84
GAMUT GAMUT WORKSHOP ON WORKSHOP ON COMPUTATIONAL COMPUTATIONAL ASPECTS OF GAME THEORY ASPECTS OF GAME THEORY JUNE 16-20, 2014 ECSU, INDIAN STATISTICAL INSTITUTE KOLKATA Prithviraj Prithviraj (Raj) (Raj) Dasgupta Dasgupta Associate Associate Professor, Computer Professor, Computer Science Science Department, Department, University University of Nebraska, Omaha of Nebraska, Omaha

1 intro game-theory

Embed Size (px)

DESCRIPTION

Slides from Day 1 of Game Theory Workshop at ISI Kolkata, June 2014

Citation preview

GAMUTGAMUT

WORKSHOP ON WORKSHOP ON COMPUTATIONAL COMPUTATIONAL ASPECTS OF GAME THEORYASPECTS OF GAME THEORY

J U N E 1 6 - 2 0 , 2 0 1 4

E C S U , I N D I A N S T A T I S T I C A L I N S T I T U T E K O L K A T A

PrithvirajPrithviraj (Raj) (Raj) DasguptaDasguptaAssociate Associate Professor, Computer Professor, Computer Science Science Department, Department,

University University of Nebraska, Omahaof Nebraska, Omaha

SPEAKER’S BACKGROUND

• Associate Professor, Computer Science, University of Nebraska, Omaha (2001- present)• Director, CMANTIC Lab (robotics, computational

economics)

• Ph.D. (2001) Univ. of California, Santa Barbara• Ph.D. (2001) Univ. of California, Santa Barbara• Computational economics using software agents

• B.C.S.E (1995) – Jadavpur University• 1994: Summer internship at I.S.I

June 16-20, 2014 2Game Theory Workshop - Raj Dasgupta

UNIVERSITY OF NEBRASKA, OMAHA

• Founded in 1908• Computer Science

program started in early 80s• Department since early

90s90s

• 18 full-time faculty• ~400 undergrad, 125

Masters and 15 Ph.D. students• Research areas: AI,

Database/Data mining, Networking, Systems

June 16-20, 2014 Game Theory Workshop - Raj Dasgupta 3

C-MANTIC GROUP

• http://cmantic.unomaha.edu• Research Topics:

• Multi-robot systems path and task planning• Multi-robot/agent systems coordination using game

theory-based techniques• Modular robotic systems, Information aggregation using

prediction markets, Agent-based crowd simulation, etc.prediction markets, Agent-based crowd simulation, etc.

• Established by Raj Dasgupta in 2004• Received over $3 million as PI in external funding from

DoD Navair, ONR, NASA; over 80 publications in top-tier conferences and journals

• Currently 8 members including• 2 post-doctoral researchers with Ph.D. in robotics

(electrical, control, mechanical engineering) and vision• 4 graduate students (computer science)• 1 undergraduate students (computer engineering,

computer science)• Collaborations with faculty from Mechanical engg,

Computer science (UN-Lincoln, U. Southern Mississippi), Mathematics (UNO)

6/16/2014 Raj Dasgupta, CMANTIC Lab, UNO 4

AVAILABLE ROBOT PLATFORMS

E-puck mini robot -suitable for table-top

experiments for proof-of-

Coroware Corobot (indoor

robot)• Suitable for indoor experiments in; Coroware Explorer

6/16/2014 Raj Dasgupta, CMANTIC Lab, UNO 5

experiments for proof-of-

concept• Suitable for indoor experiments in;

hardware and software compatible

with Coroware Explorer robot;

• Sensors: Laser, IR, fixed camera;

Stargazer (IR-based indoor

localization); Wifi

Coroware Explorer

(outdoor robot) – all terrain robot for outdoor experiments; customized with GPS,

compass for localization

All techniques are first verified on Webots simulator using simulated models of e-puck and Corobot robots

Turtlebot (indoor robot)• Suitable for experiments in indoor

arena within lab;

• Kinect sensor; IR

Pelican UAV

(aerial robot)• Newly acquired

robot

• Sensors: Camera;

gyro

RESEARCH PROBLEM

• How to coordinate a set of robots to perform a set of complexcomplex tasks in a collaborativecollaborative manner• Complex task: single robot does not have resources to

complete the task individually

• Coordination can be synchronous or asynchronousRobots might or might not have to perform the task at the same • Robots might or might not have to perform the task at the same time

• Performance metric(s) need to be optimized while performing tasks• Time to complete tasks, distance traveled, energy expended

• Robots are able to communicate with each other• Bluetooth, Wi-fi, IR, Camera, Laser

• Some robots can fail, but system should not stall

6/16/2014 Raj Dasgupta, CMANTIC Lab, UNO

6

APPLICATIONS

• Humanitarian de-mining (COMRADES)

• Autonomous exploration for planetary surfaces (ModRED)

• Automatic Target Recognition (ATR) for search and recon (COMSTAR)recon (COMSTAR)

• Unmanned Search and Rescue

• Civlian and domestic applications like agriculture, vaccum cleaning, etc.

