43
Introduc)on to the UK Infrastructure Transi)ons Research Consor)um Prof Jim Hall FREng Principal Inves.gator ITRC Director, Environmental Change Ins.tute, University of Oxford 29 February 2012

ITRC Fast Track Analysis

  • Upload
    ukcip

  • View
    204

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ITRC Fast Track Analysis

Introduc)on  to  the  UK  Infrastructure  Transi)ons  Research  Consor)um  

Prof  Jim  Hall  FREng    Principal  Inves.gator  ITRC  

Director,  Environmental  Change  Ins.tute,  University  of  Oxford    

29  February  2012  

Page 2: ITRC Fast Track Analysis

What  are  the  desirable  a@ributes  of  a  Na)onal  Infrastructure?  

•  Priori.sing  the  capacity  constraints  to  economic  prosperity    

•  Achieving  carbon  reduc.on  commitments  •  Ensuring  energy  security  •  Well  adapted  to  a  changing  climate  •  Resilient  to  natural  and  man-­‐made  hazards  •  Robust  to  a  full  range  of  future  uncertain.es  •  Financially  feasible  •  Within  an  appropriate  governance  framework  

Page 3: ITRC Fast Track Analysis

2011  Na)onal  Infrastructure  Plan  

•  Underlines  the  economic  importance  of  na.onal  infrastructure  

•  Sets  out  a  detailed  plan  for  infrastructure  delivery  in  the  coming  years  

•  Explores  new  sources  of  funding  and  finance  

•  Proposes  metrics  for  monitoring  infrastructure  performance   3  

Page 4: ITRC Fast Track Analysis

Challenges  in  delivering  the  vision  

•  Analysing  the  long  term  state  of  NI  systems  •  Uncertain.es  e.g.  in  demand,  economic  condi.ons,  costs,  performance  

•  The  complexity  of  mul.ple  governance  arrangements  and  projects  

•  The  capacity  of  UK  industry  to  compete  in  globalised  markets  for  infrastructure  services  

Page 5: ITRC Fast Track Analysis

ITRC  Aim  and  Ambi)on  

Aim:  To  develop  and  demonstrate  a  new  genera.on  of  simula.on  models  and  tools  to  inform  the  analysis,  planning  and  design  of  na.onal  infrastructure    Ambi%on:  Enabling  a  revolu.on  in  the  strategic  analysis  of  NI  provision  in  the  UK…  whilst  at  the  same  .me  becoming  an  interna.onal  landmark  programme  recognised  for  novelty,  research  excellence  and  impact.    

Page 6: ITRC Fast Track Analysis

ITRC  Key  Ques)ons  and  Objec)ves  

6  

1.  How  can  infrastructure  capacity  and  demand  be  balanced  in  an  uncertain  future?    

2. What  are  the  risks  of  infrastructure  failure  and  how  can  we  adapt  Na.onal  Infrastructure  to  make  it  more  resilient?    

3.  How  do  infrastructure  systems  evolve  and  interact  with  society  and  the  economy?    

4. What  should  the  UK's  strategy  be  for  integrated  provision  of  NI  in  the  long  term?    

   

Page 7: ITRC Fast Track Analysis

Programme  Overview  

7  

Page 8: ITRC Fast Track Analysis

Consor)um  

Lead  Universi)es    •   Cardiff  University    •   University  of  Leeds    •   University  of  Southampton    •   Newcastle  University    •   University  of  Oxford    •   University  of  Sussex    •   University  of  Cambridge    Support  •   Engineering  and  Physical  Science  Research  Council  Programme  Grant  £4.7  million  •   University  contribu.ons  £1  million  •   Industry  contribu.ons  £1.6  million        

Partnership  Over  40  partners  in  industry  and  government:    •   Contractors  •   Engineering  &  mul.-­‐disciplinary  consultants  •   Engineering  ins.tu.ons  •   Government  departments,  agencies  &  local  authori.es  •   Insurers  •   NGOs  •   U.lity  companies  On-­‐going  collabora.on  and  dissemina.on  arrangements    

Page 9: ITRC Fast Track Analysis

CuQng  through  the  complexity  

9  

Page 10: ITRC Fast Track Analysis

The  ITRC  Fast  Track  Analysis  

Objec.ves:  1. Ensure  that  the  ITRC  research  programme  is  building  upon  exis.ng  knowledge.  2. Refine  the  scope  of  the  ITRC  research.  3. Pilot  and  communicate  new  analysis  concepts.    4. Strengthen  the  rela.onship  between  the  research  team  and  the  consor.um’s  partners  in  government  and  industry.    

