9
ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE CIENCIAS BIOTECNOLOGÍA AMBIENTAL NOMBRE: Andrea Pardo (2078) NIVEL: Séptimo semestre “A” TEMA: EJEMPLOS DE LOS TIPOS DE BIOTECNOLOGÍA AMBIENTAL. BIOTECNOLOGÍA AMBIENTAL ANTIGUA L os agricultores en Europa aumentan el cultivo de leguminosas y comienzan a practicar la rotación de cultivos para mejorar el rendimiento y el uso de la tierra. La elaboración de compost (compostaje) Las tecnologías de aguas residuales son ejemplos conocidos de la “antigua” biotecnología ambiental. El uso de microorganismos en procesos ambientales se encuentra desde el siglo XIX, aunque esas aplicaciones pueden ser consideradas más como destreza que como ciencia. En relación con lixiviación bacteriana y biominería, los microorganismos han venido usando y liberando minerales en la corteza terrestre desde tiempos geológicamente antiguos. Por largo tiempo las operaciones mineras se han beneficiado de las actividades de estos microorganismos que se encuentran naturalmente, especialmente de la habilidad de algunas bacterias de solubilizar y lixiviar metales de menas (rocas mineralizadas) insolubles. Desde el 1000 a C. mineros de la cuenca del Mediterráneo recuperaban el cobre que era lixiviado por bacterias en las aguas de drenaje de las minas, aunque desconocían la actividad de las bacterias. Los romanos en el siglo I, y posteriormente los galeses en el siglo XVI y los españoles en el siglo XVIII, utilizaron sin duda la lixiviación bacteriana para la recuperación de metales. Sin embargo, la contribución de las bacterias en la lixiviación no fue reconocida sino hasta el siglo XX. Los primeros reportes de que ciertas bacterias no identificadas estaban involucradas en la lixiviación de sulfuros de zinc y de hierro se presentaron hacia 1920. El papel fundamental de las bacterias en la lixiviación de menas minerales se desatendió hasta 1947 cuando A. Colmer y M. E. Hinkle de la Universidad

Biotecnología ambiental antigua

Embed Size (px)

Citation preview

Page 1: Biotecnología ambiental antigua

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZOFACULTAD DE CIENCIAS

BIOTECNOLOGÍA AMBIENTAL

NOMBRE: Andrea Pardo (2078)NIVEL: Séptimo semestre “A”TEMA: EJEMPLOS DE LOS TIPOS DE BIOTECNOLOGÍA AMBIENTAL.

BIOTECNOLOGÍA AMBIENTAL ANTIGUA

Los agricultores en Europa aumentan el cultivo de leguminosas y comienzan a practicar la rotación de cultivos para mejorar el rendimiento y el uso de la tierra.

La elaboración de compost (compostaje) Las tecnologías de aguas residuales son ejemplos conocidos de la “antigua” biotecnología

ambiental. El uso de microorganismos en procesos ambientales se encuentra desde el siglo XIX, aunque esas aplicaciones pueden ser consideradas más como destreza que como ciencia.

En relación con lixiviación bacteriana y biominería, los microorganismos han venido usando y liberando minerales en la corteza terrestre desde tiempos geológicamente antiguos. Por largo tiempo las operaciones mineras se han beneficiado de las actividades de estos microorganismos que se encuentran naturalmente, especialmente de la habilidad de algunas bacterias de solubilizar y lixiviar metales de menas (rocas mineralizadas) insolubles. Desde el 1000 a C. mineros de la cuenca del Mediterráneo recuperaban el cobre que era lixiviado por bacterias en las aguas de drenaje de las minas, aunque desconocían la actividad de las bacterias. Los romanos en el siglo I, y posteriormente los galeses en el siglo XVI y los españoles en el siglo XVIII, utilizaron sin duda la lixiviación bacteriana para la recuperación de metales. Sin embargo, la contribución de las bacterias en la lixiviación no fue reconocida sino hasta el siglo XX. Los primeros reportes de que ciertas bacterias no identificadas estaban involucradas en la lixiviación de sulfuros de zinc y de hierro se presentaron hacia 1920. El papel fundamental de las bacterias en la lixiviación de menas minerales se desatendió hasta 1947 cuando A. Colmer y M. E. Hinkle de la Universidad de West Virginia describieron una bacteria (Tiobacillus ferrooxidans) como el organismo responsable principal de la lixiviación de menas de sulfuros metálicos

BIOTECNOLOGIA AMBIENTAL MODERNA

La limpieza de las aguas residuales, purificación del aire y gases contaminantes, mediante el uso de la creación de biofiltros muy espectaculares.