6/16/2014 Raj Dasgupta, CMANTIC Lab, UNO

7

GAME THEORY WORKSHOP

DAY 1

June 16-20, 2014 Game Theory Workshop - Raj Dasgupta 8

OBJECTIVE

• Introduction to game theory from a computer science perspective

• Learn the fundamental concepts in game theory• Mathematical solution concepts

• Algorithms used to solve games• Algorithms used to solve games

• Applications of game theory in different application domains• Google Adwords

• Trading Agent Competition (Lemonade Stand Game)

• Develop programming tools for solving game theory problems and preparation for advanced graduate coursework

June 16-20, 2014 9Game Theory Workshop - Raj Dasgupta

OUTCOMES

• Write software for algorithms for • Supply chain management – energy market, travel

booking, warehouse inventory management

• Auctions (e-bay, etc)

• Ad-placement (ad-auctions) for Internet search engines, • Ad-placement (ad-auctions) for Internet search engines, Youtube, etc.

• Applications that require coordination between people or software agents

• Social networks – information aggregation

• Robotics – distributed robot systems

June 16-20, 2014 Game Theory Workshop - Raj Dasgupta 10

ADX GAME

• An Ad Network bids for display ads opportunities• Fulfill advertising

contracts at contracts at minimum cost

• High quality targeting

• Sustain and attract advertisers

• https://sites.google.com/site/gameadx/

June 16-20, 2014 Game Theory Workshop - Raj Dasgupta 11

POWER-TAC GAME

• Agents act as retail brokers in a local power distribution region• Purchasing power from wholesale market and local sources

• Sell power to local customers and into the wholesale market. market.

• Solve a supply-chain problem

• Product is infinitely perishable

• Supply and demand must be exactly balanced at all times

• http://www.powertac.org

June 16-20, 2014 Game Theory Workshop - Raj Dasgupta 12

TOPICS TO BE COVERED

• Day 1: Introduction to game theory – normal form games

• Day 2: Solution concepts for normal form games (math)

Day 3: Bayesian games; applications of games• Day 3: Bayesian games; applications of games

• Day 4: Mechanism design and auctions

• Day 5: Coalition games and student presentations

June 16-20, 2014 Game Theory Workshop - Raj Dasgupta 13

STUDENT PRESENTATIONS

• Pick a topic on game theory that is covered in class• Research on the Internet on your topic and find at least

one problem or challenge related to this problem• Prepare a 10 minute presentation with slides (about 10-

12 slides)• Give overview of topic• Give overview of topic• Discuss the problem or challenge on the topic you have found

on the Internet• Mention the most interesting or appealing concept that you

learned from the course and why it is interesting to you

• Presentation should reflect your understanding of the topic

• Presentation schedule: reverse-alphabetical by last name, Friday after lunch

June 16-20, 2014 Game Theory Workshop - Raj Dasgupta 14

DAY 1: OUTLINE

• Introduction

• Some classic 2-player games

• Solving 2-players games• Dominated strategies and iterated dominance

• Pareto optimality and Nash equilibrium• Pareto optimality and Nash equilibrium

• Mixed Strategies

• Software packages for solving games• Generating games using GAMUT

• Solving games using Gambit

• Correlated Equilibrium

June 16-20, 2014 15Game Theory Workshop - Raj Dasgupta

HISTORY OF GAME THEORY

• 19th century and earlier: mathematical formulations to solve taxation problems, profits, etc.

• First half of 20th century:• Von Neumann formalizes utility theory, lays down mathematical

foundations for analyzing two player games; early work starts

• 1950s onwards: Nash theoremNash theorem, analysis of different types of games, beyond two players, relaxing simplifying assumptions games, beyond two players, relaxing simplifying assumptions (e.g., complete knowledge), more complex settings

• 1970s onwards: evolutionary game theory (applying biological concepts in games), learning in games, mechanism design

• 1990s onwards: • computational implementation of game theory algorithms, complexity

results (n players), • game theory software, programming competitions,• applications to real-life domains (auctions, network bandwidth

sharing, resource allocation, etc.)

June 16-20, 2014 16Game Theory Workshop - Raj Dasgupta

SOME NOTABLE GAME THEORISTS

• John Von Neumann – Founder of field

• John Nash – Nash equilibrium

• John Harsanyi – Incomplete Information (Bayesian Games)(Bayesian Games)

• Roger Myerson – Mechanism Design

• Many others: Morgenstern, Selten, Maynard Smith, Aumann…

June 16-20, 2014 17Game Theory Workshop - Raj Dasgupta

A SIMPLE EXAMPLE

• Simplest case: 2 players• Each player has a set (2) of actions• Each player has to select an action• By doing action, the player gets a payoff or utility

• Rationality assumption: Each player selects action that gives it highest payoff

