek zje dwa,

• (reszka, orzeł) – Piotrek nie zje żadnego deseru, a Janek zje dwa,

• (reszka, reszka) – Piotrek zje jeden deser i Janek zje jeden deser.

Wobec tego w ciągu kolejnych czterech dni, kiedy chłopcy mają do rozdzielenia 8 deserów, 5

deserów zje Janek, a tylko trzy – Piotrek. Zatem kontynuowanie przez dłuższy czas losowego

wyboru deserów metodą zaproponowaną przez Janka jest dla Piotrka zdecydowanie nieko-

rzystne.

Podając te wartości, oceniliśmy jedynie szanse każdego z chłopców na otrzymanie deseru.

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

230

Page 232: Matematyka 3

Nie należy się jednak spodziewać, że w ciągu dowolnie wybranych czterech dni, przy takiej

metodzie losowego rozdziału deserów, Piotrek dostanie dokładnie 3 z ośmiu możliwych do

otrzymania. Natomiast przy przeprowadzeniu większej liczby powtórzeń tego doświadczenia

liczba deserów przeznaczonych dla Piotrka będzie zbliżała się do pewnej wartości, którą na-

zywamy prawdopodobieństwem zdarzenia, że w wyniku podanej metody przydziału deser

dostanie Piotrek.

Można formalnie wykazać, że 3 to oczekiwana liczba deserów, które w ciągu czterech dni

otrzyma Piotrek, gdyby zastosował się do metody zaproponowanej przez Janka. Metody ma-

tematyczne, których do tego celu należałoby użyć, stosowane są w rachunku prawdopodo-

bieństwa.

Przykład 4.

W prezentowanych w tym rozdziale przykładach będziemy zajmować się doświadczeniami,

które (podobnie jak przywołane powyżej) możemy uznać za losowe. Przedmioty używane

w opisywanych doświadczeniach są powszechnie dostępne, więc każdy może samodzielnie

takie doświadczenie przeprowadzić tyle razy, ile tylko uzna za stosowne. Naszym głównym

zadaniem będzie jednak takie opisanie modelu przeprowadzanego doświadczenia, aby dla

ustalenia prawdopodobieństwa otrzymania konkretnego wyniku wystarczyło zrozumienie

podstawowych zasad rządzących rachunkiem prawdopodobieństwa.

Wprowadzimy podstawowe pojęcia, którymi będziemy się posługiwać przy obliczaniu praw-

dopodobieństw.

Każdy możliwy wynik, który może pojawić się w doświadczeniu losowym, będziemy nazywać

zdarzeniem elementarnym.

Każdy oficjalny mecz piłki nożnej zaczyna się od losowania drużyny, która rozpocznie

rozgrywkę. Sędzia rzuca wtedy monetą, przy czym robi to w taki sposób, żeby nikt nie

miał wątpliwości, że wynik takiego losowania będzie przypadkowy. Przed takim loso-

waniem jesteśmy przekonani, że obie zainteresowane drużyny mają równe szanse

rozpoczęcia gry od środka boiska.Za każdym razem takie losowanie uznamy więc za

doświadczenie losowe.

a)

Kilkuosobową grę w karty rozpoczyna się od wyboru osoby rozdającej. Chcemy, aby

metoda wyboru dawała równe szanse każdemu z graczy. Jednym ze sposobów jest lo-

sowanie przez każdego z graczy jednej karty z pełnej talii. Zazwyczaj rozdającym zosta-

je ta osoba, która wylosuje kartę najniższą według rangi w danej grze. Taki wybór oso-

by rozdającej uznamy także za doświadczenie losowe.

b)

Przypuśćmy, że o wyborze kapitana w przypadkowo dobranej pięcioosobowej druży-

nie koszykówki chcemy zadecydować losowo – możemy to zrobić, przygotowując

wcześniej losy. Wystarczy w tym celu wziąć pięć takich samych kartek papieru, cztery

pozostawić puste, a na jednej z nich postawić umówiony znak lub napisać słowo „kapi-

tan”. Następnie złożyć kartki w podobny sposób i wrzucić do takiego pojemnika, z któ-

rego gracze losują po jednej kartce, nie widząc wybieranego przedmiotu. Kapitanem

zostaje ten z nich, który wylosuje wyróżnioną kartkę.

c)

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

231

Page 233: Matematyka 3

Przykład 5.W doświadczeniu losowym, polegającym na dwukrotnym rzucie symetryczną monetą, roz-

różnimy cztery zdarzenia elementarne:

• „za pierwszym razem wypadł orzeł, a za drugim razem wypadł orzeł”, co w skrócie zapi-

szemy jako dwuelementowy ciąg wyników (orzeł, orzeł),

• „za pierwszym razem wypadł orzeł, a za drugim razem wypadła reszka”, co w skrócie

zapiszemy jako (orzeł, reszka),

• „za pierwszym razem wypadła reszka i za drugim razem wypadł orzeł”, co w skrócie za-

piszemy jako (reszka, orzeł),

• „za pierwszym razem wypadła reszka i za drugim razem wypadła reszka”, co w skrócie

zapiszemy jako (reszka, reszka).

W omawianym doświadczeniu używaliśmy monety symetrycznej, więc spodziewamy się, że

przy dużej liczbie powtórzeń każde z wypisanych powyżej zdarzeń elementarnych pojawi się

z podobną średnią częstością. Uznajemy zatem, że wszystkie te zdarzenia elementarne są

jednakowo prawdopodobne.

Zbiór wszystkich zdarzeń elementarnych będziemy oznaczali za pomocą dużej greckiej litery

Ω (omega).

Fakt, że w rozpatrywanym doświadczeniu zbiór zdarzeń elementarnych

Ω = {(orzeł, orzeł), (orzeł, reszka), (reszka, orzeł), (reszka, reszka)}

liczy cztery elementy, zapiszemy symbolicznie | Ω | = 4.

W rozwiązaniach kilku kolejnych przykładowych zadań będziemy wypisywali zdarzenia elementar-

ne i na tej podstawie określali zbiór Ω wszystkich zdarzeń elementarnych i liczbę jego elementów.

Definicja: Zdarzenie

Dowolny podzbiór zbioru Ω będziemy nazywać zdarzeniem, a elementy takiego

podzbioru będziemy nazywać zdarzeniami elementarnymi sprzyjającymi temu

zdarzeniu.

Zbiór pusty, czyli zdarzenie, któremu nie sprzyja żadne zdarzenie elementarne, na-

zywamy zdarzeniem niemożliwym.

Zbiór Ω, czyli zdarzenie, któremu sprzyja każde zdarzenie elementarne, nazywamy

zdarzeniem pewnym.

Przykład 6.Ponieważ w doświadczeniu rozpatrywanym w poprzednim przykładzie zbiór Ω ma cztery ele-

menty, to różnych zdarzeń w tym doświadczeniu jest 24 = 16 (tyle jest bowiem wszystkich

podzbiorów czteroelementowego zbioru Ω).Przykładowymi zdarzeniami w doświadczeniu losowym, polegającym na dwukrotnym rzucie

symetryczną monetą są:

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

232

Page 234: Matematyka 3

• A = {(orzeł, reszka), (reszka, orzeł)}. Takiemu zdarzeniu sprzyjają dwa zdarzenia ele-

mentarne, więc zapiszemy, że | A | = 2. Zdarzenie to można byłoby opisać słownie,

np. tak: A – zdarzenie polegające na tym, że wypadło tyle samo orłów, co reszek.

• B = {(orzeł, orzeł), (orzeł, reszka), (reszka, orzeł)}. Temu zdarzeniu sprzyjają trzy zdarze-

nia elementarne, zatem | B | = 3. Zdarzenie to można byłoby opisać słownie, np.

tak: B – zdarzenie polegające na tym, że wypadł co najmniej jeden orzeł.

• C = {(reszka, reszka)}. Temu zdarzeniu sprzyja jedno zdarzenie elementarne, stąd

| C | = 1. Zdarzenie to można byłoby opisać słownie, np. tak: C – zdarzenie polega-

jące na tym, że wypadło mniej orłów niż reszek.

Rozpatrzmy zdarzenia opisane słownie:

• D – zdarzenie polegające na tym, że wypadło trzy razy więcej orłów niż reszek. Zbiór D

jest pusty – nie ma zdarzeń elementarnych, które sprzyjają temu zdarzeniu. Zdarzenie

D jest więc niemożliwe.

• E – zdarzenie polegające na tym, że wypadła parzysta liczba orłów. Zdarzeniu E sprzy-

jają dwa zdarzenie elementarne: (orzeł, orzeł), (reszka, reszka), zatem zapiszemy E = {(orzeł, orzeł), (reszka, reszka)}, a co za tym idzie: | E | = 2.

• F – zdarzenie, że wypadły co najwyżej dwie reszki. Zdarzeniu F sprzyjają wszystkie zda-

rzenia elementarne, zatem zapiszemy F = Ω. Oznacza to, że F jest zdarzeniem pew-

nym.

Fakt, że zdarzenie A jest podzbiorem zbioru zdarzeń elementarnych Ω zapisujemy też, uży-

wając symbolu zawierania zbiorów: A ? Ω.

Określimy teraz, jak będziemy obliczać prawdopodobieństwo w tak zwanym schemacie klasycz-

nym.

Twierdzenie: Klasyczna definicjaprawdopodobieństwa

Rozpatrzmy doświadczenie losowe, w którym wszystkie zdarzenia elementarne są jednako-

wo prawdopodobne, a Ω jest zbiorem wszystkich zdarzeń elementarnych.

Prawdopodobieństwem P(A) zdarzenia A ? Ω nazywamy wówczas iloraz liczby zdarzeń ele-

mentarnych sprzyjających zdarzeniu A przez liczbę wszystkich zdarzeń elementarnych:

P(A) =| A || Ω |

.

Przykład 7.W doświadczeniu losowym polegającym na dwukrotnym rzucie symetryczną monetą wszyst-

kie zdarzenie elementarne są jednakowo prawdopodobne. Zatem obliczając prawdopodo-

bieństwa zdarzeń, możemy skorzystać z definicji klasycznej. Obliczymy w ten sposób praw-

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

233

Page 235: Matematyka 3

dopodobieństwa zdarzeń opisanych w poprzednim przykładzie. Przypomnijmy, że w tym do-

świadczeniu | Ω | = 4. Oznacza to, że:

• jeżeli A = {(orzeł, reszka), (reszka, orzeł)}, to P(A) =| A || Ω |

=24 =

12 ,

• jeżeli B = {(orzeł, orzeł), (orzeł, reszka), (reszka, orzeł)}, to P(B) =| B || Ω |

=34 ,

• jeżeli C = {(reszka, reszka)}, to P(C) =| C || Ω |

=14 ,

• jeżeli D to zdarzenie, że wypadło trzy razy więcej orłów niż reszek, to D = ?, stąd

P(D) =| D || Ω |

=04 = 0,

• jeżeli E to zdarzenie, że wypadła parzysta liczba orłów, to E = {(orzeł, orzeł), (reszka,

reszka)}, stąd P(E) =| E || Ω |

=24 =

12 ,

• jeżeli F to zdarzenie, że wypadły co najwyżej dwie reszki, to F = Ω, stąd

P(F) =| F || Ω |

=44 = 1.

Warto zapamiętać dwa wnioski wynikające z klasycznej definicji prawdopodobieństwa:

Własności prawdopodobieństwa

Przykład 8.W kopercie znajduje się 11 kartek, ponumerowanych od 1 do 11. Z tej koperty wybieramy

losowo jedną kartkę. Obliczymy prawdopodobieństwo otrzymania:

Za zdarzenie elementarne w takim doświadczeniu przyjmujemy wylosowanie jednej spośród

11 kartek. Ponieważ wylosowana kartka jest jednoznacznie przypisana do zapisanego na niej

numeru, więc nie doprowadzimy do żadnych nieporozumień, kiedy zbiór wszystkich zdarzeń

elementarnych zapiszemy skrótowo

Ω = {1,2, 3,4, 5,6, 7,8, 9,10,11}.

Mamy więc | Ω | = 11.

Oznaczmy

A – zdarzenie polegające na tym, że wylosowano liczbę podzielną przez 4,

B – zdarzenie polegające na tym, że wylosowano liczbę niepodzielną przez 4.

P(?) =| ? || Ω |

=0

| Ω |= 0, co oznacza, że prawdopodobieństwo zdarzenia niemożliwego

jest równe 0,

1)

P(Ω) =| Ω || Ω |

= 1, co oznacza, że prawdopodobieństwo zdarzenia pewnego jest równe

1.

2)

liczby podzielnej przez 4,a)

liczby niepodzielnej przez 4.b)

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

234

Page 236: Matematyka 3

Wszystkie zdarzenia elementarne są jednakowo prawdopodobne, wobec tego przy oblicza-

niu prawdopodobieństw zdarzeń A, B, C skorzystamy z definicji klasycznej.

P(B) =| B || Ω |

=9

11 .

Zauważmy, że do opisanego zbioru B należą wszystkie zdarzenia elementarne, które nie

sprzyjają zdarzeniu A (możemy też powiedzieć, że zbiór B jest dopełnieniem zbioru A do zbio-

ru Ω).Taką zależność między dwoma zdarzeniami opisuje się za pomocą pojęcia zdarzenia prze-

ciwnego.

Definicja: zdarzenie przeciwne

Zdarzeniem przeciwnym do zdarzenia A, należącego do zbioru zdarzeń elementar-

nych Ω, nazywamy takie zdarzenie A’ należące do Ω, któremu sprzyjają wszystkie

zdarzenia elementarne, które nie sprzyjają zdarzeniu A.

Z tej definicji wynika, że również zdarzenie A jest zdarzeniem przeciwnym do A’.

Zauważmy, że ponieważ zdarzenia A i A’ są rozłączne (A ∩ A' = ?) oraz ich sumą jest zbiór wszyst-

kich zdarzeń elementarnych Ω (A ? A' = Ω), więc liczba wszystkich zdarzeń elementarnych jest su-

mą liczb zdarzeń elementarnych sprzyjających zdarzeniu A oraz zdarzeń elementarnych sprzyja-

jących zdarzeniu A’.

| Ω | = | A | + | A' |

Jeśli obie strony otrzymanej równości podzielimy przez liczbę dodatnią | Ω | , to otrzymamy

| Ω || Ω |

=| A || Ω |

+| A' || Ω |

Ponieważ A oraz A’ są zdarzeniami ze zbioru Ω, więc liczba| A || Ω |

to prawdopodobieństwo zdarze-

nia A, natomiast liczba| A' || Ω |

to prawdopodobieństwo zdarzenia A’. Stąd

Wśród liczb ze zbioru Ω znajdujemy liczby podzielne przez 4 – są to 4 oraz 8, zatem

możemy zapisać skrótowo, że A = {4, 8}. Oznacza to, że są dwa zdarzenia elementar-

ne, które sprzyjają zdarzeniu A, więc | A | = 2. Stąd P(A) =| A || Ω |

=2

11 .

1)

Wśród liczb ze zbioru Ω znajdujemy wszystkie liczby niepodzielne przez 4. Zapisujemy

zbiór zdarzeń elementarnych sprzyjających zdarzeniu B : B = {1,2, 3,5, 6,7, 9,10,11}.Stąd | B | = 9, a więc

2)

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

235

Page 237: Matematyka 3

P(A) + P(A') = 1.

Prawdziwe jest zatem twierdzenie.

Twierdzenie: o prawdopodobieństwie zdarzeniaprzeciwnego

Załóżmy, że A jest zdarzeniem ze zbioru zdarzeń elementarnych Ω. Wtedy prawdopodobień-

stwo zdarzenia A’, przeciwnego do A, wyraża się wzorem

P(A') = 1 − P(A).

Przykład 9.Załóżmy, że w pewnym doświadczeniu losowym dane jest zdarzenie A oraz zachodzi równość

3 ? P(A) = 7 ? P(A'), gdzie A’ jest zdarzeniem przeciwnym do A. Obliczymy prawdopodobień-

stwo zdarzenia A.

Przekształcamy równość daną w treści zadania, korzystając z zależności między P(A') i P(A)

3 ? P(A) = 7 ? (1 − P(A))

3 ? P(A) = 7 − 7 ? P(A)

10 ? P(A) = 7

Stąd wynika, że

P(A) =7

10 .

Przykład 10.Ze zbioru dwucyfrowych liczb naturalnych wybieramy losowo jedną liczbę. Obliczymy praw-

dopodobieństwo, że otrzymana liczba jest podzielna przez 6 lub przez 10.

Za zdarzenie elementarne w takim doświadczeniu przyjmujemy wylosowanie jednej spośród

90 dwucyfrowych liczb naturalnych. Zbiór wszystkich zdarzeń elementarnych zapiszemy

Ω = {10, 11, 12, ..., 99}

• sposób I

Wypisujemy wszystkie zdarzenia elementarne, które sprzyjają zdarzeniu „otrzymana liczba

jest podzielna przez 6 lub przez 10”:

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

236

Page 238: Matematyka 3

{10, 12, 18, 20, 24, 30, 36, 40, 42, 48, 50, 54, 60, 66, 70, 72, 78, 80, 84, 90, 96}.

Jest ich 21.

Korzystając z definicji klasycznej, stwierdzamy więc, że szukane prawdopodobieństwo jest

równe2190 =

730 .

• sposób II

Oznaczmy:

A – zdarzenie, że wylosowano liczbę podzielną przez 6,

B – zdarzenie, że wylosowano liczbę podzielną przez 10.

Zatem

A = {12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96},B = {10, 20, 30, 40, 50, 60, 70, 80, 90}.Zdarzenie, którego prawdopodobieństwo mamy obliczyć: „otrzymana liczba jest podzielna

przez 6 lub przez 10”, to suma zdarzeń A oraz B.

Zdarzenia A i B nie są rozłączne, a ich część wspólna to zdarzenie

A ∩ B = {30, 60, 90}

Przy obliczeniu zadanego prawdopodobieństwa skorzystamy ze wzoru na liczbę elementów

sumy dwóch zbiorów

| A ? B | = | A | + | B | − | A ∩ B |

Ponieważ | A | = 15, | B | = 9 i | A ∩ B | = 3, to

| A ? B | = | A | + | B | − | A ∩ B | = 15 + 9 − 3 = 21.

Oznacza to, że prawdopodobieństwo zdarzenia A ? B jest równe

P(A ? B) =| A ? B |

| Ω |=

2190 =

730 .

Zauważmy, że dla dowolnych zdarzeń A, B ze zbioru zdarzeń elementarnych Ω ze wzoru na

liczbę elementów sumy dwóch zbiorów

| A ? B | = | A | + | B | − | A ∩ B |

wynika, że

| A ? B || Ω |

=| A || Ω |

+| B || Ω |

−| A ∩ B |

| Ω |.

Ponieważ A ? B oraz A ∩ B są również zdarzeniami ze zbioru Ω, więc na mocy definicji kla-

sycznej otrzymujemy zależność

P(A ? B) = P(A) + P(B) − P(A ∩ B)

Prawdziwe jest więc twierdzenie.

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

237

Page 239: Matematyka 3

Twierdzenie: o prawdopodobieństwie sumy dwóchzdarzeń

Załóżmy, że A oraz B są zdarzeniami ze zbioru zdarzeń elementarnych Ω. Wtedy prawdopo-

dobieństwo sumy A ? B zdarzeń A oraz B wyraża się wzorem

P(A ? B) = P(A) + P(B) − P(A ∩ B),

gdzie A ∩ B to zdarzenie, które jest iloczynem (częścią wspólną) zdarzeń A, B.

Przykład 11.Załóżmy, że w pewnym doświadczeniu dane są zdarzenia A i B, przy czym ich prawdopodo-

bieństwa są równe odpowiednio27 i

311 . W tym doświadczeniu pewne jest zdarzenie, że zaj-

dzie zdarzenie A’ lub zdarzenie B’ (gdzie A’ oraz B’ oznaczają zdarzenia przeciwne do zdarzeń

odpowiednio A i B). Obliczymy prawdopodobieństwo zdarzenia, że zajdzie jednocześnie zda-

rzenie A’ i zdarzenie B’.

Obliczamy

P(A') = 1 − P(A) = 1 − 27 =

57

oraz

P(B') = 1 − P(B) = 1 − 311 =

811 .

Z treści zadania wiemy, że P(A' ? B') = 1, a mamy obliczyć prawdopodobieństwo zdarzenia

A' ∩ B'. Korzystając z twierdzenia o prawdopodobieństwie sumy, zapisujemy

P(A' ? B') = P(A ') + P(B ') − P(A' ∩ B'). Stąd prawdopodobieństwo zdarzenia, że zajdzie jed-

nocześnie zdarzenie A’ i zdarzenie B’ jest równe

P(A' ∩ B') = P(A') + P(B') − P(A' ? B') =57 +

811 − 1 =

3477 .

Przykład 12.Wśród 216 uczniów klas maturalnych pewnej szkoły ponadgimnazjalnej przeprowadzono

sondaż na temat poczytności dwóch tygodników: „Widoki” oraz „Rokowania”. Okazało się, że

tygodnik „Widoki” czytają 144 osoby, tygodnik „Rokowania” czytają 132 osoby, a oba te tygo-

dniki czyta 80 osób.

Obliczymy prawdopodobieństwo p zdarzenia, że osoba wybrana losowo z tej grupy nie czyta

żadnego z tych tygodników.

Za zdarzenie elementarne przyjmujemy wylosowanie jednej osoby z grupy ankietowanych

uczniów. Zatem | Ω | = 216.

Oznaczmy

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

238

Page 240: Matematyka 3

• A – zdarzenie polegające na tym, że wylosowana osoba czyta tygodnik „Widoki”,

• B – zdarzenie, że wylosowana osoba czyta tygodnik „Rokowania”.

Z treści zadania wynika, że | A | = 144, | B | = 132 oraz | A ∩ B | = 80, zatem liczba

| A ? B | osób, które czytają jeden lub drugi tygodnik jest równa

| A ? B | = | A | + | B | − | A ∩ B | = 144 + 132 − 80 = 196

Stąd

| Ω | − | A ? B | = 216 − 196 = 20

to liczba osób, które nie czytają żadnego z tych tygodników.

Oznacza to, że szukane prawdopodobieństwo jest równe

p =20

216 =5

54 .

Zależności między liczbami uczniów w tym zadaniu można przedstawić schematycznie za po-

mocą diagramu.

Wpisaliśmy w nim po kolei

• liczbę uczniów, którzy czytają oba tygodniki: 80,

• liczbę uczniów, którzy czytają tygodnik „Widoki” i nie czytają tygodnika „Rokowania”:

144 – 80 = 64,

• liczbę uczniów, którzy czytają tygodnik „Rokowania” i nie czytają tygodnika „Widoki”:

132 – 80 = 52,

• liczbę uczniów, którzy nie czytają żadnego z tych dwóch tygodników:

216 – (64 + 80 + 52) = 20.

Przykład 13.Z pudełka zawierającego 8 kul ponumerowanych od 1 do 8 losujemy jednocześnie dwie kule.

Obliczymy prawdopodobieństwo zajścia takiego zdarzenia A, że suma wylosowanych liczb

jest równa 11.

Przedstawimy dwa sposoby opisu zbioru zdarzeń elementarnych w tym doświadczeniu.

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

239

Page 241: Matematyka 3

• sposób I

Ponieważ z pudełka zawierającego 8 kul losujemy jednocześnie dwie kule, więc zdarzenie

elementarne zapisujemy jako dwuelementowy podzbiór {a, b} zbioru

{1, 2, 3, 4, 5, 6, 7, 8}. Zatem zdarzeń elementarnych jest tyle, ile dwuelementowych

podzbiorów zbioru ośmioelementowego, stąd

| Ω | =8 ? 7

2 = 28

Zdarzeniu, że suma wylosowanych liczb jest równa 11, sprzyjają następujące 3 zdarzenia ele-

mentarne: {3, 8}, {4, 7}, {5, 6}. Wobec tego | A | = 3, co oznacza, że

P(A) =3

28 .

• sposób II

Ponieważ dodawanie jest przemienne, więc suma nie zmieni się, kiedy rozróżnimy kule ze

względu na kolejność, w której zostały wylosowane. Każde zdarzenie elementarne zapisu-

jemy wtedy jako dwuelementowy ciąg (a, b), gdzie a, b są różnymi elementami ze zbioru

{1, 2, 3, 4, 5, 6, 7, 8} numerów kul znajdujących się w pudełku. Wszystkich zdarzeń

elementarnych jest więc

| Ω | = 8 ? 7 = 56.

Zdarzeniu, że suma wylosowanych liczb jest równa 11 sprzyjają następujące zdarzenia ele-

mentarne: (3, 8), (4, 7), (5, 6), (6, 5), (7, 4), (8, 3). Stąd | A | = 6, co oznacza, że

P(A) =6

56 =3

28 .

Doświadczenia dwuetapowe - metoda drzewa

Przykład 14.Uczniowie trzeciej klasy otrzymali do rozwiązania zestaw 50 zadań powtórzeniowych z ma-

tematyki. Zadania były ponumerowane od 1 do 50. Pewna ich część to zadania kodowane, a

pozostałe to zadania zamknięte.

Ania rozwiązała wszystkie te zadania w ciągu dwóch dni. Pierwszego dnia rozwiązała 60% za-

dań zestawu, przy czym połowę tych zadań stanowiły zadania kodowane. Wśród zadań roz-

wiązanych przez Anię drugiego dnia co piąte było kodowane.

Obliczymy, jakie jest prawdopodobieństwo p zdarzenia, że przy losowaniu zadania z tego ze-

stawu otrzymamy zadanie kodowane.

• sposób I

Za zdarzenie elementarne w opisanym doświadczeniu przyjmujemy wylosowanie jednego

spośród 50 zadań.

Obliczenia liczby zadań kodowanych przeprowadzimy w dwóch etapach.

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

240

Page 242: Matematyka 3

Pierwszego dnia dziewczynka rozwiązała 15 zadań kodowanych (jest to połowa z 30 zadań

rozwiązanych w tym dniu), natomiast drugiego dnia Ania rozwiązała15 ? 20 = 4 zadania kodo-

wane.

Wobec tego wszystkich zadań kodowanych jest w tym zestawie 15 + 4 = 19.

Mamy model klasyczny (zdarzenia elementarne są jednakowo prawdopodobne), co oznacza,

że szukane prawdopodobieństwo jest równe

p =1950 .

• sposób II

Zauważmy, że połowa z35 wszystkich zadań to zadania kodowane rozwiązane przez Anię

pierwszego dnia, a15 z

25 wszystkich zadań to zadania kodowane rozwiązane przez Anię dru-

giego dnia.

Zatem zadania kodowane stanowią1950 wszystkich zadań (jak to jest pokazane na diagramie),

co oznacza, że szukane prawdopodobieństwo jest równe p =1950 .

Przebieg omawianego doświadczenia można też przedstawić schematycznie w postaci drze-

wa. Rozróżnimy dwa etapy: (1) wybór dnia, w którym zadanie zostało rozwiązane, (2) wybór

typu zadania rozwiązanego w danym dniu.

Na rysunku poniżej pogrubioną linią zaznaczyliśmy gałęzie odpowiadające wynikom: wylo-

sowano zadanie kodowane rozwiązane pierwszego dnia (na niebiesko), wylosowano zadanie

kodowane rozwiązane drugiego dnia (na pomarańczowo).

Obliczymy liczbę zadań rozwiązanych w każdym dniu przez Anię: w pierwszym dniu

Ania rozwiązała 60% ? 50 = 30 zadań, a więc w drugim dniu Ania rozwiązała 20 zadań

(to jest 40% wszystkich).

1)

Obliczymy liczbę zadań kodowanych rozwiązanych przez dziewczynkę pierwszego dnia

oraz drugiego dnia.

2)

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

241

Page 243: Matematyka 3

Na każdej gałęzi zapisaliśmy też, jakie jest prawdopodobieństwo wyboru danej opcji na kon-

kretnym etapie doświadczenia.

Zbierając te informacje, zauważymy zasadę, według której obliczamy szukane prawdopodo-

bieństwo, idąc po każdej z pogrubionych gałęzi. Obliczamy iloczyn prawdopodobieństw zda-

rzeń z kolejnych etapów, a następnie obliczamy sumę uzyskanych iloczynów:

p =35 ?

12 +

25 ?

15

Stąd

p =1950 .

W kolejnym przykładzie pokażemy, jak umiejętności związane z obliczaniem prawdopodo-

bieństwa można wykorzystać do analizowania informacji, jakimi jesteśmy zasypywani przez

media wykorzystywane przez reklamodawców.

Przykład 15.Statystyki pokazują, że w pewnym kraju 1 osoba na 1000 jest nosicielem pewnego groźnego

wirusa. Firma XMed ogłosiła, że opracowała badanie pozwalające skutecznie rozpoznać nosi-

cielstwo tego wirusa. Przedstawiciele tej firmy przypominają, że nosiciel wirusa może stać się

źródłem zakażenia dla osób przebywających w jego otoczeniu i wrażliwych na infekcje, dla-

tego też wykrywanie oraz leczenie nosicieli wirusów jest społecznie pożądane. Podano przy

tym, że po przeprowadzeniu badania opracowanego przez XMed wirus zostanie prawidłowo

wykryty u nosiciela w 99,9% przypadków, a w 99% przypadków da się jednoznacznie określić,

że badana osoba nie jest nosicielem wirusa.

Ustalimy, czy na podstawie tych danych jesteśmy w stanie ocenić skuteczność badania opra-

cowanego przez XMed.

W tym celu obliczymy najpierw, jakie jest prawdopodobieństwo, że badanie opracowane

przez XMed wykryje nosicielstwo.

Załóżmy, że wybieramy losowo obywatela tego kraju. Z treści zadania wynika, że

• prawdopodobieństwo zdarzenia, że wylosujemy nosiciela wirusa, jest równe1

1000 ,

• prawdopodobieństwo zdarzenia, że wylosujemy osobę, która nie jest nosicielem wiru-

sa, jest równe999

1000 ,

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

242

Page 244: Matematyka 3

• prawdopodobieństwo tego, że w wyniku badania wirus zostanie wykryty u nosiciela,

jest równe999

1000 ,

• prawdopodobieństwo tego, że w wyniku badania wirus zostanie wykryty u osoby, która

nie jest nosicielem, jest równe1

100 .

Zapiszmy te prawdopodobieństwa na drzewku.

Wobec tego prawdopodobieństwo p zdarzenia, że badanie wykryje nosicielstwo, jest równe

p =1

1000 ?999

1000 +999

1000 ?1

100 =1

1000 ?999

1000 +999

1000 ?10

1000 =999 ? (1 + 10)1000 ? 1000 =

999 ? 111000 ? 1000 = 0,01098... ≈ 0,011

.

Zatem o nosicielstwie dowiaduje się po badaniu średnio jedenaście osób na tysiąc.

Postawmy się w sytuacji osoby, która po badaniu otrzymała informację, że jest nosicielem wi-

rusa. Ustalimy, na ile ta informacja jest wiarygodna – w tym celu obliczymy, jakie jest prawdo-

podobieństwo tego, że osoba, która na podstawie badania została uznana za nosiciela, jest

rzeczywiście nosicielem wirusa.

Załóżmy, że kraj opisany w treści zadania ma milion mieszkańców. Wtedy na podstawie da-

nych z treści zadania 1000 z nich to nosiciele wirusa, a 999000 to osoby, które nie są nosicie-

lami.

W wyniku badania przeprowadzonego przez XMed:

999 z 1000 nosicieli dowie się o tym fakcie (wirus zostanie prawidłowo wykryty u nosiciela w

99,9% przypadków),

9990 spośród 999000 pozostałych osób również zostanie zdiagnozowanych jako nosiciele wi-

rusa (w 99% przypadków da się jednoznacznie określić, że badana osoba nie jest nosicielem

wirusa), a przecież żadna z nich nosicielem nie jest.

