129
. . . . . . Section 2.3 Basic Differentiation Rules V63.0121.034, Calculus I September 24, 2009 Announcements I Quiz next week (up to Section 2.1) I See website for up-to-date events.

Lesson 8: Basic Differentiation Rules

Embed Size (px)

DESCRIPTION

After defining the limit and calculating a few, we introduced the limit laws. Today we do the same for the derivative. We calculate a few and introduce laws which allow us to computer more. The Power Rule shows us how to compute derivatives of polynomials, and we can also find directly the derivative of sine and cosine.

Citation preview

Page 1: Lesson 8: Basic Differentiation Rules

. . . . . .

Section2.3BasicDifferentiationRules

V63.0121.034, CalculusI

September24, 2009

Announcements

I Quiznextweek(uptoSection2.1)I Seewebsiteforup-to-dateevents.

Page 2: Lesson 8: Basic Differentiation Rules

. . . . . .

Outline

Recall

DerivativessofarDerivativesofpowerfunctionsbyhandThePowerRule

DerivativesofpolynomialsThePowerRuleforwholenumberpowersThePowerRuleforconstantsTheSumRuleTheConstantMultipleRule

Derivativesofsineandcosine

Page 3: Lesson 8: Basic Differentiation Rules

Derivative. . . . . .

Page 4: Lesson 8: Basic Differentiation Rules

. . . . . .

Recall: thederivative

DefinitionLet f beafunctionand a apointinthedomainof f. Ifthelimit

f′(a) = limh→0

f(a + h) − f(a)h

= limx→a

f(x) − f(a)x− a

exists, thefunctionissaidtobe differentiableat a and f′(a) isthederivativeof f at a.Thederivative…

I …measurestheslopeofthelinethrough (a, f(a)) tangenttothecurve y = f(x);

I …representstheinstantaneousrateofchangeof f at aI …producesthebestpossiblelinearapproximationto f near

a.

Page 5: Lesson 8: Basic Differentiation Rules

. . . . . .

Notation

Newtoniannotation Leibniziannotation

f′(x) y′(x) y′dydx

ddx

f(x)dfdx

Page 6: Lesson 8: Basic Differentiation Rules

. . . . . .

Linkbetweenthenotations

f′(x) = lim∆x→0

f(x + ∆x) − f(x)∆x

= lim∆x→0

∆y∆x

=dydx

I Leibnizthoughtofdydx

asaquotientof“infinitesimals”

I Wethinkofdydx

asrepresentinga limit of(finite)difference

quotients, notasanactualfractionitself.I Thenotationsuggeststhingswhicharetrueeventhoughtheydon’tfollowfromthenotation perse

Page 7: Lesson 8: Basic Differentiation Rules

. . . . . .

Outline

Recall

DerivativessofarDerivativesofpowerfunctionsbyhandThePowerRule

DerivativesofpolynomialsThePowerRuleforwholenumberpowersThePowerRuleforconstantsTheSumRuleTheConstantMultipleRule

Derivativesofsineandcosine

Page 8: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativeofthesquaringfunction

ExampleSuppose f(x) = x2. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)2 − x2

h

= limh→0

��x2 + 2xh + h2 −��x2

h= lim

h→0

2x��h + h�2

��h= lim

h→0(2x + h) = 2x.

So f′(x) = 2x.

Page 9: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativeofthesquaringfunction

ExampleSuppose f(x) = x2. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)2 − x2

h

= limh→0

��x2 + 2xh + h2 −��x2

h= lim

h→0

2x��h + h�2

��h= lim

h→0(2x + h) = 2x.

So f′(x) = 2x.

Page 10: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativeofthesquaringfunction

ExampleSuppose f(x) = x2. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)2 − x2

h

= limh→0

��x2 + 2xh + h2 −��x2

h= lim

h→0

2x��h + h�2

��h= lim

h→0(2x + h) = 2x.

So f′(x) = 2x.

Page 11: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativeofthesquaringfunction

ExampleSuppose f(x) = x2. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)2 − x2

h

= limh→0

��x2 + 2xh + h2 −��x2

h

= limh→0

2x��h + h�2

��h= lim

h→0(2x + h) = 2x.

So f′(x) = 2x.

Page 12: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativeofthesquaringfunction

ExampleSuppose f(x) = x2. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)2 − x2

h

= limh→0

��x2 + 2xh + h2 −��x2

h= lim

h→0

2x��h + h�2

��h

= limh→0

(2x + h) = 2x.

So f′(x) = 2x.

Page 13: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativeofthesquaringfunction

ExampleSuppose f(x) = x2. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)2 − x2

h

= limh→0

��x2 + 2xh + h2 −��x2

h= lim

h→0

2x��h + h�2

��h= lim

h→0(2x + h) = 2x.

So f′(x) = 2x.

Page 14: Lesson 8: Basic Differentiation Rules

. . . . . .

Thesecondderivative

If f isafunction, sois f′, andwecanseekitsderivative.

f′′ = (f′)′

Itmeasurestherateofchangeoftherateofchange!

Leibniziannotation:

d2ydx2

d2

dx2f(x)

d2fdx2

Page 15: Lesson 8: Basic Differentiation Rules

. . . . . .

Thesecondderivative

If f isafunction, sois f′, andwecanseekitsderivative.

f′′ = (f′)′

Itmeasurestherateofchangeoftherateofchange! Leibniziannotation:

d2ydx2

d2

dx2f(x)

d2fdx2

Page 16: Lesson 8: Basic Differentiation Rules

. . . . . .

Thesquaringfunctionanditsderivatives

. .x

.y

.f

.f′.f′′ I f increasing =⇒ f′ ≥ 0

I f decreasing =⇒ f′ ≤ 0I horizontaltangentat 0

=⇒ f′(0) = 0

Page 17: Lesson 8: Basic Differentiation Rules

. . . . . .

Thesquaringfunctionanditsderivatives

. .x

.y

.f

.f′.f′′ I f increasing =⇒ f′ ≥ 0

I f decreasing =⇒ f′ ≤ 0I horizontaltangentat 0

=⇒ f′(0) = 0

Page 18: Lesson 8: Basic Differentiation Rules

. . . . . .

Thesquaringfunctionanditsderivatives

. .x

.y

.f

.f′

.f′′

I f increasing =⇒ f′ ≥ 0I f decreasing =⇒ f′ ≤ 0I horizontaltangentat 0

=⇒ f′(0) = 0

Page 19: Lesson 8: Basic Differentiation Rules

. . . . . .

