20
Compressive Sensing for Transient Analysis Dr. M. SabarimalaiManikandan CEN, Amrita University

Compressive sensing for transient analsyis

Embed Size (px)

Citation preview

Page 1: Compressive sensing for transient analsyis

Compressive Sensing for Transient Analysis

Dr. M. Sabarimalai Manikandan

CEN, Amrita University

Page 2: Compressive sensing for transient analsyis

Compressive Sensing

Compressed sensing is a new data acquisition theory that

aims to reduce the number of measurements required to

completely describe a signal by exploiting itscompletely describe a signal by exploiting its

compressibility or sparsity

The new model for signals utilized in CS is based on

sparse approximation

Page 3: Compressive sensing for transient analsyis

Sparse Signal Representation/Approximation

The signal can be represented or well approximated by

a linear combination of a small number of waveforms

taken from a basis or dictionary

There are numerous practical examples in which a signal

of interest is not sparse in an orthonormal basis.

The recovery of signals from undersampled data in the

common situation where such signals are not sparse in

an orthonormal basis or incoherent dictionary, but in a

truly redundant or overcomplete dictionary.

Page 4: Compressive sensing for transient analsyis

Compressive Sensing Requirements

Design of a stable measurement matrix that ensures

that the salient information in any K-sparse or

compressible signal is not damaged by the

dimensionality reduction.dimensionality reduction.

Develop a reconstruction algorithm to recover x from

the measurements y.

Page 5: Compressive sensing for transient analsyis

Sparse Signal Representation

Page 6: Compressive sensing for transient analsyis

Learning Overcomplete Dictionary

Dirac Functions

Heaviside Functions

Discrete Cosines

Discrete SinesDiscrete Sines

Hadamard-Walsh

Wavelets and Wavelet Packets

Dual-tree wavelets

Curvelets

Splines and Random vectors

Page 7: Compressive sensing for transient analsyis

Detection and Localization of Transient Signals

Transients are generally very short-duration nonstationary

signals often with oscillations.

impulsive and oscillatory transients

short-time energy, matched filters, higher-order statistics,

Fourier transform, Wigner-Vue distribution (WVD), S-

transform, wavelet and wavelet packet transforms

Page 8: Compressive sensing for transient analsyis

Limitations of traditional wavelet-based approaches

The common problem in well-known wavelet

transform-based methods is which mother wavelet

function and characteristic scale provides the best

time-frequency resolution for detection of transients.time-frequency resolution for detection of transients.

Detection and localization of transients is still a very

challenging task because the transients are typically

having different shapes, amplitudes, durations and

frequency content, which are not known in many

different applications and systems

Page 9: Compressive sensing for transient analsyis

Applications of Transient Analysis

Power-quality analysis

Underwater acoustics system

Audio and biosignal analysis

Ultra wideband (UWB) pulsed radar

Mechanical fault diagnosis

Seismic signal analysis

Page 10: Compressive sensing for transient analsyis

Transient Representation

Page 11: Compressive sensing for transient analsyis

CS-Based Transient Detection Algorithm

Page 12: Compressive sensing for transient analsyis

Detection of Oscillatory Transients

Page 13: Compressive sensing for transient analsyis

Detection of Spikes

Page 14: Compressive sensing for transient analsyis

CS-based Detection

-0.5

0

0.5

1

Vo

ltag

e S

ag

s

-1

-0.5

0

0.5

1

1.5

Vo

ltag

e S

we

lls

0 0.05 0.1 0.15 0.2 0.25-1

0 0.05 0.1 0.15 0.2 0.25

-0.1

-0.05

0

0.05

0.1

Time (sec)

De

tail

Sig

na

l

0 0.05 0.1 0.15 0.2 0.25-1.5

-1Vo

ltag

e S

we

lls

0 0.05 0.1 0.15 0.2 0.25-0.1

-0.05

0

0.05

0.1

Time (sec)

De

tail

Sig

na

l

(a)

(b)

(c)

(d)

Page 15: Compressive sensing for transient analsyis

Advantages of CS-Based Approach

In addition to time information, the CS-based detector

also preserves essential characteristics of the transients

(amplitude, frequency and shape) that wavelet-based(amplitude, frequency and shape) that wavelet-based

method may fail to preserve.

This is a clear advantage of our CS-based method over

the wavelet-based methods.

Page 16: Compressive sensing for transient analsyis

Phase Shift Detection and Correction

-0.1

0

0.1

am

plitu

de

50 Hz sinusoidal signal with phase shift of 32 degree

10 20 30 40 50 60 70 80 90 100

Time (sec)

10 20 30 40 50 60 70 80 90 100-1

-0.5

0

0.5

150 Hz sinusoidal signal without phase shift

am

plitu

de

Time (sec)

Page 17: Compressive sensing for transient analsyis

Powerline Frequency Removal

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

am

plitu

de

Time (sec)

original ECG signal

original ECG signal plus powerline

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

am

plitu

de

Time (sec)

original ECG signal

original ECG signal plus powerline (10 degree)

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

original ECG signal plus powerline

am

plitu

de

Time (sec)

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

Output of CS-based approach

am

plitu

de

Time (sec)

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

original ECG signal plus powerline (10 degree)

am

plitu

de

Time (sec)

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

Output of CS-based approach

am

plitu

de

Time (sec)

Page 18: Compressive sensing for transient analsyis

50 Hz Powerline Removal

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

am

pli

tud

e

Time (sec)

original ECG signal

original ECG signal plus powerline (10 degree)

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

am

plitu

de

Time (sec)

original ECG signal

original ECG signal plus powerline (86 degree)

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

original ECG signal plus powerline (10 degree)

am

pli

tud

e

Time (sec)

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

Output of CS-based approach

am

plitu

de

Time (sec)

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

original ECG signal plus powerline (86 degree)

am

plitu

de

Time (sec)

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

Output of CS-based approach

am

plitu

de

Time (sec)

Page 19: Compressive sensing for transient analsyis

Simultaneous Removal of 50 Hz and LF Artifact

500 1000 1500 2000 2500 3000-1

-0.5

0

0.5

amplitu

de

Time (sec)

original ECG signal

0

0.5

original ECG signal plus powerline

amplitu

de

500 1000 1500 2000 2500 3000-1

-0.5

0

amplitu

de

Time (sec)

500 1000 1500 2000 2500 3000

-0.5

0

0.5

Output of CS-based approach

amplitu

de

Time (sec)

500 1000 1500 2000 2500 3000-0.4

-0.2

0

0.2

0.4

Output of CS-based baseline wander removal

amplitu

de

Time (sec)

Page 20: Compressive sensing for transient analsyis

Detection and Localization of Transient Signals

100 200 300 400 500 600 700 800-2

0

2Transient signals

DCT:Localization

100 200 300 400 500 600 700 800

-2

-1

0

1

DCT:Localization

100 200 300 400 500 600 700 800

-0.5

0

0.5

Reconstruction