Dyskwalifikująca dla skuteczności tego badania jest jednak proporcja tych dwóch grup osób,

które otrzymały informację o nosicielstwie: jest wśród nich 10 razy więcej osób, które nie są

nosicielami wirusa!

Wobec tego prawdopodobieństwo zdarzenia, że osoba, która w wyniku badania firmy XMed

dowie się o nosicielstwie jest rzeczywiście nosicielem wirusa, jest równe1

11 . To zdecydowanie

za mało, żeby uznać to badanie za skuteczne.

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

243

Page 245: Matematyka 3

Poziom trudności: AZadanie 4.1.1W pewnej klasie jest 3 razy więcej chłopców niż dziewcząt. Losujemy jedną osobę z tej klasy.

Prawdopodobieństwo zdarzenia, że wylosujemy dziewczynkę jest równe

a)34

b)37

c)13

d)14

(Pokaż odpowiedź)

Poziom trudności: AZadanie 4.1.2Ze zbioru {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} wybieramy losowo jedną liczbę.

Oznaczmy przez p prawdopodobieństwo otrzymania liczby podzielnej przez 5. Wówczas

a) p <16

b) p =16

c) p =15

d) p >15

(Pokaż odpowiedź)

Poziom trudności: AZadanie 4.1.3Ze zbioru dwucyfrowych liczb naturalnych losujemy jedną liczbę. Prawdopodobieństwo zda-

rzenia, że będzie to liczba o sumie cyfr równej 16, jest równe

a)1

30

b)3

89

c)1

16

d)1690

(Pokaż odpowiedź)

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

244

Page 246: Matematyka 3

Poziom trudności: AZadanie 4.1.4Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo zdarzenia, że

dwukrotnie otrzymamy liczbę oczek mniejszą od 3, jest równe

a)23

b)29

c)19

d)1

18

(Pokaż odpowiedź)

Poziom trudności: AZadanie 4.1.5Ze zbioru {1, 2, 3, 4, 5, 6, 7, 8} losujemy dwa razy po jednej liczbie ze zwracaniem.

Oznaczmy przez p prawdopodobieństwo wylosowania pary liczb, których iloczyn jest podzielny

przez 7. Wówczas

a) p =14

b) p =1564

c) p =7

32

d) p =7

64

(Pokaż odpowiedź)

Poziom trudności: AZadanie 4.1.6Rzucamy 3 razy symetryczną monetą. Prawdopodobieństwo zajścia zdarzenia, że dokładnie

raz wyrzucimy orła, jest równe

a) p =38

b) p =13

c) p =14

d) p =18

(Pokaż odpowiedź)

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

245

Page 247: Matematyka 3

Poziom trudności: AZadanie 4.1.7Załóżmy, że w pewnym doświadczeniu losowym dane jest zdarzenie A, ponadto A’ jest zdarze-

niem przeciwnym do A oraz zachodzi równość 2 ? P(A) = 3 ? P(A'). Stąd prawdopodobieństwo

zajścia zdarzenia A jest równe

a)25

b)13

c)23

d)35

(Pokaż odpowiedź)

Poziom trudności: AZadanie 4.1.8Rzucamy dwa razy symetryczną sześcienną kostką do gry. Prawdopodobieństwo zajścia zda-

rzenia, że otrzymamy sumę oczek podzielną przez 7 lub przez 11, jest równe

a)14

b)29

c)19

d)1

18

(Pokaż odpowiedź)

Poziom trudności: AZadanie 4.1.9W każdym z dziewięciu pojemników znajduje się para kul: jedna biała, a druga – czerwona.

Z każdego z tych dziewięciu pojemników losujemy jedną kulę. Oznaczmy przez p prawdopo-

dobieństwo zdarzenia, że wśród wylosowanych kul będzie tyle samo czerwonych, co białych.

Wówczas

a) p >5

32

b) p =5

32

c) p =15

d) p <15

(Pokaż odpowiedź)

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

246

Page 248: Matematyka 3

Poziom trudności: AZadanie 4.1.10W pewnej klasie stosunek liczby dziewcząt do liczby chłopców jest równy 7 : 11. Losujemy

osiem osób z tej klasy. Prawdopodobieństwo tego, że dwie z nich urodziły się w tym samym

dniu tygodnia, jest

a) większe od12

b) równe12

c) równe14

d) mniejsze od14

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.11W pudełku znajduje się 17 kul, ponumerowanych od 1 do 17. Z tego pudełka losujemy jedną

kulę. Oblicz prawdopodobieństwo otrzymania:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.12W pudełku znajduje się 130 losów, wśród których jest pewna liczba wygrywających. Prawdopo-

dobieństwo zdarzenia, że wybierając z tego pudełka jeden los, wyciągniemy los wygrywający,

jest równe1

26 . Oblicz, ile jest losów pustych w tym pudełku.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.13

Ze zbioru {1, 2, 3, ... , 39, 40} dodatnich liczb całkowitych, które nie są większe od 40, wy-

bieramy losowo jedną liczbę. Oblicz prawdopodobieństwo p otrzymania:

kuli z numerem podzielnym przez 5a)

kuli z nieparzystym numerem dwucyfrowymb)

liczby mniejszej od 30a)

liczby dwucyfrowej.b)

liczby podzielnej przez 7c)

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

247

Page 249: Matematyka 3

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.14W auli pewnej szkoły wszyscy uczniowie klas trzecich będą pisać próbny egzamin maturalny.

Na liście egzaminowanych jest: 36 uczniów klasy 3a, w tym 16 dziewczynek, 35 uczniów klasy

3b, w tym 14 dziewczynek, 31 uczniów klasy 3c, w tym 12 dziewczynek oraz 38 uczniów klasy 3d

, w tym 35 dziewczynek. Dla każdego ucznia przygotowano jeden stolik, a stoliki ponumerowa-

no kolejnymi liczbami, zaczynając od 1. Przed wejściem do auli uczniowie mają losować numer

stolika, przy którym będą pisali ten próbny egzamin. Oblicz prawdopodobieństwo zdarzenia,

że numer 1 wylosuje:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.15Ze zbioru dwucyfrowych liczb naturalnych wybieramy losowo jedną liczbę. Oblicz prawdopo-

dobieństwo p tego, że

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.16100 uczniów klas trzecich brało udział w balu studniówkowym. Na początku tej imprezy zapla-

nowane były dwa tańce: polonez i walc. Poloneza zatańczyło 60 osób, natomiast walca zatań-

czyło 90 osób. Wiadomo też, że oba te tańce klasyczne zatańczyły 53 osoby. Oblicz prawdopo-

dobieństwo p zdarzenia, polegającego na tym, że osoba wybrana losowo spośród uczestników

balu nie zatańczyła żadnego z tych dwóch tańców.

(Pokaż odpowiedź)

liczby, która nie dzieli się przez 4d)

osoba z klasy 3aa)

osoba z klasy 3b lub z klasy 3cb)

dziewczynka z klasy 3dc)

chłopiecd)

wylosujemy liczbę, której iloczyn cyfr jest równy 24a)

wylosujemy liczbę, której suma cyfr jest mniejsza niż 17b)

wylosujemy liczbę, której suma cyfr jest parzystac)

wylosujemy liczbę, której iloczyn cyfr jest parzystyd)

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

248

Page 250: Matematyka 3

Poziom trudności: BZadanie 4.1.17W klasie trzeciej jest 35 uczniów. W każdy piątek, w dodatkowych zajęciach z matematyki bierze

udział 30 z nich, a w każdy wtorek 17 uczniów tej klasy bierze udział w dodatkowych zajęciach

z geografii. Wiadomo też, że 4 spośród uczniów tej klasy nie bierze udziału w żadnym z tych

dwóch dodatkowych rodzajów zajęć. Oblicz prawdopodobieństwo zdarzenia polegającego na

tym, że osoba wybrana losowo spośród uczniów tej klasy bierze udział zarówno w dodatko-

wych zajęciach z geografii, jak i z matematyki.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.18W pewnym doświadczeniu losowym dane jest zdarzenie A, natomiast A’ jest zdarzeniem prze-

ciwnym do A. Oblicz prawdopodobieństwo zdarzenia A, wiedząc, że

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.19W pewnym doświadczeniu losowym A i B są zdarzeniami, A’ jest zdarzeniem przeciwnym do

A, B’ jest zdarzeniem przeciwnym do B.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.20W kopercie znajduje się 10 kartek, ponumerowanych od 1 do 10. Z tej koperty losujemy dwa

razy po jednej kartce ze zwracaniem. Oblicz prawdopodobieństwo otrzymania:

(Pokaż odpowiedź)

P(A) = 4 ? P(A')a)

2 ? P(A') = 7 ? P(A)b)

P(A) = P(A') +3

17c)

3 ? P(A) + 7 ? P(A') = 525

d)

Oblicz P(A ? B), wiedząc, że zdarzenia A i B są rozłączne oraz P(A') =34 , P(B') = 0,61.a)

Oblicz P(A ∩ B), wiedząc, że P(A ? B) =23 , P(A') =

12 , P(B') =

34 .b)

dwóch kartek o różnych numerach,a)

takich dwóch kartek, że iloraz numeru na pierwszej kartce przez numer na drugiej kartce

jest liczbą całkowitą.

b)

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

249

Page 251: Matematyka 3

Poziom trudności: BZadanie 4.1.21Rzucamy dwa razy symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo p zda-

rzenia, że

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.22Losujemy dwa wierzchołki spośród wszystkich wierzchołków siedmiokąta foremnego. Oblicz

prawdopodobieństwo zdarzenia, że wylosujemy w ten sposób końce pewnej przekątnej tego

wielokąta.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.23

Ze zbioru liczb {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} losujemy dwa razy po jednej liczbie

ze zwracaniem. Oblicz prawdopodobieństwo:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.24Rzucamy dwa razy symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo takiego

zdarzenia A, że w pierwszym rzucie wypadnie liczba oczek większa niż w drugim i iloczyn liczb

wyrzuconych oczek będzie podzielny przez 4.

(Pokaż odpowiedź)

największa wyrzucona liczba oczek jest równa 1 lub 2, lub 3.a)

największa wyrzucona liczba oczek jest równa 5.b)

zdarzenia A, polegającego na wylosowaniu dwóch liczb, z których pierwsza jest o 2 lub o

3 mniejsza od drugiej.

a)

zdarzenia B, polegającego na wylosowaniu dwóch liczb, których iloczyn jest podzielny

przez 10.

b)

zdarzenia C, polegającego na wylosowaniu dwóch liczb, których suma jest podzielna

przez 7.

c)

zdarzenia D, polegającego na wylosowaniu dwóch liczb, których suma kwadratów jest

podzielna przez 3.

d)

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

250

Page 252: Matematyka 3

Poziom trudności: BZadanie 4.1.25Z pojemnika, w którym jest 20 losów: 3 wygrywające oraz 17 pustych, losujemy dwa razy po

jednym losie bez zwracania. Oblicz prawdopodobieństwo p zdarzenia, że oba wylosowane losy

będą wygrywające.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.26W kopercie jest 15 kartek ponumerowanych liczbami od 1 do 15. Z tej koperty losujemy jedno-

cześnie dwie kartki. Oblicz prawdopodobieństwo zdarzenia:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.27W klasie jest 35 uczniów, przy czym chłopców jest o 3 mniej niż dziewczynek. Losujemy dwie

osoby z tej klasy. Oblicz prawdopodobieństwo zdarzenia, że wśród wylosowanych osób będzie

co najmniej jedna dziewczynka.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.28W talii 52 kart do brydża jest po 13 kart w każdym z czterech kolorów: trefl, karo, kier, pik. W

każdym kolorze jest jeden as, a także trzy figury: król, dama, walet oraz 9 kart numerowanych

od 2 do 10. Z takiej talii 52 kart losujemy dwa razy po jednej karcie bez zwracania. Oblicz praw-

dopodobieństwo p zdarzenia, że obie wylosowane karty będą figurami. Zapisz wynik w postaci

ułamka nieskracalnego.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.29W pudełku znajdują się kule, przy czym co dziesiąta z nich jest biała, a każda z pozostałych ma

kolor czerwony lub kolor zielony. Przy losowaniu jednej kuli z tego pudełka prawdopodobień-

stwo wylosowania kuli czerwonej lub zielonej jest trzy razy większe niż prawdopodobieństwo

wylosowania kuli czerwonej lub białej. Oblicz prawdopodobieństwo zdarzenia polegającego na

tym, że przy losowaniu jednej kuli z tego pudełka wylosujemy kulę zieloną.

(Pokaż odpowiedź)

A – iloczyn liczb na wylosowanych kartkach jest nieparzysty,a)

B – suma liczb na wylosowanych kartkach jest nieparzysta.b)

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

251

Page 253: Matematyka 3

Poziom trudności: BZadanie 4.1.30Rzucamy trzy razy symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarze-

nia A – dokładnie raz wypadnie szóstka.

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.31W kopercie jest 5 kartek ponumerowanych liczbami naturalnymi od 1 do 5. Losujemy z tej ko-

perty po kolei 5 kartek, a wyniki kolejnych losowań notujemy jeden za drugim, zapisując w ten

sposób liczbę pięciocyfrową. Oblicz prawdopodobieństwo, że w wyniku takiego postępowania

zapiszemy liczbę, w której:

(Pokaż odpowiedź)

Poziom trudności: BZadanie 4.1.32Rzucamy trzy razy symetryczną sześcienną kostką do gry. Rozstrzygnij, które zdarzenie jest

wtedy bardziej prawdopodobne: A – wypadła suma oczek równa 11 czy B – wypadła suma

oczek równa 12.

(Pokaż odpowiedź)

Poziom trudności: CZadanie 4.1.33

W pewnej grze losowej zakreślamy 6 liczb wybranych ze zbioru {1, 2, 3, ..., 49}. Wybrane licz-

by są następnie porównywane z sześcioma wylosowanymi z tego samego zbioru przez maszy-

nę losującą. Oblicz prawdopodobieństwo p tego, że zakreślając 6 liczb trafisz główną wygraną,

czyli prawidłowo wytypujesz wszystkie 6 wylosowanych numerów.

(Pokaż odpowiedź)

suma każdych dwóch sąsiednich cyfr będzie nieparzysta,a)

cyfry 1 oraz 2 będą zapisane na sąsiednich miejscach.b)

Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie prawdopodobieństw zdarzeń losowych

252

Page 254: Matematyka 3

4.2. Klasyczna definicja prawdopodobieństwa (treśćrozszerzona)

Definicja: definicja ogólnaprawdopodobieństwa

W doświadczeniu losowym określimy zbiór zdarzeń elementarnych

Ω = {w1, w2, w3, ..., wn},

a zdarzeniom elementarnym w1, w2, w3, ..., wn przypiszemy takie liczby nie-

ujemne odpowiednio p1, p2, p3, ..., pn, że p1 + p2 + p3 + ... + pn = 1. Wówczas

prawdopodobieństwem dowolnego zdarzenia A ? Ω nazywamy liczbę P(A), która jest

sumą prawdopodobieństw przypisanych do zdarzeń elementarnych sprzyjających

zdarzeniu A.

Przykład 1.Pokażemy, że w poprzednim przykładzie, w drugim sposobie rozwiązania postępowaliśmy

zgodnie z ogólną definicją prawdopodobieństwa.Przyjęliśmy, że doświadczenie może skoń-

czyć się jednym z czterech możliwych wyników:

w1 – zdarzenie, że wylosujemy zadanie kodowane rozwiązane pierwszego dnia,

w2 – zdarzenie, że wylosujemy zadanie testowe rozwiązane pierwszego dnia,

w3 – zdarzenie, że wylosujemy zadanie kodowane rozwiązane drugiego dnia,

w4 – zdarzenie, że wylosujemy zadanie testowe rozwiązane drugiego dnia.

Rozpatrując te wyniki jako zdarzenia elementarne, otrzymujemy zbiór zdarzeń elementar-

nych

Ω = {w1, w2, w3, w4}.

Każdemu ze zdarzeń elementarnych przypisaliśmy prawdopodobieństwo takie , jak w poniż-

szej tabeli:

Zdarzenie

elementarne w1 w2 w3 w4

prawdopodobieństwo p1 =35 ?

12 =

310 p2 =

35 ?

12 =

310 p3 =

25 ?

15 =

225 p4 =

25 ?

45 =

825

Ponieważ spełniony jest warunek p1 + p2 + p3 + p4 = 1, więc jeżeli przez A oznaczymy zdarze-

nie, że wylosowano zadanie kodowane, to A = {w1, w3} i prawdopodobieństwo p zdarzenia

A jest równe

p = p1 + p3 =1950 .

Klasyczna definicja prawdopodobieństwa (treść rozszerzona)

253

Page 255: Matematyka 3

Otrzymany wynik jest, oczywiście, zgodny z wynikiem otrzymanym w pierwszym sposobie

rozwiązania (według schematu klasycznego).

Pokażemy formalnie, że definicja ogólna jest zgodna z definicją klasyczną prawdopodobieństwa.

Przykład 2.Rozpatrzmy doświadczenie losowe, w którym zbiór zdarzeń elementarnych to

Ω = {w1, w2, w3, ..., wn},

przy czym zdarzeniom elementarnym w1, w2, w3, ..., wn są przypisane takie liczby nie-

ujemne, odpowiednio

p1, p2, p3, ..., pn,

że

p1 + p2 + p3 + ... + pn = 1.

Jeżeli przyjmiemy, że zdarzenia elementarne są jednakowo prawdopodobne

p1 = p2 = p3 = ... = pn,

to każdemu zdarzeniu elementarnemu przypisane jest prawdopodobieństwo równe1n .

Ponieważ zbiór zdarzeń elementarnych liczy n elementów, więc | Ω | = n. Ponadto dowol-

nemu zdarzeniu A ? Ω sprzyja | A | zdarzeń elementarnych, co oznacza, że P(A) jest sumą

| A | liczb równych1n .

Stąd P(A) = | A | ?1n =

| A |n =

| A || Ω |

. To właśnie mieliśmy udowodnić.

Klasyczna definicja prawdopodobieństwa (treść rozszerzona)

254

Page 256: Matematyka 3

SłowniczekDefinicja: definicja ogólna

prawdopodobieństwa

W doświadczeniu losowym określimy zbiór zdarzeń elementarnych

Ω = {w1, w2, w3, ..., wn},

a zdarzeniom elementarnym w1, w2, w3, ..., wn przypiszemy takie liczby nie-

ujemne odpowiednio p1, p2, p3, ..., pn, że p1 + p2 + p3 + ... + pn = 1. Wówczas

prawdopodobieństwem dowolnego zdarzenia A ? Ω nazywamy liczbę P(A), która jest

sumą prawdopodobieństw przypisanych do zdarzeń elementarnych sprzyjających

zdarzeniu A.

Definicja: Dominanta

Dominantą (modą, wartością najczęstszą) nazywamy tę wartość, która występuje w

próbie najczęściej.

Definicja: Graniastosłup prosty

Graniastosłup prosty to taki wielościan, którego dwie przystające ściany (podstawy

graniastosłupa) są położone w równoległych płaszczyznach, a pozostałe ściany są

prostokątami.

Definicja: kąt nachylenia prostej do płaszczyzny

Rozpatrzmy płaszczyznę p oraz prostą k, która nie jest ani równoległa, ani prosto-

padła do płaszczyzny p. Kątem nachylenia prostej k do płaszczyzny p nazywamy kąt

ostry między tą prostą i jej rzutem prostokątnym l na płaszczyznę p.

Słowniczek

255

Page 257: Matematyka 3

Definicja: k-elementowa kombinacja zbioru n-elementowego

Każdy k-elementowy podzbiór zbioru n-elementowego (0 ≤ k ≤ n) nazywa się zwy-

czajowo k-elementową kombinacją zbioru n-elementowego.

Twierdzenie: Klasyczna definicjaprawdopodobieństwa

Rozpatrzmy doświadczenie losowe, w którym wszystkie zdarzenia elementarne są jednako-

wo prawdopodobne, a Ω jest zbiorem wszystkich zdarzeń elementarnych.

Prawdopodobieństwem P(A) zdarzenia A ? Ω nazywamy wówczas iloraz liczby zdarzeń ele-

mentarnych sprzyjających zdarzeniu A przez liczbę wszystkich zdarzeń elementarnych:

P(A) =| A || Ω |

.

Własność: Liczba elementów sumy n zbiorówrozłącznych

Jeżeli zbiory A1, A2, ..., An są parami rozłączne, to liczba elementów zbioru

A1 ? A2 ? ... ? An jest równa sumie liczb elementów każdego ze zbiorów A1, A2, ..., An:

| A1 ? A2 ? ... ? An | = | A1 | + | A2 | + ... + | An | .

Regułę, która jest zapisana w powyższym wzorze, nazywamy regułą dodawania.

Słowniczek

256

Page 258: Matematyka 3

Twierdzenie: liczba k-elementowych kombinacjizbioru n-elementowego

Liczba ( n

k ) wszystkich k-elementowych kombinacji zbioru n − elementowego jest równa

n!

k! ? (n − k) !=

n ? (n − 1) ? (n − 2) ? ... ? (n − k + 1)k ? (k − 1) ? (k − 2) ? ... ? 1

.

Uwaga. Stosując metodę dopełniania podzbiorów do całego zbioru i korzystając z zasady

równoliczności, stwierdzimy, że dla dowolnych liczb całkowitych n, k (0 ≤ k ≤ n) zachodzi

równość

( n

k ) = ( n

n − k )Tę tożsamość można również wykazać algebraicznie.

Ponieważ

( n

k ) =n!

k! ? (n − k) !

oraz

( n

n − k ) =n!

(n − k)! ? (n − (n − k)) !=

n!

(n − k)! ? k!

więc

( n

k ) = ( n

n − k ).

Słowniczek

257

Page 259: Matematyka 3

Definicja: liczba k–elementowych podzbiorówzbioru n–elementowego

Rozpatrzmy zbiór A = {a1, a2, ..., an}, który ma n (n ≥ 1) elementów.

Symbolem ( n

k ) oznaczamy liczbę jego wszystkich podzbiorów k–elementowych

(k ≥ 0 i k ≤ n) .

Zapis symboliczny ( n

k ) odczytujemy „n po k”, stąd np.:

• ( 5

2 ) czytamy „pięć po dwa”,

• ( 7

1 ) czytamy „siedem po jeden”,

• ( 6

0 ) czytamy „sześć po zero”.

Własność: liczba k-wyrazowych wariacji bezpowtórzeń zbioru n-elementowego

Liczba wszystkich k-wyrazowych wariacji bez powtórzeń zbioru n-elementowego jest równa

n ? (n − 1) ? (n − 2) ? … ? (n − k + 1)?

k czynników

Słowniczek

258

Page 260: Matematyka 3

Własność: liczba k-wyrazowych wariacji zpowtórzeniami zbioru n-elementowego

Liczba wszystkich k– wyrazowych wariacji z powtórzeniami zbioru n– elementowego jest rów-

na nk.

Definicja: Mediana

Medianą (wartością środkową) uporządkowanego w kolejności niemalejącej zbioru

n liczb x1 ≤ x2 ≤ x3 ≤ … ≤ xn jest:

• dla nieparzystej liczby n środkowy wyraz ciągu, czyli wyraz xn + 12

,

• dla parzystej liczby n średnia arytmetyczna dwóch środkowych wyrazów ciągu,

czyli12 (xn

2

+ xn2

+ 1).

Definicja: Odchylenie przeciętne

Odchyleniem przeciętnym liczb x1, x2, … , xn nazywamy liczbę

| x1 −−x | + | x2 −

−x | + … + | xn −

−x |

n

Definicja: Odchylenie standardowe

Odchyleniem standardowym σ liczb x1, x2, … , xn nazywamy liczbę

σ = √ (x1 −−x )

2+ (x2 −

−x )

2+ … + (xn −

−x )

2

n

Kwadrat tej wielkości nazywamy wariancją i oznaczamy symbolem σ2, czyli

σ2 =(x1 −

−x )

2+ (x2 −

−x )

2+ … + (xn −

−x )

2

n

Słowniczek

259

Page 261: Matematyka 3

Twierdzenie: o dwóch płaszczyznach równoległychprzeciętych płaszczyzną

Jeżeli płaszczyzna przecina każdą z dwóch płaszczyzn równoległych, to otrzymane krawędzie

przecięcia są prostymi równoległymi.

Twierdzenie: o dwóch różnych płaszczyznachnierównoległych

Jeżeli dwie różne płaszczyzny p1 i p2 mają wspólne dwa różne punkty A i B, to prosta AB leży

zarówno w płaszczyźnie p1, jak i w płaszczyźnie p2. Mówimy wtedy, że prosta AB jest krawę-

dzią przecięcia tych płaszczyzn.

W przestrzeni istnieją również pary płaszczyzn, które nie mają punktów wspólnych.

Twierdzenie: o prawdopodobieństwie sumy dwóchzdarzeń

Załóżmy, że A oraz B są zdarzeniami ze zbioru zdarzeń elementarnych Ω. Wtedy prawdopo-

dobieństwo sumy A ? B zdarzeń A oraz B wyraża się wzorem

P(A ? B) = P(A) + P(B) − P(A ∩ B),

gdzie A ∩ B to zdarzenie, które jest iloczynem (częścią wspólną) zdarzeń A, B.

Słowniczek

260

Page 262: Matematyka 3

Twierdzenie: o prawdopodobieństwie zdarzeniaprzeciwnego

Załóżmy, że A jest zdarzeniem ze zbioru zdarzeń elementarnych Ω. Wtedy prawdopodobień-

stwo zdarzenia A’, przeciwnego do A, wyraża się wzorem

P(A') = 1 − P(A).

Twierdzenie: o prostej prostopadłej do płaszczyzny

Rozpatrzmy płaszczyznę p oraz dwie zawarte w tej płaszczyźnie proste l i m, które przecinają

się w punkcie O. Jeżeli prosta k przebija płaszczyznę p w punkcie O tak, że jest prostopadła

zarówno do prostej m, jak i do prostej l, to jest ona prostopadła do każdej prostej leżącej w

płaszczyźnie p i przechodzącej przez punkt O.

Definicja: Ostrosłup

Ostrosłup to taki wielościan, którego podstawą jest dowolny wielokąt, a ściany bocz-

ne są trójkątami o wspólnym wierzchołku.

Słowniczek

261

Page 263: Matematyka 3

Reguła: o trzech prostych prostopadłych

Rozpatrzmy płaszczyznę p oraz prostą k, która przebija tę płaszczyznę w punkcie P. Oznacz-

my przez l prostą, która jest rzutem prostokątnym prostej k na płaszczyznę p.

Wówczas dowolna prosta m leżąca w płaszczyźnie p jest prostopadła do prostej k wtedy i tyl-

ko wtedy, gdy jest prostopadła do prostej l.

DowódRozpatrzmy na prostej k punkt K różny od P. Jego rzutem prostokątnym jest punkt L, który

leży na prostej l.

Słowniczek

262

Page 264: Matematyka 3

Wtedy prosta KL jest prostopadła do płaszczyzny p, a więc każda płaszczyzna, która zawiera

prostą KL, jest prostopadła do p. Jedną z takich płaszczyzn jest ta, którą wyznaczają proste k

i l. Nazwijmy tę płaszczyznę p’.

Rozpatrzmy prostą n leżącą w płaszczyźnie p’, przechodzącą przez punkt P i równoległą do

KL.

Ponieważ prosta n jest prostopadła do płaszczyzny p, więc jest również prostopadła do pro-

stej m.

Zatem:

• jeżeli m jest także prostopadła do k, to jest prostopadła do płaszczyzny p’ (bo jest pro-

stopadła do dwóch prostych leżących w tej płaszczyźnie: n oraz k), zatem i do prostej l,

• jeżeli m jest także prostopadła do l, to jest prostopadła do płaszczyzny p’ (bo jest pro-

stopadła do dwóch prostych leżących w tej płaszczyźnie: n oraz l), zatem i do prostej k.

Oznacza to, że prosta m jest prostopadła do prostej k wtedy i tylko wtedy, gdy jest prostopa-

dła do prostej l.

To spostrzeżenie kończy dowód.

Definicja: prosta przebijająca płaszczyznę

Prosta, która nie leży w płaszczyźnie i nie jest do tej płaszczyzny równoległa, ma do-

kładnie jeden punkt wspólny z tą płaszczyzną. Mówimy, że prosta przebija płaszczy-

znę w tym punkcie.

Słowniczek

263

Page 265: Matematyka 3

Definicja: prosta równoległa do płaszczyzny

Prosta, która nie leży w płaszczyźnie i nie ma z tą płaszczyzną punktów wspólnych,

jest równoległa do tej płaszczyzny.

Definicja: prostej prostopadłej do płaszczyzny

Prostą k, przebijającą płaszczyznę p w punkcie O nazywamy prostopadłą do tej

płaszczyzny, gdy prosta k jest prostopadła do każdej prostej leżącej w płaszczyźnie

p i przechodzącej przez punkt O.

Definicja: proste skośne w przestrzeni

Dwie proste w przestrzeni, które nie leżą w jednej płaszczyźnie, nazywamy prostymi

skośnymi.

Twierdzenie: Reguła mnożenia

Liczba wszystkich możliwych wyników doświadczenia, które polega na wykonaniu po kolei n

czynności, z których pierwsza może zakończyć się na jeden z k1 sposobów, druga – na jeden

z k2 sposobów, trzecia – na jeden z k3 sposobów i tak dalej do n − tej czynności, która może

zakończyć się na jeden z kn sposobów, jest równa

k1 ? k2 ? k3 ? ... ? kn

Powołując się na regułę mnożenia, można pokazać, że liczba n, która w rozkładzie na czynniki

pierwsze daje się zapisać w postaci

n = p1α1 ? p2

α2 ? ... ? pkαk,

Słowniczek

264

Page 266: Matematyka 3

gdzie p1, p2, ..., pk są różnymi liczbami pierwszymi, a α1, α2, ..., αk są dodatnimi liczba-

mi całkowitymi,

ma

(α1 + 1) ? (α2 + 1) ? ... ? ( αk + 1)

dodatnich dzielników całkowitych.

Definicja: Różne płaszczyzny równoległe

Dwie różne płaszczyzny, które nie mają punktów wspólnych, nazywamy płaszczy-

znami równoległymi.

Definicja: Stożek

Stożek to bryła, która powstała w wyniku obrotu trójkąta prostokątnego dookoła

prostej zawierającej jedną z przyprostokątnych.

Definicja: Średnia arytmetyczna

Średnią arytmetyczną liczb rzeczywistych x1, x2, … , xn nazywamy liczbę

−x =

x1 + x2 + … + xnn .

Definicja: Średnia ważona

Średnią ważoną liczb x1, x2, … , xn, którym przyporządkowane są odpowiednio do-

datnie wagi w1, w2, … , wn, nazywamy liczbę−x w =

x1 ∙ w1 + x2 ∙ w2 + … + xn ∙ wnw1 + w2 + … +wn

.

Słowniczek

265

Page 267: Matematyka 3

Definicja: Walec

Walec jest to bryła, która powstała w wyniku obrotu prostokąta dookoła prostej za-

wierającej jeden z boków prostokąta.

Twierdzenie: Wariancja liczb

Wariancja liczb x1, x2, … , xn jest równa

σ2 =x1

2 + x22 + … + xn

2

n − ( −x )

2

DowódPrzekształcając wzór z definicji wariancji ,otrzymujemy

σ2 =(x1 −

−x )

2+ (x2 −

−x )

2+ … + (xn −

−x )

2

n =

=x

12 − 2x1 ?

−x + ( −

x )2

+ x22 − 2x2 ?

−x + ( −

x )2

+ … + xn2 − 2xn ?