Page 11: ITRC Fast Track Analysis

Agenda  

16:40  Harnessing  stakeholder  and  partner  par%cipa%on      in  the  co-­‐produc%on  of  transi%on  strategies  

16:50  Fast  Track  Analysis  Methodologies  and  Results  17.10  ITRC  complex  systems  concepts,  methodologies  and  

   the  modelling  framework  17.30  Discussion  session  18:00  Drink  recep%on    

Page 12: ITRC Fast Track Analysis

Harnessing  stakeholder  and  partner  par.cipa.on  

Ben  Kidd  

Page 13: ITRC Fast Track Analysis

ITRC  Partners  

Over  40  partners  in  industry  and  government:  •  Government  departments,  

agencies  and  local  authori.es  •  U.lity  companies  •  Engineering  and  mul.-­‐disciplinary  

consultants  •  Contractors    •  Insurers    •  Research  organisa.ons  and  data  

providers      •  Engineering  ins.tu.ons    •  NGOs    

Page 14: ITRC Fast Track Analysis

Coordinated  research  &  knowledge  exchange  

Linking  in  with  affiliated  and  other  similar  projects:  •  ARCC  Coordina.on  Network  

•  LWEC  Infrastructure  Challenge  

•  EPSRC-­‐funded  projects  •  EU-­‐funded  projects    

Page 15: ITRC Fast Track Analysis

ITRC  Stakeholder  communica)ons  

•  Newslefer  (over  450  contacts)  

•  Website  (www.itrc.org.uk)    •  Twifer  

Page 16: ITRC Fast Track Analysis

Co-­‐produc)on  in  prac)ce  

Good  engagement  via  FTA  report  development  –  Produc.ve  stakeholder  review  workshop  (30th  Oct  2011)  –  Electronic  and  paper-­‐based  reviews  of  drais  of  the  FTA  report  

–  “Comments  Log”,  providing  an  audit  trail  

Page 17: ITRC Fast Track Analysis

ITRC  impact  -­‐  Informing  policy  and  prac)ce  

Early  impacts:    •  Infrastructure  UK  engagement  

•  ICE  State  of  the  Na.on:  Water  resources  engagement  

•  England  Waste  Strategy  (Defra,  ICE)  

•  RSSB  futures  work  

Page 18: ITRC Fast Track Analysis

Fast  Track  Analysis  Methodologies  and  Results  

Dr  Jus)n  Henriques  

Page 19: ITRC Fast Track Analysis

Overview  of  the  FTA  Methodology  

19  

Highgrowth

Medium growth

Lowgrowth

Capacity-intensive (CI)

strategy

Capacity-constrained

(CC) strategyDecentralisation

(DC) strategy

Decision-maker goals & key questions

Sector analysismodels

Policy & technologyevaluation of performance

FTA growth scenarios Cross-sectoral transition strategies Performance evaluation

Figure 1

Page 20: ITRC Fast Track Analysis

HIGH

HIGH

HIGH

LOW

LOW

LOW

Populationgrowth

Economicg rowth

Energycosts

Populationgrowth

Economicg rowth

Energycosts

Developing  Scenarios:  Drivers  of  Change  

Primary  drivers  of  change  •  Demographic  change  •  Energy  prices    •  Economic  growth  

Secondary  drivers    •  Climate  change  •  Carbon  emission  targets  •  EU  direc.ves  and  Na.onal  

standards  •  Others  

20  

Scenarios

Figure 2

Page 21: ITRC Fast Track Analysis

Developing  Scenarios  

Low  Growth  •  Popula.on  (Fig  4)  •  GDP  growth:  1.6%  •  Energy  costs:  DECC  high*  Medium  growth  •  Popula.on  (Fig  4)  •  GDP  growth:  2.3%  •  Energy  costs:  DECC  central*  High  Growth  •  Popula.on  (Fig  4)  •  GDP  growth:  3.0%  •  Energy  costs:  DECC  low*    

*assump.ons  of  fossil  fuel  price  

21  

Scenarios

Population of Great Britain projections 2008–2100

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

120

90

60

30

GB High projectionGB Principal projectionGB Low projection

Popu

latio

n (m

illio

ns)