• A player’s decision (selected action) affects the other player’s decision (selected action)• And other player’s payoff, and in turn its own payoff• And other player’s payoff, and in turn its own payoff

Actions: Go, Stop

Payoff(Go) = 1Payoff (Stop) = -1

Actions: Go, Stop

Payoff(Go) = 1Payoff (Stop) = -1

June 16-20, 2014 18Game Theory Workshop - Raj Dasgupta

A SIMPLE EXAMPLE

• Simplest case: 2 players• Each player has a set (2) of actions• Each player has to select an action• By doing action, the player gets a payoff or utility

• Rationality assumption: Each player selects action that gives it highest payoff

• A player’s decision (selected action) affects the other player’s decision (selected action)• And other player’s payoff, and in turn its own payoff• And other player’s payoff, and in turn its own payoff

Actions: Go, Stop

Actions: Go, Stop

Payoff(Go, Go) = -2, -2Payoff (Go, Stop) = 2, -1Payoff (Stop, Go) = -1, 2

Payoff (Stop, Stop) = -1, -1

Payoff(Go, Go) = -2, -2Payoff (Go, Stop) = 2, -1Payoff (Stop, Go) = -1, 2Payoff (Stop, Stop) = -1,

-1

June 16-20, 2014 19Game Theory Workshop - Raj Dasgupta

A SIMPLE EXAMPLE

• Simplest case: 2 players• Each player has a set (2) of actions• Each player has to select an action• By doing action, the player gets a payoff or utility

• Rationality assumption: Each player selects action that gives it highest payoff

• A player’s decision (selected action) affects the other player’s decision (selected action)• And other player’s payoff, and in turn its own payoff• And other player’s payoff, and in turn its own payoff

20

Actions: Go, Stop

Actions: Go, Stop

Go Stop

Go -2, -2 2, -1

Stop -1, 2 -1, -1

Go Stop

Go -2, -2 2, -1

Stop -1, 2 -1, -1June 16-20, 2014 Game Theory Workshop - Raj Dasgupta

THE MAIN PROBLEM IN GAME THEORY…SAID SIMPLY

• Main Problem: Given that each player knows the actions and payoffs of each other, how can each player individually make a decision (select an action) that will be ‘best’ for itself

• ‘best’ is loosely defined

Go Stop

Go -2, -2 2, -1

Stop -1, 2 -1, -1

• ‘best’ is loosely defined• Minimize regret

• Maximize sum of payoffs to all (both) players

• Stable or equilibrium action – if player deviates by itself from that action, it will end up lowering its own payoff … should hold for every player

Nash Equilibrium

June 16-20, 2014 21Game Theory Workshop - Raj Dasgupta

MULTI-AGENT INTERACTIONS

• For solving game theory computationally, players are implemented as software agents

• Main Problem (restated in terms of agents): When two agents interact, what action When two agents interact, what action should each agent take?

• Simplifying (natural) assumption: agents are self-interested

• each agent takes an action that maximizes its own benefit

June 16-20, 2014 22Game Theory Workshop - Raj Dasgupta

PREFERENCES AND UTILITY

• Since two agents are acting, action is referred to as joint action

• Each (joint) action results in a different outcome• Selecting a joint action ≡ selecting an outcome

• Selecting the best (highest benefit) outcome is modeled as a probability distribution over the set of possible outcomes

• called the preferences of the agent over its set of possible outcomes

Go Stop

Go -2, -2 2, -1

Stop -1, 2 -1, -1

Outcome

Joint actions: (go, go) (go, stop), (stop, go) (stop, stop)June 16-20, 2014 23Game Theory Workshop - Raj Dasgupta

UTILITY FUNCTION

• Assign a numeric value to outcomes

• More preferred outcome, higher utility

• Called utility function

• Utility is also called payoff

Go Stop

Go -2, -2 2, -1

Stop -1, 2 -1, -1

• Utility is also called payoff

June 16-20, 2014 24Game Theory Workshop - Raj Dasgupta

NOTATIONS

• A: set of agents

• Ω = (ω1, ω2, ...): set of outcomes

• U: A X Ω R : utility function→

June 16-20, 2014 25Game Theory Workshop - Raj Dasgupta

PREFERENCE RELATION

• Suppose i, j ε A and ω, ω’ ε Ω• u( i, ω) >= u(i, ω’) means agent i prefers outcome ω over ω’

• also denoted as ui(ω) >= ui (ω’) or ω >=i ω‘

• Relation >= gives an ordering over Ω

• Satisfies following properties• Satisfies following properties• reflexivity

• transitivity

• comparability

• substitubility

• decomposability

• >=: weak preference

• > : strong preference• only satisfies transitivity and comparability

June 16-20, 2014 26Game Theory Workshop - Raj Dasgupta

AGENT INTERACTION MODEL

• Consider only 2 agents: i, j ε A

• i and j take their actions simultaneously

• Outcome ω ε Ω is a result of both i and j’s actions (sometimes called joint outcome)