−x + ( −

x )2

n =

=x

12 + x

22 + … + x

n2

n − 2−x

x1 + x2 + … xnn +

n ? ( −x )

2

n =

=x

12 + x

22 + … + x

n2

n − 2 ? ( −x )

2

+ ( −x )

2

=x

12 + x

22 + … + x

n2

n − ( −x )

2

Definicja: Zdarzenie

Dowolny podzbiór zbioru Ω będziemy nazywać zdarzeniem, a elementy takiego

podzbioru będziemy nazywać zdarzeniami elementarnymi sprzyjającymi temu

zdarzeniu.

Zbiór pusty, czyli zdarzenie, któremu nie sprzyja żadne zdarzenie elementarne, na-

zywamy zdarzeniem niemożliwym.

Zbiór Ω, czyli zdarzenie, któremu sprzyja każde zdarzenie elementarne, nazywamy

zdarzeniem pewnym.

Słowniczek

266

Page 268: Matematyka 3

Definicja: zdarzenie przeciwne

Zdarzeniem przeciwnym do zdarzenia A, należącego do zbioru zdarzeń elementar-

nych Ω, nazywamy takie zdarzenie A’ należące do Ω, któremu sprzyjają wszystkie

zdarzenia elementarne, które nie sprzyjają zdarzeniu A.

Z tej definicji wynika, że również zdarzenie A jest zdarzeniem przeciwnym do A’.

Słowniczek

267

Page 269: Matematyka 3

Rozdział 5. Odpowiedzi

Stereometria / Graniastosłup prosty ijego własności. Związki miarowe wgraniastosłupachZadanie 1.2.1 (Wróć do zadania)Odpowiedź

V = 254 cm3

Zadanie 1.2.2 (Wróć do zadania)Odpowiedź

Są dwa takie graniastosłupy: V1 = 108 cm3, V2 = 112 cm3

Zadanie 1.2.3 (Wróć do zadania)OdpowiedźV = 486

Zadanie 1.2.4 (Wróć do zadania)Odpowiedź

V =32√15 cm3

Zadanie 1.2.5 (Wróć do zadania)Odpowiedź

Pc = 75 cm2

V =125√2

4 cm3

Zadanie 1.2.6 (Wróć do zadania)Odpowiedź

PA1BC1= 36√3 cm2

Zadanie 1.2.7 (Wróć do zadania)Odpowiedź

Pc = 75(2 + √3 ) cm2

V =125(3√3 + 5)

4 cm3

Zadanie 1.2.8 (Wróć do zadania)Odpowiedź

cosα = √63

Odpowiedzi

268

Page 270: Matematyka 3

Stereometria / Ostrosłup i jego własnościZadanie 1.3.1 (Wróć do zadania)Odpowiedź

Zadanie 1.3.2 (Wróć do zadania)Odpowiedź

Zadanie 1.3.3 (Wróć do zadania)Odpowiedź

V = 54√6 cm3

Pc = 108√3 cm2

Zadanie 1.3.4 (Wróć do zadania)Odpowiedź

V =32√3

3 j3

Zadanie 1.3.5 (Wróć do zadania)Odpowiedź

V = 144√3 cm3

Zadanie 1.3.6 (Wróć do zadania)Odpowiedź

Pc = (700 + 400√7 ) dm2

Zadanie 1.3.7 (Wróć do zadania)Odpowiedź

V =32√3

3 dm3

Zadanie 1.3.8 (Wróć do zadania)Odpowiedź

V =512√2

3 cm3

Zadanie 1.3.9 (Wróć do zadania)Odpowiedź

V = 10√51 cm3

V = 6√3a)

V =32√17

3b)

V = 18√39c)

V =83√31a)

V = 80b)

V = 64√3c)

Odpowiedzi

269

Page 271: Matematyka 3

Zadanie 1.3.10 (Wróć do zadania)Odpowiedź

sin α =3√13

13

Odpowiedzi

270

Page 272: Matematyka 3

Stereometria / Bryły obrotowe / Bryłyobrotowe - walecZadanie 1.4.1.1 (Wróć do zadania)Odpowiedź

V = 972π cm3 , Pc = 378π cm2

Zadanie 1.4.1.2 (Wróć do zadania)Odpowiedź

Pc = 1024 π cm2

Zadanie 1.4.1.3 (Wróć do zadania)Odpowiedź

V = 300π cm3

Zadanie 1.4.1.4 (Wróć do zadania)Odpowiedź

V =243

4 π cm3, Pc = (272 + 27√3)π cm2

Zadanie 1.4.1.5 (Wróć do zadania)Odpowiedź

V = 224π cm3

Zadanie 1.4.1.6 (Wróć do zadania)Odpowiedź

V = 270√5π cm3 , Pc = 270π cm2

Zadanie 1.4.1.7 (Wróć do zadania)Odpowiedź

V = 90√2π cm3

Zadanie 1.4.1.8 (Wróć do zadania)OdpowiedźDo tego naczynia można wrzucić nie więcej niż 18 kostek.

Odpowiedzi

271

Page 273: Matematyka 3

Stereometria / Bryły obrotowe / Bryłyobrotowe - stożekZadanie 1.4.2.1 (Wróć do zadania)Odpowiedź

Pb = 96π dm2 , V = 192π dm3

Zadanie 1.4.2.2 (Wróć do zadania)Odpowiedź

V = 192π cm3, Pc = 144 π cm2

Zadanie 1.4.2.3 (Wróć do zadania)Odpowiedź

V =343√3

3 π cm3

Zadanie 1.4.2.4 (Wróć do zadania)OdpowiedźV1V2

=5√385

7

Zadanie 1.4.2.5 (Wróć do zadania)Odpowiedź

sin α = √32

Zadanie 1.4.2.6 (Wróć do zadania)OdpowiedźPbwPbs

=2πrH

πr√r2 + H2 =2H√r2 + H2

r2 + H2

Zadanie 1.4.2.7 (Wróć do zadania)Odpowiedź

V =485 πcm3

Zadanie 1.4.2.8 (Wróć do zadania)Odpowiedź17

Odpowiedzi

272

Page 274: Matematyka 3

Elementy statystyki opisowej / Średnia,mediana, dominantaElementy statystyki opisowej / Średnia, mediana, dominanta / Średnie, mediana, dominanta,

czyli statystyki wyznaczające środek zestawu danych. Zadania

Zadanie 2.1.1 (Wróć do zadania)Odpowiedź9

Zadanie 2.1.2 (Wróć do zadania)Odpowiedźa = 11

Zadanie 2.1.3 (Wróć do zadania)Odpowiedźśrednia arytmetyczna jest większa niż mediana

Zadanie 2.1.4 (Wróć do zadania)Odpowiedź2

Zadanie 2.1.5 (Wróć do zadania)Odpowiedźx ≤ 6

Zadanie 2.1.6 (Wróć do zadania)Odpowiedź10

Zadanie 2.1.10 (Wróć do zadania)Odpowiedź

Rozwiązanie

14a)

9b)

Liczymy średnią ocen ze sprawdzianu z matematyki w klasie IIIc−x w =

1 ? 2 + 2 ? 3 + 3 ? 11 + 4 ? 8 + 5 ? 5 + 6 ? 12 + 3 + 11 + 8 + 5 + 1 =

10430 = 3,47

Wyższymi ocenami są więc 4, 5 i 6. Uczniów, którzy taką ocenę zdobyli, jest 8 + 5 + 1 = 14.

a)

Liczb, dla których liczymy medianę, jest 30, medianą będzie więc średnia liczb ustawionych

w niemalejący ciąg, stojących na pozycjach 15 i 16. Jeżeli dodamy liczbę uczniów, którzy ze

sprawdzianu z języka polskiego dostali 1,2 i 3, otrzymamy 4 + 5 + 7 = 16. Zatem na pozy-

cjach 15 i 16 stoją 3, stąd mediana jest równa 3. Oceny niższe to 2 i 1. Ze sprawdzianu z ję-

zyka polskiego otrzymało je 4 + 5 = 9 osób.

b)

Odpowiedzi

273

Page 275: Matematyka 3

Zadanie 2.1.11 (Wróć do zadania)Odpowiedź2

RozwiązanieLicząc średnią ocen w klasie z matematyki, otrzymujemy

−x w =

3 ? 2 + 12 ? 3 + 10 ? 4 + 1 ? 6 + x ? 53 + 12 + 10 + 1 + x =

88 + 5x26 + x .

Ponieważ średnia ta jest równa 3,5, to otrzymujemy równanie:

88 + 5x26 + x = 3,5,

które następnie przekształcamy do postaci

88 + 5x = 91 + 3,5x.

Stąd 1,5x = 3. Otrzymujemy więc x = 2.

Zadanie 2.1.12 (Wróć do zadania)Odpowiedź14 zł

RozwiązaniePoliczymy średnią cenę kilograma cukierków w otrzymanej mieszance

14 ? 12 + 9 ? 14 + 7 ? 1814 + 9 + 7 =

42030 = 14.

Zadanie 2.1.13 (Wróć do zadania)Odpowiedź29 lat

RozwiązanieOznaczmy przez x liczbę lat przepracowanych w tym zakładzie przez brygadzistę. Licząc średni

wiek pracy w zakładzie robotników wraz z brygadzistą, otrzymujemy równanie

10 ? 7 + x11 = 9

Stąd 70 + x = 99, czyli x = 29 lat.

Zadanie 2.1.14 (Wróć do zadania)Odpowiedź25

RozwiązanieOznaczmy przez x liczbę uczestników wycieczki. Policzymy średnią razem z opiekunem.

−x =

14 ? x + 40x + 1 = 15

Otrzymujemy więc równanie 14x + 40 = 15x + 15, stąd x = 25.

Zadanie 2.1.15 (Wróć do zadania)Odpowiedź

25%a)

Odpowiedzi

274

Page 276: Matematyka 3

Rozwiązanie

1,1 ∙ x1 + 1,1 ∙ x2 + … + 1,1 ∙ xnn = 1,1 ?

x1 + x2 + … + xnn

Zatem średnia pensja zwiększy się o 10%.

Zadanie 2.1.16 (Wróć do zadania)Odpowiedźmoda - 44

mediana - 43,5

średnia - 43,44

RozwiązanieWszystkich zawodników w drużynie jest: 1 + 3 + 4 + 6 + 2 = 16. Zatem mediana jest średnią aryt-

metyczną liczby stojącej na pozycji 8 i 9 w niemalejącym ciągu wszystkich wyników. Zauważmy, że

jeżeli zsumujemy liczbę obuwia w rozmiarze 41, 42 i 43, otrzymamy 1 + 3 + 4 = 8, zatem na po-

zycji 8 stoi wartość 43, a na pozycji 9 wartość 44. Mediana jest średnią arytmetyczną tych dwóch

wartości, więc jest równa43 + 44

2 = 43,5.

Na koniec policzymy średnią1 ? 41 + 3 ? 42 + 4 ? 43 + 6 ? 44 + 2 ? 46

16 =41 + 126 + 172 + 264 + 92

16 =69516 ≈ 43,44.

Zadanie 2.1.17 (Wróć do zadania)Odpowiedź68%

RozwiązanieInformację, że w 30-osobowej klasie średni wynik wyniósł 60%, możemy zinterpretować jako sy-

tuację, gdy 30 osób zdobyło 60%. Podobnie postąpimy z informacją o średnim wyniku klasy III b.

Otrzymujemy wówczas średnią w całej szkole równą:

30 ∙ 60% + 20 ∙ 80%20 + 30 =

1800% + 1600%50 =

3400%50 = 68%.

Zadanie 2.1.19 (Wróć do zadania)Odpowiedź

10%b)

jeżeli każdy z pracowników otrzyma podwyżkę o 500 zł, nową średnią będziemy liczyć na-

stępująco

−x =

(x1 + 500) + (x2 + 500) + … + (xn + 500)n =

x1 + x2 + … + xnn + 500.

Zatem średnia pensja też zwiększy się o 500 zł.

Możemy więc ułożyć proporcję

100%

x

2000

500

Stąd x =500 ? 100%

2000 = 25%.

a)

Jeżeli wszyscy pracownicy dostaną podwyżkę o 10%, nową średnią pensję będziemy liczyć

następująco

b)

24a)

Odpowiedzi

275

Page 277: Matematyka 3

Rozwiązanie

Ponieważ średnia liczb a, b, c jest równa 8, więca + b + c

3 = 8, skąd a + b + c = 24.

Zadanie 2.1.20 (Wróć do zadania)Odpowiedź20, 50 i 50

RozwiązanieOznaczmy wyniki uczniów, od najsłabszego do najlepszego, kolejno przez x, y i z. Mamy więc

x ≤ y ≤ z. Ponieważ liczba wyników jest nieparzysta, mediana jest równa środkowemu wynikowi.

Zatem y = 50. Maksymalnym do zdobycia wynikiem jest 50 punktów, stąd z = 50. Licząc następnie

średnią, otrzymujemyx + 50 + 50

3 = 40, stąd x = 20.

Zadanie 2.1.21 (Wróć do zadania)Odpowiedź5

RozwiązanieOznaczmy przez x liczbę ocen bardzo dobrych, które uzyskała Małgosia. Ponieważ na świadectwie

znalazło się 10 ocen i poza ocenami bardzo dobrymi były to jedna 3 i pozostałe 4, więc ocen do-

brych było 9 − x.

Zatem, licząc średnią ocen, otrzymujemy równanie:

5 ? x + 4 ? (9 − x) + 3

10 = 4,4.

Otrzymujemy więc 5x + 36 − 4x + 3 = 44, skąd x = 5.

10b)

7,5c)

Średnia arytmetyczna liczb 3a, 3b, 3c jest równa3a + 3b + 3c

3 = a + b + c = 24.a)

Średnia arytmetyczna liczb a + 1, b + 2, c + 3 jest równa(a + 1) + (b + 2) + (c + 3)

3 =a + b + c + 6

3 =24 + 6

3 =303 = 10.

b)

Średnia arytmetyczna liczb a, b, c, 6 jest równaa + b + c + 6

4 =24 + 6

4 =304 = 7,5.c)

Odpowiedzi

276

Page 278: Matematyka 3

Elementy statystyki opisowej / MiaryrozproszeniaZadanie 2.2.1 (Wróć do zadania)Odpowiedź

√10

Zadanie 2.2.2 (Wróć do zadania)Odpowiedź36,5

Zadanie 2.2.3 (Wróć do zadania)Odpowiedź32

Zadanie 2.2.4 (Wróć do zadania)Odpowiedź1, 2, 9,10,11

Zadanie 2.2.5 (Wróć do zadania)Odpowiedź

Rozwiązanie

Można wyciągnąć wniosek, że drugi zawodnik jest w dużo stabilnejszej formie. Jego średnia nie-

wiele się różni od średniej pierwszego zawodnika, za to zróżnicowanie wyników jest dużo mniej-

sze od zróżnicowania wyników zawodnika drugiego.

Zadanie 2.2.13 (Wróć do zadania)Odpowiedź3

pierwszya)

drugib)

Obliczamy średni wynik pierwszego zawodnika−x =

115 + 119 + 116 + 125 + 123 + 122 + 115 + 1258 =

9608 = 120. Obliczamy średni wynik drugiego za-

wodnika.−x =

120 + 115 + 116 + 121 + 123 + 124 + 115 + 1188 =

9528 = 119. Zatem pierwszy zawodnik ma wyższą

średnią długość skoku.

a)

Obliczamy wariancję wyników pierwszego zawodnika

σ2 =(−5)

2+ (−1)

2+ (−4)

2+ 52+32 + 22 + (−5)

2+ 52

8 =130

8 = 16,25. Obliczamy wariancję wyników dru-

giego zawodnika.

σ2 =12 + 42 + 32 + 22+42 + 52 + 42 + 12

8 =888 = 11.

b)

Odpowiedzi

277

Page 279: Matematyka 3

Rozwiązanie

Średnia danych liczb jest równa−x =

15 + 12 + 17 + 10 + 13 + 8 + 10 + 168 = 12,625. Wariancja z dokładno-

ścią do trzech miejsc po przecinku jest równa

σ2 =152 + 122 + 172 + 102+132 + 82 + 102 + 162

8 − (12,625)2

= 8,984, stąd odchylenie standardowe σ = 2,997

. Wszystkie liczby odległe od średniej o więcej niż odchylenie standardowe są większe od 15,622

lub mniejsze od 9,628.

Zadanie 2.2.14 (Wróć do zadania)Odpowiedź2

Rozwiązanie

Odchylenie przeciętne przyjazdu tramwaju jest równe3,5 + 2 + 1,5 + 1 + 2

5 =105 = 2

Zadanie 2.2.16 (Wróć do zadania)Odpowiedź

W pierwszym tygodniu−x = 4, σ ≈ 2, w drugim tygodniu

−x = 4, σ ≈ 1,07, a w całym okresie

−x = 4,

σ ≈ 1,60.

RozwiązanieW pierwszym tygodniu średni czas, jaki Magda poświęciła na naukę, wynosił:

−x =

5 + 6 + 3 + 2 + 4 + 7 + 17 =

287 = 4.

W drugim tygodniu średnia ilość czasu wynosiła:

−x =

3 + 3 + 4 + 4 + 5 + 6 + 37 =

287 = 4.

Ponieważ obie próby były równoliczne, więc średnia ilość czasu, jaki Magda poświęciła na naukę

przez dwa tygodnie, była też równa 4.

Wariancja w pierwszym tygodniu wynosiła:

σ2 =12 + 22 + (−1)

2+ ( − 2)

2+02 + 32 + (−3)

2

7 =287 = 4

Zatem odchylenie standardowe w pierwszym tygodniu było równe σ = √4 = 2.

W drugim tygodniu wariancja wynosiła:

σ2 =(−1)

2+ (−1)

2+ 02 + 02+12 + 22 + (−1)

2

7 =87 ≈ 1,14.

Zatem odchylenie standardowe w drugim tygodniu było równe σ = √1,14 ≈ 1,07.

Przez cały okres badania wariancja wynosiła σ2 =28 + 8

14 =3614 ≈ 2,57, stąd odchylenie standardowe

σ = √2,57 ≈ 1,60.

Zadanie 2.2.17 (Wróć do zadania)Odpowiedź

−x = 6, 62 = 8, σ = 2√2, po zwiększeniu każdej liczby dwa razy zarówno średnia, jak i odchy-

lenie standardowe też wzrosną dwukrotnie, wariancja wzrośnie czterokrotnie.

a)

Odpowiedzi

278

Page 280: Matematyka 3

Rozwiązanie

Zadanie 2.2.18 (Wróć do zadania)Odpowiedź

σ2 = 0,89, σ ≈ 0,94

RozwiązaniePrzyjmujemy następujące wagi

1 dziecko 2 dzieci 3 dzieci 4 dzieci Suma wag

0,4 0,4 0,1 0,1 1

Średnia ważona jest wówczas równa

−x w = 0,4 ∙ 1 + 0,4 ∙ 2 + 0,1 ∙ 3 + 0,1 ∙ 4 = 0,4 + 0,8 + 0,3 + 0,4 = 1,9

Liczymy wariancję.

σ2 =0,4 ∙ 12 + 0,4 ∙ 22 + 0,1 ∙ 32 + 0,1 ∙ 42

1 − (1,9)2

= 0,4 + 1,6 + 0,9 + 1,6 − 3,61 = 0,89

Wtedy odchylenie standardowe jest równe σ ≈ 0,94.

Zarówno średnia, jak i odchylenie standardowe wzrosną trzykrotnie.b)

Średnia danych liczb−x =

2 + 4 + 6 + 8 + 105 = 6. Wtedy wariancja jest równa

σ2 =(−4)

2+ (−2)

2+ 02 + 22 + 42

5 = 8, stąd odchylenie standardowe jest równe σ = √8 = 2√2.

Jeżeli liczby zwiększymy dwukrotnie, otrzymamy: 4, 8, 12, 16, 20, dla których średnia jest

równa−x =

4 + 8 + 12 + 16 + 205 =

606 = 12. Wariancja wynosi σ2 =

(−8)2

+ (−4)2

+ 02 + 42 + 82

5 =160

5 = 32,

czyli σ = √32 = 4√2. Zarówno średnia, jak i wariancja wzrosną dwukrotnie.

a)

Po zwiększeniu danych liczb trzykrotnie, otrzymujemy: 3a, 3b, 3c, 3d, 3e. Średnia tego ze-

stawu wynosi:3a + 3b + 3c + 3d + 3e

5 = 3 ∙ a + b + c + d + e5 = 3 ?

−x , a wariancja

(3a)2

+ (3b)2

+ (3c)2

+ (3d)2

+ (3e)2

5 − (3 ∙−x )

2

= 9 ?a2 + b2 + c2 + d2 + e2

5 − 9 ?−x = 9 ? σ2, stąd odchylenie

standardowe jest równe σ = √9 ∙ σ2 = 3 ∙ σ. Zatem zarówno średnia, jak i odchylenie stan-

dardowe zwiększą się trzykrotnie.

b)

Odpowiedzi

279

Page 281: Matematyka 3

Kombinatoryka / Liczba elementówzbioru skończonegoZadanie 3.1.1 (Wróć do zadania)Odpowiedź299

Zadanie 3.1.2 (Wróć do zadania)Odpowiedź23

Zadanie 3.1.3 (Wróć do zadania)Odpowiedź23

Zadanie 3.1.4 (Wróć do zadania)Odpowiedź127

Zadanie 3.1.5 (Wróć do zadania)Odpowiedź18

Zadanie 3.1.6 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 3.1.7 (Wróć do zadania)Odpowiedź

36a)

45b)

15c)

180d)

| A | = 62 − 26 = 36a)

| B | =12 ? 90 = 45b)

| C | =16 ? 90 = 15c)

| D | =15 ? 900 = 180d)

| A1 | = 90a)

| A3 | = 90b)

Odpowiedzi

280

Page 282: Matematyka 3

Rozwiązanie

Zadanie 3.1.8 (Wróć do zadania)Odpowiedź149

RozwiązanieJedyną trzycyfrową liczbą nieparzystą większą od 306, która jest zapisana za pomocą tych samych

cyfr jest 603. Oznacza to, że w wyrwanej części encyklopedii było603 − 305

2 = 149 kartek.

Zadanie 3.1.9 (Wróć do zadania)Odpowiedź900

Rozwiązanie

Ponieważ:2014

19 = 106 oraz2014

2 = 1007, więc Marek ukończył bieg na 107 miejscu, a Jola – na 1008

. Mamy więc obliczyć, ile jest osób, które zajęły w tym biegu miejsca od 108 do 1008: jest ich

1007 − 107 = 900.

Zadanie 3.1.10 (Wróć do zadania)Odpowiedź

Rozwiązanie

| A6 | = 90c)

| A8 | = 90d)

| A1 | = | A3 | = | A6 | = | A8 | =1

10 ? 900 = 90a)

4a)

22b)

36c)

112d)

Te liczby to 20, 40, 60, 80.a)

I sposób.

W zbiorze {1, 2, 3, … , 100} jest 25 liczb podzielnych przez 4, trzy z nich: 4, 8, i 100 nie są

dwucyfrowe. Zatem wszystkich liczb dwucyfrowych, które dzielą się przez 4, jest 25 − 3 = 22.

II sposób. ?994 ? − ?9

4? = ?2434? − ?2

14? = 24 − 2 = 22.

b)

I sposób. W zbiorze {1, 2, 3, … , 1000} jest 40 liczb podzielnych przez 25, cztery z nich:

25, 50, 75 i 1000 nie są trzycyfrowe. Zatem wszystkich liczb trzycyfrowych, które dzielą się

przez 25 jest 40 − 4 = 36.

II sposób. ?99925 ? − ?99

25? = ?392425? − ?3

2425? = 39 − 3 = 36.

c)

I sposób. W zbiorze {1, 2, 3, … , 1000} jest 125 liczb podzielnych przez 8, dwanaście z

nich to liczby mniejsze od 100, a 1000 to liczba czterocyfrowa. Zatem wszystkich liczb trzy-

d)

Odpowiedzi

281

Page 283: Matematyka 3

Zadanie 3.1.11 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 3.1.12 (Wróć do zadania)Odpowiedź

Rozwiązanie

cyfrowych, które dzielą się przez 8, jest 125 − 13 = 112.

II sposób.

?9998 ? − ?99

8 ? = ?12478? − ?12

38? = 124 − 12 = 112.

81a)

53b)

474c)

391d)

?99911 ? − ?99

11? = ?909

11? − 9 = 90 − 9 = 81.a)

?99917 ? − ?99

17? = ?581317? − ?5

1417? = 58 − 5 = 53.

b)

?999919 ? − ?999

25 ? = ?5265

19? − ?521119? = 526 − 52 = 474,

c)

?999923 ? − ?999

23 ? = ?4341723? − ?43

1023? = 434 − 43 = 391.

d)

45a)

30b)

180c)

36d)

Ponieważ każda liczba podzielna przez 10 dzieli się również przez 2, więc zbiór liczb po-

dzielnych przez 2 zawiera zbiór liczb podzielnych przez 10. Zatem zbiór liczb dwucyfrowych,

które są podzielne przez 2 lub przez 10, to zbiór liczb dwucyfrowych, które są podzielne

przez 2, a liczba jego elementów jest równa12 ? 90 = 45.

a)

Ponieważ każda liczba podzielna przez 9 dzieli się również przez 3, więc zbiór liczb podziel-

nych przez 3 zawiera zbiór liczb podzielnych przez 9. Zatem zbiór liczb dwucyfrowych, które

są podzielne przez 3 lub przez 9, to zbiór liczb dwucyfrowych, które są podzielne przez 3, a

liczba jego elementów jest równa13 ? 90 = 30.

b)

Ponieważ każda liczba podzielna przez 15 dzieli się również przez 5, więc zbiór liczb po-

dzielnych przez 5 zawiera zbiór liczb podzielnych przez 15. Zatem zbiór liczb trzycyfrowych,

c)

Odpowiedzi

282

Page 284: Matematyka 3

Zadanie 3.1.13 (Wróć do zadania)OdpowiedźDokładnie 20 uczestników konkursu nie zna języka angielskiego.

Zadanie 3.1.14 (Wróć do zadania)OdpowiedźW klasie IIIb jest 33 − 19 = 14 dziewczynek. Ponieważ na kółko chodzi 15 uczniów tej klasy, więc

jest wśród nich co najmniej jeden chłopiec.

Zadanie 3.1.15 (Wróć do zadania)Odpowiedź3 osoby

RozwiązanieZapisanych jest 51 osób, a dodając liczby tych, którzy zapisali się na zajęcia koła plastycznego oraz

na zajęcia koła teatralnego, otrzymamy 38 + 16 = 54. Zatem 3 osoby planują uczęszczać na zajęcia

obu tych kół.

Zadanie 3.1.16 (Wróć do zadania)Odpowiedź

Rozwiązanie

które są podzielne przez 5 lub przez 15, to zbiór liczb trzycyfrowych, które są podzielne

przez 5, a liczba jego elementów jest równa15 ? 900 = 180.

Ponieważ każda liczba podzielna przez 75 dzieli się również przez 25, więc zbiór liczb po-

dzielnych przez 25 zawiera zbiór liczb podzielnych przez 75. Zatem zbiór liczb trzycyfro-

wych, które są podzielne przez 25 lub przez 75, to zbiór liczb trzycyfrowych, które są po-

dzielne przez 25, a liczba jego elementów jest równa1

25 ? 900 = 36.

d)

Ponieważ 50 uczestników zna język francuski, więc co najmniej 30 zna oba języki: francuski i

angielski.

a)

Ponieważ 40 uczestników zna język niemiecki, więc co najmniej 20 zna oba języki: niemiecki

i angielski.

b)

Ponieważ 21 uczestników zna język rosyjski, więc co najmniej 1 zna oba języki: rosyjski i an-

gielski.

c)

50a)

36b)

156c)

48d)

Ozn. A – zbiór liczb dwucyfrowych podzielnych przez 2, B – zbiór liczb dwucyfrowych po-

dzielnych przez 9. Wtedy: A ? B to zbiór liczb dwucyfrowych, które są podzielne przez 2 lub

przez 9, A ∩ B to zbiór liczb dwucyfrowych, które są podzielne przez 2 i przez 9, czyli zbiór

liczb dwucyfrowych podzielnych przez 18. Ponieważ | A | =12 ? 90, | B | =

19 ? 90 oraz

| A ∩ B | =1

18 ? 90, więc | A ? B | = | A | + | B | − | A ∩ B | = 45 + 10 − 5 = 50.

a)

Odpowiedzi

283

Page 285: Matematyka 3

Zadanie 3.1.17 (Wróć do zadania)Odpowiedź2

RozwiązanieLiczba osób, które zgłosiły się na zajęcia po kolacji jest równa 56 + 38 − 26 = 68. Zatem dwie osoby

postanowiły zostać po kolacji w pokoju.

Zadanie 3.1.18 (Wróć do zadania)OdpowiedźPozostało 600 liczb.

Rozwiązanie

Zauważmy, że w opisany sposób ze zbioru A = {1, 2, 3, … , 999, 1000} usunięto każdą liczbę,

która dzieli się przez 4 lub przez 5. Oznaczmy: przez A4 –podzbiór tych liczb ze zbioru A, które

dzielą się przez 4, przez A5 – podzbiór tych liczb ze zbioru A, które dzielą się przez 5. Wtedy

| A4 ? A5 | = | A4 | + | A5 | − | A4 ∩ A5 | =14 ? 1000 +

15 ? 1000 − 1

20 ? 1000 = 250 + 200 − 50 = 400

, a zatem pozostało 1000 − 400 = 600 liczb.

Wynik ten można uzyskać też w inny sposób. Rozpatrując mianowicie możliwe reszty z dzielenia

liczby całkowitej przez 20, stwierdzimy, że dla każdej z ośmiu reszt: 0, 4, 5, 8, 10, 12, 15, 16

dostajemy liczbę podzielną przez 4 lub 5, a dla pozostałych 12 przypadków dostajemy liczbę, która

nie dzieli się ani przez 4, ani przez 5. Zatem pozostało1220 ? 1000 = 600 liczb.

Zadanie 3.1.19 (Wróć do zadania)OdpowiedźOznaczmy: A - zbiór osób, które głosowały na kandydata A,

B - zbiór osób, które głosowały na kandydata B,

Ozn. A – zbiór liczb dwucyfrowych podzielnych przez 3, B – zbiór liczb dwucyfrowych po-

dzielnych przez 10. Wtedy: A ? B to zbiór liczb dwucyfrowych, które są podzielne przez 3 lub

przez 10, A ∩ B to zbiór liczb dwucyfrowych, które są podzielne przez 3 i przez 10, czyli

zbiór liczb dwucyfrowych podzielnych przez 30. Ponieważ | A | =13 ? 90, | B | =

110 ? 90

oraz | A ∩ B | =1

30 ? 90, więc | A ? B | = | A | + | B | − | A ∩ B | = 30 + 9 − 3 = 36.

b)

Ozn. A – zbiór liczb trzycyfrowych podzielnych przez 6, B – zbiór liczb trzycyfrowych podziel-

nych przez 75. Wtedy: A ? B to zbiór liczb trzycyfrowych, które są podzielne przez 6 lub

przez 75, A ∩ B to zbiór liczb trzycyfrowych, które są podzielne przez 6 i przez 75, czyli zbiór

liczb trzycyfrowych podzielnych przez 150. Ponieważ | A | =16 ? 900, | B | =

175 ? 900

oraz | A ∩ B | =1

150 ? 900, więc

| A ? B | = | A | + | B | − | A ∩ B | = 150 + 12 − 6 = 156.

c)

Ozn. A – zbiór liczb trzycyfrowych podzielnych przez 25, B – zbiór liczb trzycyfrowych po-

dzielnych przez 60. Wtedy: A ? B to zbiór liczb trzycyfrowych, które są podzielne przez 25

lub przez 60, A ∩ B to zbiór liczb trzycyfrowych, które są podzielne przez 25 i przez 60, czyli

zbiór liczb trzycyfrowych podzielnych przez 300. Ponieważ | A | =1

25 ? 900,

| B | =1

60 ? 900 oraz | A ∩ B | =1

300 ? 900, więc

| A ? B | = | A | + | B | − | A ∩ B | = 36 + 15 − 3 = 48.

d)

Odpowiedzi

284

Page 286: Matematyka 3

C - zbiór osób, które głosowały na kandydata C.