90+85–8980–8475–7970–7465–6960–6455–5950–5445–4940–4435–3930–3425–2920–2415–1910–14

5–90–4

Figure 3

Page 22: ITRC Fast Track Analysis

Demand  and  Supply  Models  

For  each  sector…  •  Created  demand  projec.ons  

based  on  the  three  scenarios  

•  Constructed  supply-­‐side  and  demand  management  op.ons  for  each  strategy  

•  Evaluated  performance  –  Common  set  of  performance  

measures,  including  cost,  emissions,  and  security  of  supply  

 

Sector Models

22  

Water demand projections and capacity implications from climate change

20,000

15,000

10,000

5000

02010 2020 2030 2040 2050

Population scenarios: Low growth Medium growth High growth

Climate change Low impact Central impact High impact

Wat

er d

eman

d &

cap

acity

(MI/d

)

Figure 4

Page 23: ITRC Fast Track Analysis

Transi)on  Strategies:  Key  Ques.ons  

•  growing  demand  for  infrastructure  services?    

•  investment  constraints  and  infrastructure  capacity?    

23  

Strategies

What  are  the  implica)ons  of…  

•  a  carbon-­‐constrained  future?    

•  a  decentralised  na)onal  infrastructure  system?    

•  interdependence  between  infrastructure  sectors?  

Page 24: ITRC Fast Track Analysis

Transi)on  Strategies:  Dimensions  

24  

Strategies

High investment

Low investment

Centralised provision Decentralised provision

Capacity-intensive (CI)

Capacity-constrained (CC)

Decentralisation(DC)

Capacity-­‐intensive  

High  investment  in  new  capacity  to  keep  up  with  demand  and  maintain  good  security  of  supply  (except  transport)  

Decentralisa%on   Reorienta.on  to  more  distributed  systems  involving  a  combina.on  of  supply  and  demand-­‐side  measures  

Capacity-­‐constrained  

Emphasis  on  demand  management  measures,  low  infrastructure  investment   Figure 5

Page 25: ITRC Fast Track Analysis

Performance  Evalua)on  

25  

Cost

Emssions

Security of supply

Low growth scenario

Medium growth scenario

High growth scenario

High performance(e.g. low cost, low emissions, high supply security)

Medium performance

Low performance(e.g. high cost, high emissions,low supply security)

L

M

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Sector

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

Figure 7

2.50

2.25

2.00

1.75

1.50

1.25 2010 2015 2020 2025 2030 2035 2040 2045 2050

Capacity-intensive (CI)

Capacity-constrained (CC)

Decentralisation (DC)

Shan

non–

Wie

ner I

ndex

(uni

tless

)

Example energy strategy performance for single metric

Figure 6

Page 26: ITRC Fast Track Analysis

Summary  of  the  FTA  methodology  

1.  Developing  scenarios  •  IdenAfy  the  primary  drivers  that  impact  

the  future  demand  and  capacity  of  infrastructure  services  

•  Construct  three  possible  futures  through  varia.on  of  these  drivers  to  2050    

2.  Sector  modelling  •  Build  models  to  project  future  demand  

across  the  three  scenarios  for  each  NI  sector  

•  Construct  three  transi)on  strategies  and  IdenAfy  key  performance  metrics  

3.  Evalua)on  •  Evaluate  the  performance  of  the  

transi.on  strategies  across  the  scenarios  •  Construct  visualisa.on  summary  of  

performance  

26  

Highgrowth

Medium growth

Lowgrowth

Capacity-intensive (CI)

strategy

Capacity-constrained

(CC) strategyDecentralisation

(DC) strategy

Decision-maker goals & key questions

Sector analysismodels

Policy & technologyevaluation of performance

FTA growth scenarios Cross-sectoral transition strategies Performance evaluation

Cost

Emssions

Security of supply

Low growth scenario

Medium growth scenario

High growth scenario

High performance(e.g. low cost, low emissions, high supply security)

Medium performance

Low performance(e.g. high cost, high emissions,low supply security)

L

M

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Sector

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

Page 27: ITRC Fast Track Analysis

Summary of results

Page 27 Cost

Emssions

Security of supply

Low growth scenario

Medium growth scenario

High growth scenario

High performance(e.g. low cost, low emissions, high supply security)