• Other assumptions• Other assumptions• each agent has to take action

• each agent cannot see what action other agent has taken (only knows outcome)

• We assume that each agent knows• the set of possible actions of itself and the other agent

• the utility for each possible outcome both for itself and for the other agent

• (that is, each agent knows entire game matrix)Go Stop

Go -2, -2 2, -1

Stop -1, 2 -1, -1June 16-20, 2014 27Game Theory Workshop - Raj Dasgupta

TRANSFORMATION FUNCTION

• τ: Ac X Ac Ω

• Ac: set of possible action

• τ : state transformation function

June 16-20, 2014 28Game Theory Workshop - Raj Dasgupta

EXAMPLE

• Let Ac = C, D for both agents• Let τ(C,C) = ω1, τ(C,D) = ω2, τ(D,C) = ω3,

τ(D,D) = ω4

• Let ui(ω1)=4, ui(ω2)=4, ui(ω3)=1, ui(ω4)=1• Let uj(ω1)=4, uj(ω2)=1, uj(ω3)=4, uj(ω4)=1• Since each pair of joint actions gives one • Since each pair of joint actions gives one

specific joint outcome, we can write• ui(C,c)=4, ui(C,d)=4, ui(D,c)=1, ui(D,d)=1• uj(C,c)=4, uj(C,d)=1, uj(D,c)=4, uj(D,d)=1• For agent i, the preference over outcomes

is(C,c) >= i (C, d) > i (D,c) >=i (D,d)

June 16-20, 2014 29Game Theory Workshop - Raj Dasgupta

PAYOFF MATRIX

4, 4,C

dc

1, 1,

4,

D

Agent i

• Each entry gives (utility to agent i, utility to agent j)June 16-20, 2014 30Game Theory Workshop - Raj Dasgupta

PAYOFF MATRIX

4,4 4,1C

dc

Agent j

1,4 1,1

4,1

D

Agent i

• Each entry gives (utility to agent i, utility to agent j)June 16-20, 2014 31Game Theory Workshop - Raj Dasgupta

PAYOFF MATRIX

4,4 4,1C

dc

Agent j

1,4 1,1

4,1

D

Agent i

•For agent i, selecting C is always better than selecting D

irrespective of what agent j doesJune 16-20, 2014 32Game Theory Workshop - Raj Dasgupta

PAYOFF MATRIX

4,4 4,1C

dc

Agent j

1,4 1,1

4,1

D

Agent i

•For agent j, selecting C is always better than selecting D

irrespective of what agent i doesJune 16-20, 2014 33Game Theory Workshop - Raj Dasgupta

PAYOFF MATRIX

4,4 4,1C

dc

Agent j

1,4 1,1

4,1

D

Agent i

• Finally, (C, c) remains as the only feasible (rational) outcome

June 16-20, 2014 34Game Theory Workshop - Raj Dasgupta

DOMINANT STRATEGIES

• Let Ω=ω1, ω2, ω3, ω4: be the set of possible outcomes

• Let Ω1 and Ω2 be two proper subsets of Ωsuch that Ω1=ω1, ω2 and Ω2=ω3, ω41 1 2 2 3 4

• Suppose that for some agent k, ω1 =k ω2 >k

ω3 =k ω4

• For agent k, every outcome in Ω1 is preferred over every outcome in Ω2

• We say, for agent k, Ω1strongly dominates Ω2

June 16-20, 2014 35Game Theory Workshop - Raj Dasgupta

STRATEGIES

• Actions of agents are also called strategies

• Outcome of playing strategy s denoted by s*

• For e.g.: (from previous example)• For e.g.: (from previous example)• For agent i, C* = ω3, ω4 and D* = ω1, ω2

• Using this notation, strategy s1 dominates strategy s2 if every outcome in s1

* dominates every outcome in s2

*

• For e.g, in previous example, C dominates D for agent i (also for agent j)

June 16-20, 2014 36Game Theory Workshop - Raj Dasgupta

SOLVING A GAME WITH DOMINANT STRATEGIES

• Solving a game means finding the outcome of the game

• Procedure1. Inspect strategies one at a time

2. If a strategy is strongly dominated by another strategy, 2. If a strategy is strongly dominated by another strategy, remove the dominated strategy

3. If the agent ends up with only one strategy by applying step 2 repeatedly, then the remaining strategy is the dominant strategy

June 16-20, 2014 37Game Theory Workshop - Raj Dasgupta

WEAKLY DOMINATED STRATEGY

• Let s1 and s2 be two strategies

• s1 weakly dominates s2 if every outcome in s1* is >=

every outcome in s2*

June 16-20, 2014 38Game Theory Workshop - Raj Dasgupta

NASH EQUILIBRIUM

PRISONER’S DILEMMA GAME

• Two men are together charged with the same crime and held in separate cells. They have no way of communicating with each other, or, making an agreement beforehand. They are told thatbeforehand. They are told that• if one of them confesses the crime and the other

does not, the confessor will be freed while the other person will get a term of 3 years• if both confess the crime, each will get term of 2

years• if neither confess the crime, each will get a 1-year

term

June 16-20, 2014 40Game Theory Workshop - Raj Dasgupta

PRISONER’S DILEMMA GAME

• Each person (player) has two strategies• confess (C)

• don’t confess (D)

• Which strategy should each player play?

