25
Electric Machines and the Power Conversions Electric Machines and the Power Conversions for Renewable Systems Dc Grid Connections Jung-Ik Ha Assistant Professor School of Electrical Engineering School of Electrical Engineering Seoul National University

Empc 8-110329 a[1]

Embed Size (px)

Citation preview

Page 1: Empc 8-110329 a[1]

Electric Machines and the Power ConversionsElectric Machines and the Power Conversions for Renewable Systems

Dc Grid Connections

Jung-Ik HaAssistant ProfessorSchool of Electrical EngineeringSchool of Electrical EngineeringSeoul National University

Page 2: Empc 8-110329 a[1]

Background

Renewable Energy System and Grid Connections

– Considerations

• Energy Flow

– (Negative) Unidirectional

– Bidirectional

• Safety: Grounding

Non Isolation– Non-Isolation

– Isolation

• Regulation: Filteringegu at o : te g

– EMI

Page 2ENERGYCONVERSION___________

Page 3: Empc 8-110329 a[1]

Grid Connected Buck Converter

Page 3

Page 4: Empc 8-110329 a[1]

Buck Converter

Basic Form

– Uni-Directional DC LOAD

– Bi-directional

• Synchronous Rectification

Operation StatesOperation States

– On: Charging

– Off: Fly-wheelingy g

Page 4ENERGYCONVERSION___________

Page 5: Empc 8-110329 a[1]

Power Delivery Grid Connection

– Power Delivery

Power Control

– Voltage Control Mode

V (Vflt ) Vd• Vo ↔ (Vflt ↔) Vdc

• Voltage Source ↔ Voltage Source

– No Current LimitNo Current Limit

. Converter : Cout

. Filter : Cflt, Lfltflt flt

. Line : Rline, Cline, Lline1, Lline2

– Disturbance

Power Circulation

Page 5ENERGYCONVERSION___________

Page 6: Empc 8-110329 a[1]

Power Delivery Grid Connection

– Object: Power Delivery

In Renewable System

– Power Control

C t C t l• Current Control

– Transmission Line

– Additional FilteringAdditional Filtering

– RES Model Considerations

Page 6ENERGYCONVERSION___________

Page 7: Empc 8-110329 a[1]

Power Control Current Based Power Control

ogav VPI /** I

g

dtdILVV L

oi DCRESrViV oV

– Averaged Assumption in T

DT

1 ir vsfv i

DT

ir DVdtvT

V 01

di Rdi 1dtdiLRiVV or or VV

Li

LR

dtdi

1

A or VVBAxx

Page 7ENERGYCONVERSION___________

Page 8: Empc 8-110329 a[1]

Power Control Current Based Power Control

– Closed LoopI

• Assumptions

: ∆Vo= ∆Vi=0 @t=0~T

Output Feedforward• Output Feedforward

: Vff=Vo

or VVBAxx

iRdi 1 iG 1

rvL

iLdt

RLsvG

rp

• PI Control

sKKG i

pc s

KsKG ip

c

Page 8ENERGYCONVERSION___________

Page 9: Empc 8-110329 a[1]

Power Control Current Based Power Control

– Closed Loop

• PI Control

– Pole-Zero Cancellation

K RK p RLsLsK

G pc

K

LK p

i

LsK

G po

LKLsKi

c

c

p

p

p

p

sLKsLK

LsKLsK

ii

1*

swc *5/1 : Decoupling of Discrete System

Ttvv 0@01

Page 9ENERGYCONVERSION___________

Ttvv oi ..0@0,1

Page 10: Empc 8-110329 a[1]

Power Control Vin Consideration

– Anti-windup

• Integration Problem

: Vo* Saturated Fast Recovery

VPI /** dcVPI /**

LIIe *

ino DVVu *

Page 10ENERGYCONVERSION___________

Page 11: Empc 8-110329 a[1]

Power Control Vin Consideration Li i d I Vin Consideration

– Anti-windup• Limited Integrator

• Limited Integrator

– High Feedback Gain

– Uin = Limit + Kp*eg

– Hard Limit Imposed

• Tracking Anti-windup • Tracking Anti-windup

– with unrestricted control signal

– Recursive Problem

Page 11ENERGYCONVERSION___________

Page 12: Empc 8-110329 a[1]

Power Control Vin Consideration

– Anti-windup

• Tracking Anti-windup

– Back Calculation

One Step Delay– One-Step Delay

Ks = 1/Kp

(multiplied by 1/3~3)(multiplied by 1/3 3)

Page 12ENERGYCONVERSION___________

Page 13: Empc 8-110329 a[1]

Transmission Line Line Consideration

: Ideal Voltage Source Case

– Model

– Original

– Exact Model ILine +ΔILine

• Check Point: ΔILine

• On State

• Off State

Page 13ENERGYCONVERSION___________

Page 14: Empc 8-110329 a[1]

Transmission Line Line Consideration

– Approximated Model

1 lineI designedVo :

ttriVV rpo

Line DropsLR

Vi o

LjR

Vi o

Line Drop

– Delivered Power Offset, Losses

• Approximated Modelpp

– R Loss: Pr = R*I^2

– G Loss: Pg = G*V^2

• Line Loss Compensation Required

P = P1 + Pr + Pg

Page 14ENERGYCONVERSION___________

Page 15: Empc 8-110329 a[1]

Current Harmonics Control Conducted EMI

– AC Case

• 2~40th Order Harmonics Limits: Differential Mode

– IEC61000-3-2,12, IEEE519

150kHz(450kHz) 30MHz: Differential and Common Modes• 150kHz(450kHz)~30MHz: Differential and Common Modes

– CISPR 22(FCC)

– DC CaseDC Case

• No Regulation Currently.