Wtedy

| A ? B ? C | = | A | + | B | + | C | − ( | A ∩ B | + | B ∩ C | + | A ∩ C | ) − | A ∩ B ∩ C | =

200 + 211 + 134 − (68 + 73 + 86) + 56 = 374,

co oznacza, że głosowały co najmniej 374 osoby (być może ktoś oddał głos, nie wskazując żadnego

z tych kandydatów). Jest to sprzeczne z informacją, że głosujących było 370.

Zadanie 3.1.20 (Wróć do zadania)Odpowiedź660

RozwiązanieOznaczmy: A2 – zbiór liczb trzycyfrowych, które dzielą się przez 2,

A3 – zbiór liczb trzycyfrowych, które dzielą się przez 3,

A5 – zbiór liczb trzycyfrowych, które dzielą się przez 5.

Wtedy

| A2 ? A3 ? A5 | = | A2 | + | A3 | + | A5 | − ( | A2 ∩ A3 | + | A3 ∩ A5 | + | A2 ∩ A5 | ) + | A2 ∩ A3 ∩ A5 | =

=12 ? 900 +

13 ? 900 +

15 ? 900 − (1

6 ? 900 +1

15 ? 900 +1

10 ? 900) +1

30 ? 900 =

= 450 + 300 + 180 − (150 + 60 + 90) + 30 = 660

Wynik ten można uzyskać też w inny sposób. Rozpatrując mianowicie możliwe reszty z dzielenia

liczby całkowitej przez 30, stwierdzimy, że dla każdej z 8 reszt: 1, 7, 11, 13, 17, 19, 23, 29 do-

stajemy liczbę niepodzielną ani przez 2, ani przez 3, ani przez 5. Zatem dla pozostałych 22 przy-

padków dostajemy liczbę, która dzieli się przez 2 lub przez 3, lub przez 5. Oznacza to, że jest2230 ? 900 = 660 liczb trzycyfrowych, które dzielą się przez 2, lub przez 3 lub przez 5.

Zadanie 3.1.21 (Wróć do zadania)OdpowiedźPonieważ wśród uczestników konkursu: 5 nie zna języka angielskiego, 6 nie zna języka francuskie-

go, 8 nie zna języka niemieckiego, więc co najmniej 20 − (5 + 6 + 8) = 1 osoba zna wszystkie trzy

języki.

Wybór takiej osoby możemy krok po kroku wytłumaczyć na przykład w następujący sposób:.

Zbieramy wszystkich laureatów konkursu w jednej sali i prosimy, żeby:

(1) najpierw wyszli z sali wszyscy, którzy nie znają angielskiego - wówczas na sali pozostanie 15

osób,

(2) następnie z sali wyszli wszyscy, którzy nie znają francuskiego – wtedy wyjdzie co najwyżej 6

Odpowiedzi

285

Page 287: Matematyka 3

osób, czyli pozostanie ich co najmniej 9,

(3) ostatecznie z sali wyszli wszyscy, którzy nie znają niemieckiego – w tym momencie wyjdzie co

najwyżej 8 osób, więc co najmniej jedna osoba pozostanie w sali.

Ta osoba zna każdy z trzech języków: angielski, francuski i niemiecki.

Zadanie 3.1.22 (Wróć do zadania)OdpowiedźOznaczamy: j – liczba zadań rozwiązanych tylko przez Jarka,

d – liczba zadań rozwiązanych tylko przez Darka,

m – liczba zadań rozwiązanych tylko przez Marka,

a – liczba zadań rozwiązanych przez Jarka i przez Darka, których nie rozwiązał Marek,

b – liczba zadań rozwiązanych przez Darka i przez Jarka, których nie rozwiązał Darek,

c – liczba zadań rozwiązanych przez Darka i przez Marka, których nie rozwiązał Jarek,

x – liczba zadań rozwiązanych przez każdego z chłopców.

Z treści zadania wynika, że

j + d + m + a + b + c + x = 90

stąd

2(j + d + m) + 2(a + b + c) + 2x = 2 ? 90 = 180.

Ponadto

j + a + b + x = 70

d + a + x + c = 60

m + b + x + c = 40

Dodając trzy ostatnie równości stronami otrzymujemy

(j + d + m) + 2(a + b + c) + 3x = 170

Odejmując stronami tę równość od równości 2(j + d + m) + 2(a + b + c) + 2x = 2 ? 90 = 180, otrzy-

mujemy

(j + d + m) − x = 10.

Oznacza to, że zadań rozwiązanych tylko przez jednego z chłopców było o 10 więcej niż rozwiąza-

nych przez każdego z nich. To spostrzeżenie kończy dowód.

Odpowiedzi

286

Page 288: Matematyka 3

Kombinatoryka / Reguła mnożenia,reguła dodawaniaZadanie 3.2.1 (Wróć do zadania)Odpowiedź42

Zadanie 3.2.2 (Wróć do zadania)Odpowiedź6

Zadanie 3.2.3 (Wróć do zadania)Odpowiedź25

Zadanie 3.2.4 (Wróć do zadania)Odpowiedź8

Zadanie 3.2.5 (Wróć do zadania)Odpowiedź20

Zadanie 3.2.6 (Wróć do zadania)Odpowiedź60

Zadanie 3.2.7 (Wróć do zadania)Odpowiedź198

Zadanie 3.2.8 (Wróć do zadania)Odpowiedź144

Zadanie 3.2.9 (Wróć do zadania)Odpowiedź15

RozwiązanieStosujemy regułę mnożenia: 3 ? 5 = 15.

Polecamy zilustrować rozwiązanie, stosując metodę tabeli.

Zadanie 3.2.10 (Wróć do zadania)Odpowiedź

49a)

42b)

Odpowiedzi

287

Page 289: Matematyka 3

Rozwiązanie

Polecamy zilustrować rozwiązan, stosując metodę tabeli.

Zadanie 3.2.11 (Wróć do zadania)Odpowiedź

RozwiązanieStosujemy metodę tabeli (p1 – wynik losowania z pierwszego pudełka, p2 – wynik losowania z dru-

giego pudełka).

Korzystamy z reguły mnożenia: 7 ? 7 = 49.a)

Korzystamy z reguły mnożenia: 7 ? 6 = 42.b)

6a)

5b)

p1 / p2biała czarna zielona

biała x x 2 możliwości

czarna x x 2 możliwości

zielona x x 2 możliwości

Razem: 2 ? 3 = 6

Można ten wynik otrzymać, zauważając, że są dokładnie trzy możliwości wylosowania kul

tego samego koloru, stąd wszystkich wyników, w których uzyskamy kule różnych kolorów,

jest: 3 ? 3 − 3 ? 1 = 6.

a)

p1 / p2biała czarna zielona

biała x x x 3 możliwość

czarna x 1 możliwość

zielona x 1 możliwość

Razem: 3 + 2 ? 1 = 5

Można ten wynik otrzymać, zauważając, że są dokładnie 2 ? 2 = 4 możliwości wylosowania

dwóch kul, wśród których nie będzie żadnej kuli białej, więc wszystkich wyników, w których

uzyskamy co najmniej jedną kulę białą, jest: 3 ? 3 − 2 ? 2 = 5.

b)

Odpowiedzi

288

Page 290: Matematyka 3

Zadanie 3.2.12 (Wróć do zadania)Odpowiedź

Rozwiązanie

Polecamy zilustrować rozwiązanie, stosując metodę tabeli.

Zadanie 3.2.13 (Wróć do zadania)Odpowiedź

Rozwiązanie

Polecamy zilustrować rozwiązanie, stosując metodę tabeli.

Zadanie 3.2.14 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 3.2.15 (Wróć do zadania)Odpowiedź

56a)

132b)

Korzystamy z reguły mnożenia: 8 ? 7 = 56.a)

Korzystamy z reguły mnożenia: 12 ? 11 = 132.b)

30a)

25b)

Korzystamy z reguły mnożenia: 5 ? 6 = 30.a)

Korzystamy z reguły mnożenia: 5 ? 5 = 25.b)

32a)

21b)

12c)

5d)

Kwadratów o boku 1 jest, oczywiście, 4 ? 8 = 32.a)

Dwie sąsiednie kolumny dla kwadratu o boku 2 możemy wybrać na 3 sposoby, a dwa

sąsiednie wiersze – na 7 sposobów. Zatem wszystkich kwadratów o boku 2 jest 3 ? 7 = 21.

b)

Trzy sąsiednie kolumny dla kwadratu o boku 3 możemy wybrać na 2 sposoby, a trzy sąsied-

nie wiersze – na 6 sposobów. Zatem wszystkich kwadratów o boku 3 jest 2 ? 6 = 12.

c)

Cztery sąsiednie kolumny dla kwadratu o boku 4 możemy wybrać na 1 sposób, a cztery

sąsiednie wiersze – na 5 sposobów. Zatem wszystkich kwadratów o boku 5 jest 1 ? 5 = 5.

d)

30a)

28b)

Odpowiedzi

289

Page 291: Matematyka 3

Rozwiązanie

Polecamy zilustrować rozwiązanie, stosując metodę tabeli.

Zadanie 3.2.16 (Wróć do zadania)Odpowiedź

Rozwiązanie

Polecamy zilustrować rozwiązanie, stosując metodę tabeli.

Zadanie 3.2.17 (Wróć do zadania)Odpowiedź15

RozwiązanieLiczba 1 jest najmniejszą z liczb w danym zbiorze, więc nie można jej wylosować jako pierwszej.

Jeżeli za pierwszym razem wylosujemy liczbę 2, to jako drugą możemy wylosować wyłącznie liczbę

1. Jeżeli natomiast za pierwszym razem wylosujemy liczbę n większą od 2, to za drugim razem mo-

żemy wylosować każdą z dwóch liczb: n − 1 lub n − 2. Zatem liczba poszukiwanych wyników jest

równa 1 + 2 ? 7 = 15.

Polecamy zilustrować rozwiązanie, stosując metodę tabeli.

Zadanie 3.2.18 (Wróć do zadania)Odpowiedź

15c)

24d)

Liczba dzielników jest równa (5 + 1) ? (4 + 1) = 30.a)

Liczba dzielników jest równa (7 + 1) ? (3 + 1) = 28.b)

Rozkładamy liczbę 3969 na czynniki pierwsze: 3969 = 72 ? 34. Oznacza to, że liczba dzielni-

ków naturalnych liczby 3969 jest równa (2 + 1) ? (4 + 1) = 15.

c)

Rozkładamy liczbę 4000 na czynniki pierwsze: 4000 = 53 ? 25. Zatem liczba dzielników natu-

ralnych tej liczby jest równa (3 + 1) ? (5 + 1) = 24.

d)

24a)

37b)

Korzystamy z reguły mnożenia i reguły dodawania: 3 ? 4 + 4 ? 3 = 24.a)

Korzystamy z reguły mnożenia i reguły dodawania: 3 ? 4 + 3 ? 3 + 4 ? 4 = 37. Można ten wy-

nik otrzymać również licząc następująco: 7 ? 7 − 4 ? 3 = 37.

b)

16a)

7b)

Odpowiedzi

290

Page 292: Matematyka 3

Rozwiązanie

Polecamy zilustrować rozwiązanie, stosując metodę tabeli.

Zadanie 3.2.19 (Wróć do zadania)Odpowiedź

Rozwiązanie

Polecamy zilustrować rozwiązanie, stosując metodę tabeli.

Zadanie 3.2.20 (Wróć do zadania)Odpowiedź18

Rozwiązanie

Zauważmy, że różnica y − x jest liczbą całkowitą oraz y ≠ x. Szukamy zatem takich par (x, y), że

| y − x | = 1, co oznacza, że wylosowane liczby muszą różnić się o 1. Jeżeli za pierwszym razem

wylosujemy liczbę 1 lub 10, to jako drugą możemy wylosować wyłącznie jedną liczbę, odpowied-

nio 2 oraz 9. Jeżeli natomiast za pierwszym razem wylosujemy liczbę n różną od 1 i od 10, to za

drugim razem możemy wylosować każdą z dwóch liczb: n − 1 lub n + 1. Zatem liczba poszukiwa-

nych wyników jest równa 2 ? 1 + 8 ? 2 = 18.

Polecamy zilustrować rozwiązanie, stosując metodę tabeli.

Wynikiem obu rzutów mogą być jedynie liczby ze zbioru {1, 2, 3, 4}, zatem liczba wszyst-

kich wyników jest równa 4 ? 4 = 16.

a)

Spośród wszystkich wyników z podpunktu a) odrzucamy te, w których obie wyrzucone licz-

by oczek są mniejsze od 4. Otrzymujemy stąd, że liczba wszystkich wyników jest równa

4 ? 4 − 3 ? 3 = 7.

b)

6a)

42b)

48c)

Jeżeli za pierwszym razem wylosujemy jeden z trzech losów wygrywających, to drugi wygry-

wający możemy otrzymać w drugim losowaniu na 2 sposoby, zatem dwa losy wygrywające

wylosujemy na 3 ? 2 = 6 sposobów.

a)

Jeżeli za pierwszym razem wylosujemy jeden z trzech losów wygrywających, to za drugim

razem musimy wylosować jeden z siedmiu losów przegrywających, jeżeli natomiast za

pierwszym razem wylosujemy jeden z siedmiu losów przegrywających, to za drugim razem

musimy wylosować jeden z trzech losów wygrywających. Zatem dokładnie jeden los wygry-

wający wylosujemy na 3 ? 7 + 7 ? 3 = 42 sposoby.

b)

Co najmniej jeden los wygrywający wylosujemy wtedy, gdy wylosujemy dokładnie jeden ta-

ki los lub dokładnie dwa takie losy, zatem odpowiedzią jest liczba 6 + 42 = 48. Zauważmy

też, że w wyniku opisanego losowania otrzymamy albo co najmniej jeden los wygrywający,

albo oba przegrywające. Ponieważ wszystkich wyników losowania jest 10 ? 9 = 90, a oba lo-

sy przegrywające możemy wylosować na 7 ? 6 = 42 sposobów, więc co najmniej jeden los

wygrywający otrzymamy na 90 − 42 = 48 sposobów.

c)

Odpowiedzi

291

Page 293: Matematyka 3

Zadanie 3.2.21 (Wróć do zadania)Odpowiedź

RozwiązanieW zbiorze wszystkich wyników dwukrotnego rzutu kostką wyróżniamy podzbiory: A – wszystkich

takich wyników, że co najmniej raz wypadła liczba oczek równa 5,

B – wszystkich takich wyników, że suma liczb wyrzuconych oczek jest podzielna przez 3.

Wtedy

Polecamy zilustrować rozwiązanie, stosując metodę tabeli.

Zadanie 3.2.22 (Wróć do zadania)Odpowiedź70

Rozwiązanie

• Jeżeli za pierwszym razem wylosujemy liczbę niepodzielną ani przez 2, ani przez 3 (jest ich 5

), to za drugim razem musimy wylosować 6 lub 12.

• Jeżeli wylosujemy liczbę parzystą niepodzielną przez 3 (jest ich 5), to za drugim razem musi-

my wylosować liczbę podzielną przez 3.

• Jeżeli za pierwszym wylosujemy liczbę nieparzystą podzielną przez 3 (są takie 2), to za dru-

gim razem musimy wylosować liczbę parzystą.

• Jeżeli wylosujemy liczbę podzielną przez 6 (są takie 2), to za drugim razem możemy wyloso-

wać dowolną liczbę. Zatem szukana liczba wyników to 5 ? 2 + 5 ? 4 + 2 ? 7 + 2 ? 13 = 70.

Polecamy zilustrować rozwiązanie, stosując metodę tabeli.

Zadanie 3.2.23 (Wróć do zadania)Odpowiedź

Rozwiązanie

4a)

19b)

w jednym z rzutów musimy wyrzucić 5, a w drugim 1 lub 4, zatem | A ∩ B | = 2 + 2 = 4,a)

obliczamy, że | A | = 12, | B | = 11, zatem stosując wzór na liczbę elementów sumy

dwóch zbiorów otrzymujemy

| A ? B | = | A | + | B | − | A ∩ B | = 12 + 11 − 4 = 19.

b)

198a)

1386b)

2156c)

4455d)

S =12 ? 32 ? 44 = 198a)

S =12 ? 62 ? 77 = 1386b)

S =12 ? 72 ? 88 = 2156c)

Odpowiedzi

292

Page 294: Matematyka 3

Zadanie 3.2.24 (Wróć do zadania)Odpowiedź

Rozwiązanie

S =12 ? 92 ? 110 = 4455d)

145a)

208b)

100c)

Dzielimy wyniki pojedynczego losowania ze względu na parzystość wylosowanej liczby:

wynik pojedynczego

losowania

{1, 2, 3, … , 16, 17}

wyniki nieparzyste

{1, 3, 5, 7, 9, 11, 13, 15, 17}wyniki parzyste

{2, 4, 6, 8, 10, 12, 14, 16}

17 możliwości 9 możliwości 8 możliwości

Zauważmy, że aby suma wylosowanych liczb była parzysta, musimy w obu rzutach otrzy-

mać liczby tej samej parzystości. Oznacza to, że:

− do każdej z 9 liczb nieparzystych wylosowanych za pierwszym razem musimy za drugim

razem ponownie wylosować jedną z 9 liczb nieparzystych, co daje łącznie 9 ∙ 9 = 81 możli-

wości,

− do każdej z 8 liczb parzystych wylosowanych za pierwszym razem musimy za drugim ra-

zem ponownie wylosować jedną z 8 liczb nieparzystych, co daje łącznie 8 ∙ 8 = 64 możliwo-

ści.

Wobec tego łącznie otrzymujemy 9 ∙ 9 + 8 ∙ 8 = 81 + 64 = 145 wyników, dla których suma

wylosowanych liczb jest parzysta.

a)

Zbiór wszystkich wyników dwukrotnego losowania ze zwracaniem ze zbioru

{1, 2, 3, ... , 16, 17} można rozbić na dwa podzbiory:

A – tych wyników, dla których iloczyn wylosowanych liczb jest nieparzysty,

B – tych wyników, dla których iloczyn wylosowanych liczb jest parzysty.

Wtedy

| A ? B | = | A | + | B | ,

przy czym | A ? B | = 17 ? 17 = 289 (tyle jest wszystkich możliwych wyników takiego loso-

wania) oraz | A | = 9 ? 9 = 81 (tyle jest wyników, dla których iloczyn wylosowanych liczb

jest nieparzysty).

Zatem | B | = 289 − 81 = 208, co oznacza, że jest 208 wyników tego doświadczenia, dla

których iloczyn wylosowanych liczb jest parzysty.

b)

Posługujemy się metodą tabeli: zaznaczamy wszystkie przypadki i obliczamy, że jest ich 100

.

Można też rozpatrzyć najpierw wzorcową tabelę, w której opisane są przypadki odpowiada-

jące wszystkim możliwym wynikom losowania ze względu na resztę z dzielenia przez 6.

Zaznaczamy w niej te, dla których iloczyn liczb wyrzuconych oczek jest podzielny przez 6.

c)

Odpowiedzi

293

Page 295: Matematyka 3

w1 / w2 reszta 1 reszta 2 reszta 3 reszta 4 reszta 5 reszta 0

reszta 1 x

reszta 2 x x

reszta 3 x x x

reszta 4 x x

reszta 5 x

reszta 0 x x x x x x

Wszystkich takich wyników jest 15. Dzielimy teraz wyniki obu losowań na trzy podzbiory:

{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12} oraz {13, 14, 15, 16, 17}.W zbiorczej tabeli zliczamy wszystkie możliwości w 9 przypadkach, dla każdego z nich od-

czytując liczbę możliwości z wzorcowej tabeli.

w1 / w2{1, 2, 3, 4, 5, 6} {7, 8, 9, 10, 11, 12} {13, 14, 15, 16, 17}

{1, 2, 3, 4, 5, 6} 15 możliwości 15 możliwości 15 – 6 = 9 możliwości

{7, 8, 9, 10, 11, 12} 15 możliwości 15 możliwości 15 – 6 = 9 możliwości

{13, 14, 15, 16, 17} 15 – 6 = 9 możliwości 15 – 6 = 9 możliwości 4 możliwości

Mamy więc: 4 przypadki, które dają 15 wyników z iloczynem liczb podzielnym przez 6, 4

przypadki, które dają 9 wyników z iloczynem liczb podzielnym przez 6 oraz 1 przypadek,

który daje 4 wyniki z iloczynem liczb podzielnym przez 6. Łącznie otrzymujemy

4 ∙ 15 + 4 ∙ 9 + 1 ∙ 4 = 60 + 36 + 4 = 100 wyników, dla których iloczyn wylosowanych

liczb jest podzielny przez 6. Można też było rozbudować zbiorczą tabelę do postaci

w1 / w2 {1, 2, 3, 4, 5, 6} {7, 8, 9, 10, 11, 12} {13, 14, 15, 16, 17, 18}

{1, 2, 3, 4, 5, 6} 15 możliwości 15 możliwości 15 możliwości

{7, 8, 9, 10, 11, 12} 15 możliwości 15 możliwości 15 możliwości

{13, 14, 15, 16, 17, 18} 15 możliwości 15 możliwości 15 możliwości

i zauważyć, że wśród wszystkich wyznaczonych w niej 9 ∙ 15 = 135 możliwości niepotrzeb-

ne nam są wszystkie te, w których przynajmniej raz wylosowano liczbę 18. Tych niepotrzeb-

nych przypadków jest 18 + 18 – 1 = 35, a więc jest 135 – 35 = 100 wyników, dla których

iloczyn wylosowanych liczb jest podzielny przez 6. Patrząc z jeszcze innej strony, można po-

Odpowiedzi

294

Page 296: Matematyka 3

• jeżeli za pierwszym razem wylosujemy jedną z liczb: 6 lub 12, to liczba wylosowana za dru-

gim razem jest dowolna, co daje łącznie 2 ∙ 17 = 34 możliwości,

• jeżeli za pierwszym razem wylosujemy jedną z liczb: 3, 9 lub 15, to za drugim razem musi-

my wylosować liczbę parzystą, co daje łącznie 3 ∙ (2 + 6) = 24 możliwości,

• jeżeli za pierwszym razem wylosujemy jedną z liczb: 2, 4, 8, 10, 14 lub 16, to za drugim ra-

zem musimy wylosować liczbę podzielną przez 3, co daje łącznie 6 ∙ (2 + 3) = 30 możliwości,

• jeżeli za pierwszym razem wylosujemy jedną z liczb: 1, 5, 7, 11, 13 lub 17, to za drugim ra-

zem musimy wylosować liczbę podzielną przez 6, co daje łącznie 6 ∙ 2 = 12 możliwości.

Łącznie otrzymujemy 2 ∙ 17 + 3 ∙ 8 + 6 ∙ 5 + 6 ∙ 2 = 34 + 24 + 30 + 12 = 100 wyników, dla któ-

rych iloczyn wylosowanych liczb jest podzielny przez 6.

Zadanie 3.2.25 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 3.2.26 (Wróć do zadania)Odpowiedź

dzielić wyniki pojedynczego losowania na przypadki ze względu na to, jaką resztę z dziele-

nia przez 6 daje wylosowana liczba, przy czym pogrupować je jak poniżej:

wynik pojedynczego

losowania

{1, 2, 3, … , 16, 17}

wyniki po-

dzielne

przez 6

{6, 12}

wyniki po-

dzielne przez

3 i niepodziel-

ne przez 6

{3, 9, 15}

wyniki podzielne

przez 2 i niepodzielne

przez 6

{2, 4, 8, 10, 14, 16}

pozostałe wyniki

{1, 5, 7, 11, 13, 17}

17 możliwości2 możliwo-

ści3 możliwości 6 możliwości 6 możliwości

Obliczamy, odwołując się do tych przypadków:

120a)

256b)

243c)

Korzystamy z reguły mnożenia: 6 ? 5 ? 4 = 120.a)

Korzystamy z reguły mnożenia: 4 ? 4 ? 4 ? 4 = 256.b)

Korzystamy z reguły mnożenia: 3 ? 3 ? 3 ? 3 ? 3 = 243.c)

100a)

48b)

Odpowiedzi

295

Page 297: Matematyka 3

Rozwiązanie

Zadanie 3.2.27 (Wróć do zadania)Odpowiedź

Rozwiązanie

Cyfra setek musi być różna od zera, więc możemy ją wybrać na 4 sposoby. Pozostałe cyfry

możemy wybierać dowolnie z dostępnych 5 cyfr. Korzystamy z reguły mnożenia:

4 ? 5 ? 5 = 100.

a)

Cyfra setek musi być różna od zera, więc możemy ją wybrać na 4 sposoby. Cyfra dziesiątek

musi być różna od cyfry setek, zatem możemy ją wybrać na 4 sposoby. Cyfra jedności musi

być różna od obu wcześniej zapisanych cyfr, co oznacza, że możemy ją wybrać na 3 sposo-

by. Korzystamy z reguły mnożenia: 4 ? 4 ? 3 = 48.

b)

9a)

6b)

6c)

15d)

Rozkładamy liczbę 6 na czynniki pierwsze: 6 = 2 ? 3. Zatem możliwe są dwa przypadki:

(1) wśród cyfr tej liczby są dwie jedynki i jedna szóstka – takie liczby są trzy, bo na tyle spo-

sobów można wybrać miejsce dla cyfry 6 albo

(2) wśród cyfr tej liczby jest jedna jedynka, jedna dwójka i jedna trójka – takich liczb jest

3 ? 2 = 6, bo na tyle sposobów można wybrać najpierw miejsce dla cyfry 1, a następnie

miejsce dla cyfry 2.

Oznacza to, że jest 3 + 6 = 9 wszystkich liczb trzycyfrowych, których iloczyn cyfr jest równy 6

.

a)

Rozkładamy liczbę 9 na czynniki pierwsze: 9 = 3 ? 3. Możliwe są dwa przypadki:

(1) wśród cyfr tej liczby są dwie jedynki i jedna dziewiątka – takie liczby są trzy, bo na tyle

sposobów można wybrać miejsce dla cyfry 9 albo

(2) wśród cyfr tej liczby jest jedna jedynka i dwie trójki – takie liczby są trzy, bo na tyle spo-

sobów można wybrać miejsce dla cyfry 1.

Oznacza to, że jest 3 + 3 = 6 wszystkich liczb trzycyfrowych, których iloczyn cyfr jest równy 9

.

b)

Rozkładamy liczbę 10 na czynniki pierwsze: 10 = 2 ? 5. Oznacza to, że wśród cyfr tej liczby

jest jedna jedynka, jedna dwójka i jedna piątka – takich liczb jest zatem 3 ? 2 = 6, bo na tyle

sposobów można wybrać najpierw miejsce dla cyfry 1, a następnie miejsce dla cyfry 2.

c)

Rozkładamy liczbę 12 na czynniki pierwsze: 12 = 2 ? 2 ? 3. Możliwe są trzy przypadki:

(1) wśród cyfr tej liczby jest jedna jedynka, jedna dwójka i jedna szóstka – takich liczb jest

3 ? 2 = 6, bo na tyle sposobów można wybrać najpierw miejsce dla cyfry 1, a następnie

miejsce dla cyfry 2 albo

(2) wśród cyfr tej liczby jest jedna jedynka, jedna trójka i jedna czwórka – takich liczb jest

3 ? 2 = 6, bo na tyle sposobów można wybrać najpierw miejsce dla cyfry 1, a następnie

miejsce dla cyfry 3 albo

(3) wśród cyfr tej liczby są dwie dwójki i jedna trójka – takie liczby są trzy, bo na tyle sposo-

d)

Odpowiedzi

296

Page 298: Matematyka 3

Zadanie 3.2.28 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 3.2.29 (Wróć do zadania)Odpowiedź11

RozwiązanieRozpatrzmy możliwe wartości pierwszej cyfry (cyfry dziesiątek tysięcy).Jeżeli pierwszą cyfrą jest 3,

to ostatnią cyfrą musi być 1, a środkowe cyfry to trzy zera – taka liczba jest jedna.

Jeżeli pierwszą cyfrą jest 2, to ostatnią cyfrą musi być 1, a wśród środkowych trzech cyfr jest jedna

jedynka i dwa zera – takie liczby są trzy, bo na tyle sposobów można wybrać miejsce dla cyfry 1.

Jeżeli pierwszą cyfrą jest 1, to możliwe są trzy przypadki:

Zatem jest 1 + 3 + 3 + 3 + 1 = 11 wszystkich nieparzystych liczb pięciocyfrowych, których suma cyfr

jest równa 4.

Zadanie 3.2.30 (Wróć do zadania)Odpowiedź

bów można wybrać miejsce dla cyfry 3.

Oznacza to, że jest 6 + 6 + 3 = 15 wszystkich liczb trzycyfrowych, których iloczyn cyfr jest

równy 12.

54a)

80b)

90c)

Ponieważ cyfra setek musi być różna od zera, więc możemy ją zapisać na 9 sposobów. Za

pomocą cyfry dziesiątek i cyfry jedności możliwe jest utworzenie 6 liczb dwucyfrowych,

spełniających warunki zadania: 40, 51, 62, 73, 84 oraz 95. Korzystamy z reguły mnożenia:

9 ? 6 = 54.

a)

Cyfrę dziesiątek możemy zapisać na 10 sposobów. Za pomocą cyfry setek i cyfry jedności

możliwe jest utworzenie 8 liczb dwucyfrowych, spełniających warunki zadania:

20, 31, 42, 53, 64, 75, 86 oraz 97. Korzystamy z reguły mnożenia: 10 ? 8 = 80.

b)

Cyfrę jedności możemy zapisać na 10 sposobów. Ponieważ cyfra setek nie może być równa

0, więc za pomocą równych cyfr setek i dziesiątek możemy utworzyć 9 liczb dwucyfrowych,

spełniających warunki zadania. Korzystamy z reguły mnożenia: 10 ? 9 = 90.

c)

ostatnią cyfrą jest 1, a wśród środkowych trzech cyfr jest jedna dwójka i dwa zera – takie

liczby są trzy, bo na tyle sposobów można wybrać miejsce dla cyfry 2,

1)

ostatnią cyfrą jest 1, a wśród środkowych trzech cyfr jest jedno zero i dwie jedynki – takie

liczby są trzy, bo na tyle sposobów można wybrać miejsce dla cyfry 0,

2)

ostatnią cyfrą jest 3, środkowe trzy cyfry są zerami – taka liczba jest jedna.3)

16a)

Odpowiedzi

297

Page 299: Matematyka 3

Rozwiązanie

Polecamy wypisać wszystkie liczby spełniające warunki zadania.