Remember each player is a self-interested utility • Remember each player is a self-interested utility maximizer

June 16-20, 2014 41Game Theory Workshop - Raj Dasgupta

PD GAME: PAYOFF MATRIX

C D

C -2, -2 0, -3Player 1

Player 2

Are there any strongly dominated strategies for any player?

C -2, -2 0, -3

D -3, 0 -1, -1

Player 1

June 16-20, 2014 42Game Theory Workshop - Raj Dasgupta

PD GAME REASONING

• Agent i reasons:• I don’t know what j is going to play, but I know he will play

either C or D. Let me see what happens to me in either of these cases.

• If I assume that J is playing C, I will get a payoff of –2 if if I play C and a payoff of -3 if I plays Dplay C and a payoff of -3 if I plays D

• If I assume that J is playing D, I will get a payoff of 0 if if I play C and a payoff of -1 if I plays D

• Therefore, irrespective of what J plays, I’m better off by playing C

• Agent j reasons in a similar manner (since the game is symmetric)

• Both end up playing (C, C)C D

C -2, -2 0, -3

D -3, 0 -1, -1June 16-20, 2014 43Game Theory Workshop - Raj Dasgupta

EXAMPLE: PRISONER’S DILEMMA

CD

D -2,-2 -10,-1

P2

• Utility values are changed from last example, order or rows are interchanged

• Outcome of the game still remains same (C, C)

• Representation of the game does not change its outcome as long as relative utility values remain same

C -1,-10 -5,-5P1

June 16-20, 2014 44Game Theory Workshop - Raj Dasgupta

NASH EQUILIBRIUM

• Two strategies s1 and s2 are in Nash equilibrium when• under assumption agent i plays s1, agent j can do no better

than play s2

• under assumption agent j plays s2, agent i can do no better • under assumption agent j plays s2, agent i can do no better than play s1

• Neither agent has any incentive to deviate from a Nash equilibrium

June 16-20, 2014 45Game Theory Workshop - Raj Dasgupta

PD GAME EQUILIBRIUM

• Is (C, C) a Nash equilibrium of the game?• given agent j is playing C, agent i can do no

better than play C

• given agent i is playing C, agent j can do no better than play Cbetter than play C

• Is (D, D) a Nash equilibrium of the game?• given agent j is playing D, agent i can do better

by playing C

• given agent i is playing D, agent j can do better by playing C

C D

C -2, -2 0, -3

D -3, 0 -1, -1June 16-20, 2014 46Game Theory Workshop - Raj Dasgupta

EXAMPLE: NASH EQUILIBRIUM

June 16-20, 2014 47Game Theory Workshop - Raj Dasgupta

FEATURES OF NASH EQUILIBRIUM

• Not every game has a Nash equilibrium in purestrategies

• Nash’s Theorem• Every game with a finite number of players and action

profiles has at least one Nash equilibrium (considering pure profiles has at least one Nash equilibrium (considering pure and mixed strategies)

• Some interaction scenarios have more than one Nash equilibrium

June 16-20, 2014 48Game Theory Workshop - Raj Dasgupta

GAMES WITH MULTIPLE NASH EQUILIBRIUM

• Game of chicken (Earlier bridge crossing example)

• Stag-hunt

Go Stop

Go -2, -2 2, -1

Stop -1, 2 -1, -1

Stag Hare

Stag 2, 2 0,1

Hare 1, 0 1, 1

June 16-20, 2014 49Game Theory Workshop - Raj Dasgupta

COMPETITIVE AND ZERO-SUM GAMES

• Strictly competitive game• For i, j ε A, ω, ω’ ε Ω : ω >i ω’ iff ω’ >j ω

• preferences of the players are diametrically opposite to each other

• Zero-sum game• Zero-sum game• for all ω ε Ω: ui(ω) + uj(ω) = 0

• zero sum games have no chance of cooperative behavior because positive utility for agent j means negative utility for agent i and vice-versa

June 16-20, 2014 50Game Theory Workshop - Raj Dasgupta

ZERO-SUM GAME: MATCHING PENNIES

• Two players simultaneously flip two pennies. If both have the same side up, player 1 keeps both of them, else player 2.