Thesquaringfunctionanditsderivatives

. .x

.y

.f

.f′.f′′ I f increasing =⇒ f′ ≥ 0

I f decreasing =⇒ f′ ≤ 0I horizontaltangentat 0

=⇒ f′(0) = 0

Page 20: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativeofthecubingfunction

ExampleSuppose f(x) = x3. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)3 − x3

h

= limh→0

��x3 + 3x2h + 3xh2 + h3 −��x3

h= lim

h→0

3x2��h + 3xh���1

2 + h���2

3

��h

= limh→0

(3x2 + 3xh + h2

)= 3x2.

So f′(x) = 3x2.

Page 21: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativeofthecubingfunction

ExampleSuppose f(x) = x3. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)3 − x3

h

= limh→0

��x3 + 3x2h + 3xh2 + h3 −��x3

h= lim

h→0

3x2��h + 3xh���1

2 + h���2

3

��h

= limh→0

(3x2 + 3xh + h2

)= 3x2.

So f′(x) = 3x2.

Page 22: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativeofthecubingfunction

ExampleSuppose f(x) = x3. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)3 − x3

h

= limh→0

��x3 + 3x2h + 3xh2 + h3 −��x3

h

= limh→0

3x2��h + 3xh���1

2 + h���2

3

��h

= limh→0

(3x2 + 3xh + h2

)= 3x2.

So f′(x) = 3x2.

Page 23: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativeofthecubingfunction

ExampleSuppose f(x) = x3. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)3 − x3

h

= limh→0

��x3 + 3x2h + 3xh2 + h3 −��x3

h= lim

h→0

3x2��h + 3xh���1

2 + h���2

3

��h

= limh→0

(3x2 + 3xh + h2

)= 3x2.

So f′(x) = 3x2.

Page 24: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativeofthecubingfunction

ExampleSuppose f(x) = x3. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)3 − x3

h

= limh→0

��x3 + 3x2h + 3xh2 + h3 −��x3

h= lim

h→0

3x2��h + 3xh���1

2 + h���2

3

��h

= limh→0

(3x2 + 3xh + h2

)= 3x2.

So f′(x) = 3x2.

Page 25: Lesson 8: Basic Differentiation Rules

. . . . . .

Thecubingfunctionanditsderivatives

. .x

.y

.f

.f′.f′′I Noticethat f isincreasing, and f′ > 0except f′(0) = 0

I Noticealsothatthetangentlinetothegraphof f at (0, 0) crosses thegraph(contrarytoapopular“definition”ofthetangentline)

Page 26: Lesson 8: Basic Differentiation Rules

. . . . . .

Thecubingfunctionanditsderivatives

. .x

.y

.f

.f′.f′′I Noticethat f isincreasing, and f′ > 0except f′(0) = 0

I Noticealsothatthetangentlinetothegraphof f at (0, 0) crosses thegraph(contrarytoapopular“definition”ofthetangentline)

Page 27: Lesson 8: Basic Differentiation Rules

. . . . . .

Thecubingfunctionanditsderivatives

. .x

.y

.f

.f′

.f′′

I Noticethat f isincreasing, and f′ > 0except f′(0) = 0

I Noticealsothatthetangentlinetothegraphof f at (0, 0) crosses thegraph(contrarytoapopular“definition”ofthetangentline)

Page 28: Lesson 8: Basic Differentiation Rules

. . . . . .

Thecubingfunctionanditsderivatives

. .x

.y

.f

.f′.f′′I Noticethat f isincreasing, and f′ > 0except f′(0) = 0

I Noticealsothatthetangentlinetothegraphof f at (0, 0) crosses thegraph(contrarytoapopular“definition”ofthetangentline)

Page 29: Lesson 8: Basic Differentiation Rules

. . . . . .

Thecubingfunctionanditsderivatives

. .x

.y

.f

.f′.f′′I Noticethat f isincreasing, and f′ > 0except f′(0) = 0

I Noticealsothatthetangentlinetothegraphof f at (0, 0) crosses thegraph(contrarytoapopular“definition”ofthetangentline)

Page 30: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativeofthesquarerootfunctionExampleSuppose f(x) =

√x = x1/2. Usethedefinitionofderivativetofind

f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

√x + h−

√x

h

= limh→0

√x + h−

√x

h·√x + h +

√x√

x + h +√x

= limh→0

(�x + h) − �x

h(√

x + h +√x) = lim

h→0

��h

��h(√

x + h +√x)

=1

2√x

So f′(x) =√x = 1

2x−1/2.

Page 31: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativeofthesquarerootfunctionExampleSuppose f(x) =

√x = x1/2. Usethedefinitionofderivativetofind

f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

√x + h−

√x

h

= limh→0

√x + h−

√x

h·√x + h +

√x√

x + h +√x

= limh→0

(�x + h) − �x

h(√

x + h +√x) = lim

h→0

��h

��h(√

x + h +√x)

=1

2√x

So f′(x) =√x = 1

2x−1/2.

Page 32: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativeofthesquarerootfunctionExampleSuppose f(x) =

√x = x1/2. Usethedefinitionofderivativetofind

f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

√x + h−

√x

h

= limh→0

√x + h−

√x

h·√x + h +

√x√

x + h +√x

= limh→0

(�x + h) − �x

h(√

x + h +√x) = lim

h→0

��h

��h(√

x + h +√x)

=1

2√x

So f′(x) =√x = 1

2x−1/2.

Page 33: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativeofthesquarerootfunctionExampleSuppose f(x) =

√x = x1/2. Usethedefinitionofderivativetofind

f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

√x + h−

√x

h

= limh→0

√x + h−

√x

h·√x + h +

√x√

x + h +√x

= limh→0

(�x + h) − �x

h(√

x + h +√x)

= limh→0

��h

��h(√

x + h +√x)

=1

2√x

So f′(x) =√x = 1

2x−1/2.

Page 34: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativeofthesquarerootfunctionExampleSuppose f(x) =

√x = x1/2. Usethedefinitionofderivativetofind

f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

√x + h−

√x

h

= limh→0

√x + h−

√x

h·√x + h +

√x√

x + h +√x

= limh→0

(�x + h) − �x

h(√

x + h +√x) = lim

h→0

��h

��h(√

x + h +√x)

=1

2√x

So f′(x) =√x = 1

2x−1/2.

Page 35: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativeofthesquarerootfunctionExampleSuppose f(x) =

√x = x1/2. Usethedefinitionofderivativetofind

f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

√x + h−

√x

h

= limh→0

√x + h−

√x

h·√x + h +

√x√

x + h +√x

= limh→0

(�x + h) − �x

h(√

x + h +√x) = lim

h→0

��h

��h(√

x + h +√x)

=1

2√x

So f′(x) =√x = 1

2x−1/2.

Page 36: Lesson 8: Basic Differentiation Rules

. . . . . .

