48
Jet Engine Ideal Analysis

Jet engine ideal analysis

Embed Size (px)

DESCRIPTION

A deck of slides that goes through a simple analysis of an Ideal Jet Engine

Citation preview

Page 1: Jet engine ideal analysis

Jet Engine Ideal Analysis

Page 2: Jet engine ideal analysis

Engine Efficiency

• Propulsive Efficiency• Thermal Efficiency• Overall Efficiency

Page 3: Jet engine ideal analysis

Propulsive Efficiency

• The propulsive efficiency compares how much work is done on the aircraft, by supplying kinetic energy to the air.

Page 4: Jet engine ideal analysis

Propulsive Efficiency

CombustorTurbine=10

ExhaustCompressor=10

Combustor

Va

m=100kg/s m=100kg/s

VJ

h𝑇 𝑟𝑢𝑠𝑡=𝑚𝑎h𝑇 𝑟𝑢𝑠𝑡=𝑚(𝑉 𝐽−𝑉 𝑎)

𝑊𝑜𝑟𝑘=𝐹𝑜𝑟𝑐𝑒𝑥 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑊=𝑚(𝑉 𝐽−𝑉 𝑎)𝑉 𝑎

KE=KE=

KE =

𝜂𝑝=𝑚 (𝑉 𝐽−𝑉𝑎)𝑉 𝑎

𝑚( (𝑉 𝐽❑)2− (𝑉 𝑎

❑ )2 )2

𝜂𝑝=2(𝑉 𝐽−𝑉 𝑎)𝑉 𝑎

( (𝑉 𝐽❑)2− (𝑉 𝑎

❑ )2 ) 𝜂𝑝=2(𝑉 𝐽−𝑉 𝑎)𝑉 𝑎

(𝑉 𝐽−𝑉 𝑎 ) (𝑉 𝐽+𝑉 𝑎 ) 𝜂𝑝=2𝑉 𝑎

(𝑉 𝐽+𝑉 𝑎 )

Page 5: Jet engine ideal analysis

Thermal Efficiency

• The thermal efficiency of an engine is the efficiency of the conversion of the heat energy released by the fuel into kinetic energy in the jet stream.

KE =

𝑄=𝐹𝑢𝑒𝑙 𝐸𝑛𝑒𝑟𝑔𝑦𝜂𝑇=

𝑚( (𝑉 𝐽❑ )2− (𝑉 𝑎

❑)2)2𝑄

Page 6: Jet engine ideal analysis

Overall Efficiency

• The overall Efficiency compares the work done on the aircraft to the energy given by the fuel.

𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙=𝑇 .𝑉 𝑎

𝑄𝜂𝑇=

𝑚( (𝑉 𝐽❑ )2− (𝑉 𝑎

❑)2)2𝑄

𝜂𝑝=2𝑉 𝑎

(𝑉 𝐽+𝑉 𝑎 )

𝜂𝑝𝜂𝑇=2𝑉 𝑎

(𝑉 𝐽+𝑉 𝑎 )

𝑚 ( (𝑉 𝐽❑)2− (𝑉 𝑎

❑ )2 )2𝑄 𝜂𝑝𝜂𝑇=

𝑉 𝑎

(𝑉 𝐽+𝑉 𝑎 )𝑚( (𝑉 𝐽

❑)2− (𝑉 𝑎❑)2 )

𝑄

𝜂𝑝𝜂𝑇=𝑉 𝑎

(𝑉 𝐽+𝑉 𝑎 )𝑚 (𝑉 𝐽+𝑉 𝑎) (𝑉 𝐽−𝑉 𝑎 )

𝑄 𝜂𝑝𝜂𝑇=𝑚(𝑉 𝐽−𝑉 𝑎 )𝑉 𝑎

𝑄𝜂𝑝𝜂𝑇=

𝑇 𝑉 𝑎

𝑄=𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙

Page 7: Jet engine ideal analysis

Combustor

Arrangement of Engine

Turbine=10

ExhaustCompressor=10

Combustor

T3=1112KT1=288KP1=101kPa

m=100kg/s

Turbine Entry Temperature 1112°K Inlet Air Temperature 288°K

Compressor compression ratio = Turbine expansion ratio.