Agent j

1, -1

-1, 1 1, -1

-1,1H

T

TH

Agent i

Agent j

June 16-20, 2014 51Game Theory Workshop - Raj Dasgupta

ITERATED DOMINANCE: DISTRICT ATTORNEY’S BROTHER

• Recall: Given a game, to solve it, first remove all strictly dominated strategies

• All games might not have strictly dominated strategies

• Try iterated removal of dominated strategies • Try iterated removal of dominated strategies

• Same scenario as prisoners’ dilemma except:• one of the prisoners is the DA’s brother

• allows his brother (prisoner 1) to go free if both prisoners don’t confess

June 16-20, 2014 52Game Theory Workshop - Raj Dasgupta

EXAMPLE: PRISONER’S DILEMMA

Prisoners’ Dilemma DA’s Brother

C D

C -2, -2 0, -3

D -3, 0 -1, -1

C D

C -2, -2 0, -3

D -3, 0 0, -1

• For players 1 and 2, D is strictly dominated

• Therefore, (C, C) is the preferred strategy (and Nash outcome)

• For player 1 D is not strictly dominated now

• But, for player 2, D is still strictly dominated

• Player 1 reasons – Player 2 will never play D

• Now, D becomes strictly dominated for player 1

• (C, C) still remains outcome of game

Strict dominance: Each player can solve the game individually

Iterated dominance: A player has to build opponent’s model to solve the gameJune 16-20, 2014 53Game Theory Workshop - Raj Dasgupta

ASSUMPTIONS IN DA’S BROTHER

• Each player is rational

• Players have common knowledge of each other’s rationality • P1 knows P2 will behave in a rational manner

• Allows iterated deletion of dominated strategies• Allows iterated deletion of dominated strategies

• However: Each iteration requires common knowledge assumption to be one level deeper

June 16-20, 2014 54Game Theory Workshop - Raj Dasgupta

ITERATED STRATEGY DELETION:ORDER OF DELETION

• Order of deletion does not have effect on final outcome of game• if eliminated strategies are strongly dominated

• Order of deletion has effect on final outcome of gamegame• if eliminated strategies are weakly dominated

June 16-20, 2014 55Game Theory Workshop - Raj Dasgupta

COMMON PAYOFF GAME

• Both (all) agents get equal utility in every outcome (e.g., two drivers coming from opposite sides have to choose which side of road to drive on)

1, 1

0, 0 1, 1

0, 0L

R

RL

Agent i

Agent j

June 16-20, 2014 56Game Theory Workshop - Raj Dasgupta

BATTLE OF SEXES GAME

• Husband prefers going to a football game, which wife hates

• Wife prefers going to the opera, which husband hateshusband hates

• They like each other’s company

2, 1

0, 0 1, 2

0, 0F

O

OF

h

w

June 16-20, 2014 57Game Theory Workshop - Raj Dasgupta

DEFINITION: NORMAL FORM GAME

• For a game with I players, the normal form representation of the game ΓN specifies for each player i, a set of strategies Si (with si Є Si) and a payoff or utility function ui(s1, s2, s3, s …s ) giving the utility associated with the s4…sI) giving the utility associated with the outcome of the game corresponding to the joint strategy profile (s1, s2, s3, s4…sI).

• Formal notation:

ΓN =[ I, Si, ui(.)]

June 16-20, 2014 58Game Theory Workshop - Raj Dasgupta

DEFINITION: STRICTLY DOMINATED STRATEGY

• A strategy si Є Si is strictly dominated for player I in

game ΓN =[ I, Si, ui(.)] if there exists another

strategy si‘ Є Si such that for all s-i Є S-i

ui(si‘,s-i) > ui(si,s-i)ui(si‘,s-i) > ui(si,s-i)

• In this case we say that strategy si‘ strictly

dominates strategy si

June 16-20, 2014 59Game Theory Workshop - Raj Dasgupta

EXAMPLE: STRICT DOMINANCE

RL

U 1, -1 -1, 1

P1

P2

D

M -1, 1 1, -1

-2, 5 -3, 2

P1

• For player 1, D is strictly dominated by U and M

June 16-20, 2014 60Game Theory Workshop - Raj Dasgupta

DEFINITION: WEAKLY DOMINATED STRATEGY

• A strategy si Є Si is weakly dominated for player I in

game ΓN =[ I, Si, ui(.)] if there exists another

strategy si‘ Є Si such that for all s-i Є S-i

ui(si‘,s-i) >= ui(si,s-i)i i -i i i -i

• with strict inequality for some s-i. In this case, we say that strategy si

‘ weakly dominates strategy si

• A strategy is a weakly dominant strategy for player I in game ΓN =[ I, Si, ui(

.)] if it weakly dominates every other strategy in Si

June 16-20, 2014 61Game Theory Workshop - Raj Dasgupta

EXAMPLE: WEAK DOMINANCE

RL

U 5,1 4,0

P1

P2

D

M 6,0 3,1

6,4 4,4

P1

• For player 1, U and M are weakly dominated by D

June 16-20, 2014 62Game Theory Workshop - Raj Dasgupta

MIXED STRATEGIES

ZERO-SUM GAME: MATCHING PENNIES

• Is there a Nash equilibrium in pure strategies?