Thesquarerootfunctionanditsderivatives

. .x

.y

.f

.f′

I Here limx→0+

f′(x) = ∞ and

f isnotdifferentiableat 0I Noticealso

limx→∞

f′(x) = 0

Page 37: Lesson 8: Basic Differentiation Rules

. . . . . .

Thesquarerootfunctionanditsderivatives

. .x

.y

.f

.f′

I Here limx→0+

f′(x) = ∞ and

f isnotdifferentiableat 0I Noticealso

limx→∞

f′(x) = 0

Page 38: Lesson 8: Basic Differentiation Rules

. . . . . .

Thesquarerootfunctionanditsderivatives

. .x

.y

.f

.f′

I Here limx→0+

f′(x) = ∞ and

f isnotdifferentiableat 0

I Noticealsolimx→∞

f′(x) = 0

Page 39: Lesson 8: Basic Differentiation Rules

. . . . . .

Thesquarerootfunctionanditsderivatives

. .x

.y

.f

.f′

I Here limx→0+

f′(x) = ∞ and

f isnotdifferentiableat 0I Noticealso

limx→∞

f′(x) = 0

Page 40: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativeofthecuberootfunctionExampleSuppose f(x) = 3

√x = x1/3. Usethedefinitionofderivativetofind

f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)1/3 − x1/3

h

= limh→0

(x + h)1/3 − x1/3

h· (x + h)2/3 + (x + h)1/3x1/3 + x2/3

(x + h)2/3 + (x + h)1/3x1/3 + x2/3

= limh→0

(�x + h) − �xh

((x + h)2/3 + (x + h)1/3x1/3 + x2/3

)= lim

h→0

��h

��h((x + h)2/3 + (x + h)1/3x1/3 + x2/3

) =1

3x2/3

So f′(x) = 13x

−2/3.

Page 41: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativeofthecuberootfunctionExampleSuppose f(x) = 3

√x = x1/3. Usethedefinitionofderivativetofind

f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)1/3 − x1/3

h

= limh→0

(x + h)1/3 − x1/3

h· (x + h)2/3 + (x + h)1/3x1/3 + x2/3

(x + h)2/3 + (x + h)1/3x1/3 + x2/3

= limh→0

(�x + h) − �xh

((x + h)2/3 + (x + h)1/3x1/3 + x2/3

)= lim

h→0

��h

��h((x + h)2/3 + (x + h)1/3x1/3 + x2/3

) =1

3x2/3

So f′(x) = 13x

−2/3.

Page 42: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativeofthecuberootfunctionExampleSuppose f(x) = 3

√x = x1/3. Usethedefinitionofderivativetofind

f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)1/3 − x1/3

h

= limh→0

(x + h)1/3 − x1/3

h· (x + h)2/3 + (x + h)1/3x1/3 + x2/3

(x + h)2/3 + (x + h)1/3x1/3 + x2/3

= limh→0

(�x + h) − �xh

((x + h)2/3 + (x + h)1/3x1/3 + x2/3

)= lim

h→0

��h

��h((x + h)2/3 + (x + h)1/3x1/3 + x2/3

) =1

3x2/3

So f′(x) = 13x

−2/3.

Page 43: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativeofthecuberootfunctionExampleSuppose f(x) = 3

√x = x1/3. Usethedefinitionofderivativetofind

f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)1/3 − x1/3

h

= limh→0

(x + h)1/3 − x1/3

h· (x + h)2/3 + (x + h)1/3x1/3 + x2/3

(x + h)2/3 + (x + h)1/3x1/3 + x2/3

= limh→0

(�x + h) − �xh

((x + h)2/3 + (x + h)1/3x1/3 + x2/3

)

= limh→0

��h

��h((x + h)2/3 + (x + h)1/3x1/3 + x2/3

) =1

3x2/3

So f′(x) = 13x

−2/3.

Page 44: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativeofthecuberootfunctionExampleSuppose f(x) = 3

√x = x1/3. Usethedefinitionofderivativetofind

f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)1/3 − x1/3

h

= limh→0

(x + h)1/3 − x1/3

h· (x + h)2/3 + (x + h)1/3x1/3 + x2/3

(x + h)2/3 + (x + h)1/3x1/3 + x2/3

= limh→0

(�x + h) − �xh

((x + h)2/3 + (x + h)1/3x1/3 + x2/3

)= lim

h→0

��h

��h((x + h)2/3 + (x + h)1/3x1/3 + x2/3

)

=1

3x2/3

So f′(x) = 13x

−2/3.

Page 45: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativeofthecuberootfunctionExampleSuppose f(x) = 3

√x = x1/3. Usethedefinitionofderivativetofind

f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)1/3 − x1/3

h

= limh→0

(x + h)1/3 − x1/3

h· (x + h)2/3 + (x + h)1/3x1/3 + x2/3

(x + h)2/3 + (x + h)1/3x1/3 + x2/3

= limh→0

(�x + h) − �xh

((x + h)2/3 + (x + h)1/3x1/3 + x2/3

)= lim

h→0

��h

��h((x + h)2/3 + (x + h)1/3x1/3 + x2/3

) =1

3x2/3

So f′(x) = 13x

−2/3.

Page 46: Lesson 8: Basic Differentiation Rules

. . . . . .

Thecuberootfunctionanditsderivatives

. .x

.y

.f

.f′

I Here limx→0

f′(x) = ∞ and f

isnotdifferentiableat 0I Noticealso

limx→±∞

f′(x) = 0

Page 47: Lesson 8: Basic Differentiation Rules

. . . . . .

Thecuberootfunctionanditsderivatives

. .x

.y

.f

.f′

I Here limx→0

f′(x) = ∞ and f

isnotdifferentiableat 0I Noticealso

limx→±∞

f′(x) = 0

Page 48: Lesson 8: Basic Differentiation Rules

. . . . . .

Thecuberootfunctionanditsderivatives

. .x

.y

.f

.f′

I Here limx→0

f′(x) = ∞ and f

isnotdifferentiableat 0

I Noticealsolim

x→±∞f′(x) = 0

Page 49: Lesson 8: Basic Differentiation Rules

. . . . . .

Thecuberootfunctionanditsderivatives

. .x

.y

.f

.f′

I Here limx→0

f′(x) = ∞ and f

isnotdifferentiableat 0I Noticealso

limx→±∞

f′(x) = 0

Page 50: Lesson 8: Basic Differentiation Rules

. . . . . .

Onemore

ExampleSuppose f(x) = x2/3. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)2/3 − x2/3

h

= limh→0

(x + h)1/3 − x1/3

h·((x + h)1/3 + x1/3

)= 1

3x−2/3

(2x1/3

)= 2

3x−1/3

So f′(x) = 23x

−1/3.