Zadanie 3.2.31 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 3.2.32 (Wróć do zadania)Odpowiedź44

RozwiązanieMożliwe są dwa przypadki:

2b)

16c)

Na pierwszym i ostatnim miejscu takiej liczby musi stać cyfra 3, a na pozostałych czterech

miejscach mamy do wyboru dwie cyfry parzyste. Korzystamy z reguły mnożenia:

2 ? 2 ? 2 ? 2 = 16. Polecamy wypisać wszystkie liczby spełniające warunki zadania.

a)

W zapisie tej liczby muszą występować naprzemiennie cyfry 2 oraz 4, zatem są tylko 2 takie

liczby: 24242424 oraz 42424242.

b)

W zapisie takiej liczby muszą występować naprzemiennie cyfry różnej parzystości. Zapisu-

jąc jako pierwszą cyfrę 3, na drugim mamy do wyboru dwie cyfry parzyste, a dalej: na trze-

cim i piątym znów cyfrę 3, a na czwartym i szóstym – 2 lub 4. Korzystamy z reguły mnoże-

nia: 2 ? 2 ? 2 = 8. Zapisując na pierwszym miejscu cyfrę 2 lub 4, na drugim, czwartym i szó-

stym, mamy cyfrę 3, natomiast na trzecim i piątym jedną z cyfr 2 lub 4. W tym przypadku

też mamy 2 ∙ 2 ∙ 2 = 8 możliwości. Zatem wszystkich możliwości jest 8 + 8 = 16.

c)

24a)

120b)

30c)

36d)

Liczba dzielników jest równa (3 + 1) ? (2 + 1) ? (1 + 1) = 24.a)

Liczba dzielników jest równa (4 + 1) ? (2 + 1) ? (3 + 1) ? (1 + 1) = 120.b)

Rozkładamy liczbę 1620 na czynniki pierwsze: 1620 = 22 ? 34 ? 5. Zatem ma ona

(2 + 1) ? (4 + 1) ? (1 + 1) = 30 dzielników naturalnych.

c)

Rozkładamy liczbę 6468 na czynniki pierwsze: 6468 = 22 ? 3 ? 72 ? 11, więc jej liczba dzielni-

ków naturalnych jest równa (2 + 1) ? (1 + 1) ? (2 + 1) ? (1 + 1) = 36.

d)

z pierwszego pudełka wylosujemy kulę z numerem 5 – wtedy niezależnie od numeru kuli

wylosowanej z każdego z pozostałych dwóch pudełek iloczyn numerów wylosowanych kul

będzie podzielny przez 5,

1)

Odpowiedzi

298

Page 300: Matematyka 3

Zadanie 3.2.33 (Wróć do zadania)Odpowiedź

Rozwiązanie

• ustalenie numeru rzutu, w którym wypadła liczba oczek podzielna przez 3 (3 możliwości),

• ustalenie dla tego miejsca liczby oczek spośród 2 możliwych: 3 oczka lub 6 oczek,

• ustalenie liczby oczek spośród czterech niepodzielnych przez 3 dla dwóch pozostałych rzu-

tów (4 ∙ 4 = 16 możliwości).

Ponieważ wyborów tych dokonujemy niezależnie, więc korzystając z reguły mnożenia, obliczamy,

że szukana liczba wyników to 3 ? 2 ? 4 ? 4 = 96.

Zadanie 3.2.34 (Wróć do zadania)Odpowiedź56

RozwiązanieJest 8 takich liczb, których cyfrą setek jest 6 : 645, 650, 670, 675, 680, 685, 690, 695. Pokaże-

my, że jeżeli cyfra setek jest większa od 6, to jest 48 takich liczb. Wtedy jako cyfrę setek można

wybrać 7, 8 lub 9 (3 sposoby), jako cyfrę jedności trzeba wybrać 0 lub 5 (dwa sposoby), a po

zapisaniu dwóch różnych cyfr na miejscach setek i jedności można wstawić dowolną z pozosta-

łych ośmiu na miejscu cyfry dziesiątek. Korzystając z reguły mnożenia, mamy w tym przypadku

3 ? 2 ? 8 = 48 możliwych liczb. Wobec tego jest 8 + 48 = 56 wszystkich trzycyfrowych liczb natural-

nych o różnych cyfrach, które są większe od 642 i dzielą się przez 5.

Zadanie 3.2.35 (Wróć do zadania)Odpowiedź96

Rozwiązanie

Podzielmy zbiór {1, 2, 3, 4, 5, 6, 7, 8, 9} jak poniżej, zgodnie z warunkami podanymi w zada-

niu.

z pierwszego pudełka wylosujemy kulę z numerem innym niż 5 (jest 6 takich możliwości) –

zatem, aby iloczyn numerów wylosowanych kul był podzielny przez 5, musimy z drugiego

pudełka wylosować kulę z numerem 5 (numer kuli wylosowanej z trzeciego pudełka nie gra

roli). Korzystamy z reguły mnożenia i reguły dodawania: 1 ? 5 ? 4 + 6 ? 1 ? 4 = 44.

2)

120a)

189b)

96c)

Korzystamy z reguły mnożenia: 6 ? 5 ? 4 = 120.a)

Wszystkich możliwych wyników jest 6 ? 6 ? 6 = 216. Iloczyn liczb wyrzuconych oczek może

być albo parzysty, albo nieparzysty, przy czym nieparzysty jest wtedy i tylko wtedy, gdy za

każdym razem wyrzucimy nieparzystą liczbę oczek. Takich przypadków jest 3 ? 3 ? 3 = 27,

zatem w pozostałych 216 − 27 = 189 przypadkach iloczyn liczb wyrzuconych oczek jest pa-

rzysty.

b)

Rozkładamy zliczanie na trzy etapy:c)

Odpowiedzi

299

Page 301: Matematyka 3

cyfry do wyboru

{1, 2, 3, 4, 5, 6, 7, 8, 9}

cyfra 9

{9}

cyfry parzyste (p)

{2, 4, 6, 8}

pozostałe cyfry

{1, 3, 5, 7}

9 elementów 1 element 4 elementy 4 elementy

Rozkładamy zliczanie na trzy etapy:

• wybór miejsca dla cyfry 9 i zapisanie tej cyfry (3 możliwości),

• wybór miejsca dla cyfry parzystej i zapisanie tej cyfry (2 ∙ 4 = 8 możliwości),

• zapisanie cyfry na pozostałym miejscu (4 możliwości).

Ponieważ wyborów tych dokonujemy niezależnie, więc korzystając z reguły mnożenia, obliczamy,

że szukanych liczb jest 3 ? 2 ? 4 ? 4 = 96.

Zadanie 3.2.36 (Wróć do zadania)Odpowiedź

Rozwiązanie

6a)

48b)

72c)

Rozkładamy zliczanie na dwa etapy: – wybór czterech kolejnych miejsc, na których zapisze-

my blok czterocyfrowy 1234 – można to zrobić na trzy sposoby: albo blok 1234 zajmuje

miejsca od 1 do 4, albo od 2 do 5, albo od 3 do 6,

– wybór miejsca dla cyfry 5 : 2 możliwości, bo zostały 2 miejsca wolne.

Ponieważ wyborów tych dokonujemy niezależnie, więc korzystając z reguły mnożenia, obli-

czamy, że szukanych liczb jest 3 ? 2 = 6.

a)

Z treści zadania wynika, że na miejscach pierwszym i ostatnim takiej liczby sześciocyfrowej

należy zapisać cyfry 5 oraz 6, a na pozostałych czterech miejscach należy zapisać cyfry

1, 2, 3 oraz 4. Rozkładamy zliczanie na dwa etapy:

– zapisanie cyfr 5 i 6 na miejscach im przeznaczonych – można to zrobić na dwa sposoby,

– zapisanie cyfr 1, 2, 3 oraz 4 na pozostałych miejscach – można to zrobić na 4 ? 3 ? 2 = 24

sposoby, bo na tyle sposobów można wybrać najpierw miejsce dla cyfry 1, potem miejsce

dla cyfry 2, a następnie miejsce dla cyfry 3.

Ponieważ wyborów tych dokonujemy niezależnie, więc korzystając z reguły mnożenia, obli-

czamy, że szukanych liczb jest 2 ? 4 ? 3 ? 2 = 48.

b)

Z treści zadania wynika, że każde dwie sąsiednie cyfry takiej liczby sześciocyfrowej są różnej

parzystości. Jeżeli pierwsza cyfra takiej liczby jest parzysta, to wtedy również cyfry trzecia i

piąta są parzyste, a pozostałe cyfry są nieparzyste. Zliczanie w tym przypadku rozkładamy

na dwa etapy:

– zapisanie cyfr 1, 3 oraz 5 na miejscach im przeznaczonych – można to zrobić na 3 ? 2 = 6

sposobów, bo na tyle sposobów można wybrać najpierw miejsce dla cyfry 1, a następnie

miejsce dla cyfry 3,

– zapisanie cyfr 2, 4 oraz 6 na pozostałych miejscach – można to zrobić na 3 ? 2 = 6 sposo-

bów, bo na tyle sposobów można wybrać najpierw miejsce dla cyfry 2, a następnie miejsce

dla cyfry 4.

c)

Odpowiedzi

300

Page 302: Matematyka 3

Zadanie 3.2.37 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 3.2.38 (Wróć do zadania)Odpowiedź

Rozwiązanie

Ponieważ wyborów tych dokonujemy niezależnie, więc korzystając z reguły mnożenia, obli-

czamy, że szukanych liczb jest 3 ? 2 ? 3 ? 2 = 36.

Jeżeli pierwsza cyfra takiej liczby jest nieparzysta, to wtedy również cyfry trzecia i piąta są

nieparzyste, a pozostałe cyfry są parzyste. Rozumując analogicznie do poprzedniego przy-

padku, stwierdzamy, że takich liczb jest również 36. Oznacza to, że jest 36 + 36 = 72 wszyst-

kich liczb naturalnych sześciocyfrowych o różnych cyfrach, zapisanych za pomocą cyfr

1, 2, 3, 4, 5, 6, w których suma każdych dwóch sąsiednich cyfr jest nieparzysta.

144a)

840b)

Z treści zadania wynika, że w zapisie takiej liczby cyfry nieparzyste muszą być rozdzielone

cyframi parzystymi. Oznacza to, że cyfry nieparzyste trzeba zapisać na miejscach: pierw-

szym, trzecim, piątym i siódmym, a parzyste – na pozostałych. Zliczanie rozkładamy na dwa

etapy:

– wybór miejsc dla cyfr 1, 3, 5, 7 oraz zapisanie tych cyfr – można to zrobić na

4 ? 3 ? 2 = 24 sposoby, ponieważ na tyle sposobów można wybrać najpierw miejsce dla cy-

fry 1, a potem miejsce dla każdej z cyfr, kolejno: 3 oraz 5,

– zapisanie cyfr 2, 4 oraz 6 – można to zrobić na 3 ? 2 = 6 sposobów, ponieważ na tyle spo-

sobów można wybrać najpierw miejsce dla cyfry 2, a potem miejsce dla cyfry 4.

Zatem szukanych liczb jest 24 ? 6 = 144.

a)

Zliczanie rozkładamy na dwa etapy:– wybór miejsc dla cyfr 1, 2, 3, 4 oraz zapisanie tych

cyfr – można to zrobić na 7 ? 6 ? 5 ? 4 = 840 sposobów, ponieważ na tyle sposobów można

wybrać najpierw miejsce dla cyfry 1, a potem miejsce dla każdej z cyfr, kolejno: 2, 3 oraz 4,

– zapisanie cyfr 5, 6 oraz 7 – jest tylko jeden sposób zapisania tej trójki cyfr, ponieważ z po-

zostałych trzech miejsc pierwsze od lewej musi zająć cyfra 5, następne – cyfra 6 i ostatnie –

cyfra 7.

Zatem szukanych liczb jest 840.

b)

10670044a)

112602b)

sposób I

Sumujemy otrzymane liczby czterocyfrowe, dzieląc je na grupy ze względu na cyfrę: tysięcy,

setek, dziesiątek i jedności. Zauważmy następnie, że w tej sumie otrzymaliśmy

7 ? 7 ? 7 = 343 razy każdą liczbę z ustaloną cyfrą na kolejnych miejscach zapisu dziesiętne-

go: jako cyfrę tysięcy, jako cyfrę setek, jako cyfrę dziesiątek oraz jako cyfrę jedności. Ozna-

a)

Odpowiedzi

301

Page 303: Matematyka 3

sposób II

Wypisujemy wszystkie liczby o trzech cyfrach zapisane wyłącznie za pomocą cyfr

0, 1, 2, 3, 4, 5, 6 (dopuszczamy 0 na początkowych miejscach). Suma S1 liczb o tak zapisanych

cyfrach jest równa S1 =12 ? 73 ? 666 = 114219. Zauważamy, że wśród wypisanych liczb są takie,

które nie są trzycyfrowe (to te, w których jako cyfrę setek zapisaliśmy 0). Ich suma S2 jest

równa S2 =12 ? 72 ? 66 = 1617. Oznacza to, że suma S liczb trzycyfrowych, zapisanych wyłącznie

za pomocą cyfr 0, 1, 2, 3, 4, 5, 6, w których cyfry mogą się powtarzać jest równa

S = S1 − S2 = 114219 − 1617 = 112602.

cza to, że

S = 343 ? (1000 + 100 + 10 + 1) ? (1 + 2 + 3 + 4 + 5 + 6 + 7) = 343 ? 1111 ? 28 = 10670044.

sposób II

Wypisujemy wszystkie liczby czterocyfrowe zapisane wyłącznie za pomocą cyfr

1, 2, 3, 4, 5, 6 oraz 7 i do każdej z nich dopisujemy teraz drugą liczbę czterocyfrową we-

dług następującego przepisu: do liczby opisanej przez czwórkę (c1, c2, c3, c4) dopisuje-

my liczbę opisaną przez czwórkę (8 − c1, 8 − c2, 8 − c3, 8 − c4).Zauważmy, że

– istnieje wzajemnie jednoznaczne przyporządkowanie: liczby opisanej przez czwórkę

(c1, c2, c3, c4) dopisujemy liczbę opisaną przez czwórkę (8 − c1, 8 − c2, 8 − c3, 8 − c4), aponadto suma takich dwóch liczb jest w każdym przypadku równa 8888,

– każda z liczb czterocyfrowych zapisanych wyłącznie za pomocą cyfr 1, 2, 3, 4, 5, 6, 7

jest przyporządkowana do dokładnie jednej czwórki (8 − c1, 8 − c2, 8 − c3, 8 − c4), gdzie c1

, c2, c3 oraz c4 to liczby wybrane ze zbioru {1, 2, 3, 4, 5, 6, 7}.Oznacza to, że dodając wszystkie wypisane w ten sposób liczby czterocyfrowe:

– dodamy sumy par liczb wpisanych w 7 ? 7 ? 7 ? 7 = 2401 przypadkach, czyli 2401 razy licz-

bę 8888,

– dokładnie dwa razy obliczymy każdy składnik sumy S.

Stąd 2S = 2401 ? 8888, a więc S =12 ? 2401 ? 8888 = 2401 ? 4444 = 10670044.

sposób I

Sumujemy otrzymane liczby trzycyfrowe, dzieląc je na 6 grup ze względu na cyfrę setek. Za-

uważamy, że jest 7 ? 7 = 49 liczb w każdej takiej grupie, przy czym dla ustalonej cyfry setek

dopisane do niej cyfry tworzą wszystkie możliwe liczby dwucyfrowe zapisane wyłącznie za

pomocą cyfr 0, 1, 2, 3, 4, 5, 6.

Zatem sumując wszystkie liczby, otrzymamy

S = 49 ? (100 + 200 + 300 + 400 + 500 + 600)+6 ? 7 ? (10 + 20 + 30 + 40 + 50) + 6 ? 7 ? (1 + 2 + 3 + 4 + 5)= 49 ? 100 ? 21 + 42 ? 11 ? 21 = 112602.

b)

Odpowiedzi

302

Page 304: Matematyka 3

Kombinatoryka / ZadaniaZadanie 3.5.1 (Wróć do zadania)Odpowiedź91

Zadanie 3.5.2 (Wróć do zadania)Odpowiedź105

Zadanie 3.5.3 (Wróć do zadania)Odpowiedź10

Zadanie 3.5.4 (Wróć do zadania)Odpowiedź35

Zadanie 3.5.5 (Wróć do zadania)Odpowiedź16

Zadanie 3.5.6 (Wróć do zadania)Odpowiedź31

Zadanie 3.5.7 (Wróć do zadania)Odpowiedź15

Zadanie 3.5.8 (Wróć do zadania)Odpowiedź765

Zadanie 3.5.9 (Wróć do zadania)Odpowiedźmniej niż 1000

Zadanie 3.5.10 (Wróć do zadania)Odpowiedź56

Zadanie 3.5.11 (Wróć do zadania)Odpowiedź

14a)

91b)

91c)

14d)

Odpowiedzi

303

Page 305: Matematyka 3

RozwiązanieLiczba uzyskanych punktów jest równa liczbie udzielonych prawidłowo odpowiedzi. Prawidłową

odpowiedź do:

Zadanie 3.5.12 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 3.5.13 (Wróć do zadania)Odpowiedź

RozwiązanieDokładnie dwa orły w ośmiokrotnym rzucie monetą wypadną wtedy i tylko wtedy, gdy wypadnie

dokładnie sześć reszek. Wobec tego:

dokładnie jednego z tych czternastu zadań można podać na 14 sposobów, zatem tyle jest

sposobów wypełnienia karty, żeby otrzymać 1 punkt,

a)

dokładnie dwóch z tych czternastu zadań można podać na14 ? 13

2 = 91 sposobów, co ozna-

cza, że jest 91 sposobów wypełnienia karty, żeby otrzymać 2 punkty.

b)

Suma liczby uzyskanych punktów i liczby odpowiedzi udzielonych nieprawidłowo jest równa

14. Nieprawidłową odpowiedź dokładnie dwóch z tych czternastu zadań można podać na14 ? 13

2 = 91 sposobów, zatem tyle jest sposobów wypełnienia karty, żeby otrzymać 12 punk-

tów.

c)

dokładnie trzynastu z tych czternastu zadań można podać na 14 sposobów, więc jest 14

sposobów wypełnienia karty, żeby otrzymać 13 punktów.

d)

78a)

465b)

13 ? 122 = 78a)

31 ? 302 = 465b)

28a)

28b)

36c)

36d)

8 ? 72 = 28a)

28b)

Dokładnie dwie reszki w rzucie monetą wypadną wtedy i tylko wtedy, gdy wypadnie dokład-

nie siedem orłów. Wobec tego:9 ? 8

2 = 36

c)

36d)

Odpowiedzi

304

Page 306: Matematyka 3

Zadanie 3.5.14 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 3.5.15 (Wróć do zadania)Odpowiedź

Rozwiązanie

Liczbę przekątnych n − kąta obliczamy, stosując wzórn ? (n − 3)

2 .

Zadanie 3.5.16 (Wróć do zadania)OdpowiedźDrużyna liczy 17 zawodników.

RozwiązaniePrzyjmijmy, że n − liczba zawodników w tej drużynie. Wówczas liczba wszystkich sposobów wy-

boru dwóch graczy z tej drużyny jest równan ? (n − 1)

2 . Otrzymujemy więc równanien ? (n − 1)

2 = 136,

które ma dwa rozwiązania: n = 17 oraz n = − 16. Tylko pierwsze z nich spełnia warunki zadania.

Zadanie 3.5.17 (Wróć do zadania)OdpowiedźWielokąt ma 8 boków.

RozwiązanieZałóżmy, że ten wielokąt ma n boków. Wówczas liczba wszystkich jego przekątnych jest równan ? (n − 3)

2 . Otrzymujemy więc równanien ? (n − 3)

2 = 20, które ma dwa rozwiązania: n = 8 oraz n = − 5.

Tylko pierwsze z nich spełnia warunki zadania.

Zadanie 3.5.18 (Wróć do zadania)Odpowiedź4 miejsce

28a)

190b)

Każda para niewylosowanych chłopców jest wzajemnie jednoznacznie przypisana (przez

dopełnienie do całej ósemki) do wylosowanej szóstki. Zatem jest8 ∙ 7

2 = 28 sposobów wylo-

sowania takiej szóstki.

a)

Każda para niewybranych dziewcząt jest wzajemnie jednoznacznie przypisana (przez dopeł-

nienie do całej dwudziestki) do wybranej osiemnastki. Zatem jest20 ? 19

2 = 190 sposobów

wybrania takiej osiemnastki.

b)

14a)

104b)

dla n = 7:7 ? 4

2 = 14a)

dla n = 16:16 ? 13

2 = 104b)

Odpowiedzi

305

Page 307: Matematyka 3

RozwiązanieOznaczmy przez x liczbę punktów, które zdobyła drużyna D6. Stąd liczba punktów zdobytych przez

D5 jest równa x + 2. W tym turnieju rozegrano6 ? 5

2 = 15 meczów. W każdym meczu suma punktów

uzyskanych przez grające ze sobą drużyny jest równa 2, zatem po zakończeniu turnieju łączna su-

ma punktów zdobytych przez wszystkie drużyny jest równa 30. Zatem 6 + 3 + 8 + 1 + x + 2 + x = 30

, a więc x = 5. Oznacza to, że drużyna D6 zajęła 4 miejsce.

Zadanie 3.5.19 (Wróć do zadania)Odpowiedź

W tym turnieju rozegrano12 ? 11

2 = 66 meczów. W każdym meczu suma punktów uzyskanych przez

grające ze sobą drużyny jest równa 1, zatem po zakończeniu turnieju łączna suma punktów zdo-

bytych przez wszystkie drużyny jest równa 66. Każda z dziewięciu drużyn, która zajęła w tym tur-

nieju miejsce powyżej dziesiątego, uzyskała co najmniej 6 punktów, a drużyny z miejsc dziesiątego

i jedenastego („Kosiarze” i „Przecinaki”) – po 5,5 punktu. Zatem suma punktów uzyskanych przez

te jedenaście drużyn to co najmniej 65. Oznacza to, że dwunasta, ostatnia drużyna zdobyła co naj-

wyżej jeden punkt, stąd wynika, że drużyna ta wygrała co najwyżej jeden mecz.

Zadanie 3.5.20 (Wróć do zadania)Odpowiedź45

RozwiązanieW turnieju, w którym każdy mecz musiał zostać rozstrzygnięty, tylko jedna drużyna mogła prze-

grać wszystkie mecze. Ponieważ liczba 1 stanowi 10% liczby wszystkich drużyn biorących udział w

turnieju, więc wszystkich drużyn było 10. Oznacza to, że w tym turnieju rozegrano10 ? 9

2 = 45 me-

czów.

Zadanie 3.5.21 (Wróć do zadania)Odpowiedź105

RozwiązanieZ treści zadania wynika, że 40% drużyn rozegrało wyłącznie mecze rozstrzygnięte, a spośród nich16 wygrała wszystkie mecze. Wobec tego

25 ?

16 =

115 spośród wszystkich drużyn wygrała wszystkie

mecze. Ale w takim turnieju tylko jedna drużyna mogła wygrać wszystkie swoje mecze, co ozna-

cza, że startowało w nim 15 drużyn. Zatem łącznie rozegrały one15 ? 14

2 = 105 meczów.

Zadanie 3.5.22 (Wróć do zadania)Odpowiedź55

Rozwiązanie

Z danego zbioru losujemy dwie liczby (mamy11 ? 10

2 = 55 możliwości), następnie większą z nich

bierzemy jako wynik pierwszego losowania, mniejszą – jako wynik drugiego losowania, a jako wy-

nik trzeciego losowania bierzemy liczbę równą tej mniejszej. Stąd wynika, że jest 55 takich wyni-

ków losowania.

Zadanie 3.5.23 (Wróć do zadania)Odpowiedź

15a)

Odpowiedzi

306

Page 308: Matematyka 3

Rozwiązanie

Zadanie 3.5.24 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 3.5.25 (Wróć do zadania)Odpowiedź

RozwiązanieObliczamy, że w tej klasie jest 18 dziewczynek i 15 chłopców. Stąd:

Zadanie 3.5.26 (Wróć do zadania)Odpowiedź106

RozwiązanieJeżeli wśród wierzchołków takiego trójkąta jest punkt A, to pozostałe dwa wierzchołki można wy-

brać dowolnie spośród punktów leżących na prostych k oraz l (9 ? 8

2 = 36 możliwości). Jeżeli wśród

wierzchołków takiego trójkąta nie ma punktu A, to wierzchołki wybieramy albo biorąc dwa punkty

spośród leżących na prostej k i trzeci leżący na prostej l (5 ? 4

2 ? 4 = 40 możliwości), albo biorąc dwa

punkty spośród leżących na prostej l i trzeci leżący na prostej k (4 ? 3

2 ? 5 = 30 możliwości). Stąd

90b)

Takich wyników jest6 ? 5

2 = 15a)

Takich wyników jest 6 ?6 ? 5

2 = 90b)

30a)

18b)

Obliczamy, ile wśród A, B, C, D, E, F, G jest trójek punktów, które nie leżą na jednej pro-

stej. Rozróżniamy dwa przypadki: wybieramy dwa punkty leżące na prostej AB i trzeci na

prostej CD albo wybieramy dwa punkty leżące na prostej CD i trzeci na prostej AB. Łącznie

otrzymujemy więc4 ? 3

2 ? 3 +3 ? 2

2 ? 4 = 30 trójkątów.

a)

Zauważamy, że trapezy możemy otrzymać wtedy i tylko wtedy, gdy dwa spośród ich wierz-

chołków wybrane zostaną na prostej AB i kolejne dwa – na prostej CD. Zatem w sumie

otrzymujemy4 ? 3

2 ?3 ? 2

2 = 18 trapezów.

b)

1890a)

16065b)

trzyosobową delegację, w której znajdzie się jedna dziewczynka i dwóch chłopców, można

wybrać na 18 ?15 ? 14

2 = 1890 sposobów.

a)

czteroosobową delegację, w której znajdą się dwie dziewczynki i dwaj chłopcy, można wy-

brać na18 ? 17

2 ?15 ? 14

2 = 16065 sposobów.

b)

Odpowiedzi

307

Page 309: Matematyka 3

jest 36 + 40 + 30 = 106 wszystkich trójkątów, których wierzchołkami są trzy spośród zaznaczonych

punktów.

Zadanie 3.5.27 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 3.5.28 (Wróć do zadania)Odpowiedź210

RozwiązanieOznaczmy pionowe linie siatki, od lewej: x1, x2, x3, x4, x5 oraz poziome linie siatki, od dołu:

y1, y2, y3, y4, y5, y6, y7.

• sposób I. Każdy taki prostokąt jednoznacznie opisuje para wierzchołków: lewy dolny: (xl, yd)i prawy górny (xp, yg). Zatem szukamy takiej czwórki liczb xl, yd, xp, yg, która spełnia jed-

nocześnie dwa warunki:

Ponieważ parę indeksów l, p możemy wybrać na5 ? 4

2 = 10 sposobów, a parę d, g – na7 ? 6

2 = 21

sposobów, więc wszystkich prostokątów, których boki zawierają się w liniach siatki prostokąta 6

na 4, jest 10 ? 21 = 210.

• sposób II. Każdy taki prostokąt jednoznacznie opisują dwie pary równoległych prostych

przechodzących przez jego boki: para prostych pionowych, którą można wybrać na5 ? 4

2 = 10

sposobów oraz para prostych poziomych, którą można wybrać na7 ? 6

2 = 21 sposobów. Za-

tem jest 10 ? 21 = 210 wszystkich prostokątów, których boki zawierają się w liniach siatki

prostokąta 6 na 4.

Zadanie 3.5.29 (Wróć do zadania)Odpowiedź396

4050a)

18225b)

Cyfrę tysięcy można wybrać na 9 sposobów, cyfrę dziesiątek – na 10 sposobów, a taką parę:

cyfra setek, cyfra jedności, że cyfra setek jest mniejsza niż cyfra jedności, można wybrać na10 ? 9

2 = 45 sposobów. Zatem jest 9 ? 10 ? 45 = 4050 wszystkich takich liczb.

a)

Cyfrę dziesiątek tysięcy można wybrać na 9 sposobów, a każdą z par: cyfra setek, cyfra jed-

ności taką, że cyfra setek jest większa niż cyfra jedności oraz parę cyfra tysięcy, cyfra dziesi-

ątek taką, że cyfra tysięcy jest większa niż cyfra dziesiątek, można wybrać na10 ? 9

2 = 45 spo-

sobów. Zatem jest 9 ? 45 ? 45 = 18225 wszystkich takich liczb.

b)

indeksy l i p bierzemy ze zbioru {1,2, 3,4, 5}, przy czym l < p,1)

indeksy d i g bierzemy ze zbioru {1,2, 3,4, 5,6, 7}, przy czym d < g.2)

Odpowiedzi

308

Page 310: Matematyka 3

RozwiązanieRozkładamy liczbę 12 na czynniki pierwsze: 12 = 2 ? 2 ? 3. Oznacza to, że możliwe są trzy przypad-

ki:

• W pierwszym przypadku: wybieramy dwa miejsca, na których zapisujemy dwójki (9 ? 8

2 = 36

możliwości), z pozostałych siedmiu miejsc wybieramy jedno, na którym zapisujemy trójkę (7

możliwości), a na pozostałych sześciu miejscach zapisujemy jedynki. Oznacza to, że są

36 ? 7 = 252 takie liczby.

• W drugim przypadku: wybieramy jedno miejsce, na którym zapisujemy dwójkę (9 możliwo-

ści), z pozostałych ośmiu miejsc wybieramy jedno, na którym zapisujemy szóstkę (8 możli-

wości) , a na pozostałych siedmiu miejscach zapisujemy jedynki. Zatem są 9 ? 8 = 72 takie

liczby.

• W trzecim przypadku: wybieramy jedno miejsce, na którym zapisujemy trójkę (9 możliwości),

z pozostałych ośmiu miejsc wybieramy jedno, na którym zapisujemy czwórkę (8 możliwości)

, a na pozostałych siedmiu miejscach zapisujemy jedynki. Zatem są 9 ? 8 = 72 takie liczby.

Stąd wynika, że jest 252 + 72 + 72 = 396 wszystkich liczb naturalnych dziewięciocyfrowych, których

iloczyn cyfr jest równy 12.

Zadanie 3.5.30 (Wróć do zadania)Odpowiedź3888

Rozwiązanie

• Sposób I

Rozróżniamy trzy przypadki: (1) parzysta liczba oczek wypadła pięć razy, (2) parzysta liczba

oczek wypadła 4 razy, (3) parzysta liczba oczek wypadła 3 razy. W pierwszym przypadku ma-

my 35 = 243 wszystkich możliwości. W drugim przypadku: ustalamy numer rzutu, w którym

wypadła nieparzysta liczba oczek (5 możliwości), zapisujemy tam nieparzystą liczbę oczek (3

możliwości), a na pozostałych miejscach zapisujemy parzystą liczbę oczek (34 = 81 możliwo-

ści) – razem jest 5 ? 3 ? 81 = 1215 możliwości. W trzecim przypadku: ustalamy numery

dwóch rzutów, w których wypadła nieparzysta liczba oczek (5 ? 4

2 = 10 możliwości), zapisuje-

my tam nieparzystą liczbę oczek (32 = 9 możliwości), a na pozostałych miejscach zapisujemy

parzystą liczbę oczek (33 = 27 możliwości) – razem jest 10 ? 9 ? 27 = 2430 możliwości.

Oznacza to, że łącznie jest 243 + 1215 + 2430 = 3888.

• Sposób II

Skorzystamy z reguły równoliczności. Jest 65 = 7776 wszystkich wyników pięciokrotnego rzu-

tu kostką sześcienną. Można je podzielić na dwie rozłączne grupy:

wśród cyfr tej liczby są dwie dwójki, jedna trójka i sześć jedynek,1)

wśród cyfr tej liczby jest jedna dwójka, jedna szóstka i siedem jedynek,2)

wśród cyfr tej liczby jest jedna trójka, jedna czwórka i siedem jedynek.3)

Odpowiedzi

309

Page 311: Matematyka 3

(1) tych wyników, w których wypadło mniej parzystych liczb oczek niż nieparzystych liczb oczek,

(2) tych wyników, w których wypadło mniej nieparzystych liczb oczek niż parzystych liczb oczek.

Biorąc dowolny wynik z pierwszej grupy i zamieniając każdą z zapisanych tam liczb l wyrzuconych

oczek na liczbę 7 − l, dostaniemy jeden wynik z drugiej grupy. Postępując analogicznie z wynikiem

z drugiej grupy, dostaniemy jeden wynik z pierwszej grupy. Zatem wyniki te można połączyć w pa-

ry, co oznacza, że dokładnie połowa wszystkich wyników pięciokrotnego rzutu kostką sześcienną

to te, w których parzysta liczba oczek wypadła więcej razy niż nieparzysta liczba oczek. Jest ich

więc12 ? 7776 = 3888.