Medium performance

Low performance(e.g. high cost, high emissions,low supply security)

L

M

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Energy

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Transport

2010–2030

2030–2050

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Water

2010–2030

2030–2050

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Wastewater

2010–2030

2030–2050

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Solid waste

2010–2030

2030–2050

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

ICT

2010–2030

2030–2050

Cost

Emssions

Security of supply

Low growth scenario

Medium growth scenario

High growth scenario

High performance(e.g. low cost, low emissions, high supply security)

Medium performance

Low performance(e.g. high cost, high emissions,low supply security)

L

M

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Energy

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Transport

2010–2030

2030–2050

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Water

2010–2030

2030–2050

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Wastewater

2010–2030

2030–2050

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Solid waste

2010–2030

2030–2050

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

ICT

2010–2030

2030–2050

Page 28: ITRC Fast Track Analysis

Sample  of  cross-­‐sectoral  findings  

Decentraliza)on    •  Greater  diversity  of  supply  could  lead  

to  greater  supply  security  

•  Capitalize  on  interdependencies  (local  waste  to  energy  conversion);  

Constrained  investment  •   cost,  however,  erosion  of  supply  security,  

especially  in  high  growth  scenario  

•  Demand  reduc.on  may  improve  efficiently  (energy),  but  can  also  adversely  impact  economy  and  society  (transport)  

Page 28

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Aggregatecomparativeperformance

2010–2030

2030–2050

Capacity-Intensive (CI) Capacity-Constrained (CC) Decentralisation (DC)

Implications of…

Page 29: ITRC Fast Track Analysis

Contribu)ons  

29  

1.  Iden.fica.on  of  key  drivers  of  change  of  demand  for  NI  services  

2.  Enabling  the  cross-­‐sectoral  analysis  of  NI  strategies  under  long  term  uncertainty  

3.  Incorporates  a  process-­‐based  understanding  of  NI  demand  and  capacity  

4.  Visualisa.on  of  NI  strategy  performance  over  mul.ple  metrics  and  .me  periods  

Page 30: ITRC Fast Track Analysis

ITRC  complex  systems  concepts,  methodologies  and  the  modelling  

framework    

Alex  Lorenz  

Page 31: ITRC Fast Track Analysis

General  methodology  of  Capacity/Demand  modelling  within  ITRC  

System

Surroundings

System

System System

System of Systems

System of Systems Analysis Strategies future conditions

(“Scenarios”) Surroundings

smaller set of drivers

Decision analysis

increasing returns to scale for the nonemitting technologies, therate at which agents learn from one another about the perfor-mance of new technologies, the agents’ risk aversion, and theheterogeneity of the agents’ price-performance preferences fornew technologies. Then, we viewed a series of interactive computer visualizations using different combinations of these fourkey uncertain inputs as independent variables (as well as a fifthuncertainty, the damages caused by climate change), each onecomparing the performance of the ‘‘Limits-Only’’ and ‘‘Com-bined Strategy.’’ Each visualization showed the performance ofthe two strategies as surface plots, measured as the present valueof the GDP over the 21st century (reflecting both the costs andbenefits of each strategy) as a function of two of the uncertain-ties, with the other inputs held constant at fixed values. A clearpattern emerged: the Limits-Only strategy is preferable in a

world where the agents’ technology preferences are homoge-neous, imperfect information effects are small, and the damagescaused by climate change emerge slowly. When these conditionsdo not hold, the Combined (tax and subsidy) Strategy quicklybecomes more attractive.

The robust region map in Fig. 5 summarizes these results. Thefigure shows the expectations about the future that should causea decision-maker to prefer the Limits-Only strategy to theCombined Strategy. The horizontal axis represents the range ofexpectations a decision-maker might have for how likely itis—from very unlikely (Left) to very likely (Right)—that factorssuch as the potential number of early adopters and the amountof increasing returns to scale will significantly influence thediffusion of new technologies. The vertical axis represents therange of expectations a decision-maker might have that there

Fig. 3. Adaptive decision strategy for adjusting carbon taxes (Left) and technology incentives (Right) over time.

Fig. 4. A Landscape of Plausible Futures showing a wide range of future GHG emissions paths, all of which are consistent with available information.[Reproduced with kind permission from figure 3 of ref. 18 (Copyright 2000, Kluwer Academic Publishers).]