Page 51: Lesson 8: Basic Differentiation Rules

. . . . . .

Onemore

ExampleSuppose f(x) = x2/3. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)2/3 − x2/3

h

= limh→0

(x + h)1/3 − x1/3

h·((x + h)1/3 + x1/3

)= 1

3x−2/3

(2x1/3

)= 2

3x−1/3

So f′(x) = 23x

−1/3.

Page 52: Lesson 8: Basic Differentiation Rules

. . . . . .

Onemore

ExampleSuppose f(x) = x2/3. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)2/3 − x2/3

h

= limh→0

(x + h)1/3 − x1/3

h·((x + h)1/3 + x1/3

)

= 13x

−2/3(2x1/3

)= 2

3x−1/3

So f′(x) = 23x

−1/3.

Page 53: Lesson 8: Basic Differentiation Rules

. . . . . .

Onemore

ExampleSuppose f(x) = x2/3. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)2/3 − x2/3

h

= limh→0

(x + h)1/3 − x1/3

h·((x + h)1/3 + x1/3

)= 1

3x−2/3

(2x1/3

)

= 23x

−1/3

So f′(x) = 23x

−1/3.

Page 54: Lesson 8: Basic Differentiation Rules

. . . . . .

Onemore

ExampleSuppose f(x) = x2/3. Usethedefinitionofderivativetofind f′(x).

Solution

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

(x + h)2/3 − x2/3

h

= limh→0

(x + h)1/3 − x1/3

h·((x + h)1/3 + x1/3

)= 1

3x−2/3

(2x1/3

)= 2

3x−1/3

So f′(x) = 23x

−1/3.

Page 55: Lesson 8: Basic Differentiation Rules

. . . . . .

Thefunction x 7→ x2/3 anditsderivative

. .x

.y

.f

.f′

I f isnotdifferentiableat0 and lim

x→0±f′(x) = ±∞

I Noticealsolim

x→±∞f′(x) = 0

Page 56: Lesson 8: Basic Differentiation Rules

. . . . . .

Thefunction x 7→ x2/3 anditsderivative

. .x

.y

.f

.f′

I f isnotdifferentiableat0 and lim

x→0±f′(x) = ±∞

I Noticealsolim

x→±∞f′(x) = 0

Page 57: Lesson 8: Basic Differentiation Rules

. . . . . .

Thefunction x 7→ x2/3 anditsderivative

. .x

.y

.f

.f′

I f isnotdifferentiableat0 and lim

x→0±f′(x) = ±∞

I Noticealsolim

x→±∞f′(x) = 0

Page 58: Lesson 8: Basic Differentiation Rules

. . . . . .

Thefunction x 7→ x2/3 anditsderivative

. .x

.y

.f

.f′

I f isnotdifferentiableat0 and lim

x→0±f′(x) = ±∞

I Noticealsolim

x→±∞f′(x) = 0

Page 59: Lesson 8: Basic Differentiation Rules

. . . . . .

Recap

y y′

x2 2x

1

x3 3x2

x1/2 12x

−1/2

x1/3 13x

−2/3

x2/3 23x

−1/3

I Thepowergoesdownbyoneineachderivative

I Thecoefficientinthederivativeisthepoweroftheoriginalfunction

Page 60: Lesson 8: Basic Differentiation Rules

. . . . . .

Recap

y y′

x2 2x

1

x3 3x2

x1/2 12x

−1/2

x1/3 13x

−2/3

x2/3 23x

−1/3

I Thepowergoesdownbyoneineachderivative

I Thecoefficientinthederivativeisthepoweroftheoriginalfunction

Page 61: Lesson 8: Basic Differentiation Rules

. . . . . .

Recap

y y′

x2 2x

1

x3 3x2

x1/2 12x

−1/2

x1/3 13x

−2/3

x2/3 23x

−1/3

I Thepowergoesdownbyoneineachderivative

I Thecoefficientinthederivativeisthepoweroftheoriginalfunction

Page 62: Lesson 8: Basic Differentiation Rules

. . . . . .

Recap

y y′

x2 2x

1

x3 3x2

x1/2 12x

−1/2

x1/3 13x

−2/3

x2/3 23x

−1/3

I Thepowergoesdownbyoneineachderivative

I Thecoefficientinthederivativeisthepoweroftheoriginalfunction

Page 63: Lesson 8: Basic Differentiation Rules

. . . . . .

Recap

y y′

x2 2x

1

x3 3x2

x1/2 12x

−1/2

x1/3 13x

−2/3

x2/3 23x

−1/3

I Thepowergoesdownbyoneineachderivative

I Thecoefficientinthederivativeisthepoweroftheoriginalfunction

Page 64: Lesson 8: Basic Differentiation Rules

. . . . . .

Recap

y y′

x2 2x1

x3 3x2

x1/2 12x

−1/2

x1/3 13x

−2/3

x2/3 23x

−1/3

I Thepowergoesdownbyoneineachderivative

I Thecoefficientinthederivativeisthepoweroftheoriginalfunction

Page 65: Lesson 8: Basic Differentiation Rules

. . . . . .

Recap: TheTowerofPower

y y′

x2 2x1

x3 3x2

x1/2 12x

−1/2

x1/3 13x

−2/3

x2/3 23x

−1/3

I Thepowergoesdownbyoneineachderivative

I Thecoefficientinthederivativeisthepoweroftheoriginalfunction

Page 66: Lesson 8: Basic Differentiation Rules

. . . . . .

Recap: TheTowerofPower

y y′

x2 2x

1

x3 3x2

x1/2 12x

−1/2

x1/3 13x

−2/3

x2/3 23x

−1/3

I Thepowergoesdownbyoneineachderivative

I Thecoefficientinthederivativeisthepoweroftheoriginalfunction

Page 67: Lesson 8: Basic Differentiation Rules

. . . . . .

Recap: TheTowerofPower

y y′

x2 2x

1

x3 3x2

x1/2 12x

−1/2

x1/3 13x

−2/3

x2/3 23x

−1/3

I Thepowergoesdownbyoneineachderivative

I Thecoefficientinthederivativeisthepoweroftheoriginalfunction

Page 68: Lesson 8: Basic Differentiation Rules

. . . . . .

Recap: TheTowerofPower

y y′

x2 2x

1

x3 3x2

x1/2 12x

−1/2

x1/3 13x

−2/3

x2/3 23x

−1/3

I Thepowergoesdownbyoneineachderivative

I Thecoefficientinthederivativeisthepoweroftheoriginalfunction

Page 69: Lesson 8: Basic Differentiation Rules

. . . . . .