Zadanie 3.5.31 (Wróć do zadania)Odpowiedź

Rozwiązanie

35a)

21b)

22c)

36d)

Sposób I

Rozróżniamy trzy przypadki:

(1) w zapisie takiej liczby jest jedna siódemka i cztery jedynki,

(2) w zapisie takiej liczby jest jedna piątka, jedna trójka i trzy jedynki,

(3) w zapisie takiej liczby są trzy trójki i dwie jedynki.

W pierwszym przypadku: wybieramy jedno miejsce, na którym zapisujemy siódemkę (5

możliwości), a na pozostałych czterech miejscach zapisujemy jedynki. Zatem jest 5 takich

liczb.

W drugim przypadku: wybieramy jedno miejsce z pięciu, na którym zapiszemy piątkę (5

możliwości), następnie z pozostałych czterech miejsc wybieramy jedno, na którym zapisze-

my trójkę (4 możliwości), a na pozostałych trzech miejscach zapisujemy jedynki. Oznacza to,

że jest 5 ? 4 = 20 takich liczb.

W trzecim przypadku: wybieramy dwa miejsca z pięciu, na których zapiszemy jedynki (5 ? 4

2 = 10 możliwości), a na pozostałych trzech miejscach zapisujemy trójki. Oznacza to, że

jest 10 takich liczb.

Stąd wynika, że łącznie jest 5 + 20 + 10 = 35 liczb naturalnych pięciocyfrowych o wszystkich

cyfrach nieparzystych, których suma cyfr jest równa 11.

a)

Sposób I

Rozróżniamy trzy przypadki, ze względu na pierwszą cyfrę (czyli cyfrę setek tysięcy) w zapi-

sie tej liczby:

(1) na pierwszym miejscu jest trójka,

(2) na pierwszym miejscu jest dwójka,

(3) na pierwszym miejscu jest jedynka.

W pierwszym przypadku na pozostałych miejscach zapisujemy same zera, zatem jest tylko

jedna taka liczba.

W drugim przypadku na pozostałych miejscach należy zapisać jedną jedynkę i cztery zera.

Wybieramy więc jedno miejsce z pięciu, na którym zapiszemy jedynkę (5 możliwości), na-

b)

Odpowiedzi

310

Page 312: Matematyka 3

Zadanie 3.5.32 (Wróć do zadania)Odpowiedź22680

stępnie na pozostałych czterech miejscach zapisujemy zera. Oznacza to, że jest 5 takich

liczb.

W trzecim przypadku są dwie możliwości:

– na pozostałych miejscach należy zapisać jedną dwójkę i cztery zera. Zatem: wybieramy

jedno miejsce z pięciu, na którym zapiszemy dwójkę (5 możliwości), a na pozostałych czte-

rech miejscach zapisujemy zera. Oznacza to, że jest 5 takich liczb.

– na pozostałych miejscach należy zapisać dwie jedynki i trzy zera. Zatem: wybieramy dwa

miejsca z pięciu, na których zapiszemy jedynki (5 ? 4

2 = 10 możliwości), a na pozostałych

trzech miejscach zapisujemy zera. Oznacza to, że jest 10 takich liczb.

Stąd wynika, że jest 1 + 5 + 5 + 10 = 21 wszystkich liczb sześciocyfrowych, których suma cyfr

jest równa 3.

Rozróżniamy dwa przypadki ze względu na ostatnią cyfrę (czyli cyfrę jedności) w zapisie tej

liczby:(1) na ostatnim miejscu jest jedynka,

(2) na ostatnim miejscu jest trójka.

W pierwszym przypadku sześć pierwszych cyfr tworzy liczbę sześciocyfrową, której suma

cyfr jest równa 3. Takich liczb jest 21, co wiadomo z rozwiązania podpunktu b). W drugim

przypadku sześć pierwszych cyfr tworzy liczbę sześciocyfrową, której suma cyfr jest równa

1. Taka liczba jest tylko jedna – jej pierwszą cyfrą jest 1, a pozostałe cyfry to zera. Zatem są

22 nieparzyste liczby siedmiocyfrowe, których suma cyfr jest równa 4.

c)

Sposób I

Rozróżniamy trzy przypadki ze względu na pierwszą cyfrę (czyli cyfrę dziesiątek milionów) w

zapisie tej liczby:

(1) na pierwszym miejscu jest dwójka albo

(2) na pierwszym miejscu jest czwórka albo

(3) na pierwszym miejscu jest szóstka.

W pierwszym przypadku są dwie możliwości:

– na pozostałych miejscach należy zapisać jedną czwórkę i sześć zer. Zatem wybieramy jed-

no miejsce z siedmiu, na którym zapiszemy czwórkę (7 możliwości), a na pozostałych sze-

ściu miejscach zapisujemy zera. Oznacza to, że jest 7 takich liczb.

– na pozostałych miejscach należy zapisać dwie dwójki i pięć zer. Wobec tego wybieramy

dwa miejsca z siedmiu, na których zapiszemy dwójki (7 ? 6

2 = 21 możliwości), a na pozosta-

łych pięciu miejscach zapisujemy zera. Oznacza to, że jest 21 takich liczb.

W drugim przypadku na pozostałych miejscach należy zapisać jedną dwójkę i sześć zer. Wy-

bieramy więc jedno miejsce z siedmiu, na którym zapiszemy dwójkę (7 możliwości), a na-

stępnie na pozostałych miejscach zapisujemy zera. Oznacza to, że jest 7 takich liczb.

W trzecim przypadku na pozostałych miejscach zapisujemy same zera, zatem jest tylko jed-

na taka liczba.

Łącznie jest 7 + 21 + 7 + 1 = 36 liczb ośmiocyfrowych o wszystkich cyfrach parzystych, któ-

rych suma cyfr jest równa 6.

d)

Odpowiedzi

311

Page 313: Matematyka 3

Rozwiązanie

• Sposób I

W pięciu etapach zapisujemy cyfry takiej liczby: (1) wybieramy miejsce dla cyfry 9 (9 możli-

wości) i zapisujemy tę cyfrę, (2) wybieramy miejsce dla cyfr 1 oraz 2 (8 ? 7

2 = 28 możliwości) i

zapisujemy te cyfry, (3) wybieramy miejsce dla cyfr 3 oraz 4 (6 ? 5

2 = 15 możliwości) i zapisuje-

my te cyfry, (4) wybieramy miejsce dla cyfr 5 oraz 6 (4 ? 3

2 = 6 możliwości) i zapisujemy te cy-

fry, (5) na pozostałych dwóch miejscach zapisujemy cyfry 7 oraz 8. Stąd wynika, że jest

9 ? 28 ? 15 ? 6 = 22680 wszystkich takich liczb.

• Sposób II (zasada równoliczności)

Wszystkich liczb dziewięciocyfrowych o różnych cyfrach, zapisanych za pomocą cyfr

1, 2, 3, 4, 5, 6, 7, 8, 9 jest 9 ? 8 ? 7 ? 6 ? 5 ? 4 ? 3 ? 2 ? 1 = 362880. Dokładnie połowa z

nich spełnia warunek (1), połowa ze spełniających warunek (1) ma w zapisie cyfrę 3 przed cy-

frą 4, połowa z liczb spełniających warunki (1) i (2) ma w zapisie cyfrę 5 przed cyfrą 6, a poło-

wa z liczb spełniających warunki (1), (2) i (3) ma w zapisie cyfrę 7 przed cyfrą 8. Zatem jest362880

2 ? 2 ? 2 ? 2 = 22680 takich liczb.

Polecamy czytelnikowi samodzielnie uzasadnić powyższe rozumowanie.

Zadanie 3.5.33 (Wróć do zadania)Odpowiedź7805

Rozwiązanie

• Sposób I

Rozróżniamy cztery przypadki ze względu na liczbę wylosowanych losów wygrywających:

(1) wylosowano 4 losy wygrywające (wtedy nie ma wśród wylosowanych losu pustego) – jest

5 takich możliwości albo (2) wylosowano 3 losy wygrywające (wtedy wśród wylosowanych

jest 1 los pusty) – takich możliwości jest ( 5

3 ) ? ( 20

1 ) = 10 ? 20 = 200, albo (3) wylosowano 2

losy wygrywające (wtedy wśród wylosowanych są też 2 losy puste) – takich możliwości jest

( 5

2 ) ? ( 20

2 ) = 10 ? 190 = 1900, albo (4) wylosowano 1 los wygrywający (wtedy wśród wyloso-

wanych są też 3 losy puste) – takich możliwości jest ( 5

1 ) ? ( 20

3 ) = 5 ? 1140 = 5700.

Zatem na 5 + 200 + 1900 + 5700 = 7805 sposobów można wylosować co najmniej jeden los

wygrywający.

Odpowiedzi

312

Page 314: Matematyka 3

• Sposób II

Wśród wszystkich ( 25

4 ) = 12650 możliwych wyników losowania 4 losów spośród 25 jest

( 20

4 ) = 4845 wyników losowania, kiedy nie wylosowano ani jednego losu wygrywającego.

Zatem co najmniej jeden los wygrywający można wylosować na 12650 − 4845 = 7805 sposo-

bów.

Zadanie 3.5.34 (Wróć do zadania)Odpowiedź1287

RozwiązanieKażda najkrótsza droga prowadząca od A do C wymaga wykonania 13 kolejnych kroków po brzegu

odpowiednich kwadratów jednostkowych. Wśród tych trzynastu kroków dokładnie 5 to kroki w

prawo i dokładnie 8 to kroki w górę. Zatem wszystkich najkrótszych dróg jest tyle, ile wyników

trzynastokrotnego rzutu monetą, w których dokładnie 5 razy wypadł orzeł: ( 13

5 ) = 1287.

Zadanie 3.5.35 (Wróć do zadania)Odpowiedź170

RozwiązanieZauważmy, że w sposób opisany w treści zadania sumę numerów równą 10 można otrzymać: albo

gdy najmniejszy z numerów jest równy 1 i największy jest równy 9, albo gdy najmniejszy z nume-

rów jest równy 2 i największy jest równy 8, albo gdy najmniejszy z numerów jest równy 3 i najwięk-

szy jest równy 7, albo gdy najmniejszy z numerów jest równy 4 i największy jest równy 6.

Rozróżniamy zatem cztery rozłączne przypadki:

• W pierwszym przypadku wraz z wylosowanymi dwiema kartkami można wylosować dowol-

ny podzbiór ze zbioru kartek o numerach 2, 3, 4, 5, 6, 7, 8. Ponieważ decyzji o wyborze

każdej z tych 7 kartek możemy dokonać na 2 sposoby, więc łącznie w tym przypadku jest

27 = 128 możliwości wylosowania kartek.

wśród wylosowanych znalazły się kartki o numerach 1 oraz 9 i nie znalazła się kartka z nu-

merem 10,

1)

wśród wylosowanych nie ma żadnej z kartek o numerach 1, 9, 10 i znalazły się kartki o nu-

merach 2 oraz 8,

2)

wśród wylosowanych nie ma żadnej z kartek o numerach 1, 2, 8, 9, 10 i znalazły się kartki

o numerach 3 oraz 7,

3)

wśród wylosowanych nie ma żadnej z kartek o numerach 1, 2, 3, 7, 8, 9, 10 i znalazły się

kartki o numerach 4 oraz 6.

4)

Odpowiedzi

313

Page 315: Matematyka 3

• W drugim przypadku wraz z wylosowanymi dwiema kartkami można wylosować dowolny

podzbiór ze zbioru kartek o numerach 3, 4, 5, 6, 7. Łącznie w tym przypadku są 25 = 32

możliwości wylosowania kartek.

• W trzecim przypadku wraz z wylosowanymi dwiema kartkami można wylosować dowolny

podzbiór ze zbioru kartek o numerach 4, 5, 6. W tym przypadku jest 23 = 8 możliwości wy-

losowania kartek.

• W czwartym przypadku wraz z wylosowanymi dwiema kartkami można wylosować kartkę z

numerem 5 lub nie wylosować tej kartki – zatem w tym przypadku są 2 możliwości wyloso-

wania kartek.

Oznacza to, że jest 128 + 32 + 8 + 2 = 170 wszystkich możliwości wylosowania kartek w sposób

opisany w treści zadania.

Zadanie 3.5.36 (Wróć do zadania)RozwiązanieWskazówka. Skorzystaj ze wzoru dwumianowego.

Zadanie 3.5.37 (Wróć do zadania)Odpowiedź

Rozwiązanie

11200000a)

2421875b)

Zliczanie rozkładamy na dwa etapy:1) wybór trzech miejsc z ośmiu dla cyfr parzystych (ma-

my ( 8

3 ) =8 ? 7 ? 63 ? 2 ? 1 = 56 możliwości) oraz zapisanie tych cyfr (mamy 43 = 64 możliwości),

2) zapisanie pozostałych pięciu cyfr (mamy 55 = 3125 możliwości). Zatem jest

56 ? 64 ? 3125 = 11200000takich liczb sześciocyfrowych.

a)

Sposób I

Rozróżniamy dwa przypadki: albo (1) na pierwszym miejscu zapisana jest cyfra parzysta, al-

bo (2) na pierwszym miejscu jest cyfra nieparzysta.

W pierwszym przypadku: mamy 4 możliwości zapisu pierwszej cyfry, z kolejnych sześciu

miejsc mamy wybrać trzy dla cyfry parzystej (( 6

3 ) =6 ? 5 ? 43 ? 2 ? 1 = 20 możliwości) i zapisać te cy-

fry (53 = 125 możliwości), a na pozostałych trzech miejscach zapisać cyfry nieparzyste (

53 = 125 możliwości). Takich liczb jest 4 ? 20 ? 125 ? 125 = 1250000.

W drugim przypadku: mamy 5 możliwości zapisu pierwszej cyfry, z kolejnych sześciu miejsc

mamy wybrać dwa dla cyfry nieparzystej (6 ? 5

2 = 15 możliwości) i zapisać te cyfry (5 ? 5 = 25

możliwości), a na pozostałych czterech miejscach zapisać cyfry parzyste (54 = 625 możliwo-

ści). Takich liczb jest 5 ? 15 ? 25 ? 625 = 1171875.

Oznacza to, że jest 12500000 + 1171875 = 2421875 liczb siedmiocyfrowych spełniających

warunki zadania.

b)

Odpowiedzi

314

Page 316: Matematyka 3

Zadanie 3.5.38 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 3.5.39 (Wróć do zadania)Odpowiedź369600

Rozwiązanie

( 12

3 ) ? ( 9

3 ) ? ( 6

3 ) =12 ? 11 ? 10

3 ? 2 ? 1 ?9 ? 8 ? 73 ? 2 ? 1 ?

6 ? 5 ? 43 ? 2 ? 1 = 220 ? 84 ? 20 = 369600

Zadanie 3.5.40 (Wróć do zadania)Odpowiedź

Sposób II

Wypisujemy kolejno jedna za drugą siedem cyfr, wybierając każdą cyfrę spośród dziesięciu

możliwych (dopuszczamy 0 na początkowych miejscach), przy czym na dokładnie czterech

miejscach zapisujemy cyfrę parzystą. Mamy ( 7

4 ) =7 ? 6 ? 53 ? 2 ? 1 = 35 możliwości wyboru czterech

miejsc dla cyfr parzystych, cyfry te możemy zapisać na 54 = 625sposobów, a na pozostałych

trzech miejscach cyfry nieparzyste zapiszemy na 53 = 125 sposobów. Takich ciągów o 7 cy-

frach jest zatem 35 ? 625 ? 125 = 2734375. Są wśród nich takie, w których cyfra 0 zapisana

jest na pierwszym miejscu. W każdym z takich ciągów na trzech z kolejnych sześciu miej-

scach znajdują się cyfry parzyste (miejsce dla nich można wybrać na ( 6

3 ) =6 ? 5 ? 43 ? 2 ? 1 = 20 spo-

sobów, a zapisać je na 53 = 125 sposobów) i na pozostałych trzech miejscach - cyfry niepa-

rzyste (można je zapisać na 53 = 125 sposobów). Oznacza to, że takich ciągów jest

20 ? 125 ? 125 = 312500. Stąd wynika, że jest 2734375 − 312500 = 2421875 liczb siedmiocy-

frowych spełniających warunki zadania.

120a)

18900b)

( 10

3 ) =10 ∙ 8 ∙ 71 ? 2 ? 3 = 120

a)

9 ? 10 ? ( 10

4 ) = 90 ?10 ? 9 ? 8 ? 74 ? 3 ? 2 ? 1 = 18900

b)

25872a)

13167b)

Odpowiedzi

315

Page 317: Matematyka 3

Rozwiązanie

Zadanie 3.5.41 (Wróć do zadania)Odpowiedź

Rozwiązanie

Wszystkich wyników losowania 5 liczb spośród 22 jest ( 22

5 ) = 26334. Iloczyn wylosowanych

liczb może być albo parzysty, albo nieparzysty. W tym drugim przypadku każda z wylosowa-

nych liczb musi być nieparzysta, co oznacza, że jest ( 11

5 ) = 462 takich możliwości. Zatem

jest 26334 − 462 = 25872 wszystkich możliwości wylosowania takich pięciu liczb, których ilo-

czyn jest parzysty.

a)

Rozróżniamy trzy przypadki ze względu na liczbę nieparzystych składników opisanej sumy:

(1) są 4 składniki nieparzyste (wtedy jeden składnik jest parzysty) – mamy więc

( 11

4 )( 11

1 ) = 3630 możliwości albo

(2) są 2 składniki nieparzyste (wtedy trzy składniki są parzyste) – mamy więc

( 11

2 )( 11

3 ) = 9075 możliwości, albo

(3) składników nieparzystych nie ma, wszystkie składniki są parzyste – mamy więc

( 11

0 )( 11

5 ) = 462 możliwości. Zatem jest 3630 + 9075 + 462 = 13167 wszystkich możliwości

wylosowania takich pięciu liczb.

b)

580008a)

9216b)

Dzielimy karty z talii na 3 grupy: 13 pików, 13 kierów i 26 pozostałych kart. Z pierwszej gru-

py mamy wylosować 10 kart, z drugiej – 2 karty, a z trzeciej – jedną. Zatem jest

( 13

10 ) ? ( 13

2 ) ? ( 26

1 ) = 286 ? 78 ? 26 = 580008 wszystkich możliwości otrzymania takiego

układu kart.

a)

Dzielimy karty z talii na 5 grup: 4 asy, 4 króle, 4 damy, 4 walety i 36 pozostałych kart. Z każ-

dej z czterech początkowych grup mamy wylosować po 3 karty, a z piątej – jedną. Zatem

b)

Odpowiedzi

316

Page 318: Matematyka 3

Zadanie 3.5.42 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 3.5.43 (Wróć do zadania)Odpowiedź

jest ( 4

3 ) ? ( 4

3 ) ? ( 4

3 ) ? ( 4

3 ) ? ( 36

1 ) = 4 ? 4 ? 4 ? 4 ? 36 = 9216 wszystkich możliwości otrzy-

mania takiego układu kart.

252a)

126b)

34650c)

5775d)

Wybieramy 5 graczy do drużyny „Niebieskiej” – można to zrobić na ( 10

5 ) = 252 sposoby.

Pozostałych pięciu przydzielamy do drużyny „Żółtej”. Zatem na 252 sposoby można doko-

nać żądanego podziału.

a)

Oznaczmy przez x liczbę możliwych podziałów. Wtedy liczba takich podziałów, w których

pierwszych pięciu wybranych przydzielimy do drużyny „Niebieskiej”, a pozostałych – do

drużyny „Żółtej” jest z jednej strony równa 2x (bo kolejność dokonywanego wyboru do kon-

kretnej drużyny możemy ustalić na dwa sposoby), a z drugiej – jest to 252 (jak obliczyliśmy

w podpunkcie a). Zatem 2x = 252, stąd x = 126.

b)

Wybieramy 4 graczy do drużyny „Niebieskiej” (można to zrobić na ( 12

4 ) = 495 sposobów),

następnie kolejnych czterech do drużyny „Żółtej” (można to zrobić na ( 8

4 ) = 70 sposobów),

a pozostałych czterech przydzielamy do drużyny „Czerwonej”. Zatem na 495 ? 70 = 34650

sposobów można dokonać żądanego podziału.

c)

Oznaczmy przez y liczbę możliwych podziałów. Wtedy liczba takich podziałów, w których

pierwszych czterech wybranych przydzielimy do drużyny „Niebieskiej”, kolejnych czterech–

do drużyny „Żółtej”, a pozostałych czterech – do drużyny „Czerwonej” jest z jednej strony

równa 3! ? x (bo kolejność dokonywanego wyboru do konkretnej drużyny możemy ustalić

na 3! sposobów), a z drugiej – jest to 34650 (jak obliczyliśmy w podpunkcie c). Zatem

6y = 34650, stąd y = 5775.

d)

220a)

3060b)

Odpowiedzi

317

Page 319: Matematyka 3

Rozwiązanie

Zadanie 3.5.44 (Wróć do zadania)Odpowiedź

8855c)

0d)

Szukamy nieujemnych liczb całkowitych x1, x2, x3, x4, x5, x6, które spełniają równanie

(x1 + 1) + x2 + x3 + ... + x10 = 4. To równanie przekształcamy równoważnie do postaci

x1 + x2 + x3 + ... + x10 = 3. Liczba jego rozwiązań jest równa

( 10 + 3 − 1

3 ) = ( 12

3 ) =12 ? 11 ? 10

3 ? 2 ? 1 = 220. Ponieważ każda z dziewięciu liczb x2, x3, ..., x10

jest nieujemna i mniejsza od 10 oraz liczba x1 + 1 jest dodatnia i mniejsza od 10, więc tyle

jest wszystkich liczb dziesięciocyfrowych, których suma cyfr jest równa 4.

a)

Szukamy nieujemnych liczb całkowitych x1, x2, x3, ... , x15, które spełniają równanie

2((x1 + 1) + x2 + x3 + ... + x15) = 10. To równanie przekształcamy równoważnie do postaci

x1 + x2 + x3 + ... + x15 = 4. Liczba jego rozwiązań jest równa

( 15 + 4 − 1

4 ) = ( 18

4 ) =18 ? 17 ? 16 ? 15

4 ? 3 ? 2 ? 1 = 3060. Ponieważ każda z liczb x2, x3, ..., x15 jest nie-

ujemna i mniejsza od 5 oraz liczba x1 + 1 jest dodatnia i mniejsza od 5, więc tyle jest wszyst-

kich liczb piętnastocyfrowych o wszystkich cyfrach parzystych, których suma cyfr jest równa

10.

b)

Szukamy nieujemnych liczb całkowitych x1, x2, x3, ..., x20, które spełniają równanie

(2x1 + 1) + (2x2 + 1) + (2x3 + 1) + ... + (2x20 + 1) = 28. To równanie przekształcamy równoważ-

nie do postaci x1 + x2 + x3 + ... + x20 = 4. Liczba jego rozwiązań jest równa

( 20 + 4 − 1

4 ) = ( 23

4 ) =23 ? 22 ? 21 ? 20

4 ? 3 ? 2 ? 1 = 8855. Ponieważ każda z liczb x1, x2, x3, ..., x20 jest

nieujemna i mniejsza od 5, więc tyle jest liczb naturalnych dwudziestocyfrowych o wszyst-

kich cyfrach nieparzystych, których suma cyfr jest równa 28.

c)

Nie ma takich liczb. Suma dwóch liczb nieparzystych jest liczbą parzystą, zatem suma cyfr

liczby stucyfrowej, której wszystkie cyfry są nieparzyste, da się zapisać jako suma 50 liczb

parzystych – wystarczy w tym celu łączyć kolejne cyfry w pary. Oznacza to, że taka suma jest

parzysta, więc nie może być równa 123.

d)

3360a)

2721600b)

224c)

462d)

Odpowiedzi

318

Page 320: Matematyka 3

Rozwiązanie

Zadanie 3.5.45 (Wróć do zadania)Odpowiedź384

RozwiązanieDzielimy kule ze względu na resztę, jaką daje zapisany na niej numer przy dzieleniu przez 3. Jest:

7 kul z numerem dającym resztę 1, 7 kul z numerem dającym resztę 2 oraz 6 kul z numerem da-

jącym resztę 0. Rozróżniamy cztery przypadki:

7 ? 62 ? ( 5

3 ) ? 42 = 21 ? 10 ? 16 = 3360,

a)

( 10

3 ) ? ( 7

4 ) ∙ 34 ? 23 = 120 ? 35 ∙ 81 ? 8 = 2721600,

b)

8 ? 72 ? 6 + 8 ? 7 = 224,c)

Szukamy nieujemnych liczb całkowitych x1, x2, x3, ..., x7, które spełniają równanie

(x1 + 1) + (x2 + 1) + (x3 + 1) + ... + (x7 + 1) = 12. To równanie przekształcamy równoważnie do

postaci x1 + x2 + x3 + ... + x7 = 5 (ponieważ suma tych liczb jest równa 5, to żadna z nich nie

może przyjąć wartości większej od 5). Liczba rozwiązań tego równania to

( 7 + 5 − 1

5 ) = ( 11

5 ) =11 ? 10 ? 9 ? 8 ? 7

5 ? 4 ? 3 ? 2 ? 1 = 462. Ponieważ każda z liczb x1, x2, x3, ..., x7 jest

nieujemna i mniejsza od 6, więc każda z liczb x1 + 1, x2 + 1, x3 + 1, ..., x7 + 1 przyjmuje war-

tości ze zbioru {1, 2, 3, 4, 5, 6} – zatem wyników siedmiokrotnego rzutu kostką sześcien-

ną, w których suma liczb wyrzuconych oczek jest równa 12 jest również 462.

d)

wszystkie wylosowane kule mają numer dający resztę 1 (jest ( 7

3 ) = 35 takich możliwości),

1)

wszystkie wylosowane kule mają numer dający resztę 2 (jest ( 7

3 ) = 35 takich możliwości),

2)

wszystkie wylosowane kule mają numer dający resztę 0 (jest ( 6

3 ) = 20 takich możliwości),

3)

każda z wylosowanych kul ma numer dający resztę różniącą się od reszt dwóch pozostałych

kul (jest 7 ? 7 ? 6 = 294 takich możliwości). Oznacza to, że jest 35 + 35 + 20 + 294 = 384

wszystkich możliwych wyników tego losowania, w których suma numerów wylosowanych

kul jest podzielna przez 3.

4)

Odpowiedzi

319

Page 321: Matematyka 3

Zadanie 3.5.46 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 3.5.47 (Wróć do zadania)Odpowiedź

Rozwiązanie

Podsumowując zauważmy, że ( 30

7 ) = 2035800 = 823680 + 960960 + 240240 + 10920.

80a)

40b)

Sposób I: ( 5

3 ) ? 23 = 80 Sposób II:10 ? 8 ? 6

3! = 80

a)

( 5

1 ) ? ( 4

1 ) ? 2 = 40

Podsumowując zauważmy, że ( 10

3 ) = 120 = 80 + 40

b)

823680a)

960960b)

240240c)

Sposób I : ( 15

7 ) ? 27 = 823680

Sposób II :30 ? 28 ? 26 ? 24 ? 22 ? 20 ? 18

7! = 823680

a)

( 15

1 ) ? ( 14

5 ) ? 25 = 960960

b)

( 15

2 ) ? ( 13

3 ) ? 23 = 240240

c)

( 15

3 ) ? ( 12

1 ) ? 2 = 10920

d)

Odpowiedzi

320

Page 322: Matematyka 3

Zadanie 3.5.48 (Wróć do zadania)Odpowiedź98280

RozwiązanieZałóżmy, że spośród 32 liczb wylosowaliśmy 5 takich, że nie ma wśród nich dwóch kolejnych.

Oznaczmy te wylosowane liczby x1, x2, x3, x4, x5, przy czym x1 < x2 < x3 < x4 < x5 oraz

x1 ≥ 1 i x5 ≤ 32. Wtedy wśród pięciu liczb x1, x2 − 1, x3 − 2, x4 − 3, x5 − 4 nie ma pary równych.

Zatem x1 < x2 − 1 < x3 − 2 < x4 − 3 < x5 − 4 oraz x1 ≥ 1 i x5 − 4 ≤ 28. Oznacza to, że jest

( 28

5 ) = 98280 sposobów wytypowania 5 liczb spełniających warunki zadania – szczegółowy opis

konstrukcji, jak te 5 wylosowanych liczb „przełożyć” na liczby wytypowane przez gracza pozosta-

wiamy jako proste ćwiczenie.

Zadanie 3.5.49 (Wróć do zadania)Odpowiedź945

RozwiązanieOznaczmy przez x liczbę wszystkich napisów, które spełniają warunki zadania.

• Sposób I

Rozpatrzmy każdy napis, który spełnia warunek „litera A znajdzie się przez B, B przed C, C

przed D oraz D przed E, a ponadto odpowiednia mała litera będzie zapisana przed taką sa-

mą dużą”, wyróżniając w nim pary miejsc przypisane do pięciu par liter: aA, bB, cC, dD, eE

. Rozważmy teraz wszystkie możliwe wymiany miejscami tych par liter na wyróżnionych

miejscach. Wymagamy, żeby przy takiej wymianie małe litery zamieniały się miejscami ze so-

bą i duże litery – ze sobą. Dla ustalonego napisu wszystkich takich wymian jest

5! = 5 ? 4 ? 3 ? 2 ? 1, więc wszystkich napisów otrzymanych w ten sposób jest 5! ? x. Jest to

zarazem liczba wszystkich napisów, które spełniają warunek: odpowiednia mała litera jest

zapisana przed taką samą dużą.

Obliczymy drugim sposobem, ile jest napisów, w których odpowiednia mała litera jest zapi-

sana przed taką samą dużą. W pięciu etapach zapisujemy litery takiego napisu, wybierając

odpowiednie miejsca z dostępnych dziesięciu.

wybieramy miejsce dla liter a i A (10 ? 9

2 = 45 możliwości) i zapisujemy te litery tak, aby a sta-

ło przed A,

a)

wybieramy miejsce dla liter b i B (8 ? 7

2 = 28 możliwości) i zapisujemy te litery tak, aby b stało

przed B,

b)

wybieramy miejsce dla liter c i C (6 ? 5

2 = 15 możliwości) i zapisujemy te litery tak, aby c stało

przed C,

c)

wybieramy miejsce dla liter d i D (4 ? 3

2 = 6 możliwości) i zapisujemy te litery tak, aby d stało

przed D,

d)

Odpowiedzi

321

Page 323: Matematyka 3

• Sposób II

Rozpatrzmy każdy napis, który spełnia warunek „litera A znajdzie się przez B, B przed C, C

przed D oraz D przed E, a ponadto odpowiednia mała litera będzie zapisana przed taką sa-

mą dużą”, wyróżniając w nim pary miejsc przypisane do pięciu par liter: aA, bB, cC, dD, eE

. Rozważmy teraz wszystkie możliwe wymiany miejscami tych par liter na wyróżnionych

miejscach. Wymagamy, żeby przy takiej wymianie małe litery zamieniały się miejscami ze so-

bą i duże litery – ze sobą. Dla ustalonego napisu wszystkich takich wymian jest

5! = 5 ? 4 ? 3 ? 2 ? 1, więc wszystkich napisów otrzymanych w ten sposób jest 5! ? x. Jest to

zarazem liczba wszystkich napisów, które spełniają warunek: odpowiednia mała litera jest

zapisana przed taką samą dużą. Dołóżmy do każdego z tych napisów drugi, w którym zamie-

niliśmy miejscami literę a z A – razem z wcześniejszymi otrzymamy 2 ? 5! ? x napisów. Z ko-

lei do każdego spośród tych 2 ? 5! ? x napisów dołóżmy drugi, w którym zamieniliśmy miej-

scami literę b z B – razem z wcześniejszymi otrzymamy 22 ? 5! ? x napisów. Teraz podwaja-

my liczbę tych 22 ? 5! ? x napisów, dokładając do każdego z otrzymanych do tej pory drugi,

w którym zamieniliśmy miejscami literę c z C. Kolejne podwojenie otrzymamy w wyniku do-

łożenia napisów z zamiany miejscami we wszystkich otrzymanych do tej pory napisach liter

d i D, a wykonując podobnie ostatni raz takie podwojenie (zamiana e z E), otrzymamy łącznie

25 ? 5! ? x napisów. Z drugiej strony zauważmy, że w wyniku powyższych czynności otrzyma-

liśmy wszystkie możliwe dziesięcioliterowe napisy, które da się utworzyć, używając do nich

każdej z liter a, b, c, d, e, A, B, C, D, E dokładnie raz. Takich napisów jest

10! = 10 ? 9 ? 8 ? 7 ? 6 ? 5 ? 4 ? 3 ? 2 ? 1. Otrzymujemy więc równanie 25 ? 5! ? x = 10!, skąd

x =10 ? 9 ? 8 ? 7 ? 6

25 = 945.