• Standards for Vehicles, Ships, and Others in the Restricted Grids

Page 15ENERGYCONVERSION___________

Page 16: Empc 8-110329 a[1]

Current Harmonics Control Countermeasure: Reduction of Conducted EMI

– Lower Voltage Ripples

• C: Higher Co, Lower ESR

• L: Higher Lc, Lower R

Higher Switching Frequency• Higher Switching Frequency

– Additional Filter(s)

Page 16ENERGYCONVERSION___________

Page 17: Empc 8-110329 a[1]

RES Model Renewable Energy System Model

– Voltage Source

• Same

– Power Source

Control ObjectVDCVoVinIs

Vr

• Control Object

– Vin Vi*

.Ex) Dual Stage Cascade Control.Ex) Dual Stage Cascade Control

– Exact Models

Page 17ENERGYCONVERSION___________

Page 18: Empc 8-110329 a[1]

RES Model Dual Stage Cascade Control

– Inner Loop: Current Control

• Model

Feedforward

dtdiLRiVV or

• Feedforward

off VV uffr VVV dtdiLRiVu

sLRVi

u

1

iiGcVu * iisLR

Gci

*

GcsLR

Gc

ii *

Gci*

• Pole-Zero Cancellation

sLR sLR

Gci

1 GcsLRi *

KK

sLRsLK

Gc p K

s

LK

KsLK

ii

p

p

p

p

1* L

K pc

Page 18ENERGYCONVERSION___________

Ls

sL1

Page 19: Empc 8-110329 a[1]

RES Model Dual Stage Cascade Control

– Outer Loop: Voltage Control

dVC 2• Model

Feedforward: Pin

oininin PP

dtdVC

2

2ff PP • Feedforward: Pin

• IP Control

inff PP

o

ininin

iinp V

PVVs

KVKi

**

o

inin

iinpo

inin VVs

KVKVdt

dVC *2

2 oininin

iinpo ViPVV

sKVKV **

• Bias Point Details

– Taylor 1st: 020

2 2 inininin VVVV

inin

iinpoinin VV

sKVKVsVC *

Page 19ENERGYCONVERSION___________

Page 20: Empc 8-110329 a[1]

RES Model Dual Stage Cascade Control

– Outer Loop: Voltage Control

• Transfer Function

20ii

io

i VCKV

V

• Gains

22

00

2

0* 2 nn

n

inin

io

inin

po

inin

in

in

ssVCKVs

VCKV

s

VCVV

Gains

o

ininnp V

VCK*

2o

ininni V

VCK*

2

• Bandwidths

21

24421 242 BW 24421 242 nBW

Page 20ENERGYCONVERSION___________

Page 21: Empc 8-110329 a[1]

EMI Measurement LISN: Line Impedance Stabilization Network

– Configuration

– ExampleExample

Page 21ENERGYCONVERSION___________

Page 22: Empc 8-110329 a[1]

EMI Measurement LISN: Line Impedance Stabilization Network

– Measurement Gain

Common and Differential Modes– Common and Differential Modes

Page 22ENERGYCONVERSION___________

Page 23: Empc 8-110329 a[1]

HW5 Grid Buck Converter Design : Due to 4/7 Consider the Converter Designed in HW4

You can change parameters in order to improve the performance.

1) Using Power Source Model Design Controller1) Using Power Source Model, Design Controller. Line Inductance=50uH, Cap=0, R=0, G=inf,

2) Discuss about the Step Response: Vin* = 100V, Pin=90 step(t1) +10 W, Compare the results with/without the Feed forward Control.

3) Discuss about the Steady-State performance: Vin* = 100V, Pin=100W4) Vin* = 100V, Pin=100W) ,

A. FFT of Current Ripples @150k~30MHz?B. Adjust Co to reduce the peak harmonic component to 1/2.C D i d I t Filt ith t Adj ti C t d th kC. Design and Insert Filter without Adjusting Co to reduce the peak

harmonic component to 1/2. (option)5) FFT of the Differential Mode Current in the LISN @150k~30MHz, Vin*

= 100V, Pin=100W? Neglect Line Impedance.

Page 23ENERGYCONVERSION___________

Page 24: Empc 8-110329 a[1]

Page 24ENERGYCONVERSION___________

Page 25: Empc 8-110329 a[1]