Recap: TheTowerofPower

y y′

x2 2x

1

x3 3x2

x1/2 12x

−1/2

x1/3 13x

−2/3

x2/3 23x

−1/3

I Thepowergoesdownbyoneineachderivative

I Thecoefficientinthederivativeisthepoweroftheoriginalfunction

Page 70: Lesson 8: Basic Differentiation Rules

. . . . . .

Recap: TheTowerofPower

y y′

x2 2x

1

x3 3x2

x1/2 12x

−1/2

x1/3 13x

−2/3

x2/3 23x

−1/3

I Thepowergoesdownbyoneineachderivative

I Thecoefficientinthederivativeisthepoweroftheoriginalfunction

Page 71: Lesson 8: Basic Differentiation Rules

. . . . . .

Recap: TheTowerofPower

y y′

x2 2x

1

x3 3x2

x1/2 12x

−1/2

x1/3 13x

−2/3

x2/3 23x

−1/3

I Thepowergoesdownbyoneineachderivative

I Thecoefficientinthederivativeisthepoweroftheoriginalfunction

Page 72: Lesson 8: Basic Differentiation Rules

. . . . . .

ThePowerRule

Thereismountingevidencefor

Theorem(ThePowerRule)Let r bearealnumberand f(x) = xr. Then

f′(x) = rxr−1

aslongastheexpressionontheright-handsideisdefined.

I PerhapsthemostfamousruleincalculusI WewillassumeitasoftodayI Wewillproveitmanywaysformanydifferent r.

Page 73: Lesson 8: Basic Differentiation Rules

. . . . . .

TheotherTowerofPower

Page 74: Lesson 8: Basic Differentiation Rules

. . . . . .

Outline

Recall

DerivativessofarDerivativesofpowerfunctionsbyhandThePowerRule

DerivativesofpolynomialsThePowerRuleforwholenumberpowersThePowerRuleforconstantsTheSumRuleTheConstantMultipleRule

Derivativesofsineandcosine

Page 75: Lesson 8: Basic Differentiation Rules

. . . . . .

Rememberyouralgebra

FactLet n beapositivewholenumber. Then

(x + h)n = xn + nxn−1h + (stuffwithatleasttwo hsinit)

Proof.Wehave

(x + h)n = (x + h) · (x + h) · (x + h) · · · (x + h)︸ ︷︷ ︸n copies

=n∑

k=0

ckxkhn−k

Thecoefficientof xn is 1 becausewehavetochoose x fromeachbinomial, andthere’sonlyonewaytodothat. Thecoefficientofxn−1h isthenumberofwayswecanchoose x n− 1 times, whichisthesameasthenumberofdifferent hswecanpick, whichisn.

Page 76: Lesson 8: Basic Differentiation Rules

. . . . . .

Rememberyouralgebra

FactLet n beapositivewholenumber. Then

(x + h)n = xn + nxn−1h + (stuffwithatleasttwo hsinit)

Proof.Wehave

(x + h)n = (x + h) · (x + h) · (x + h) · · · (x + h)︸ ︷︷ ︸n copies

=n∑

k=0

ckxkhn−k

Thecoefficientof xn is 1 becausewehavetochoose x fromeachbinomial, andthere’sonlyonewaytodothat. Thecoefficientofxn−1h isthenumberofwayswecanchoose x n− 1 times, whichisthesameasthenumberofdifferent hswecanpick, whichisn.

Page 77: Lesson 8: Basic Differentiation Rules

. . . . . .

Rememberyouralgebra

FactLet n beapositivewholenumber. Then

(x + h)n = xn + nxn−1h + (stuffwithatleasttwo hsinit)

Proof.Wehave

(x + h)n = (x + h) · (x + h) · (x + h) · · · (x + h)︸ ︷︷ ︸n copies

=n∑

k=0

ckxkhn−k

Thecoefficientof xn is 1 becausewehavetochoose x fromeachbinomial, andthere’sonlyonewaytodothat.

Thecoefficientofxn−1h isthenumberofwayswecanchoose x n− 1 times, whichisthesameasthenumberofdifferent hswecanpick, whichisn.

Page 78: Lesson 8: Basic Differentiation Rules

. . . . . .

Rememberyouralgebra

FactLet n beapositivewholenumber. Then

(x + h)n = xn + nxn−1h + (stuffwithatleasttwo hsinit)

Proof.Wehave

(x + h)n = (x + h) · (x + h) · (x + h) · · · (x + h)︸ ︷︷ ︸n copies

=n∑

k=0

ckxkhn−k

Thecoefficientof xn is 1 becausewehavetochoose x fromeachbinomial, andthere’sonlyonewaytodothat. Thecoefficientofxn−1h isthenumberofwayswecanchoose x n− 1 times, whichisthesameasthenumberofdifferent hswecanpick, whichisn.

Page 79: Lesson 8: Basic Differentiation Rules

. . . . . .

Rememberyouralgebra

FactLet n beapositivewholenumber. Then

(x + h)n = xn + nxn−1h + (stuffwithatleasttwo hsinit)

Proof.Wehave

(x + h)n = (x + h) · (x + h) · (x + h) · · · (x + h)︸ ︷︷ ︸n copies

=n∑

k=0

ckxkhn−k

Thecoefficientof xn is 1 becausewehavetochoose x fromeachbinomial, andthere’sonlyonewaytodothat. Thecoefficientofxn−1h isthenumberofwayswecanchoose x n− 1 times, whichisthesameasthenumberofdifferent hswecanpick, whichisn.

Page 80: Lesson 8: Basic Differentiation Rules

. . . . . .

Rememberyouralgebra

FactLet n beapositivewholenumber. Then

(x + h)n = xn + nxn−1h + (stuffwithatleasttwo hsinit)

Proof.Wehave

(x + h)n = (x + h) · (x + h) · (x + h) · · · (x + h)︸ ︷︷ ︸n copies

=n∑

k=0

ckxkhn−k

Thecoefficientof xn is 1 becausewehavetochoose x fromeachbinomial, andthere’sonlyonewaytodothat. Thecoefficientofxn−1h isthenumberofwayswecanchoose x n− 1 times, whichisthesameasthenumberofdifferent hswecanpick, whichisn.

Page 81: Lesson 8: Basic Differentiation Rules

. . . . . .

Rememberyouralgebra

FactLet n beapositivewholenumber. Then

(x + h)n = xn + nxn−1h + (stuffwithatleasttwo hsinit)

Proof.Wehave

(x + h)n = (x + h) · (x + h) · (x + h) · · · (x + h)︸ ︷︷ ︸n copies

=n∑

k=0

ckxkhn−k

Thecoefficientof xn is 1 becausewehavetochoose x fromeachbinomial, andthere’sonlyonewaytodothat. Thecoefficientofxn−1h isthenumberofwayswecanchoose x n− 1 times, whichisthesameasthenumberofdifferent hswecanpick, whichisn.