7312 ! www.pnas.org"cgi"doi"10.1073"pnas.082081699 Lempert

Lempert et al., 2002

Large ensemble simulation Robust control approach

14

S T R AT E G I E S F O R N AT I O N A L I N F R A S T R U C T U R E P R O V I S I O N I N G R E AT B R I TA I N : E X E C U T I V E S U M M A R Y

Figure 12: Summary

of transition strategy

performance assessment

using cross-sectoral metrics

of cost, emissions and

security of supply. In the

transport sector, the ‘security

of supply’ metric relates to

congestion.

Cost

Emssions

Security of supply

Low growth scenario

Medium growth scenario

High growth scenario

High performance(e.g. low cost, low emissions, high supply security)

Medium performance

Low performance(e.g. high cost, high emissions,low supply security)

L

M

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Energy

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Transport

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Water

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Wastewater

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Solid waste

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

ICT

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

Page 32: ITRC Fast Track Analysis

An  integrated  Capacity  &  Demand  framework  

Dem

and

man

agem

ent

Capital investment &

other scenario variables

Demographics Economics

Scenarios

Performance measures

Energy

Transport

Water

Waste water

Waste

Demand

Household Industry

Supply Capacity

Page 33: ITRC Fast Track Analysis

Demand  modelling  Household appliances (amenity)

Electricity

Gas

Biomass

Biogas

(Delivered) heat

Oil (petrol, diesel)

Solar

LPG

Biofuel

Hydrogen

Private vehicle transportation (cars, vans, motorcycles)

Freight transportation - LGV, HGV, rail, ship

Aviation - private, business travel, commercial (cargo)

Water purification

Water extraction & delivery

Waste water collection & processing

Waste collection and disposal - transportation

Waste processing

   

H2

LPG

Waste

(Waste)Water

Digital communication (network, servers, routers)

Data center operation

Computing services - excl. cloud/data centers

Transport

Mass Transportation - Rail, Bus

Agriculture

Plowing, harvesting & fertilizer application

Irrigation - water extraction, pumping

Food processing

Residential

Industry / Commercial

Mechanical - motor, drives, cranes Process heating - low & high temperature

Drying/separation

Compressed air processes

Site transportation (raw/processed material moving)

Other (inc. power production)

ICT

Cooking

Lighting (illumination)

Space heating (thermal comfort)

Space cooling/Air-conditioning (thermal comfort)

Water heating

   

   

   

H2

H2

H2

H2

Page 34: ITRC Fast Track Analysis

Issues  for  an  integrated  Modelling  framework  

Issues     Want  to  integrate  the  sector  CDAMs  +  interdependency  

Combined  single  model  is  computa.onal  infeasible    

General  equilibrium  approach  (soi  link)  also  infeasible  

Trade  off  between  single  model  detail  and  level  of  integra.on  

Page 35: ITRC Fast Track Analysis

Linking  architecture  

18

S T R AT E G I E S F O R N AT I O N A L I N F R A S T R U C T U R E P R O V I S I O N I N G R E AT B R I TA I N : E X E C U T I V E S U M M A R Y

Work Stream 1 (WS1) is developing a system of quanti!ed capacity/demand assessment modules (CDAM) for analysis of long term strategies for infrastructure provision. In that sense it will resemble the FTA but will be based upon more quanti!ed and more fully integrated models including:

• A micro-simulation model for generation of high resolution demographic and demand scenarios.

• A regional economic model that will generate regional multi-sectoral projections of industrial demand for infrastructure services.

• A model of the UK electricity and gas networks and a new disaggregated energy demand module.

• A national strategic model of trunk road, rail, port and airport infrastructure.

• A national water resources system model, coupled with a model of wastewater treatment systems.

• A national solid waste assessment model.

ICT will be excluded from the WS1 analysis, as the FTA has illustrated that new capacity has being provided historically and this can be expected to continue for the foreseeable future. Further the demand is very sensitive to unforeseen technological developments which makes future analysis di"cult.

These models will be coupled in an overall simulation framework in which the main scenario uncertainties are extensively sampled, expanding upon the small number of scenarios analysed in the FTA. A set of infrastructure investment options will be developed for each sector and assembled #exibly into cross-sectoral packages, representing a major extension of the three transition strategies analysed in the FTA. New tools will be developed to explore and visualise the results of the analysis.