Uso de plantas de tratamiento de aguas contaminadas con desechos orgánicos. Uso de tecnologías involucradas en la producción de combustibles que fueron generados

desde los años 60, donde se produjo etanol utilizando microorganismos a partir de los almidones del maíz y la papa.

Uso de la yuca para la preparación de un aditivo para la gasolina de automóviles en Brasil y Estados Unidos.

Biorremediación (Tratamiento de aguas residuales y de basura, eliminación de contaminantes)

La biotecnología contribuye a la remediación ambiental al aprovechar bacteria capaz de desintegrar las toxinas orgánicas en un terreno. Por ejemplo, podemos limpiar terrenos

Page 2: Biotecnología ambiental antigua

contaminados por herbicidas tóxicos. y hasta la fauna y flora, con bacteria de tierra tal como pseudomonas putida, el primer organismo patentado en el mundo. En meras horas, estas bacterias pueden limpiar el suelo de toxinas que llevaría décadas descomponer por sí solas. Las pseudomonas putida pueden también descomponer contaminantes industriales como tolueno, un componente de disolvente de pintura.

Centro de Biotecnología Ambiental del Instituto de Biodiseño de la Universidad de Arizona: nuevas fuentes de energía, a partir de desperdicios que generan problemas y convertirlos en electricidad.

Reactores de membrana para la transferencia de hidrógeno: contaminantes problemáticos, como nitratos, tetracloroetano, cromo y selenio. En dichos reactores se debe proporcionar hidrógeno a cierta presión y los microorganismos se encargan de realizar el proceso.

Saskatchewan (oeste de Canadá), empresas como Ag-West Biotech trabajan con biotecnología con el fin de convertir residuos en energía renovable.

Bio-combustible a partir de productos considerados como desechos, como el lodo resultante de la producción de papel y pulpa, desechos de papel, pasto, hojas, paja, y otros desechos sólidos de rellenos sanitarios que contengan celulosa.

Departamento de Ciencias Agrícolas de la Universidad de Tohoku= Desarrollo de nueva tecnología que permite mejorar la eficiencia de la producción de bioetanol a partir de algas pardas a gran escala.

Orica empresa australiana ha desarrollado enzimas capaces de limpiar la contaminación debido al uso de pesticidas en la agricultura.

El uso del piñón para la producción de biocombustibles (Ecuador)

BIOTECNOLOGÍA CONTEMPORANEAEstá aplicación de la biotecnología ha sido notable en el desarrollo de nuevos procesos industriales optimistas:

El uso de la bacteria "Thiubacillus ferooxidans" para la extracción del cobre y oro. Esta bacteria se localiza de manera natural en ciertos materiales que contienen azufre, esta se alimenta a partir de ellos, lo cual provoca la extracción de distintos metales a partir del mineral crudo.

También se ha examinado el uso de la biotecnología que permita optimizar el procesamiento del petróleo y que conjuntamente disminuya los efectos contaminantes del mismo, por ejemplo:

La remoción biológica de azufre por bacterias o la eliminación de metales por enzimas.

También se lleva a cabo la búsqueda y el análisis de diversos microorganismos que de manera natural o inducida sean capaces de degradar una amplia gama de compuestos contaminantes como: Grasas

Detergentes

 Plásticos

Petróleo crudo y sus derivados

Plaguicidas 

Page 3: Biotecnología ambiental antigua

La producción de plásticos biodegradables en plantas transgénicas podría conducir a una reducción sustancial en el uso de plásticos basados en el petróleo.

Plantas modificadas genéticamente han demostrado ser útiles en fitorremediación para la descontaminación de suelos que contienen metales pesados y otras sustancias tóxicas.

Procesos de biotransformación o biomateriales que generen residuos biodegradables reduciendo los efectos tóxicos sobre el medioambiente (bioplásticos, nuevos tejidos, materiales para la construcción como tela de araña, etc).

Nuevas fuentes de energía como son los biocombustibles obtenidos a partir de recursos renovables y menos contaminantes que los combustibles fósiles empleados en la actualidad (bioetanol y el biodiésel, o la biomasa). La sustitución de éstos por biocarburantes supone una disminución de las emisiones gaseosas contaminantes. Además, por ser biodegradables, disminuye el nivel del impacto ambiental de vertidos accidentales. Uno de los beneficios más importantes de los biocombustibles es su contribución prácticamente nula al aumento de gases con efecto invernadero en la atmósfera.