Page 82: Lesson 8: Basic Differentiation Rules

. . . . . .

Pascal’sTriangle

..1

.1 .1

.1 .2 .1

.1 .3 .3 .1

.1 .4 .6 .4 .1

.1 .5 .10 .10 .5 .1

.1 .6 .15 .20 .15 .6 .1

(x + h)0 = 1

(x + h)1 = 1x + 1h

(x + h)2 = 1x2 + 2xh + 1h2

(x + h)3 = 1x3 + 3x2h + 3xh2 + 1h3

. . . . . .

Page 83: Lesson 8: Basic Differentiation Rules

. . . . . .

Pascal’sTriangle

..1

.1 .1

.1 .2 .1

.1 .3 .3 .1

.1 .4 .6 .4 .1

.1 .5 .10 .10 .5 .1

.1 .6 .15 .20 .15 .6 .1

(x + h)0 = 1

(x + h)1 = 1x + 1h

(x + h)2 = 1x2 + 2xh + 1h2

(x + h)3 = 1x3 + 3x2h + 3xh2 + 1h3

. . . . . .

Page 84: Lesson 8: Basic Differentiation Rules

. . . . . .

Pascal’sTriangle

..1

.1 .1

.1 .2 .1

.1 .3 .3 .1

.1 .4 .6 .4 .1

.1 .5 .10 .10 .5 .1

.1 .6 .15 .20 .15 .6 .1

(x + h)0 = 1

(x + h)1 = 1x + 1h

(x + h)2 = 1x2 + 2xh + 1h2

(x + h)3 = 1x3 + 3x2h + 3xh2 + 1h3

. . . . . .

Page 85: Lesson 8: Basic Differentiation Rules

. . . . . .

Pascal’sTriangle

..1

.1 .1

.1 .2 .1

.1 .3 .3 .1

.1 .4 .6 .4 .1

.1 .5 .10 .10 .5 .1

.1 .6 .15 .20 .15 .6 .1

(x + h)0 = 1

(x + h)1 = 1x + 1h

(x + h)2 = 1x2 + 2xh + 1h2

(x + h)3 = 1x3 + 3x2h + 3xh2 + 1h3

. . . . . .

Page 86: Lesson 8: Basic Differentiation Rules

. . . . . .

Theorem(ThePowerRule)Let r beapositivewholenumber. Then

ddx

xr = rxr−1

Proof.Asweshowedabove,

(x + h)n = xn + nxn−1h + (stuffwithatleasttwo hsinit)

So

(x + h)n − xn

h=

nxn−1h + (stuffwithatleasttwo hsinit)h

= nxn−1 + (stuffwithatleastone h init)

andthistendsto nxn−1 as h → 0.

Page 87: Lesson 8: Basic Differentiation Rules

. . . . . .

Theorem(ThePowerRule)Let r beapositivewholenumber. Then

ddx

xr = rxr−1

Proof.Asweshowedabove,

(x + h)n = xn + nxn−1h + (stuffwithatleasttwo hsinit)

So

(x + h)n − xn

h=

nxn−1h + (stuffwithatleasttwo hsinit)h

= nxn−1 + (stuffwithatleastone h init)

andthistendsto nxn−1 as h → 0.

Page 88: Lesson 8: Basic Differentiation Rules

. . . . . .

ThePowerRuleforconstants

TheoremLet c beaconstant. Then

ddx

c = 0

.

.likeddx

x0 = 0x−1

(although x 7→ 0x−1 isnotdefinedatzero.)

Proof.Let f(x) = c. Then

f(x + h) − f(x)h

=c− ch

= 0

So f′(x) = limh→0

0 = 0.

Page 89: Lesson 8: Basic Differentiation Rules

. . . . . .

ThePowerRuleforconstants

TheoremLet c beaconstant. Then

ddx

c = 0 .

.likeddx

x0 = 0x−1

(although x 7→ 0x−1 isnotdefinedatzero.)

Proof.Let f(x) = c. Then

f(x + h) − f(x)h

=c− ch

= 0

So f′(x) = limh→0

0 = 0.

Page 90: Lesson 8: Basic Differentiation Rules

. . . . . .

ThePowerRuleforconstants

TheoremLet c beaconstant. Then

ddx

c = 0 .

.likeddx

x0 = 0x−1

(although x 7→ 0x−1 isnotdefinedatzero.)

Proof.Let f(x) = c. Then

f(x + h) − f(x)h

=c− ch

= 0

So f′(x) = limh→0

0 = 0.

Page 91: Lesson 8: Basic Differentiation Rules

. . . . . .

NewderivativesfromoldThisiswherethecalculusstartstogetreallypowerful!

Page 92: Lesson 8: Basic Differentiation Rules

Calculus

. . . . . .

Page 93: Lesson 8: Basic Differentiation Rules

. . . . . .

RecalltheLimitLaws

FactSuppose lim

x→af(x) = L and lim

x→ag(x) = M and c isaconstant. Then

1. limx→a

[f(x) + g(x)] = L + M

2. limx→a

[f(x) − g(x)] = L−M

3. limx→a

[cf(x)] = cL

4. . . .

Page 94: Lesson 8: Basic Differentiation Rules

. . . . . .

Addingfunctions

Theorem(TheSumRule)Let f and g befunctionsanddefine

(f + g)(x) = f(x) + g(x)

Thenif f and g aredifferentiableat x, thensois f + g and

(f + g)′(x) = f′(x) + g′(x).

Succinctly, (f + g)′ = f′ + g′.

Page 95: Lesson 8: Basic Differentiation Rules

. . . . . .

Proof.Followyournose:

(f + g)′(x) = limh→0

(f + g)(x + h) − (f + g)(x)h

= limh→0

f(x + h) + g(x + h) − [f(x) + g(x)]h

= limh→0

f(x + h) − f(x)h

+ limh→0

g(x + h) − g(x)h

= f′(x) + g′(x)

NotetheuseoftheSumRuleforlimits. Sincethelimitsofthedifferencequotientsforfor f and g exist, thelimitofthesumisthesumofthelimits.

Page 96: Lesson 8: Basic Differentiation Rules

. . . . . .

Proof.Followyournose:

(f + g)′(x) = limh→0

(f + g)(x + h) − (f + g)(x)h

= limh→0

f(x + h) + g(x + h) − [f(x) + g(x)]h

= limh→0

f(x + h) − f(x)h

+ limh→0

g(x + h) − g(x)h

= f′(x) + g′(x)

NotetheuseoftheSumRuleforlimits. Sincethelimitsofthedifferencequotientsforfor f and g exist, thelimitofthesumisthesumofthelimits.