High resolution demographic projections

Regional multi-sectoral economic model

National infrastructuredatabase andanalysis archive

Module for:1 Sampling scenarios & uncertainties 2 Specifying options & strategies for infrastructure provisions3 Specifying CDAM model runs4 Post-processing & visualising results

Capacity/Demand Assessment Module (CDAM) for each NI sector

Energy

Transport

Water & wastewater

Solid waste

Figure 14: Structure of the

system of assessment models

and databases now under

development in Work Streams 1

and 4 of ITRC.

Page 36: ITRC Fast Track Analysis

WS1  Scenario  Genera)on  Process  

1.  Compiling a list of interesting, high level policy relevant questions about the future performance of the interdependent infrastructure system

2.  Deriving a set of dimensions relevant for answering the policy questions and partitioning of these dimensions into small sets of significantly different “levels”

3.  Combining the “level” values of different dimensions to an overall strategy (accompanied by a narrative that accounts for synchronisation and consistency across the strategy dimensions)

4.  Link the “level” values within the strategy dimensions to the “strategy variables” on the modelling level

Future conditions

Strategy variables

External Variables

smaller set of drivers

Policy Questions

Strategy Dimensions

WS1 Scenario Generation

1.  Partitioning the space of external assumptions into “strategy variables” and “future conditions”

2.  Linking the “future conditions” to a shorter list of underlying drivers

3.  Sampling the underlying drivers (acknowledging interdependencies between different drivers)

Page 37: ITRC Fast Track Analysis

Itera)ve  ensemble  approach  

Scenario  #  Decision  variables    

Underlying  Drivers  

d1   d2   …   dM   r1   r2   …   rK  

2   1   1   …   1  of  BM   1   1   …   1  

3   2   1   …   1  of  BM   1   1   …   2  

3   3   1   …   …   3  

4   …   …  

5   …   …  

…   …   …  

7   …   …  

9

S T R AT E G I E S F O R N AT I O N A L I N F R A S T R U C T U R E P R O V I S I O N I N G R E AT B R I TA I N : E X E C U T I V E S U M M A R Y

High investment

Low investment

Centralised provision Decentralised provision

Capacity-intensive (CI)

Capacity-constrained (CC)

Decentralisation(DC)

Figure 6: Relative location of

the FTA infrastructure transition

strategies in relation to

investment requirements and

centralisation/decentralisation.

Highgrowth

Medium growth

Lowgrowth

Capacity-intensive (CI)

strategy

Capacity-constrained

(CC) strategyDecentralisation

(DC) strategy

Decision-maker goals & key questions

FTA drivers: Population growth • Economic growth • Energy cost

Sector analysismodels

Policy & technologyevaluation of performance

FTA growth scenarios Cross-sectoral transition strategies Performance evaluation

Figure 7: Summary of the Fast

Track Analysis methodology.

Single  Scenario  

FTA-­‐like  small  set  with  narra.ves  

Larger  Monte  Carlo  Ensembles  

Complete  Factor  analysis  

Page 38: ITRC Fast Track Analysis

Sampling  Procedures  –  Future  condi)ons  (Scenarios)  

unit

Time (units) temporal resolution

}

1 2 3 4

11+ aT be.g.

Parameterised time series

•  Linking CDAM input parameters to a set of underlying drivers •  Quantifying uncertainty of the underlying drivers •  Implementing a formal sampling procedure

7

S T R AT E G I E S F O R N AT I O N A L I N F R A S T R U C T U R E P R O V I S I O N I N G R E AT B R I TA I N : E X E C U T I V E S U M M A R Y

THE ITRC FAST TRACK ANALYSIS ME THODOLOGY

National Infrastructure systems have to cope with the implications of long term changes in population, the economy, society and the environment. The nature of these changes is hard to predict in the long term, so the ITRC is adopting an approach in which plausible ranges of these future changes are analysed. A simpli!ed version of this methodology has been developed for the FTA, in which three primary scenario dimensions that are common to all infrastructure sectors have been analysed: demographic change, energy prices and economic growth (Figure 4).

Whilst the ITRC modelling tools that are now under development will enable the analysis of many combinations of these and other scenario dimensions, in the FTA the analysis has been restricted to only three combinations, representing low, medium, and high growth scenarios (Table 2, and Figure 5).