MINIMIZACIÓN DE LOS RESIDUOS AGROINDUSTRIALESLos establecimientos de producción primaria, tambos, feed-lot, explotaciones avícolas -tanto parrilleras como de gallinas ponedoras-; establecimientos de cría y engorde de cerdos generan diariamente cantidades importantes de residuos sólidos y semi-líquidos, con significativa carga orgánica y bacteriana; lo cual requiere un saneamiento adecuado para minimizar su impacto ambiental.Habitualmente los tratamientos precarios que se realizan sobre estos efluentes, sin proyectos sustentables de ingeniería ambiental, pueden contaminar acuíferos, emitir gases de efecto invernadero -como el metano que impacta veintiuna (21) veces más que el anhídrido carbónico- y desperdiciar nutrientes.A esto se suman los desechos de los centros de concentración y distribución de frutas, hortalizas, donde siempre alguna parte se deteriora y es descartada. También las plantas de procesamiento de la industria frigorífica (vacunos, cerdos, aves), conserveras, congelados, vitivinícola, descartan constantemente buena cantidad de residuos orgánicos.Los desechos agroindustriales son de naturaleza orgánica y prácticamente están clasificados en origen, lo cual facilita su reciclaje transformando así "un problema en una oportunidad"; pudiéndose generar energía renovable (biogás combustible).La biodigestión anaeróbica permite lograr que la energía contenida en los residuos –energía de alta entropía, degradada y con poca utilidad en ese estado- pueda ser transformada, liberada y reciclada en un combustible gaseoso -metano (CH4)-,como energía de alta calidad. Consecuentemente puede utilizarse para generar energía eléctrica, vapor, agua caliente; en sistemas de co-generación de alta eficiencia.También es posible obtener abonos orgánicos que aportan materia orgánica y nutrientes a los campos de cultivo; contribuyendo a mantener su fertilidad y asimismo reducir el impacto económico que significa depender de fertilizantes industriales.Una gestión ambiental adecuada sobre los residuos agroindustriales contribuye a mitigar el Cambio Climático, pudiéndose lograr en muchos casos Proyectos de Desarrollo Limpio, con derecho a Créditos de Carbono, en el marco del Protocolo de Kyoto.Toda la materia floculada, se retira por decantación –mediante sedimentadores convencionales o compactos de tipo “laminar”-, o alternativamente por flotación.Los sólidos recuperados se envían a una etapa de espesamiento y/o estabilización según corresponda por la naturaleza de los mismos.

Page 4: Biotecnología ambiental antigua

BILIOGRAFÍA: 1. http://www.juntadeandalucia.es/averroes/manantiales/BIOGEO/trabajos/AplicBiotec.htm2. http://biologiab-611.blogspot.com/2011/05/biotecnologia-ambiental.html3. http://agropecuarios.net/biotecnologia-ambiental-y-vegetal.html4. http://ag.org/enrichmentjournal_sp/201102/201102_112_Biotechnology.htm.cfm5. http://observatorio.bioemprende.eu/index.php?

option=com_content&view=category&id=62&layout=blog&Itemid=85&lang=es6. http://es.slideshare.net/chinitandy18/savedfiles?s_title=perspectivas-de-la-biotecnologa-

ambiental-en-el-mundo&user_login=bic887. http://saberdebiotecnologia.blogspot.com/2012/11/clasificacion-de-la-biotecnologia.html8. http://www.porquebiotecnologia.com.ar/index.php?

action=cuaderno&opt=5&tipo=1&note=1009. http://www.eg-ingenieria.com.ar/residuos-agroindustriales.html

METALES PESADOS Y RADIACIÓN

La contaminación de suelos y cuerpos de agua con metales pesados también es un grave problema ecológico. Entre los principales metales pesados contaminantes están: zinc, cobre, arsénico, magnesio, calcio, cadmio, plomo, plata y mercurio. 

Page 5: Biotecnología ambiental antigua

Los desagües industriales y mineros, las emisiones de los automóviles, los fertilizantes fosfatados, las particularidades geológicas de una región y eventos como erupciones volcánicas, son fuentes conocidas de metales pesados que terminan contaminando el ambiente. Algunos metales pesados -como el cadmio no son metabolizados por los seres vivos, por lo que tienden a acumularse en sus tejidos y finalmente llegan al consumo humano en altas concentraciones, produciendo efectos tóxicos. Este fenómeno ha sido observado principalmente en moluscos y peces y en cultivos terrestres tratados con agua contaminada.