THAgent j

1, -1

-1, 1 1, -1

-1,1H

T

Agent i

June 16-20, 2014 64Game Theory Workshop - Raj Dasgupta

MIXED STRATEGY NASH EQUILIBRIUM

• Objective • Each player randomizes over its own strategies in a way

such that its opponents’ choice becomes independent of it actions

June 16-20, 2014 65Game Theory Workshop - Raj Dasgupta

SOLVING MIXED STRATEGY NASH EQUILIBRIUM (1)

• P1 tries to solve: What probability should I play H and T with so that my (expected) utility is independent of

H T

H 1, -1 -1, 1

T -1, 1 1, -1

P1

P2

p

1-p

• P1 tries to solve: What probability should I play H and T with so that my (expected) utility is independent of whether P2 plays H or T

• Suppose P1 plays H with probability ‘p’ and T with probability (1-p)• Utility to PI when P2 plays H: 1.p + (-1) (1-p) = 2p -1• Utility to PI when P2 plays T: (-1)1.p + 1.(1-p) = 1 – 2p

• To find mixed strategy P1 solves for p in:• 2p -1 = 1- 2p, or, p = 0.5

June 16-20, 2014 66Game Theory Workshop - Raj Dasgupta

SOLVING MIXED STRATEGY NASH EQUILIBRIUM (2)

H T

H 1, -1 -1, 1

T -1, 1 1, -1

P1

P2

1-qq

0.5

0.5

0.5 0.5

• P2 solves similarly denotes q as probability of playing H and (1-q) as probability for playing T• Solving for q in the same manner as for P1 gives q = 0.5

• Mixed strategy Nash equilibrium is:

• ((0.5, 0.5) (0.5, 0.5))

June 16-20, 2014 67Game Theory Workshop - Raj Dasgupta

EXAMPLE: MEETING IN NY GAME:MIXED STRATEGY NASH

EQUILIBRIUM

June 16-20, 2014 68Game Theory Workshop - Raj Dasgupta

EXAMPLE: MEETING IN NY GAME:MIXED STRATEGY NASH

EQUILIBRIUM (2)• T reasons:• Let me play GC with probability σs and ES with probability (1- σs)• Then,• if S plays G it gets a payoff 100 σs + 0(1- σs)• if S plays E it gets a payoff 0 σs +1000(1- σs)

• Recall:• Each player should play its strategies with such probabilities that it • Each player should play its strategies with such probabilities that it

does not matter to its opponent what strategy that player plays.

• In other words, T should be indifferent (get the same payoff) from either strategy that S plays

• Therefore,• 100 σs + 0(1- σs) = 0 σs +1000(1- σs)• or, 1100σs =1000, or, σs = 10/11

• By similar reasoning, S plays GC with probability σT =10/11• σs = σT = 10/11 constitutes a mixed strategy nash equilibrium of

the meeting in NY game

June 16-20, 2014 69Game Theory Workshop - Raj Dasgupta

BATTLE OF SEXES GAME

• Husband prefers going to a football game, which wife hates

• Wife prefers going to the opera, which husband hateshusband hates

• They like each other’s company

2, 1

0, 0 1, 2

0, 0F

O

OF

h

w

June 16-20, 2014 70Game Theory Workshop - Raj Dasgupta

DEFINITION: MIXED STRATEGY

• Given player i’s (finite) pure strategy set Si, a mixed strategy for player i , σi: Si → [0,1], assigns to each pure strategy si Є Si a probability σi(si) >=0 that it will be played, where Σ si Є Si σi(si) =1where Σ si Є Si σi(si) =1• The set of all mixed strategies for player i is

denoted by ∆(Sj)=(σ1,σ2,σ3,... ,σMi) Є RM: σmi >0 for all m = 1...M and Σm=1

Μ σmi=1• ∆(Sj) is called the mixed strategy profile• si is called the support of the mixed strategy

σi(si)

June 16-20, 2014 71Game Theory Workshop - Raj Dasgupta

DEFINITION: STRICT DOMINATION IN MIXED STRATEGIES

• A strategy σi Є ∆(Si) is strictly dominated for player i in game ΓN =[ I, ∆(Si), ui(

.)] if there exists another strategy σi

‘ Є ∆(Si) such that for all σ-i Є Π

j<>i ∆(Sj)

ui(σi‘, σ-i) > ui(σi, σ-i)ui(σi‘, σ-i) > ui(σi, σ-i)

• In this case we say that strategy σi‘ strictly

dominates strategy σi

• A strategy σi is a strictly dominant strategyfor player i in game ΓN =[ I, ∆(Si), ui(

.)] if it strictly dominates every other strategy in ∆(Sj)

June 16-20, 2014 72Game Theory Workshop - Raj Dasgupta

PURE VS. MIXED STRATEGY

• Player i’s pure strategy is strictly dominated in game

ΓN =[ I, ∆(Si), ui(.)] if and only if there exists

another strategy σi ‘ Є ∆(Si) such that

ui(σi‘, s-i) > ui(si, s-i)ui(σi , s-i) > ui(si, s-i)

for all s-i Є S-i

June 16-20, 2014 73Game Theory Workshop - Raj Dasgupta

EXAMPLE: PURE VS. MIXED STRATEGY

RL

U 10,1 0,4

P2

D

M 4,2 4,3

0,5 10,2

P1

June 16-20, 2014 74Game Theory Workshop - Raj Dasgupta

BEST RESPONSE AND NASH EQUILIBRIUM

• In a game ΓN =[ I, ∆(Si), ui(.)] , strategy s*

i is a best response for player i to its opponents’ strategies s-i if

ui(s*i, s-i) >= ui(si, s-i)ui(s

*i, s-i) >= ui(si, s-i)

for all si ε ∆(Si).