Page 97: Lesson 8: Basic Differentiation Rules

. . . . . .

Proof.Followyournose:

(f + g)′(x) = limh→0

(f + g)(x + h) − (f + g)(x)h

= limh→0

f(x + h) + g(x + h) − [f(x) + g(x)]h

= limh→0

f(x + h) − f(x)h

+ limh→0

g(x + h) − g(x)h

= f′(x) + g′(x)

NotetheuseoftheSumRuleforlimits. Sincethelimitsofthedifferencequotientsforfor f and g exist, thelimitofthesumisthesumofthelimits.

Page 98: Lesson 8: Basic Differentiation Rules

. . . . . .

Proof.Followyournose:

(f + g)′(x) = limh→0

(f + g)(x + h) − (f + g)(x)h

= limh→0

f(x + h) + g(x + h) − [f(x) + g(x)]h

= limh→0

f(x + h) − f(x)h

+ limh→0

g(x + h) − g(x)h

= f′(x) + g′(x)

NotetheuseoftheSumRuleforlimits. Sincethelimitsofthedifferencequotientsforfor f and g exist, thelimitofthesumisthesumofthelimits.

Page 99: Lesson 8: Basic Differentiation Rules

. . . . . .

Scalingfunctions

Theorem(TheConstantMultipleRule)Let f beafunctionand c aconstant. Define

(cf)(x) = cf(x)

Thenif f isdifferentiableat x, sois cf and

(cf)′(x) = c · f′(x)

Succinctly, (cf)′ = cf′.

Page 100: Lesson 8: Basic Differentiation Rules

. . . . . .

Proof.Again, followyournose.

(cf)′(x) = limh→0

(cf)(x + h) − (cf)(x)h

= limh→0

cf(x + h) − cf(x)h

= c limh→0

f(x + h) − f(x)h

= c · f′(x)

Page 101: Lesson 8: Basic Differentiation Rules

. . . . . .

Proof.Again, followyournose.

(cf)′(x) = limh→0

(cf)(x + h) − (cf)(x)h

= limh→0

cf(x + h) − cf(x)h

= c limh→0

f(x + h) − f(x)h

= c · f′(x)

Page 102: Lesson 8: Basic Differentiation Rules

. . . . . .

Proof.Again, followyournose.

(cf)′(x) = limh→0

(cf)(x + h) − (cf)(x)h

= limh→0

cf(x + h) − cf(x)h

= c limh→0

f(x + h) − f(x)h

= c · f′(x)

Page 103: Lesson 8: Basic Differentiation Rules

. . . . . .

Proof.Again, followyournose.

(cf)′(x) = limh→0

(cf)(x + h) − (cf)(x)h

= limh→0

cf(x + h) − cf(x)h

= c limh→0

f(x + h) − f(x)h

= c · f′(x)

Page 104: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativesofpolynomials

Example

Findddx

(2x3 + x4 − 17x12 + 37

)

Solution

ddx

(2x3 + x4 − 17x12 + 37

)=

ddx

(2x3

)+

ddx

x4 +ddx

(−17x12

)+

ddx

(37)

= 2ddx

x3 +ddx

x4 − 17ddx

x12 + 0

= 2 · 3x2 + 4x3 − 17 · 12x11

= 6x2 + 4x3 − 204x11

Page 105: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativesofpolynomials

Example

Findddx

(2x3 + x4 − 17x12 + 37

)Solution

ddx

(2x3 + x4 − 17x12 + 37

)=

ddx

(2x3

)+

ddx

x4 +ddx

(−17x12

)+

ddx

(37)

= 2ddx

x3 +ddx

x4 − 17ddx

x12 + 0

= 2 · 3x2 + 4x3 − 17 · 12x11

= 6x2 + 4x3 − 204x11

Page 106: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativesofpolynomials

Example

Findddx

(2x3 + x4 − 17x12 + 37

)Solution

ddx

(2x3 + x4 − 17x12 + 37

)=

ddx

(2x3

)+

ddx

x4 +ddx

(−17x12

)+

ddx

(37)

= 2ddx

x3 +ddx

x4 − 17ddx

x12 + 0

= 2 · 3x2 + 4x3 − 17 · 12x11

= 6x2 + 4x3 − 204x11

Page 107: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativesofpolynomials

Example

Findddx

(2x3 + x4 − 17x12 + 37

)Solution

ddx

(2x3 + x4 − 17x12 + 37

)=

ddx

(2x3

)+

ddx

x4 +ddx

(−17x12

)+

ddx

(37)

= 2ddx

x3 +ddx

x4 − 17ddx

x12 + 0

= 2 · 3x2 + 4x3 − 17 · 12x11

= 6x2 + 4x3 − 204x11

Page 108: Lesson 8: Basic Differentiation Rules

. . . . . .

Derivativesofpolynomials

Example

Findddx

(2x3 + x4 − 17x12 + 37

)Solution

ddx

(2x3 + x4 − 17x12 + 37

)=

ddx

(2x3

)+

ddx

x4 +ddx

(−17x12

)+

ddx

(37)

= 2ddx

x3 +ddx

x4 − 17ddx

x12 + 0

= 2 · 3x2 + 4x3 − 17 · 12x11

= 6x2 + 4x3 − 204x11

Page 109: Lesson 8: Basic Differentiation Rules

. . . . . .

Outline

Recall

DerivativessofarDerivativesofpowerfunctionsbyhandThePowerRule

DerivativesofpolynomialsThePowerRuleforwholenumberpowersThePowerRuleforconstantsTheSumRuleTheConstantMultipleRule

Derivativesofsineandcosine

Page 110: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativesofSineandCosine

Fact

ddx

sin x = ???

Proof.Fromthedefinition:

ddx

sin x = limh→0

sin(x + h) − sin xh

= limh→0

( sin x cos h + cos x sin h) − sin xh

= sin x · limh→0

cos h− 1h

+ cos x · limh→0

sin hh

= sin x · 0 + cos x · 1 = cos x

Page 111: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativesofSineandCosine

Fact

ddx

sin x = ???

Proof.Fromthedefinition:

ddx

sin x = limh→0

sin(x + h) − sin xh

= limh→0

( sin x cos h + cos x sin h) − sin xh

= sin x · limh→0

cos h− 1h

+ cos x · limh→0

sin hh

= sin x · 0 + cos x · 1 = cos x

Page 112: Lesson 8: Basic Differentiation Rules

. . . . . .

AngleadditionformulasSeeAppendixA

.

.

sin(A + B) = sinA cosB + cosA sinB

cos(A + B) = cosA cosB− sinA sinB

Page 113: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativesofSineandCosine

Fact

ddx

sin x = ???