• Sposób III

W pięciu kolejnych krokach, zapisując w nich pary liter par liter: aA, bB, cC, dD, eE, stwo-

rzymy napis, który spełnia warunki zadania.

Pierwszy krok: zapisujemy literę A. Jest tylko jedno miejsce, po lewej od A, na którym może-

my dopisać literę a - w ten sposób otrzymaliśmy napis aA.

Drugi krok: zapisujemy literę B – można ją dopisać tylko na końcu napisu, a następnie za-

uważamy, że są trzy miejsca, na których można zapisać literę b – te miejsca zaznaczone są

podkreśleniem: _a_A_B.

Niezależnie od tego, gdzie wstawimy teraz b w każdy następnym kroku będzie ta sama licz-

ba kolejnych możliwych wyborów. Załóżmy więc, że wstawiliśmy b przed a – rozpatrujemy

więc dla przykładu napis baAB, wiedząc, że są 3 wszystkie możliwe napisy możliwe do otrzy-

mania po drugim kroku.

Trzeci krok: zapisujemy literę C - można ją dopisać tylko na końcu napisu, a następnie za-

uważamy, że jest pięć miejsc (do poprzednich trzech doszły dwa nowe: przed dopisaną literą

b oraz przed dopisaną literą C), na których można zapisać literę c – te miejsca w przykłado-

wym rozmieszczeniu zaznaczone są podkreśleniem: _b_a_A_B_C.

Niezależnie od tego, gdzie wstawimy teraz c w każdym następnym kroku będzie ta sama

liczba kolejnych możliwych wyborów. Załóżmy więc, że wstawiliśmy c między A i B – po trze-

na pozostałych dwóch miejscach zapisujemy litery e oraz E tak, aby e stało przed E. Stąd

wynika, że jest 45 ? 28 ? 15 ? 6 = 113400 wszystkich takich napisów.

Oznacza to, że 5 ? 4 ? 3 ? 2 ? 1 ? x = 113400, a więc x =113400

5 ? 4 ? 3 ? 2 ? 1 = 945.

e)

Odpowiedzi

322

Page 324: Matematyka 3

cim kroku rozpatrujemy dla przykładu napis baAcBC. Zauważmy, że jest 3 ? 5 wszystkich na-

pisów możliwych do otrzymania po trzecim kroku.

Czwarty krok: zapisujemy literę D - można ją dopisać tylko na końcu napisu, a następnie za-

uważamy, że jest siedem miejsc (do poprzednich pięciu doszły dwa nowe: przed dopisaną li-

terą c oraz przed dopisaną literą D), na których można zapisać literę d – te miejsca w przy-

kładowym rozmieszczeniu zaznaczone są podkreśleniem: _b_a_A_c_B_C_D.

Niezależnie od tego, gdzie wstawimy teraz d w następnym kroku będzie ta sama liczba kolej-

nych możliwych wyborów. Załóżmy więc, że wstawiliśmy d między B i C – po czwartym kroku

rozpatrujemy dla przykładu napis baAcBdCD. Zauważmy, że jest 3 ? 5 ? 7 wszystkich napi-

sów możliwych do otrzymania po czwartym kroku.

W piątym kroku: zapisujemy literę E - można ją dopisać tylko na końcu napisu, a następnie

zauważamy, że jest dziewięć miejsc (do poprzednich siedmiu doszły dwa nowe: przed dopi-

saną literą d oraz przed dopisaną literą E), na których można zapisać literę e – te miejsca w

przykładowym rozmieszczeniu zaznaczone są podkreśleniem: _b_a_A_c_B_d_C_D_E.

W ten sposób pokazaliśmy, że wszystkich możliwych napisów spełniających warunki zadania

jest 3 ? 5 ? 7 ? 9 = 945, a przykładem takiego napisu jest baAcBdCeDE.

Odpowiedzi

323

Page 325: Matematyka 3

Prawdopodobieństwo / Klasycznadefinicja prawdopodobieństwa.Własności prawdopodobieństwa.Obliczanie prawdopodobieństw zdarzeńlosowychZadanie 4.1.1 (Wróć do zadania)Odpowiedź14

Zadanie 4.1.2 (Wróć do zadania)Odpowiedź

p =16

Zadanie 4.1.3 (Wróć do zadania)Odpowiedź1

30

Zadanie 4.1.4 (Wróć do zadania)Odpowiedź19

Zadanie 4.1.5 (Wróć do zadania)Odpowiedź

p =1564

Zadanie 4.1.6 (Wróć do zadania)Odpowiedź

p =38

Zadanie 4.1.7 (Wróć do zadania)Odpowiedź35

Zadanie 4.1.8 (Wróć do zadania)Odpowiedź29

Zadanie 4.1.9 (Wróć do zadania)Odpowiedź

p <15

Odpowiedzi

324

Page 326: Matematyka 3

Zadanie 4.1.10 (Wróć do zadania)Odpowiedź

większe od12

Zadanie 4.1.11 (Wróć do zadania)Odpowiedź

Jest 17 wszystkich możliwych wyników losowania.

Rozwiązanie

Zadanie 4.1.12 (Wróć do zadania)Odpowiedź125

RozwiązanieOznaczmy przez n liczbę losów wygrywających. Ponieważ prawdopodobieństwo wylosowania lo-

su wygrywającego jest równe1

26 , więc wszystkich losów w tej loterii jest 26n. Otrzymujemy więc

równanie 26n = 130, stąd n = 5. Oznacza to, że losów pustych jest 130 − 5 = 125.

Zadanie 4.1.13 (Wróć do zadania)Odpowiedź

Rozwiązanie

W zbiorze {1, 2, 3, ... , 39, 40} jest 40 liczb.

317

a)

417

b)

Zapisujemy numery kul, które są podzielne przez 5: {5, 10, 15}. Są więc 3 takie kule, za-

tem szukane prawdopodobieństwo jest równe3

17 .

a)

Zapisujemy numery kul, które mają numer dwucyfrowy i nieparzysty: {11, 13, 15, 17}.Są więc 4 takie kule, co oznacza, że szukane prawdopodobieństwo jest równe

417 .

b)

p =2940

a)

p =3140

b)

) p =5

40 =18

c)

p =3040 =

34

d)

Zapisujemy zbiór liczb mniejszych od 30: {1, 2, 3, ..., 29}. Jest ich 29, zatem p =2940 .a)

Zapisujemy zbiór liczb dwucyfrowych: {10, 11, 12, ..., 40}. Jest ich 40 − 9 = 31, zatem

p =3140 .

b)

Wypisujemy wszystkie liczby podzielne przez 7: {7, 14, 21, 28, 35}. Jest ich 5, zatem

p =5

40 =18 .

c)

Odpowiedzi

325

Page 327: Matematyka 3

Zadanie 4.1.14 (Wróć do zadania)Odpowiedź

RozwiązanieWszystkich egzaminowanych uczniów jest 36 + 35 + 31 + 38 = 140.

Zadanie 4.1.15 (Wróć do zadania)Odpowiedź

RozwiązanieJest 90 wszystkich liczb dwucyfrowych.

Wypisujemy wszystkie liczby podzielne przez 4:

{4, 8, 12, 16, 28, 24, 28, 32, 36, 40}. Jest ich 10, zatem liczb niepodzielnych przez

4 jest 30, stąd p =3040 =

34 . Uwaga. Wśród 4 kolejnych liczb całkowitych dokładnie jedna jest

podzielna przez 4. Ponieważ dany zbiór liczb da się podzielić na 10 rozłącznych podzbiorów

tak, że w każdym z tych podzbiorów są 4 kolejne liczby całkowite, więc szukane prawdopo-

dobieństwo p jest równe34 .

d)

935

a)

3370

b)

14

c)

920

d)

W klasie 3a jest 36 osób, więc szukane prawdopodobieństwo jest równe36

140 =9

35 .a)

Łącznie w klasach 3b oraz 3c jest 35 + 31 = 66 uczniów, więc szukane prawdopodobieństwo

jest równe66

140 =3370 .

b)

W klasie 3d jest 35 dziewczynek, więc szukane prawdopodobieństwo jest równe35

140 =14 .c)

Ponieważ dziewczynek jest 16 + 14 + 12 + 35 = 77, więc chłopców jest 140 − 77 = 63. Zatem

szukane prawdopodobieństwo jest równe63

140 =9

20 .

d)

p =2

45a)

p =2930

b)

p =12

c)

p =1318

d)

Wypisujemy te liczby dwucyfrowe, których iloczyn cyfr jest równy 24 : {38, 46, 64, 83}.Zatem są 4 takie liczby, stąd p =

490 =

245 .

a)

Zauważmy, że 18 to największa możliwa suma cyfr liczby dwucyfrowej. Wypiszmy więc te

liczby dwucyfrowe, których suma cyfr jest równa 17 lub 18 : {89, 98, 99}. Oznacza to, że

b)

Odpowiedzi

326

Page 328: Matematyka 3

Zadanie 4.1.16 (Wróć do zadania)Odpowiedź

p =3

100

Rozwiązanie

• Sposób I

Za zdarzenie elementarne przyjmujemy wynik losowania jednej osoby spośród 100 uczniów

uczestniczących w balu studniówkowym. Oznaczmy:

A – zdarzenie polegające na wylosowaniu osoby, która zatańczyła poloneza,

B – zdarzenie polegające na wylosowaniu osoby, która zatańczyła walca.

Wówczas | A | = 60, | B | = 90, | A ∩ B | = 53. Stąd wynika, że liczba osób, które za-

tańczyły choć jeden z tańców, jest równa

| A ? B | = | A | + | B | − | A ∩ B | = 60 + 90 − 53 = 97. Zatem na tym balu były 3

osoby, które nie zatańczyły żadnego z dwóch tańców klasycznych. Oznacza to, że prawdopo-

dobieństwo p zdarzenia polegającego na tym, że osoba wybrana losowo spośród uczestni-

ków balu nie zatańczyła żadnego z tych dwóch tańców, jest równe p =3

100 .

• Sposób II

Rysujemy diagram z uwzględnieniem podziału wszystkich 100 uczestników na grupy.

dla każdej z pozostałych 90 − 3 = 87 liczb dwucyfrowych suma cyfr jest mniejsza od 17, za-

tem p =8790 =

2930 .

Zauważmy, że suma cyfr liczby dwucyfrowej jest parzysta wtedy i tylko wtedy, gdy jej obie

cyfry są tej samej parzystości. Liczb dwucyfrowych, które mają obie cyfry parzyste, jest

4 ? 5 = 20, a liczb dwucyfrowych, które mają obie cyfry nieparzyste, jest 5 ? 5 = 25. Zatem

jest 20 + 25 = 45 takich liczb, stąd p =4590 =

12 . Uwaga. W każdej dziesiątce liczb dwucyfro-

wych, które mają ustaloną cyfrę dziesiątek, jest dokładnie 5 liczb, których cyfra jedności ma

tę samą parzystość, co cyfra dziesiątek. Ponieważ zbiór naturalnych liczb dwucyfrowych da

się podzielić na 9 rozłącznych podzbiorów dziesięcioelementowych z ustaloną cyfrą dziesi-

ątek, więc szukane prawdopodobieństwo p jest równe5

10 =12 .

c)

Iloczyn cyfr liczby dwucyfrowej jest nieparzysty wtedy i tylko wtedy, gdy obie cyfry tej liczby

są nieparzyste. Takich liczb jest 5 ? 5 = 25. Zatem dla każdej z pozostałych 90 − 25 = 65 liczb

iloczyn cyfr jest parzysty, więc p =6590 =

1318 .

d)

Odpowiedzi

327

Page 329: Matematyka 3

Stwierdzamy na tej podstawie, że wśród uczestników było 7 + 53 + 37 = 97 osób, które zatań-

czyły przynajmniej jeden z dwóch tańców klasycznych. Wynika stąd, że 3 osoby nie zatańczy-

ły żadnego z tych dwóch tańców, stąd p =3

100 .

Zadanie 4.1.17 (Wróć do zadania)Odpowiedź

p =1635

Rozwiązanie

• Sposób I

Za zdarzenie elementarne przyjmujemy wynik losowania jednej osoby spośród 35 uczniów

klasy trzeciej. Stąd | Ω | = 35.

Oznaczmy:

A – zdarzenie polegające na wylosowaniu osoby, która uczestniczy w dodatkowych zajęciach

z matematyki,

B – zdarzenie polegające na wylosowaniu osoby, która uczestniczy w dodatkowych zajęciach

z geografii.

Wówczas | A | = 30, | B | = 17. Ponieważ 4 uczniów z tej klasy nie bierze udziału ani w

zajęciach z matematyki, ani w zajęciach z geografii, więc liczba osób, które biorą udział w

choć jednym z tych rodzajów zajęć, jest równa | A ? B | = 35 − 4 = 31. Zatem liczba

uczniów tej klasy, którzy uczęszczają zarówno na dodatkowe zajęcia z matematyki, jak i na

dodatkowe zajęcia z geografii, jest równa

| A ∩ B | = | A | + | B | − | A ? B | = 30 + 17 − 31 = 16. Wobec tego szukane prawdo-

podobieństwo jest równe

P(A ∩ B) =| A ∩ B |

| Ω |=

1635 .

• Sposób II

Oznaczamy przez n liczbę uczniów, którzy biorą udział w obydwu rodzajach zajęć. Rysujemy

diagram z uwzględnieniem podziału wszystkich 35 uczestników na grupy.

Stwierdzamy na tej podstawie, że 30 − n + n + 17 − n + 4 = 35, stąd n = 16. Zatem szukane

prawdopodobieństwo jest równe1635 .

Odpowiedzi

328

Page 330: Matematyka 3

Zadanie 4.1.18 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 4.1.19 (Wróć do zadania)Odpowiedź

Rozwiązanie

Zadanie 4.1.20 (Wróć do zadania)Odpowiedź

RozwiązanieSposób I (schemat klasyczny). W tym doświadczeniu jest 10 ? 10 = 100 wszystkich zdarzeń ele-

mentarnych.

P(A) =45

a)

P(A) =29

b)

P(A) =1017

c)

P(A) =25

d)

Ponieważ P(A') = 1 − P(A), więc P(A) = 4 ? P(A') = 4 ? (1 − P(A)) = 4 − 4 ? P(A), stąd P(A) =45 .a)

Ponieważ P(A') = 1 − P(A), więc 2 ? P(A') = 2 ? (1 − P(A)) = 7 ? P(A), stąd P(A) =29 .b)

Ponieważ P(A') = 1 − P(A), więc P(A) = P(A') +3

17 = 1 − P(A) +3

17 , stąd P(A) =1017 .c)

Ponieważ P(A) + P(A') = 1, więc

3 ? P(A) + 7 ? P(A') = 7 ? (P(A) + P(A')) − 4 ? P(A) = 7 − 4 ? P(A) = 525 , stąd 4 ? P(A) = 1

35 , czyli

P(A) =25 .

d)

P(A ? B) = 0,64a)

P(A ∩ B) =1

12b)

Ponieważ zbiory A i B są rozłączne, więc P(A ? B) = P(A) + P(B). Obliczamy: P(A) = 1 − P(A') =14 ,

P(B) = 1 − P(B') = 0,39, stąd P(A ? B) = P(A) + P(B) =14 + 0,39 = 0,64.

a)

Obliczamy: P(A) = 1 − P(A') =12 , P(B) = 1 − P(B') =

14 . Ponieważ P(A ? B) = P(A) + P(B) − P(A ∩ B),

więc P(A ∩ B) = P(A) + P(B) − P(A ? B) =12 +

14 − 2

3 =1

12 .

b)

910

a)

27100

b)

Zliczanie liczby zdarzeń elementarnych sprzyjających przeprowadzimy na dwa sposoby.

Sposób I

a)

Odpowiedzi

329

Page 331: Matematyka 3

• 1 (jest 10 takich możliwości),

• 2 (jest 5 takich możliwości),

• 3 (są 3 takie możliwości),

• 4 lub 5 (za każdym razem są 2 możliwości),

• 6, 7, 8, 9 lub 10 (za każdym razem jest 1 taka możliwość).

Zatem wszystkich zdarzeń sprzyjających jest 10 + 5 + 3 + 2 ? 2 + 5 ? 1 = 27, więc szukane praw-

dopodobieństwo jest równe27

100 . Uwaga. Łączną liczbę wielokrotności każdego z elementów

danego zbioru można obliczyć, używając symbolu części całkowitej:

?101 ? + ?10

2 ? + ?103 ? + ?10

4 ? + ?105 ? + ?10

6 ? + ?107 ? + ?10

8 ? + ?109 ? + ?10

10?.

Sposób II

Rysujemy drzewo z uwzględnieniem wszystkich gałęzi, które prowadzą do sytuacji sprzyjającej da-

nemu zdarzeniu. Na tej podstawie obliczamy szukane prawdopodobieństwa.

Sposób III

Rysujemy tabelę 10x10 i dla każdego z podpunktów zaznaczamy w niej pola odpowiadające zda-

rzeniom elementarnym sprzyjającym konkretnemu zdarzeniu. Na tej podstawie obliczamy szuka-

ne prawdopodobieństwa.

Zadanie 4.1.21 (Wróć do zadania)Odpowiedź

RozwiązanieSposób I (schemat klasyczny).

W tym doświadczeniu jest 6 ? 6 = 36 wszystkich zdarzeń elementarnych.

Ponieważ kartka wylosowana za drugim razem musi mieć inny numer od tej, która została

wylosowana za pierwszym razem, więc różne numery wylosowanych kartek można otrzy-

mać na 10 ? 9 = 90 sposobów.

Sposób II

Jest 10 sposobów wylosowania dwa razy tej samej kartki, więc mamy 100 − 10 = 90 możli-

wości wylosowania pary kartek o różnych numerach. Zatem szukane prawdopodobieństwo

jest równe90

100 =9

10 . Uwaga. Niezależnie od tego, jaki numer ma kartka wylosowana za

pierwszym razem, kartka wylosowana za drugim razem ma w jednym przypadku ten sam

numer, a w pozostałych dziewięciu przypadkach jej numer różni się od tego na pierwszej

kartce. Oznacza to, że szukane prawdopodobieństwo jest równe9

10 .

Zauważmy, że jeżeli numer na pierwszej kartce jest podzielny przez numer na drugiej kart-

ce, to możemy otrzymać iloraz równy

b)

p =14

a)

p =14

b)

Największa wyrzucona liczba oczek nie jest większa od 3, gdy w obu rzutach wypadnie licz-

ba oczek nie większa od 3. Mamy więc 3 ? 3 = 9 zdarzeń elementarnych sprzyjających, więc

p =9

36 =14 .

a)

Odpowiedzi

330

Page 332: Matematyka 3

Sposób II

Rysujemy tabelę 6x6 i dla każdego z podpunktów zaznaczamy w niej pola odpowiadające zdarze-

niom elementarnym sprzyjającym konkretnemu zdarzeniu. Na tej podstawie obliczamy szukane

prawdopodobieństwa.

Sposób III

Rysujemy drzewo z uwzględnieniem wszystkich gałęzi, które prowadzą do sytuacji sprzyjającej da-

nemu zdarzeniu. Na tej podstawie obliczamy szukane prawdopodobieństwa.

Zadanie 4.1.22 (Wróć do zadania)Odpowiedź23

RozwiązanieZa zdarzenie elementarne przyjmujemy wynik jednoczesnego losowania dwóch wierzchołków

spośród siedmiu. Zatem każde zdarzenie elementarne to dwuelementowy podzbiór zbioru sied-

mioelementowego, więc wszystkich zdarzeń elementarnych jest7 ? 6

2 = 21. Ponieważ ten wielokąt

ma7 ? (7 − 3)

2 = 14 przekątnych, więc szukane prawdopodobieństwo jest równe1421 =

23 .

Uwaga. Wybrany wierzchołek siedmiokąta foremnego można połączyć sześcioma odcinkami z

każdym z pozostałych wierzchołków tego siedmiokąta. Wśród tych sześciu odcinków: dwa to boki

siedmiokąta, a cztery to jego przekątne. Zatem szukane prawdopodobieństwo jest równe46 =

23 .

Zadanie 4.1.23 (Wróć do zadania)Odpowiedź

Rozwiązanie

• Sposób I

(schemat klasyczny). Za zdarzenie elementarne w takim doświadczeniu przyjmujemy wynik

dwukrotnego losowania jednej liczby ze zbioru jedenastoelementowego ze zwracaniem.

Każde zdarzenie elementarne możemy więc zapisać jako dwuelementowy ciąg (a, b), gdzie

a, b są elementami ze zbioru {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. Oznaczmy przez Ω

Rozumując podobnie jak w rozwiązaniu podpunktu a), stwierdzamy, że

jest 5 ? 5 = 25 zdarzeń elementarnych sprzyjających zdarzeniu, że największa wyrzucona

liczba oczek jest równa 1, 2, 3, 4 lub 5,

jest 4 ? 4 = 16 zdarzeń elementarnych sprzyjających zdarzeniu, że największa wyrzucona

liczba oczek jest równa 1, 2, 3 lub 4.

Oznacza to, że jest 52 − 42 = 9 zdarzeń elementarnych sprzyjających zdarzeniu, że najwięk-

sza wyrzucona liczba oczek jest równa 5. Stąd p =9

36 =14 .

b)

P(A) =17

121a)

P(B) =29

121b)

P(C) =17

121c)

P(D) =9

121d)

Odpowiedzi

331

Page 333: Matematyka 3

zbiór zdarzeń elementarnych. Wszystkich zdarzeń elementarnych jest więc

| Ω | = 112 = 121.

• Sposób II

Rysujemy drzewo z uwzględnieniem wszystkich gałęzi, które prowadzą do sytuacji sprzyja-

jącej danemu zdarzeniu. Na tej podstawie obliczamy szukane prawdopodobieństwa.

Oznaczmy pierwszą wylosowaną liczbę przez n i zauważmy, że jeśli n = 1, 2, ..., 8, to zda-

rzenia elementarne (n, n + 2) oraz (n, n + 3) sprzyjają zdarzeniu A. W pozostałych przy-

padkach jest tylko jedno sprzyjające zdarzenie elementarne: (9, 11). Wobec tego

| A | = 8 ? 2 + 1 = 17, stąd na mocy definicji klasycznej otrzymujemy P(A) =17

121 .

a)

Zliczanie zdarzeń elementarnych sprzyjających zdarzeniu B podzielimy na następujące roz-

łączne przypadki:

− jeżeli pierwszą wylosowaną liczbą będzie 1, 3, 7, 9 lub 11, to drugą wylosowaną liczbą

musi być 10 – łącznie jest więc w tym przypadku 5 zdarzeń elementarnych sprzyjających B,

− jeżeli pierwszą wylosowaną liczbą będzie 2, 4, 6 lub 8, to drugą wylosowaną liczbą musi

być 5 lub 10 – łącznie jest więc w tym przypadku 4 ? 2 = 8 zdarzeń elementarnych sprzyja-

jących B,

− jeżeli pierwszą wylosowaną liczbą będzie 5, to drugą wylosowaną liczbą musi być

2, 4, 6, 8, lub 10 – łącznie jest więc w tym przypadku 5 zdarzeń elementarnych sprzyja-

jących B,

− jeżeli pierwszą wylosowaną liczbą będzie 10, to druga wylosowana liczba może być do-

wolna – łącznie jest więc w tym przypadku 11 zdarzeń elementarnych sprzyjających B.

Wobec tego | B | = 5 + 8 + 5 + 11 = 29, stąd na mocy definicji klasycznej otrzymujemy

P(B) =29

121 .

b)

Zliczanie zdarzeń elementarnych sprzyjających zdarzeniu C podzielimy na trzy rozłączne

przypadki:

− suma wylosowanych liczb jest równa 7 – w tym przypadku jest 6 zdarzeń elementarnych

sprzyjających C,

− suma wylosowanych liczb jest równa 14 – w tym przypadku jest 9 zdarzeń elementarnych

sprzyjających C,

− suma wylosowanych liczb jest równa 21 – w tym przypadku są 2 zdarzenia elementarne

sprzyjające C.

Wobec tego | C | = 6 + 9 + 2 = 17, stąd na mocy definicji klasycznej otrzymujemy

P(C) =17

121 .

c)

Ponieważ reszta z dzielenia przez 3 kwadratu każdej liczby całkowitej niepodzielnej przez 3

jest równa 1, więc suma kwadratów dwóch liczb całkowitych jest podzielna przez 3 wtedy i

tylko wtedy, gdy obie te liczby dzielą się przez 3. W zbiorze

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} są dokładnie trzy liczby podzielne przez 3 : 3, 6

oraz 9. Wobec tego zdarzeń elementarnych sprzyjających D jest | D | = 3 ? 3 = 9, stąd na

mocy definicji klasycznej otrzymujemy P(D) =9

121 .

d)

Odpowiedzi

332

Page 334: Matematyka 3

• Sposób III

Rysujemy tabelę 11x11 i dla każdego z podpunktów zaznaczamy w niej pola odpowiadające

zdarzeniom elementarnym sprzyjającym konkretnemu zdarzeniu. Na tej podstawie oblicza-

my szukane prawdopodobieństwa.

Zadanie 4.1.24 (Wróć do zadania)Odpowiedź

P(A) =16

Rozwiązanie

• Sposób I

(schemat klasyczny). Za zdarzenie elementarne w takim doświadczeniu przyjmujemy wynik

dwukrotnego rzutu kostką sześcienną. Zbiór zdarzeń elementarnych Ω jest zatem zbiorem

par (a, b) takich, że a, b są elementami ze zbioru {1, 2, 3, 4, 5, 6}. Wszystkich zdarzeń

elementarnych jest więc | Ω | = 62 = 36. Wypisujemy zdarzenia elementarne, które sprzy-

jają zdarzeniu A: (4, 1), (4, 2), (4, 3), (5, 4), (6, 2), (6, 4). Oznacza to, że | A | = 6, stąd

P(A) =6

36 =16 .

• Sposób II

Rysujemy tabelę 6x6 i zaznaczamy w niej pola odpowiadające zdarzeniom elementarnym

sprzyjającym zdarzeniu A. Na tej podstawie obliczamy szukane prawdopodobieństwo.

• Sposób III

Rysujemy drzewo z uwzględnieniem wszystkich gałęzi, które prowadzą do sytuacji sprzyja-

jącej danemu zdarzeniu. Na tej podstawie obliczamy szukane prawdopodobieństwo.

Zadanie 4.1.25 (Wróć do zadania)Odpowiedź

p =3

190

Rozwiązanie

• Sposób I

(schemat klasyczny). Za zdarzenie elementarne w takim doświadczeniu przyjmujemy wynik

dwukrotnego losowania ze zbioru dwudziestu losów bez zwracania. Oznaczmy przez

w1, w2, w3 losy wygrywające, a przez p1, p2, p3, ..., p17 – losy puste. Każde zdarzenie

elementarne możemy zapisać jako dwuelementowy ciąg (a, b), gdzie a, b są różnymi ele-

mentami z dwudziestoelementowego zbioru {w1, w2, w3, p1, p2, p3, ..., p17}. Wszyst-

kich zdarzeń elementarnych jest więc 20 ? 19 = 380. Zdarzeniu, że oba wylosowane losy bę-

dą wygrywające sprzyja 3 ? 2 = 6 następujących zdarzeń elementarnych: (w1, w2), (w1, w3), (w2, w1), (w2, w3), (w3, w1), (w3, w2). Stąd p =

6380 =

3190 .

• Sposób II

Rysujemy drzewo z uwzględnieniem wszystkich gałęzi, które prowadzą do sytuacji sprzyja-

jącej danemu zdarzeniu. Na tej podstawie obliczamy szukane prawdopodobieństwo.

• Sposób III

Rysujemy tabelę 20x20. Ponieważ losujemy bez zwracania, więc odrzucamy z tabeli 20 pól

leżących na przekątnej. Z pozostałych 380 pól wybieramy te, które odpowiadają zdarzeniom

Odpowiedzi

333

Page 335: Matematyka 3

elementarnym sprzyjającym danemu zdarzeniu. Na tej podstawie obliczamy szukane praw-

dopodobieństwo.

Uwaga. W tym doświadczeniu za zdarzenie elementarne możemy przyjąć dwuelementowy pod-

zbiór {a, b} dwudziestoelementowego zbioru {w1, w2, w3, p1, p2, p3, ..., p17}. Wszystkich

zdarzeń elementarnych jest wtedy19 ? 20

2 = 190. Zdarzeniu, że oba wylosowane losy będą wy-

grywające sprzyjają następujące 3 zdarzenia elementarne: {w1, w2}, {w1, w3}, {w2, w3}. Stąd

p =3

190 .

Zadanie 4.1.26 (Wróć do zadania)Odpowiedź

RozwiązanieSposób I

Za zdarzenie elementarne w takim doświadczeniu przyjmujemy wynik jednoczesnego losowania

dwóch kartek spośród piętnastu. Zatem każde zdarzenie elementarne to dwuelementowy pod-

zbiór {a, b} piętnastoelementowego zbioru {1, 2, 3, ..., 15}. Wszystkich zdarzeń elementar-

nych jest więc | Ω | =15 ? 14

2 = 105.

• zdarzeń elementarnych sprzyjających zdarzeniu A jest tyle, ile dwuelementowych ciągów ze

zbioru {1, 3, 5, 7, 9, 11, 13, 15} bez powtórzeń, stąd | A | = 8 ? 7 = 56, co oznacza,

że P(A) =56

210 =4

15 .

• zdarzeniu B sprzyja każde zdarzenie elementarne, w którym wylosowane liczby są różnej pa-

rzystości. Zatem możliwe są dwa rozłączne przypadki:

− pierwsza wylosowana liczba jest parzysta i druga - jest nieparzysta

P(A) =4

15a)

P(B) =8

15b)

W przypadku zdarzenia A każda z dwóch wylosowanych kartek musi mieć numer nieparzy-

sty, a kartek z numerem nieparzystym jest 8. Zatem zdarzeniu A sprzyja | A | =8 ? 7

2 = 28

zdarzeń elementarnych, stąd P(A) =28

105 =4

15 .

a)

W przypadku B jedna z wylosowanych kartek musi mieć numer nieparzysty, a druga – pa-

rzysty. Ponieważ kartek z numerem nieparzystym jest 8, a z numerem parzystym – 7, więc

zdarzeniu B sprzyja | B | = 8 ? 7 = 56 zdarzeń elementarnych. Oznacza to, że

P(B) =56

105 =8

15 .