Una de las metodologías de biorremediación de metales pesados desarrollada en las últimas décadas es el uso de plantas, o fitoremediacion.

Algunas plantas son capaces de acumular metales pesados en grandes cantidades, por lo que son conocidas como "hiperacumuladoras"; sin embargo, estas plantas exhiben una tasa de crecimiento lenta, lo que limita su aplicación en esquemas de biorremediación. Por otra parte, el uso de plantas comestibles también se ha explorado, pues su tasa de crecimiento es más alta, incluso llegando hasta dar lugar alo que se conoce como "biofortificación", que es el uso de las propiedades de algunas plantas comestibles para capturar metales importantes en la dieta como el zinc y el magnesio.

Existen también organismos con la capacidad de transformar metales pesados hacia estados menos tóxicos o más fáciles de extraer.

Uno de los ejemplos más interesantes son las bacterias del género Geobacter, las cuales son capaces de bioremediar zonas impactadas por uranio al reducir el uranio (VI) a uranio (IV), una forma menos soluble. Por si fuera poco, las bacterias del género Geobacter también pueden ser utilizadas para generar bioelectricidady sus particularidades de conducción eléctrica las hace útiles para su uso en circuitos. El proyecto Geobacter ha generado una gran cantidad de estudios sobre las aplicaciones deGeobacter y  las muestra en su sitio.

Otro tipo de bacterias de interés, son las del género Shewanella. Este tipo de bacterias también son capaces de generar electricidad utilizando una amplia variedad de aceptores de electrones, haciéndolas útiles para esquemas de biorremediación, especialmente de algunos radionúclidos y de compuestos orgánicos halogenados. Sin embargo, la actividad de Shewanella puede resultar contraproducente en algunos casos, como en la del arsenato y el mercurio(II), los cuales son reducidos a especies químicas con mayor potencial tóxico.

Otros de los lugares que frecuentemente se encuentran contaminados por altas concentraciones de metales pesados, son los sitios de desechos radiactivos. Sin embargo, el uso de microrganismos comunes para intentar biorremediar estos lugares es prácticamente inviable, pues las altas intensidades de radiación impiden su crecimiento. 

El procedimiento general para encontrar organismos con cualidades útiles se basa en encontrar la manera de ejercer una presión selectiva en la que resulten beneficiados los organismos con esa función de interés. Por ejemplo, si se están buscando organismos con la capacidad de metabolizar compuestos aromáticos o de sobrevivir a altas concentraciones de metales pesados, es precisamente a través la exposición a estas condiciones adversas lo que va a permitirnos identificarlos.

Los microrganismos resistentes a la radiación no son la excepción. De hecho, en un reporte se comenta la relativa facilidad con la que se han logrado aislar a estos organismos –el procedimiento consiste básicamente en hacer un cultivo de muestras ambientales en presencia de altas dosis de radiación- e incluso los autores de dicho estudio instan a los lectores a enviarles muestras para que ellos las procesen, en busca de microrganismos resistentes a la radiación.

Unos de estos microrganismos son las bacterias del genero Deinococcus, algunas de las cuales se reporta que pueden soportar hasta 15,000 Gy (1,500,000 Rads). 

Page 6: Biotecnología ambiental antigua

Para poder hacernos una idea de la extraordinaria capacidad de las bacterias Deinococcus basta con indicar que para un ser humano una dosis de 5 Gy es letal y para otros organismos también resistentes -como Caenorhabditis elegans, Ustilago maydis y algunas arqueas- el rango de tolerancia máxima va de los 3,000 Gy a los 5,000 Gy.

Los Deinococci no presentan naturalmente cualidades excepcionales en lo que respecta a la biorremediación de metales pesados, por lo que han sido sujetos a varios estudios en busca de modificarlos genéticamente con genes útiles para la biorremediación procedentes de organismos que no podrían soportar dosis tan altas de radiación.

La fitorremediación y los distintos microorganisos con habilidades particulares hacen posible que esquemas de biorremediación de metales pesados pueda desarrollarse desde en tanques industriales hasta directamente en sitios impactados.

BIBLIOGRAFÍA:

http://biospot10.blogspot.com/2012/06/biotecnologia-ambiental-ii.html