10 Outside air pressure 101 kPa

Specific Heat Capacity of Air at constant Pressure (Cp)

1 kJ/kg °K Mass flow of air 100kg/s

Ratio of Specific Heat Capacities for air ()

1.4 Calorific value of fuel is 43,000 kJ/kg

Universal Gas Constant (R) 287 kJ/kg °K

Page 8: Jet engine ideal analysis

Combustor

Compressor

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KT1=288KP1=101kPa

m=100kg/s

Calculate the compressor outlet temperature. (T2)

T2’= 556°K

T2=556KP2=1010kPa

Page 9: Jet engine ideal analysis

Combustor

Compressor

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KT1=288KP1=101kPa

m=100kg/s

T2=556KP2=1010kPa

Calculate the work done by the compressor. (Wc)

Wc

Page 10: Jet engine ideal analysis

Combustor

Turbine

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2=556KP2=1010kPa

Calculate the turbine exhaust temperature. (T4)

T4’=576°K

T4=576KP4=101kA

Page 11: Jet engine ideal analysis

Combustor

Turbine

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2=556KP2=1010kPa

T4=576KP4=101kA

Calculate the work done on the turbine. (WT)

WT

Page 12: Jet engine ideal analysis

Combustor

Useful Work

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2=556KP2=1010kPa

T4=576KP4=101kA

Subtract the Work done by the compressor (WC)from the work done on the turbine (WT) to determine the useful work done by the engine on the aircraft. Useful Work = WT – WC. Useful Work = (53,600-26,800)=26,800 kJ

26,800kJ

Page 13: Jet engine ideal analysis

Combustor

Combustor

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2=556KP2=1010kPa

T4=576KP4=101kA

Calculate the amount of heat energy (Q) required to heat the compressed gases from T2 to T3.

Q

Page 14: Jet engine ideal analysis

Combustor

Fuel

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2=556KP2=1010kPa

T4=576KP4=101kA

Q

Calculate the amount of fuel required to heat the gases from T2 to T3. The calorific value of fuel is 43000kJ/kg. Therefore to produce 55600kJ we will require:

Page 15: Jet engine ideal analysis

Combustor

Efficiency

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KP2=1010kPa

T4’=576KP4=101kA

Q

Determine the efficiency of the engine by comparing the amount of useful work done, to the amount of heat energy input to the system.

Page 16: Jet engine ideal analysis

Combustor

Part 2

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KP2=1010kPa

T4’=576KP4=101kA

Q

Repeat the analysis but with the compressor and turbine efficiencies at 85%.

Page 17: Jet engine ideal analysis

Combustor

Compressor

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=576KP4=101kA

QCalculate the compressor outlet temperature. (T2) T2’= 556°K

Page 18: Jet engine ideal analysis

Combustor

Compressor

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=576KP4=101kA

Q

Calculate the work done by the compressor. (Wc)

Page 19: Jet engine ideal analysis

Combustor

Turbine

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=576KT4 = 656KP4=101kA

Q

Calculate the turbine exhaust temperature. (T4)

T4=(1112-455.6)=656°K

Page 20: Jet engine ideal analysis

Combustor

Turbine

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=576KT4 = 656KP4=101kA

Q

Calculate the work done on the turbine. (WT)

Page 21: Jet engine ideal analysis

Combustor

Turbine

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=576KT4 = 656KP4=101kA

Q

Subtract the Work done by the compressor (WC)from the work done on the turbine (WT) to determine the useful work done by the engine on the aircraft. Useful Work = WT – WC. Useful Work = (45,600-31,500)=14,100 kJ

14,100kJ

Page 22: Jet engine ideal analysis

Combustor

Combustor

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=576KT4 = 656KP4=101kA

Q=50900kJ

14,100kJ

Calculate the amount of heat energy (Q) required to heat the compressed gases from T2 to T3.