Uwaga. Mimo, że w treści zadania jest mowa o jednoczesnym losowaniu dwóch kartek, to

jednak za zdarzenie elementarne w tym doświadczeniu można przyjąć dwuelementowy ci-

ąg (a, b), gdzie a, b ? {1, 2, 3, ..., 15} oraz a ≠ b. Narzucona w ten sposób kolejność wy-

losowanych kartek nie ma wpływu ani na sumę, ani na iloczyn liczb na wylosowanych kart-

kach, ponieważ te działania są przemienne. Tym sposobem wszystkich zdarzeń elementar-

nych jest tyle, ile dwuelementowych ciągów ze zbioru {1, 2, 3, ..., 15} bez powtórzeń,

stąd | Ω | = 15 ? 14 = 210. Wówczas:

b)

Odpowiedzi

334

Page 336: Matematyka 3

− pierwsza wylosowana liczba jest nieparzysta i druga - jest parzysta.

Wobec tego | A | = 7 ? 8 + 8 ? 7 = 112, stąd P(B) =112210 =

815 .

Mając powyższe na uwadze, można przebieg analizowanego doświadczenia zilustrować za

pomocą:

− drzewa, uwzględniając wszystkie gałęzie, które prowadzą do sytuacji sprzyjającej danemu

zdarzeniu,

− tabeli 15 na 15, w której odrzucamy 15 pól leżących na przekątnej. Z pozostałych 210 pól

wybieramy te, które odpowiadają zdarzeniom elementarnym sprzyjającym danemu zdarze-

niu.

Na tej podstawie obliczamy szukane prawdopodobieństwo.

Zadanie 4.1.27 (Wróć do zadania)Odpowiedź95

119

RozwiązanieZa zdarzenie elementarne przyjmujemy wynik losowania 2 osób spośród 35. Zatem każde zdarze-

nie elementarne to dwuelementowy podzbiór ze zbioru 35 uczniów tej klasy. Wszystkich zdarzeń

elementarnych jest więc | Ω | =35 ? 34

2 = 595. Obliczamy, że w tej klasie jest 16 chłopców i 19

dziewczynek. Rozpatrzmy zdarzenie A polegające na tym, że wśród wylosowanych osób będzie co

najmniej jedna dziewczynka. Wtedy zdarzeniem przeciwnym do A jest takie zdarzenie A’, że wśród

wylosowanych osób nie będzie żadnej dziewczynki. To oznacza, że | A ' | =16 ? 15

2 = 120, a więc

P(A ') =120595 =

24119 . Stąd P(A) = 1 − P(A ') = 1 − 24

119 =95

119 .

Zadanie 4.1.28 (Wróć do zadania)Odpowiedź

p =11

221

Rozwiązanie

• Sposób I (schemat klasyczny).

Za zdarzenie elementarne w takim doświadczeniu przyjmujemy wynik dwukrotnego losowa-

nia ze zbioru 52 kart bez zwracania. Każde zdarzenie elementarne możemy zapisać jako

dwuelementowy ciąg (a, b), gdzie a, b są różnymi elementami ze zbioru 52 kart. Wszyst-

kich zdarzeń elementarnych jest więc 52 ? 51 = 2652. Wśród 52 kart w tej talii jest 4 ? 3 = 12

figur. Zatem zdarzeniu, że obie wylosowane karty będą figurami, sprzyjają 12 ? 11 = 132 zda-

rzenia elementarne. Stąd p =132

2652 =11

221 .

• Sposób II

Rysujemy drzewo z uwzględnieniem wszystkich gałęzi, które prowadzą do sytuacji sprzyja-

jącej danemu zdarzeniu. Na tej podstawie obliczamy szukane prawdopodobieństwo.

Uwaga. W tym doświadczeniu za zdarzenie elementarne możemy przyjąć dwuelementowy

podzbiór {a, b} zbioru 52 kart. Wszystkich zdarzeń elementarnych jest wtedy52 ? 51

2 = 1326.

Zdarzeniu, że obie wylosowane karty będą figurami, sprzyja wówczas12 ? 11

2 = 66 zdarzeń

elementarnych. Stąd p =66

1326 =11

221 .

Odpowiedzi

335

Page 337: Matematyka 3

Zadanie 4.1.29 (Wróć do zadania)Odpowiedź7

10

RozwiązanieRozpatrzmy doświadczenie polegające na losowaniu jednej kuli z tego pudełka. Oznaczmy:

• B – zdarzenie, że wylosowano kulę białą,

• C – zdarzenie, że wylosowano kulę czerwoną,

• Z – zdarzenie, że wylosowano kulę zieloną.

Zdarzenia B, C oraz Z są parami rozłączne, a zdarzenie, że zajdzie B lub C, lub Z jest pewne, stąd

P(B ? C ? Z) = 1

Z treści zadania wynika, że P(B) =1

10 oraz P(C ? Z) = 3 ? P(B ? C). Wynika stąd, że

P(C ? Z) = 1 − P(B) =9

10 , co oznacza, że P(B ? C) =13 ? P(C ? Z) =

13 ?

910 =

310 . Ponieważ

P(B ? C) = P(B) + P(C), więc P(C) =3

10 − 110 =

210 . Wobec tego P(Z) = P(C ? Z) − P(C) =

910 − 2

10 =7

10 .

Zadanie 4.1.30 (Wróć do zadania)Odpowiedź

P(A) =2572

Rozwiązanie

Każde zdarzenie elementarne możemy zapisać jako trzyelementowy ciąg (a, b, c), gdzie a, b, c

są liczbami ze zbioru {1, 2, 3, 4, 5, 6} wyników rzutu kostką sześcienną. Wszystkich zdarzeń

elementarnych jest więc | Ω | = 63 = 216. Zliczanie zdarzeń elementarnych sprzyjających A roz-

kładamy na dwa etapy:

Wobec tego | A | = 3 ? 52 = 75. Stąd P(A) =75

216 =2572 .

Zadanie 4.1.31 (Wróć do zadania)Odpowiedź

Rozwiązanie

Każde zdarzenie elementarne to pięcioelementowy ciąg bez powtórzeń (a, b, c, d, e), gdzie

a, b, c, d, e są liczbami ze zbioru {1, 2, 3, 4, 5}. Wszystkich zdarzeń elementarnych jest więc

| Ω | = 5 ? 4 ? 3 ? 2 ? 1 = 120.

obliczamy, na ile sposobów można wybrać rzut, w którym wypadła szóstka: wybieramy je-

den rzut z 3, więc można to zrobić na 3 sposoby,

1)

obliczamy, ile jest wyników pozostałych rzutów: w każdym z pozostałych dwóch rzutów ma-

my do wyboru jeden z pięciu wyników: 1, 2, 3, 4 lub 5, zatem jest 5 ? 5 = 25 takich możli-

wości.

2)

110

a)

25

b)

Oznaczmy: A – zdarzenie, że otrzymaliśmy liczbę pięciocyfrową, w której suma każdych

dwóch sąsiednich cyfr jest nieparzysta. W tym przypadku kolejne pary elementów ciągu

a)

Odpowiedzi

336

Page 338: Matematyka 3

Zadanie 4.1.32 (Wróć do zadania)OdpowiedźUwaga. W literaturze to zadanie jest znane jako paradoks/problem kawalera de’Mere.

P(A) =27

216 > P(B) =25

216

Rozwiązanie

Każde zdarzenie elementarne możemy zapisać jako trzyelementowy ciąg (a, b, c), gdzie a, b, c

są liczbami ze zbioru {1, 2, 3, 4, 5, 6} wyników rzutu kostką sześcienną. Wszystkich zdarzeń

elementarnych jest więc | Ω | = 63 = 216.

Sumę 11 możemy otrzymać na 6 sposobów.

Wobec tego | A | = 6 + 3 + 6 + 6 + 3 + 3 = 27, stąd P(A) =27

216 .

Sumę 12 możemy otrzymać na 6 sposobów:

(a, b, c, d, e) muszą być liczbami różnej parzystości. Jest to możliwe wtedy i tylko wte-

dy, gdy a, c oraz e będą liczbami wybranymi bez powtórzeń ze zbioru {1, 3, 5}, natomiast

b oraz d będą różnymi liczbami ze zbioru {2, 4}.Wobec tego | A | = (3 ? 2 ? 1) ? (2 ? 1) = 12, stąd P(A) =

12120 =

110 .

Oznaczmy: B – zdarzenie, że otrzymaliśmy liczbę pięciocyfrową, w której cyfry 1 oraz 2 są

zapisane na sąsiednich miejscach. W rozpatrywanych ciągach (a, b, c, d, e) cyfry 1, 2

można wtedy zapisać na 4 sposoby: jako a, b lub jako b, c, lub jako c, d, lub jako d, e. W

każdym z tych przypadków cyfry 1, 2 rozmieszczamy na przydzielonych im miejscach na 2

sposoby, a pozostałe trzy cyfry rozmieszczamy na trzech pozostałych miejscach na

3 ? 2 ? 1 = 6 sposobów. Zatem | B | = 4 ? 2 ? 6 = 48, stąd P(B) =48

120 =25 .

b)

wypadła jedna jedynka, jedna czwórka oraz jedna szóstka – jest 3 ? 2 ? 1 = 6 takich zdarzeń

elementarnych,

1)

wypadła jedna jedynka oraz dwie piątki – są 3 takie zdarzenia elementarne,2)

wypadła jedna dwójka, jedna trójka oraz jedna szóstka – jest 3 ? 2 ? 1 = 6 takich zdarzeń

elementarnych,

3)

wypadła jedna dwójka, jedna czwórka oraz jedna piątka – jest 3 ? 2 ? 1 = 6 takich zdarzeń

elementarnych,

4)

wypadły dwie trójki oraz jedna piątka – są 3 takie zdarzenia elementarne,5)

wypadła jedna trójka oraz dwie czwórki – są 3 takie zdarzenia elementarne.6)

wypadła jedna jedynka, jedna piątka oraz jedna szóstka – jest 3 ? 2 ? 1 = 6 takich zdarzeń

elementarnych,

1)

wypadła jedna dwójka, jedna czwórka oraz jedna szóstka – jest 3 ? 2 ? 1 = 6 takich zdarzeń

elementarnych,

2)

wypadła jedna dwójka oraz dwie piątki – są 3 takie zdarzenia elementarne,3)

Odpowiedzi

337

Page 339: Matematyka 3

Wobec tego | B | = 6 + 6 + 3 + 3 + 6 + 1 = 25, stąd P(B) =25

216 .

Oznacza to, że P(A) > P(B).

Zadanie 4.1.33 (Wróć do zadania)Odpowiedź

p =1

13983816

RozwiązanieKażde zdarzenie elementarne to wybór sześcioelementowego podzbioru ze zbioru 49 liczb

{1, 2, 3, ..., 49}. Wszystkich zdarzeń elementarnych jest więc

| Ω | = ( 49

6 ) =49!

6! ? 43! =49 ? 48 ? 47 ? 46 ? 45 ? 44

6 ? 5 ? 4 ? 3 ? 2 ? 1 = 13 983 816. Prawidłowo wytypować wygraną

można, oczywiście, tylko na 1 sposób, więc p =1

13983816 (szansa 1 do prawie 14 milionów).

wypadły dwie trójki oraz jedna szóstka – są 3 takie zdarzenia elementarne,4)

wypadła jedna trójka, jedna czwórka oraz jedna piątka – jest 3 ? 2 ? 1 = 6 takich zdarzeń ele-

mentarnych,

5)

wypadły trzy czwórki – jest 1 takie zdarzenie elementarne.6)

Odpowiedzi

338

Page 340: Matematyka 3

Rozdział 6. O e-podręczniku

Cele kształcenia - wymagania ogólne:

O e-podręczniku

339

Page 341: Matematyka 3

Moduł: Stereometria / Punkty, proste i płaszczyzny w przestrzeni

Autor: Zespół autorski Politechniki Łódzkiej

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iRUfNwnOKO/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iRUfNwnOKO

Hasła podstawy programowej:

E3-GIM-MAT-1.0-1.5: oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i

dziesiętne;

O e-podręczniku

340

Page 342: Matematyka 3

Informacje o licencjach osadzonych obiektów (w kolejności występowania w treści modułu):

Ilya Andreev: Okładka [Licencja: shutterstock]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4303 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4304 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4305 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_465 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4306 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4607 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4308 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4309 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4310 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4311 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4312 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4313 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4314 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4315 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4316 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4317 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4318 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4319 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4320 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4321 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4322 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4323 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4324 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4325 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4326 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4327 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4328 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4329 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4330 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4332 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4333 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4334 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4335 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4336 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4337 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4338 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4339 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4340 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4341 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4342 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4343 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4344 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4345 [Licencja: CC BY 3.0]

O e-podręczniku

341

Page 343: Matematyka 3

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4346 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4347 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4348 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4349 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4350 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4351 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4352 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4353 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4354 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4355 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4356 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4357 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4358 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4359 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4360 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4361 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4362 [Licencja: CC BY 3.0]

O e-podręczniku

342

Page 344: Matematyka 3

Moduł: Stereometria / Graniastosłup prosty i jego własności. Związki miarowe w graniastosłupach

Autor: Jacek Stańdo

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iVz7s0IVvm/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iVz7s0IVvm

Hasła podstawy programowej:

E4-SRE-MAT-1.0-I-3: Równania i nierówności. Uczeń:

Informacje o licencjach osadzonych obiektów (w kolejności występowania w treści modułu):

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_definicja [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Opis prostopadloscianu i szescianu_atrapa_animacja_73 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastoslup prosty_atrapa_animacja_710 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_4080 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_4081 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastoslup – opis bryly_atrapa_animacja_rys_grniast_1892 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_prostopadl_elementy [Licencja: CC BY NC

3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_katy w graniastoslupie [Licencja: CC BY NC

3.0]

Zespół autorski Politechniki Łódzkiej: Opis prostopadloscianu i szescianu_atrapa_animacja_74 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_szescian_przekatna [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_4102 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Siatki i modele prostopadloscianow i szescianow_atrapa_animacja [Licencja: CC BY

3.0]

Zespół autorski Politechniki Łódzkiej: Gimnazjum - Matematyka 2_5002 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Pole figury_atrapa_animacja_330 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5003 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5004 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5005 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_4085 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_szescian przekroj [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_4101 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_przyklad5 [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_prostopadłościan2 [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_prostopadloscian_przyklad7 [Licencja: CC

BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_graniastoslup trojkatny [Licencja: CC BY NC

3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_4100 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci_przyklad10 [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Graniastosłup prosty i jego własnosci [Licencja: CC BY 3.0]

O e-podręczniku

343

Page 345: Matematyka 3

Moduł: Stereometria / Ostrosłup i jego własności

Autor: Zespół autorski Politechniki Łódzkiej

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iQm8s1xZ4w/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iQm8s1xZ4w

Hasła podstawy programowej:

E3-GIM-MAT-1.0-1.5: oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i

dziesiętne;

Informacje o licencjach osadzonych obiektów (w kolejności występowania w treści modułu):

Zespół autorski Politechniki Łódzkiej: Ostroslup i jego wlasnosci_definicja [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Ostroslup i jego wlasnosci_nazwy [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Objetosc graniastoslupa. Jednostki objetosci_atrapa_1936 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Objetosc graniastoslupa. Jednostki objetosci_atrapa_1937 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Objetosc graniastoslupa. Jednostki objetosci_atrapa_1938 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Ostroslup i jego wlasnosci_elementy [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Ostroslup i jego wlasnosci [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Ostroslup i jego wlasnosci_katy w ostroslupie [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5006 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5007 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Ostroslup i jego wlasnosci_z katem nachylenia krawedzi [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Ostroslup i jego wlasnosci_z katem nachylenia sciany [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Ostroslup i jego wlasnosci Ostroslup i jego wlasnosci_z przedkrojem_przyklad5

[Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Ostroslup i jego wlasnosci_przekroj_aplet [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Ostroslup i jego wlasnosci_ostr z przek [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Ostroslup i jego wlasnosci_ostroslup_przyklad6 [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Ostroslup i jego wlasnosci_ostroslup przyklad 7 [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Ostroslup i jego wlasnosci_zad 1 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Ostroslup i jego wlasnosci_zad2 [Licencja: CC BY 3.0]

O e-podręczniku

344

Page 346: Matematyka 3

Moduł: Stereometria / Bryły obrotowe / Bryły obrotowe - walec

Autor: Zespół autorski Politechniki Łódzkiej

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iQZhteOrTa/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iQZhteOrTa

Hasła podstawy programowej:

E3-GIM-MAT-1.0-1.5: oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i

dziesiętne;

Informacje o licencjach osadzonych obiektów (w kolejności występowania w treści modułu):

Zespół autorski Politechniki Łódzkiej: Bryły obrotowe. Walec_definicja [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Bryły obrotowe. Walec_elementy [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5008 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5009 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Bryły obrotowe. Walec Bryły obrotowe. Walec_obrot [Licencja: CC BY 3.0 CC BY NC

3.0]

Zespół autorski Politechniki Łódzkiej: 3D_walec_1538 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Bryły obrotowe. Walec_przyklad2 [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Bryły obrotowe. Walec_przyklad 3 [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Bryły obrotowe. Walec_przyklad 4 [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Bryły obrotowe. Walec_przyklad5 [Licencja: CC BY NC 3.0]

Moduł: Stereometria / Bryły obrotowe / Bryły obrotowe - stożek

Autor: Zespół autorski Politechniki Łódzkiej

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iE1kVs6MKf/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iE1kVs6MKf

Hasła podstawy programowej:

E3-GIM-MAT-1.0-1.5: oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i

dziesiętne;

Informacje o licencjach osadzonych obiektów (w kolejności występowania w treści modułu):

Zespół autorski Politechniki Łódzkiej: Bryly obrotowe. Stozek_definicja [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Bryly obrotowe. Stozek_elementy [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Stozek. Pole powierzchni stozka_2451 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5010 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5011 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Bryly obrotowe. Stozek_przyklad 1 [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Bryly obrotowe. Stozek_przyklad2 [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Bryly obrotowe. Stozek_przyklad3 [Licencja: CC BY NC 3.0]

Zespół autorski Politechniki Łódzkiej: Bryly obrotowe. Stozek_przyklad4 [Licencja: CC BY NC 3.0]

O e-podręczniku

345

Page 347: Matematyka 3

Moduł: Stereometria / Bryły w 3D

Autor: Zespół autorski Politechniki Łódzkiej

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/idZqwWwj6Q/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/idZqwWwj6Q

Hasła podstawy programowej:

E3-GIM-MAT-1.0-1.5: oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i

dziesiętne;

O e-podręczniku

346

Page 348: Matematyka 3

Informacje o licencjach osadzonych obiektów (w kolejności występowania w treści modułu):

Zespół autorski Politechniki Łódzkiej: Gimnazjum - Matematyka 2_atrapa_animacja_1490 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Pole powierzchni prostopadloscianu i szescianu_atrapa_animacja_714 [Licencja:

CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Siatki i modele prostopadloscianow i szescianow_atrapa_animacja [Licencja: CC BY

3.0]

Zespół autorski Politechniki Łódzkiej: Gimnazjum - Matematyka 2_5002 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Dzial III_Figury plaskie_rzut szescianu [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Pole figury_atrapa_animacja_330 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5003 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Pole powierzchni prostopadloscianu i szescianu_atrapa_animacja_715 [Licencja:

CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5010 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5011 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: trojkat in _karton_1534 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: trojkat out _karton_1535 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Pieciokat_katon out_1531 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Pieciokat_katon in_1530 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Szesciokat in_karton_1532 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Szesciokat out_karton_1533 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5004 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5005 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5006 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5007 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5008 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Matematyka_3D_5009 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Gimnazjum - Matematyka 2_atrapa_animacja_1491 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: atrapa:opis animacji [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: 3D_szescian_1539 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: 3D_walec_1538 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Gimnazjum - Matematyka 2_atrapa_animacja_1490 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: 3D_stozek_1540 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Siatki i modele prostopadloscianow i szescianow_atrapa_animacja [Licencja: CC BY

3.0]

Zespół autorski Politechniki Łódzkiej: Objetosc figury_Jednostki objetosci_atrapa_animacj_718 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Objetosc figury_Jednostki objetosci_atrapa_animacj_717 [Licencja: CC BY 3.0]

O e-podręczniku

347

Page 349: Matematyka 3

Moduł: Elementy statystyki opisowej / Średnia, mediana, dominanta

Autor: Jacek Stańdo

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/ibCRNJ2Cbh/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/ibCRNJ2Cbh

Hasła podstawy programowej:

E4-SRE-MAT-1.0-I-5: Ciągi. Uczeń:

Informacje o licencjach osadzonych obiektów (w kolejności występowania w treści modułu):

Zespół autorski Politechniki Łódzkiej: Statystyka_rys_2080 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Statystyka_rys_2081 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Statystyka_rys_2084 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Statystyka_rys_2084 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Statystyka_rys_2082 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Statystyka_rys_2083 [Licencja: CC BY 3.0]

Moduł: Elementy statystyki opisowej / Miary rozproszenia

Autor: Zespół autorski Politechniki Łódzkiej

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iqUlOJ5aca/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iqUlOJ5aca

Hasła podstawy programowej:

E3-GIM-MAT-1.0-1.5: oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i

dziesiętne;

Informacje o licencjach osadzonych obiektów (w kolejności występowania w treści modułu):

Zespół autorski Politechniki Łódzkiej: Miary rozproszenia_4012 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Miary rozproszenia_4013 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Miary rozproszenia_4014 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Miary rozproszenia_4015 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Miary rozproszenia_4016 [Licencja: CC BY 3.0]

O e-podręczniku

348

Page 350: Matematyka 3

Moduł: Kombinatoryka / Liczba elementów zbioru skończonego

Autor: Jacek Stańdo

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/ieQfFGscmW/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/ieQfFGscmW

Hasła podstawy programowej:

E4-SRE-MAT-1.0-I-5: Ciągi. Uczeń:

Informacje o licencjach osadzonych obiektów (w kolejności występowania w treści modułu):

Zespół autorski Politechniki Łódzkiej: Liczba elementow zbioru skonczonego_4022 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Liczba elementow zbioru skonczonego_4021 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Liczba elementow zbioru skonczonego_4020 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Liczba elementow zbioru skonczonego_4019 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Liczba elementow zbioru skonczonego_4018 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Liczba elementow zbioru skonczonego_4017 [Licencja: CC BY 3.0]

Moduł: Kombinatoryka / Reguła mnożenia, reguła dodawania

Autor: Zespół autorski Politechniki Łódzkiej

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/i9ZtphaHIW/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/i9ZtphaHIW

Hasła podstawy programowej:

E3-GIM-MAT-1.0-1.5: oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i

dziesiętne;

Informacje o licencjach osadzonych obiektów (w kolejności występowania w treści modułu):

Zespół autorski Politechniki Łódzkiej: Liczba elementow zbioru skonczonego_4023 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: atrapa:opis animacji [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Reguły mnożenia_4400 [Licencja: CC BY 3.0]

O e-podręczniku

349

Page 351: Matematyka 3

Moduł: Kombinatoryka / Podzbiory zbioru skończonego (treść podstawowa)

Autor: Jacek Stańdo

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/i6H8JsFpVm/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/i6H8JsFpVm

Hasła podstawy programowej:

E2-PODST-MAT-1.0-2.2: dodaje i odejmuje liczby naturalne wielocyfrowe pisemnie, a także za pomocą kalkulatora;

E2-PODST-MAT-1.0-14.1: czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe;

E2-PODST-MAT-1.0-14.2: wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub

wygodne dla niego zapisanie informacji i danych z treści zadania;

E2-PODST-MAT-1.0-14.3: dostrzega zależności między podanymi informacjami;

E2-PODST-MAT-1.0-14.4: dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie

rozwiązania;

E2-PODST-MAT-1.0-14.5: do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z

zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody;

E2-PODST-MAT-1.0-14.6: weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania.

Informacje o licencjach osadzonych obiektów (w kolejności występowania w treści modułu):

Zespół autorski Politechniki Łódzkiej: Liczba podzbiorow_4390 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Liczba podzbiorow_4391 [Licencja: CC BY 3.0]

Moduł: Kombinatoryka / Podzbiory zbioru skończonego (treść rozszerzona)

Autor: Jacek Stańdo

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iyyZQTCUNb/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iyyZQTCUNb

Hasła podstawy programowej:

E2-PODST-MAT-1.0-2.2: dodaje i odejmuje liczby naturalne wielocyfrowe pisemnie, a także za pomocą kalkulatora;

E2-PODST-MAT-1.0-14.1: czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe;

E2-PODST-MAT-1.0-14.2: wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub

wygodne dla niego zapisanie informacji i danych z treści zadania;

E2-PODST-MAT-1.0-14.3: dostrzega zależności między podanymi informacjami;

E2-PODST-MAT-1.0-14.4: dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie

rozwiązania;

E2-PODST-MAT-1.0-14.5: do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z

zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody;

E2-PODST-MAT-1.0-14.6: weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania.

O e-podręczniku

350

Page 352: Matematyka 3

Moduł: Kombinatoryka / Zadania

Autor: Jacek Stańdo

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iRhzyluOSY/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iRhzyluOSY

Hasła podstawy programowej:

E2-PODST-MAT-1.0-2.2: dodaje i odejmuje liczby naturalne wielocyfrowe pisemnie, a także za pomocą kalkulatora;

E2-PODST-MAT-1.0-14.1: czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe;

E2-PODST-MAT-1.0-14.2: wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy lub

wygodne dla niego zapisanie informacji i danych z treści zadania;

E2-PODST-MAT-1.0-14.3: dostrzega zależności między podanymi informacjami;

E2-PODST-MAT-1.0-14.4: dzieli rozwiązanie zadania na etapy, stosując własne, poprawne, wygodne dla niego strategie

rozwiązania;

E2-PODST-MAT-1.0-14.5: do rozwiązywania zadań osadzonych w kontekście praktycznym stosuje poznaną wiedzę z

zakresu arytmetyki i geometrii oraz nabyte umiejętności rachunkowe, a także własne poprawne metody;

E2-PODST-MAT-1.0-14.6: weryfikuje wynik zadania tekstowego, oceniając sensowność rozwiązania.

Informacje o licencjach osadzonych obiektów (w kolejności występowania w treści modułu):

Zespół autorski Politechniki Łódzkiej: Liczba podzbiorow_4392 [Licencja: CC BY 3.0]

O e-podręczniku

351

Page 353: Matematyka 3

Moduł: Prawdopodobieństwo / Klasyczna definicja prawdopodobieństwa. Własności prawdopodobieństwa. Obliczanie

prawdopodobieństw zdarzeń losowych

Autor: Zespół autorski Politechniki Łódzkiej

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iz3aPJUGz3/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iz3aPJUGz3

Hasła podstawy programowej:

E3-GIM-MAT-1.0-1.5: oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i

dziesiętne;

Informacje o licencjach osadzonych obiektów (w kolejności występowania w treści modułu):

Zespół autorski Politechniki Łódzkiej: atrapa:opis animacji [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: atrapa:opis animacji [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: atrapa:opis animacji [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: atrapa:opis animacji [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: atrapa:opis animacji [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: atrapa:opis animacji [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: atrapa:opis animacji [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Prawdopodobieństwo_4393 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Prawdopodobieństwo_4394 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Prawdopodobieństwo_4395 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Prawdopodobieństwo_4396 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Prawdopodobieństwo_4403 [Licencja: CC BY 3.0]

Moduł: Prawdopodobieństwo / Klasyczna definicja prawdopodobieństwa (treść rozszerzona)

Autor: Jacek Stańdo

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iqfmZTm1CX/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/iqfmZTm1CX

Hasła podstawy programowej:

E2-PODST-MAT-1.0-2.3: mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową

pisemnie, w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przykładach);

O e-podręczniku

352

Page 354: Matematyka 3

Moduł: Słowniczek

Moduł wygenerowany przez platformę

Licencja: CC BY 3.0

Kontakt: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/247160_6_glossary/contact

Wersja WWW: http://www.epodreczniki.pl/reader/c/247160/v/6/t/student-canon/m/247160_6_glossary

Informacje o licencjach osadzonych obiektów (w kolejności występowania w treści modułu):

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4328 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4334 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4335 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4336 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4310 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4309 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Punkty, proste, plaszczyzny w przestrzeni_4607 [Licencja: CC BY 3.0]

Informacje o licencjach osadzonych obiektów w odpowiedziach (w kolejności występowania w treści e-podręcznika)

Zespół autorski Politechniki Łódzkiej: Prawdopodobieństwo_4401 [Licencja: CC BY 3.0]

Zespół autorski Politechniki Łódzkiej: Prawdopodobieństwo_4402 [Licencja: CC BY 3.0]

O e-podręczniku

353

Page 355: Matematyka 3

Lista licencji

E-podręczniki 1.0 http://www.epodreczniki.pl/licenses/e-podreczniki/1.0

domena publiczna http://www.epodreczniki.pl/licenses/domena-publiczna/1.0

tylko do użytku edukacyjnego http://www.epodreczniki.pl/licenses/tylko-do-uzytku-edukacyjnego/1.0

tylko do użytku edukacyjnego na epodreczniki.pl http://www.epodreczniki.pl/licenses/tylko-do-uzytku-edukacyjnego-na-

epodreczniki_pl/1.0

tylko do użytku niekomercyjnego http://www.epodreczniki.pl/licenses/tylko-do-uzytku-niekomercyjnego/1.0

CC 0 1.0 http://creativecommons.org/publicdomain/zero/1.0/legalcode

CC BY 1.0 https://creativecommons.org/licenses/by/1.0/legalcode

CC BY 2.0 https://creativecommons.org/licenses/by/2.0/pl/legalcode

CC BY 2.5 https://creativecommons.org/licenses/by/2.5/pl/legalcode

CC BY 3.0 http://creativecommons.org/licenses/by/3.0/pl/legalcode

CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode

CC BY SA 1.0 https://creativecommons.org/licenses/by-sa/1.0/legalcode

CC BY SA 2.0 https://creativecommons.org/licenses/by-sa/2.0/pl/legalcode

CC BY SA 2.5 https://creativecommons.org/licenses/by-sa/2.5/pl/legalcode

CC BY SA 3.0 https://creativecommons.org/licenses/by-sa/3.0/pl/legalcode

CC BY SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/legalcode

CC BY ND 1.0 https://creativecommons.org/licenses/by-nd/1.0/legalcode

CC BY ND 2.0 https://creativecommons.org/licenses/by-nd/2.0/pl/legalcode

CC BY ND 2.5 https://creativecommons.org/licenses/by-nd/2.5/pl/legalcode

CC BY ND 3.0 https://creativecommons.org/licenses/by-nd/3.0/pl/legalcode

CC BY ND 4.0 https://creativecommons.org/licenses/by-nd/4.0/legalcode

CC BY NC 1.0 https://creativecommons.org/licenses/by-nc/1.0/legalcode

CC BY NC 2.0 https://creativecommons.org/licenses/by-nc/2.0/pl/legalcode

CC BY NC 2.5 https://creativecommons.org/licenses/by-nc/2.5/pl/legalcode

CC BY NC 3.0 https://creativecommons.org/licenses/by-nc/3.0/pl/legalcode

CC BY NC 4.0 https://creativecommons.org/licenses/by-nc/4.0/legalcode

CC BY NC ND 2.0 https://creativecommons.org/licenses/by-nc-nd/2.0/pl/legalcode

CC BY NC ND 2.5 https://creativecommons.org/licenses/by-nc-nd/2.5/pl/legalcode

CC BY NC ND 3.0 https://creativecommons.org/licenses/by-nc-nd/3.0/pl/legalcode

CC BY NC ND 4.0 https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

CC BY NC SA 1.0 https://creativecommons.org/licenses/by-nc-sa/1.0/legalcode

CC BY NC SA 2.0 https://creativecommons.org/licenses/by-nc-sa/2.0/pl/legalcode

CC BY NC SA 2.5 https://creativecommons.org/licenses/by-nc-sa/2.5/pl/legalcode

CC BY NC SA 3.0 https://creativecommons.org/licenses/by-nc-sa/3.0/pl/legalcode

CC BY NC SA 4.0 https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

PŁ - Politechnika Łódzka

O e-podręczniku

354