• A strategy profile s = (s*1 ,s

*2 … s*

N) is a Nash equilibrium if s*

i is a best response for all players i= 1…N

June 16-20, 2014 75Game Theory Workshop - Raj Dasgupta

DELETION OF NEVER A BEST REPONSE

• Strategy si is never a best response if there is no s-i for which si is a best response

• Strictly dominated strategy can never be a best response

• Converse is not true: A strategy that is not a strictly • Converse is not true: A strategy that is not a strictly dominated might be ‘never a best response’

• Therefore, eliminating strategies that are ‘never a best response’ eliminates• strictly dominated strategies

• possibly some more strategies

June 16-20, 2014 76Game Theory Workshop - Raj Dasgupta

ITERATED DELETION

• Never a best response strategies can be removed in an iterated manner using rational behavior and common knowledge (similar to iterated deletion of strictly dominated strategies)dominated strategies)

• Order of deletion does not affect the strategies that remain in the end

• Strategies that remain after iterated deletion are those that a player can rationalize assuming opponents also eliminate their never a best reponse strategies

June 16-20, 2014 77Game Theory Workshop - Raj Dasgupta

RATIONALIZABLE STRATEGIES

• In game ΓN =[ I, ∆(Si), ui(.)], the strategies in ∆(Si)

that survive the iterated removal of strategies that are never a best response are known as player i’s rationalizable strategies.

June 16-20, 2014 78Game Theory Workshop - Raj Dasgupta

WHY WILL A GAME HAVE A NASH EQUILIBRIUM

1. Nash equilibrium as a consequence of rational inference

2. Nash equilibrium as a necessary condition if there is a unique predicted outcome to the gamethe game

3. Focal Points• e.g: restaurants around Grand Central Station

are better than those around Empire State Building. Increases the payoff of meeting at Grand Central

4. Nash equilibrium as a self-enforcing agreement

5. Nash equilibrium as a stable social conventionJune 16-20, 2014 79Game Theory Workshop - Raj Dasgupta

MAXMIN STRATEGY

• Maxmin strategy maximizes the worst payoff that player i can get

s i maxmin = arg max s_i min s_-i ui(si, s-i)

• Find the set of my strategies that give me the minimum utilities corresponding to every joint minimum utilities corresponding to every joint strategy of the opponent players (everybody except me)

• Find the strategy that gives me the highest utility from the set in the previous step

June 16-20, 2014 80Game Theory Workshop - Raj Dasgupta

MINMAX STRATEGY FOR 2-PLAYER GAME

• Minmax strategy – player i minimizes the highest payoff that player –i (opponent) can get

s i minmax = arg min s_i max s_-i u-i(si, s-i)s i = arg min s_i max s_-i u-i(si, s-i)

• Find the set of my strategies that give my opponent the maximum utilities corresponding to each of my strategies

• Find my strategy from the set in the previous step that gives the lowest utility to my opponentJune 16-20, 2014 81Game Theory Workshop - Raj Dasgupta

MINMAX UTILITY FOR N-PLAYER GAME

• i will have one minmax strategy for each opponent

• In an n-player game, the minmax strategy for player i against player j (not equal to i) is i’s component of the mixed strategy profile s-j in the expression arg min max u (s , s ), where –j denotes the set of min s_-j max s_j uj(sj, s-j), where –j denotes the set of players other than j

June 16-20, 2014 82Game Theory Workshop - Raj Dasgupta

NASH EQUILIBRIUM VS. MINMAX/MAXMIN STRATEGY

• In any finite, two-player, zero-sum gane, in any Nash equilibrium, each player receives a payoff that is euqal to both his maxmin value and his minmax value

June 16-20, 2014 83Game Theory Workshop - Raj Dasgupta

REGRET

• An agent i’s regret for playing an strategy si if the other agent’s joint strategy profile is s-i is defined as

[max s’_i ε S_i ui(si’, s-i)] - ui(si, s-i)

• An agent i’s max regret is defined as

max s_-i’ ε S_-i [max s’_i ε S_i ui(si’, s-i)] - ui(si, s-i)

• An agent i’s minimax regret is defined as

arg min s_i ε S_i (max s_-i’ ε S_-i [max s’_i ε S_i ui(si’, s-i)] - ui(si, s-

i))

June 16-20, 2014 84Game Theory Workshop - Raj Dasgupta