Page 23: Jet engine ideal analysis

Combustor

Combustor

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=576KT4 = 656KP4=101kA

Q=50900kJ

14,100kJ

Calculate the amount of fuel required to heat the gases from T2 to T3. The calorific value of fuel is 43000kJ/kg. Therefore to produce 55600kJ we will require:

Page 24: Jet engine ideal analysis

Combustor

Efficiency

Turbine=10

Exhaust

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=576KT4 = 656KP4=101kA

Q=50900kJ

14,100kJ

Determine the efficiency of the engine by comparing the amount of useful work done, to the amount of heat energy input to the system.

Page 25: Jet engine ideal analysis

Part 3

CombustorTurbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=576KT4 = ?KP4=?kA

Q=50900kJ

14,100kJ

The work done by the compressor. (Wc)

Therefore the work done by the turbine is also 31,500kJ

Page 26: Jet engine ideal analysis

Part 3

CombustorTurbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=576KT4 = 797KP4=?kA

Q=50900kJ

Therefore:

Calculate T4.

T4 = 797°K

Nozzle

Page 27: Jet engine ideal analysis

Part 3

CombustorTurbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=741KT4 = 797KP4=?kAQ=50900kJ

Having calculated T4, and knowing the efficiency of the turbine is 85%, use the value to calculate T4

’.

T4’=(1112-370)=741°K

Nozzle

Page 28: Jet engine ideal analysis

Part 3

CombustorTurbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=741KT4 = 797KP4=244kPaQ=50900kJ

Use the value of T4’ to determine P4 (Remember assume P3=P2).

p4=244.55kPa

Nozzle

Page 29: Jet engine ideal analysis

Part 3

CombustorTurbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=741KT4 = 797KP4=244kAQ=50900kJ

Nozzle

When the nozzle is choked the velocity of the gas at the throat of the nozzle = Mach 1. Let the station at the throat of the nozzle be station 5. The pressure at the throat is the critical pressure and the critical pressure equation is:

P5

Page 30: Jet engine ideal analysis

Part 3

CombustorTurbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=741KT4 = 797KP4=244kAQ=50900kJ

Nozzle

Determine P5.

P5=129kPa

As P5 is > P1 the nozzle is choked.

Page 31: Jet engine ideal analysis

Part 3

CombustorTurbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=741KT4 = 797KP4=244kAQ=50900kJ

Nozzle

P5=129kPa

At the throat of the nozzle, the critical temperature is equal to:

Determine T5.

Page 32: Jet engine ideal analysis

Part 3

CombustorTurbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=741KT4 = 797KP4=244kAQ=50900kJ

Nozzle

P5=129kPa

We will assume that the exhaust is at the throat of the nozzle. Using the calculated value of T5 calculate the exhaust jet velocity using the following equation:

Page 33: Jet engine ideal analysis

Part 3

CombustorTurbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=741KT4 = 797KP4=244kAQ=50900kJ

Nozzle

P5=129kPaT5=664K

Using the universal gas law calculate the density of the air at the exhaust:

Page 34: Jet engine ideal analysis

Part 3

CombustorTurbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=741KT4 = 797KP4=244kAQ=50900kJ

Nozzle

P5=129kPaT5=664K

From the continuity equation calculate the cross sectional area of the exhaust.

Page 35: Jet engine ideal analysis

Part 3

CombustorTurbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=741KT4 = 797KP4=244kAQ=50900kJ

Nozzle

P5=129kPaT5=664K

At this stage you are in a position to calculate the static thrust of the engine.

Thrust = 59.7kN

Page 36: Jet engine ideal analysis

Part 3

CombustorTurbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=741KT4 = 797KP4=244kAQ=50900kJ

Nozzle

P5=129kPaT5=664K

Calculate the Specific Fuel Consumption of the engine. The burning of the fuel heats the air from T2 to T3

Heat Energy required is: Q=m.cp(T3- T2 ) Q = 100 (1)(1112-603) = 50871kJ

Page 37: Jet engine ideal analysis

Part 3

CombustorTurbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=741KT4 = 797KP4=244kPaQ=50900kJ

Nozzle

P5=129kPaT5=664K

Specific fuel consumption is:

Page 38: Jet engine ideal analysis

What happens when we install an afterburner?