Proof.Fromthedefinition:

ddx

sin x = limh→0

sin(x + h) − sin xh

= limh→0

( sin x cos h + cos x sin h) − sin xh

= sin x · limh→0

cos h− 1h

+ cos x · limh→0

sin hh

= sin x · 0 + cos x · 1 = cos x

Page 114: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativesofSineandCosine

Fact

ddx

sin x = ???

Proof.Fromthedefinition:

ddx

sin x = limh→0

sin(x + h) − sin xh

= limh→0

( sin x cos h + cos x sin h) − sin xh

= sin x · limh→0

cos h− 1h

+ cos x · limh→0

sin hh

= sin x · 0 + cos x · 1 = cos x

Page 115: Lesson 8: Basic Differentiation Rules

. . . . . .

TwoimportanttrigonometriclimitsSeeSection1.4

..θ

.sin θ

.1− cos θ

.−1 .1

.

.

limθ→0

sin θ

θ= 1

limθ→0

cos θ − 1θ

= 0

Page 116: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativesofSineandCosine

Fact

ddx

sin x = ???

Proof.Fromthedefinition:

ddx

sin x = limh→0

sin(x + h) − sin xh

= limh→0

( sin x cos h + cos x sin h) − sin xh

= sin x · limh→0

cos h− 1h

+ cos x · limh→0

sin hh

= sin x · 0 + cos x · 1

= cos x

Page 117: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativesofSineandCosine

Fact

ddx

sin x = ???

Proof.Fromthedefinition:

ddx

sin x = limh→0

sin(x + h) − sin xh

= limh→0

( sin x cos h + cos x sin h) − sin xh

= sin x · limh→0

cos h− 1h

+ cos x · limh→0

sin hh

= sin x · 0 + cos x · 1

= cos x

Page 118: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativesofSineandCosine

Fact

ddx

sin x = cos x

Proof.Fromthedefinition:

ddx

sin x = limh→0

sin(x + h) − sin xh

= limh→0

( sin x cos h + cos x sin h) − sin xh

= sin x · limh→0

cos h− 1h

+ cos x · limh→0

sin hh

= sin x · 0 + cos x · 1 = cos x

Page 119: Lesson 8: Basic Differentiation Rules

. . . . . .

IllustrationofSineandCosine

. .x

.y

.π .−π2 .0 .π2

.π.sin x

.cos x

I f(x) = sin x hashorizontaltangentswhere f′ = cos(x) iszero.I whathappensatthehorizontaltangentsof cos?

Page 120: Lesson 8: Basic Differentiation Rules

. . . . . .

IllustrationofSineandCosine

. .x

.y

.π .−π2 .0 .π2

.π.sin x.cos x

I f(x) = sin x hashorizontaltangentswhere f′ = cos(x) iszero.

I whathappensatthehorizontaltangentsof cos?

Page 121: Lesson 8: Basic Differentiation Rules

. . . . . .

IllustrationofSineandCosine

. .x

.y

.π .−π2 .0 .π2

.π.sin x.cos x

I f(x) = sin x hashorizontaltangentswhere f′ = cos(x) iszero.I whathappensatthehorizontaltangentsof cos?

Page 122: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativesofSineandCosine

Fact

ddx

sin x = cos xddx

cos x = − sin x

Proof.Wealreadydidthefirst. Thesecondissimilar(mutatismutandis):

ddx

cos x = limh→0

cos(x + h) − cos xh

= limh→0

(cos x cos h− sin x sin h) − cos xh

= cos x · limh→0

cos h− 1h

− sin x · limh→0

sin hh

= cos x · 0− sin x · 1 = − sin x

Page 123: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativesofSineandCosine

Fact

ddx

sin x = cos xddx

cos x = − sin x

Proof.Wealreadydidthefirst. Thesecondissimilar(mutatismutandis):

ddx

cos x = limh→0

cos(x + h) − cos xh

= limh→0

(cos x cos h− sin x sin h) − cos xh

= cos x · limh→0

cos h− 1h

− sin x · limh→0

sin hh

= cos x · 0− sin x · 1 = − sin x

Page 124: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativesofSineandCosine

Fact

ddx

sin x = cos xddx

cos x = − sin x

Proof.Wealreadydidthefirst. Thesecondissimilar(mutatismutandis):

ddx

cos x = limh→0

cos(x + h) − cos xh

= limh→0

(cos x cos h− sin x sin h) − cos xh

= cos x · limh→0

cos h− 1h

− sin x · limh→0

sin hh

= cos x · 0− sin x · 1 = − sin x

Page 125: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativesofSineandCosine

Fact

ddx

sin x = cos xddx

cos x = − sin x

Proof.Wealreadydidthefirst. Thesecondissimilar(mutatismutandis):

ddx

cos x = limh→0

cos(x + h) − cos xh

= limh→0

(cos x cos h− sin x sin h) − cos xh

= cos x · limh→0

cos h− 1h

− sin x · limh→0

sin hh

= cos x · 0− sin x · 1 = − sin x

Page 126: Lesson 8: Basic Differentiation Rules

. . . . . .

DerivativesofSineandCosine

Fact

ddx

sin x = cos xddx

cos x = − sin x

Proof.Wealreadydidthefirst. Thesecondissimilar(mutatismutandis):

ddx

cos x = limh→0

cos(x + h) − cos xh

= limh→0

(cos x cos h− sin x sin h) − cos xh

= cos x · limh→0

cos h− 1h

− sin x · limh→0

sin hh

= cos x · 0− sin x · 1 = − sin x

Page 127: Lesson 8: Basic Differentiation Rules

. . . . . .

Whathavewelearnedtoday?

I ThePowerRule

I ThederivativeofasumisthesumofthederivativesI Thederivativeofaconstantmultipleofafunctionisthatconstantmultipleofthederivative

I ThederivativeofsineiscosineI Thederivativeofcosineistheoppositeofsine.

Page 128: Lesson 8: Basic Differentiation Rules

. . . . . .

Whathavewelearnedtoday?

I ThePowerRuleI ThederivativeofasumisthesumofthederivativesI Thederivativeofaconstantmultipleofafunctionisthatconstantmultipleofthederivative

I ThederivativeofsineiscosineI Thederivativeofcosineistheoppositeofsine.

Page 129: Lesson 8: Basic Differentiation Rules

. . . . . .

Whathavewelearnedtoday?

I ThePowerRuleI ThederivativeofasumisthesumofthederivativesI Thederivativeofaconstantmultipleofafunctionisthatconstantmultipleofthederivative

I ThederivativeofsineiscosineI Thederivativeofcosineistheoppositeofsine.