Table 2: Summary of the FTA scenarios

Low growth scenario

Medium growth scenario

High growth scenario

GB population (see Figure 5)

Low ONS projection

Principal ONS projection

High ONS projection

GDP growth per year

1.6% 2.3% 3.0%

Energy cost1 DECC High fossil fuel prices

DECC Central fossil fuel price

DECC Low fossil fuel price

1 DECC (2010). Updated energy and emissions projections. Department for Energy and Climate Change, London: TSO.

Figure 4: The dimensions of the

FTA scenario space.

HIG

H

HIGH

HIGH

LOW

LOW

LOW

Population growth

Economicgrowth

Energy costs

FTA driver space

Page 39: ITRC Fast Track Analysis

Revisi)ng  the  level  of  resolu)on  issue  

LAD Regions

Finding acceptable levels of resolution for each sector

Twin-Track approach of low- and high resolution CDAM versions

Investigating the impact of NI management on different levels (e.g. Waste CDAM)

Page 40: ITRC Fast Track Analysis

Incorpora)on  of  Interdependencies  D

eman

d m

anag

emen

t

Capital investment &

other scenario variables

Demographics Economics

Scenarios

Performance measures

Energy

Transport

Water

Waste water

Waste

Demand

Household Industry

Supply Capacity

Transport (Southampton)

Water (Newcastle)

Solid Waste (Southampton)

Waste Water (Newcastle)

Energy (Oxford/Cardiff)

2… 3 1… Evaluation order

Sector CDAMs

Potential for interdependencies Current approach: •  Common set of assumptions

•  Solving order allows for one way dependencies

Iterative solution of the modelling framework…

Page 41: ITRC Fast Track Analysis

Visuliza)on  of  Results  352 | THE ATLAS OF ECONOMIC COMPLEXITY

2008

ZIMBABWE

EVOLUTION OF EXPORT COMPOSITION

PRODUCT SPACE

2008

PRODUCT EXPORTED WITH RCA>1

PRODUCT NOT EXPORTED WITH RCA>1

NODE SIZE IS PROPORTIONAL TO WORLD TRADE

ECONOMIC COMPLEXITY INDEX [2008] ! -0.327 / (80/6) EXPECTED GDPPC GROWTH * ! 3.79% / (6/1)

2008 EXPORT OPPORTUNITY SPECTRUM

FRACTION OF PRODUCTS WITH RCA > 1

22% OF WT

6% OF WT

2% OF WT

0.8% OF WT

0.06% OF WT

*Expected annual average for the 2009-2020 period.

0.9 0.91 0.92 0.93 0.94

-2

-1

0

1

2

3

Distance

Avera

ge Co

mplex

ity of

Miss

ing Pr

oduc

ts

0.01 0.02 0.03 0.04 0.05 0.06

-2

-1

0

1

2

3

Opportunity Gain

Avera

ge Co

mplex

ity of

Miss

ing Pr

oduc

ts

MAPPING PATHS TO PROSPERITY | 353

2927 (12%) Flora 1212 (5.5%) Wholly or partly strippedtobacco

1222 (1.6%) Cigarretes

1211 1213

2631 (5.5%) Raw cotton 0612 (1.7%)Refined sugar

0572(0.99%)Fresh or driedcitrus N.E.S

0813

2872 (18%) Nickel 2731 2789

3232 (0.99%)

6612 (0.97%)

6672 (0.9%)Not mounteddiamonds

7821 (3.5%) Trucks& vans

8743 (3.3%) Gas,liquid & electriccontrol instruments

8946

6991

6954 7188

6716 (3%) Ferro-alloys 7711 (2.6%) Electricaltransformers

6513 (3.4%) Cotton yarn

6535 (0.74%)

8422 (2.5%) Men'ssuits

8219 (1%) 2482(0.98%)

2471

8960 (2.7%) Worksof art

0545 (1.6%)Other fresh orchilledvegetables

0586 0546(0.78%)

6421

5137 (1.7%) Monocarboxylicacids & derivatives

8748 (1.5%) Electricalmeasuring & controllinginstruments N.E.S.

5232(0.71%)

5231(0.67%)

8928 (4.1%) Printed matterN.E.S.

* Data are from 2008. Numbers indicate: Value (World Ranking / Regional Ranking). Sub-Saharan Africa.

2008

1968

EXPORTTREEMAP

EXPORT TREEMAP

* Numbers indicate SITC-4 rev 2 codes. Parenthesis indicate percentage of total exports. Treemap Headers show: Total Trade/Total World Trade (share of world trade represented by the country).