Page 39: Jet engine ideal analysis

Combustor

Afterburner

Turbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa T2’=556K

T2=603 KP2=1010kPa

T4’=576KT4 = 797KP4=244kPa

Q=50900kJ

Afterburner

Nozzle

The exhaust gas is reheated to 2000K. the calculations are the same as that the dry turbojet, but now the nozzle inlet temperature is 2000K.

T5 = ?KP5=?

m=100kg/s

Page 40: Jet engine ideal analysis

Combustor

Afterburner

Turbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa T2’=556K

T2=603 KP2=1010kPa

T4’=576KT4 = 797KP4=244kPaQ=50900kJ

Afterburner

Noz

zle

When the nozzle is choked the velocity of the gas at the throat of the nozzle = Mach 1. Let the station at the throat of the nozzle be station 5. The pressure at the throat is the critical pressure and the critical pressure equation is:

Determine P5.

T5 = ?KP5=129kPa

m=100kg/s

Page 41: Jet engine ideal analysis

Combustor

Afterburner

Turbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa T2’=556K

T2=603 KP2=1010kPa

T4’=576KT4 = 797KP4=244kPaQ=50900kJ

Afterburner

Noz

zle

T5 = 1667KP5=129kPa

At the throat of the nozzle, the critical temperature is equal to:

Determine T5.

m=100kg/s

Page 42: Jet engine ideal analysis

Combustor

Afterburner

Turbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa T2’=556K

T2=603 KP2=1010kPa

T4’=576KT4 = 797KP4=244kPaQ=50900kJ

Afterburner

Noz

zle

T5 = 1667KP5=129kPa

At the throat of the nozzle, the air is travelling at the speed of sound. Determine the velocity of the jet.

m=100kg/s

Page 43: Jet engine ideal analysis

Combustor

Afterburner

Turbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa T2’=556K

T2=603 KP2=1010kPa

T4’=576KT4 = 797KP4=244kPaQ=50900kJ

Afterburner

Noz

zle

T5 = 1667KP5=129kPa

Using the universal gas law calculate the density of the air at the exhaust:

m=100kg/s

Page 44: Jet engine ideal analysis

Combustor

Afterburner

Turbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa T2’=556K

T2=603 KP2=1010kPa

T4’=576KT4 = 797KP4=244kPaQ=50900kJ

Afterburner

Noz

zle

T5 = 1667KP5=129kPa

From the continuity equation calculate the cross sectional area of the exhaust.

m=100kg/s

Page 45: Jet engine ideal analysis

Combustor

Afterburner

Turbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=576KT4 = 797KP4=244kPaQ=50900kJ

Afterburner

Noz

zle

T5 = 1667KP5=129kPa

The thrust of the core can be calculated from:

Page 46: Jet engine ideal analysis

Combustor

Afterburner

Turbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=576KT4 = 797KP4=244kPaQ=50900kJ

Afterburner

Noz

zle

T5 = 1667KP5=129kPa

The fuel required to heat the air in the afterburner from 797 to 2000K is: Heat Energy required is: Q=m.cp(T4.5- T4 ) Q = 100 (1)(2000-797) = 120300kJ

Page 47: Jet engine ideal analysis

Combustor

Afterburner

Turbine=10

Compressor=10

Combustor

T3=1112KP3=1010kPa

T1=288KP1=101kPa

m=100kg/s

T2’=556KT2=603 KP2=1010kPa

T4’=576KT4 = 797KP4=244kPa

Q=50900kJm=1.18kg

Afterburner

Noz

zle

T5 = 1667KP5=129kPa

The total amount of fuel used was: 2.797 (Afterburner) + 1.18 for the Engine Specific fuel consumption is:

Q=120300kJM=2.797kg

Page 48: Jet engine ideal analysis

Comparison between Afterburner and Jet Engine

With only the Engine

Thrust = 59.7kN

Specific fuel consumption is: