8
1 INTRODUCCIÓN A LOS MOTORES MOLECULARES DE LA CONTRACCIÓN MUSCULAR Enrique Jaimovich Instituto de Ciencias Biomédicas Facultad de Medicina, Universidad de Chile Laboratorio de Fisiología Celular de Músculo 2008 Alejandra Espinosa Carla Basualto Sonja Buvinic Mariana Casas Structure of the 3 muscle types. The drawings at right show these muscles in cross section. Skeletal muscle is composed of large, elongated, multinucleated fibers. Cardiac muscle is composed of irregular branched cells bound together longitudinally by intercalated disks. Smooth muscle is an agglomerate of fusiform cells. The density of the packing between the cells depends on the amount of extracellular connective tissue present. Skeletal Muscle Cells Skeletal muscle cells are long (up to 30 cm), possess a diameter of 10-100 µm, and are multinucleated as a result of myoblast fusion Nuclei are found just below the sarcolemma Each muscle fiber is inervated by a motor nerve

Contracción muscular

Embed Size (px)

Citation preview

Page 1: Contracción muscular

1

INTRODUCCIÓN A LOS MOTORES MOLECULARES DE LA CONTRACCIÓN

MUSCULAR

Enrique Jaimovich

Instituto de Ciencias BiomédicasFacultad de Medicina, Universidad de Chile

Laboratorio de Fisiología Celular de Músculo 2008

Alejandra

Espinosa

Carla

Basualto

Sonja

Buvinic

Mariana

Casas

Structure of the 3 muscle types. The drawings at right show these muscles in cross section. Skeletal muscle

is composed of large, elongated, multinucleated fibers. Cardiac muscle is composed of irregular branched

cells bound together longitudinally by intercalated disks. Smooth muscle is an agglomerate of fusiform cells.

The density of the packing between the cells depends on the amount of extracellular connective tissue

present.

Skeletal Muscle Cells

Skeletal muscle cells are long (up to 30 cm), possess a diameter of 10-100

µm, and are multinucleated as a result of myoblast fusion

Nuclei are found just below the sarcolemma

Each muscle fiber is inervated by a motor nerve

Page 2: Contracción muscular

2

Muscle

Muscle fibers

Muscle fiber

MyofibrilSarcomere

Modified from McMahon, Muscles, Reflexes and Locomotion

Princeton University Press, 1984.

Cerca de la mitad de la masa corporal corresponde al músculo esquelético, con la mayoría de los músculos unidosal hueso mediante tendones; las fuerzasy movimientos que se desarrolandurante las contracciones,se transmiten al esqueleto.

.

Estructura jerarquizada del músculo esquelético

Micrografíaelectrónica

Z line

Sarcómero: unidad funcional del músculo estriado

El movimiento de palanca desplaza el filamento de actina relativo a la cabeza demiosina (~5 nm), y, al deformar estructuras elásticas internas, produce fuerza (~5 pN).

Filamentos gruesos y delgados se interdigitan y deslizan unos respecto a otros

Para que el músculo gastrocnemio produzca ~ 45 Kg de fuerza, unos 1014 motoresdeben actuar en paralelo simultáneamente.

Cómo funciona el músculo estriado: Modelo de filamentos deslizantes

Page 3: Contracción muscular

3

Acoplamiento mecanoquímico – conversión de energíaquímica (ATP, unas 7 kcal/mol) en fuerza/movimiento.

• ATP es termodinámicamente inestable

• Dos etapas energéticamente favorables:1. Unión de ATP a miosina2. Liberación de fosfato desde miosina

• La velocidad del ciclo depende de la actividad M·ATPasa y de la cargaexterna.

Unión débil Unión fuerte

La velocidad de acortamiento dependede la actividad ATPasa

Diferentes cadenas pesadas de miosina (MHCs) tienen actividades ATPasa distintas.

Hay al menos 7 genes separados para MHC de músculo esqueléticoordenados en serie en el cromosoma 17.

Dos genes de MHC cardíaco localizados en tandem en el cromosoma 14.

El gen MHC lento β cardíaco se expresa en forma predominanteen las fibras lentas de mamíferos

Goldspink (1999) J Anat 194:323-334.

Filamentos gruesos y finos

Page 4: Contracción muscular

4

Miosina es un motor molecular Myosin is a hexamer:2 myosin heavy chains4 myosin light chains

Estructura cristalina delfragmento S1 de miosina

Ruegg et al., (2002) News Physiol Sci 17:213-218.

NH2-terminal catalytic (motor) domain

neck region/lever arm

Cabeza de miosina: retiene todas las funciones de motor de la miosina,es decir, la abilidad de producir fuerza y movimiento.

Vale & Milligan (2000) Science 288: 88

El golpe de trabajo se produce porapertura y cierre delSitio activo, resultando en rotaciónde la región regulatoria (cuello) en torno a una bisagra (regiónconvertidora)

Cambios de menos de 1 nmen el sitio activo se amplificanmediante engranajes hastadesplazamientos de 5-10 nmen el extremo del brazo articulado

Modelo hipotético del brazomóvil

Ruegg et al., (2002) News Physiol Sci 17:213-218.

Po

wer S

t roke

Ruegg et al., NIPS 17: 213

Experimentos de molécula única

Page 5: Contracción muscular

5

Ciclo de puentes cruzados

Gordon et al., (2001) NIPS 16: 49

f: puente cruzado

ejerciendo fuerza

Longitud del sarcómero y distancia entre filamentos gruesos

y finos

MacIntosh (2003) NIPS 18: 222

- fosforilación

cadena regulatoria

-sarcómero largo

-sarcómero corto

- pH bajo

MacIntosh (2003)

NIPS 18: 222

Sensibilidad de miofilamentos al calcio

Troponin-tropomyosin complex

Troponin is a complex formed by 3 proteins:

TnT: binds strongly to tropomyosin

TnC: binds Ca2+ ions

TnI: Inhibits myosin-actin interaction

F-actina Actina y complejo de troponinas

Gordon et al., (2000)Physiol Rev 80: 853

Page 6: Contracción muscular

6

Troponina C y calcio

Gordon et al., (2000)Physiol Rev 80: 853

Tropomiosina

Gordon et al., (2001) NIPS 16: 49

Lymn & Taylor (1971) Biochemistry 10: 4617

Ciclo de Lymn y Taylor, swinging cross-bridgeTroponinas I, C y T

Luo et al., (Tao) (2000) J Mol Biol 296: 899

Page 7: Contracción muscular

7

Page 8: Contracción muscular

8

The metabolic response to exercise is similar to the fasting response because similar fuels must be mobilized and generated for

oxidation. For short-term exercise, lasting seconds, stored creatine phosphate and ATP provide the energy at a rate of about 50

Kcal/min. If exercise continues, the stores may be depleted. Then muscle glycogen is broken down to glucose-6-phosphate which

undergoes glycolysis, yielding energy at about 30 Kcal/min. The accumulation of lactic acid in muscle and circulation is a limiting

factor for glycolysis, not the depletion of muscle glycogen.

After several minutes of exhaustive anerobic exercise, one incurs an oxygen debt of up to 12 L. From 6 to 8 L are required to

resynthesize the lactic acid to glucose or oxidize it to CO2. About 2 L are required for normal replenishment of muscle ATP and

creatine phosphate. About 2 L more are needed to replenish the oxygen normally found in the lungs and body fluids bound to

hemoglobin or myoglobin.

If the period of exercise is less intense but of longer duration, substrates required to produce the necessary energy undergo aerobic

oxidation, about 12 Kcal/min. Glucose substrates from the circulation are added to muscle glycogen and there is a manyfold increase

in glucose uptake from the plasma by some groups of muscles. Glycogenolysis takes place to offset this glucose drain. As glycogen

stores become exhausted by continued exercise, gluconeogenesis takes place from amino acids released by muscle proteolysis. Finally,

free fatty acids are liberated from adipose tissue. In time, these free fatty acids will supply two thirds of the energy needed to maintain

the exercise. After the termination of exercise, energy is needed to rebuild the glycogen stores in the liver and muscle.