TOTAL EXPORTS: 24.65 M / 228.33 B (0.01%) 1988 EXPORT TREEMAP TOTAL EXPORTS: 1.13 B / 2.79 T (0.04%)

TOTAL EXPORTS: 1.72 B / 15.56 T (0.01%)

ELEC

TRON

ICS

MACH

INER

Y

AIRCR

AFT

BOILE

RS

SHIPS

META

L PRO

DUCT

S

CONS

TR. M

ATL.

& EQ

PT.

HOME

& OF

FICE

PULP

& PA

PER

CHEM

ICALS

& HE

ALTH

AGRO

CHEM

ICALS

OTHE

R CHE

MICA

LS

INOR

. SAL

TS &

ACID

S

PETR

OCHE

MICA

LS

LEAT

HER

MILK

& CH

EESE

ANIM

AL FI

BERS

MEAT

& EG

GS

FISH &

SEAF

OOD

TROP

ICAL A

GRIC.

CERE

ALS &

VEG.

OILS

COTT

ON/R

ICE/S

OY &

OTHE

RS

TOBA

CCO

FRUI

T

MISC

. AGR

ICULT

URE

NOT C

LASS

IFIED

TEXT

ILE &

FABR

ICS

GARM

ENTS

FOOD

PROC

ESSIN

G

BEER

/SPIR

ITS &

CIGS

.

PREC

IOUS

STON

ES

COAL OI

L

MINI

NG

GDP ! USD 4.2 B / (124/22)

GDPPC ! USD 341 / (125/23)

EXPORTS PER CAPITA ! USD 138 / (119/19)

EXPORTS AS SHARE OF GDP ! 41 % (44/9)

POPULATION ! 12 M / (62/17)

TOTAL EXPORTS ! USD 1.7 B / (118/22)

MIT Atlas of economic complexity

Investigating different methods and methodologies for complex data visualisation…

Page 42: ITRC Fast Track Analysis

Visulisa)on  of  Results  

14

S T R AT E G I E S F O R N AT I O N A L I N F R A S T R U C T U R E P R O V I S I O N I N G R E AT B R I TA I N : E X E C U T I V E S U M M A R Y

Figure 12: Summary

of transition strategy

performance assessment

using cross-sectoral metrics

of cost, emissions and

security of supply. In the

transport sector, the ‘security

of supply’ metric relates to

congestion.

Cost

Emssions

Security of supply

Low growth scenario

Medium growth scenario

High growth scenario

High performance(e.g. low cost, low emissions, high supply security)

Medium performance

Low performance(e.g. high cost, high emissions,low supply security)

L

M

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Energy

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Transport

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Water

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Wastewater

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

Solid waste

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

L

LL

L

LL

M

M

M

M

M

M

HH

H

HH

H

ICT

2010–2030

2030–2050

Capacity-intensive (CI) Capacity-constrained (CC) Decentralisation (DC)

352 | THE ATLAS OF ECONOMIC COMPLEXITY

2008

ZIMBABWE

EVOLUTION OF EXPORT COMPOSITION

PRODUCT SPACE

2008

PRODUCT EXPORTED WITH RCA>1

PRODUCT NOT EXPORTED WITH RCA>1

NODE SIZE IS PROPORTIONAL TO WORLD TRADE

ECONOMIC COMPLEXITY INDEX [2008] ! -0.327 / (80/6) EXPECTED GDPPC GROWTH * ! 3.79% / (6/1)

2008 EXPORT OPPORTUNITY SPECTRUM

FRACTION OF PRODUCTS WITH RCA > 1

22% OF WT

6% OF WT

2% OF WT

0.8% OF WT

0.06% OF WT

*Expected annual average for the 2009-2020 period.

0.9 0.91 0.92 0.93 0.94

-2

-1

0

1

2

3

Distance

Avera

ge Co

mplex

ity of

Miss

ing Pr

oduc

ts

0.01 0.02 0.03 0.04 0.05 0.06

-2

-1

0

1

2

3

Opportunity Gain

Avera

ge Co

mplex

ity of

Miss

ing Pr

oduc

ts

MIT Atlas of economic complexity

…and applying them to the different WS1 outputs.

Page 43: ITRC Fast Track Analysis

www.itrc.org.uk