Transcript
Page 1: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

XVIII International Baldin Seminar on High Energy Physics Problems"RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“

Dubna, September 27, 2006

Relativistic Secondary Nuclei Fragments Beams:a resent years practice at LHE

P.A. Rukoyatkin, L.N. Komolov, R.I. Kukushkina, V.N. Ramzhin, P.I. Zarubin

Veksler and Baldin Laboratory of High EnergiesJoint Institute for Nuclear Research

Supported by Russian Foundation for Basic Research ( 04-02-17151 )

Page 2: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

LHE Accelerator Facility

Polaris – d

EBIS – N, Ar, Fe …Laser – Li, B, C, F, Mg …Duoplasmotron – p, d, , 3He

Internal target

Experimental hall 1B

Experimental hall 205

Experimental hall

NUCLOTRON – 6 GeV/n

SYNCHROPHASOTRON

Page 3: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

BeamNuclotron beam intensity (particle per cycle)

Current Src. type Ion source devel. + booster*

p 51010 Duoplasmotron 11013

d 51010 --- # --- 11013

4He 3109 --- # --- 21012

d 2108 ABS (“Polaris”)

7Li 4109 Laser 51012

11,10B 1109,8 --- # ---

12C 2109 --- # --- 21012

24Mg 1108 --- # ---

14N 1107 ESIS (“Krion-2”)** 51011

24Ar 2107 --- # --- 2109

56Fe 1106 --- # ---

131Xe 2108

238U 1108

* A.V. Butenko et al., EPAC 2002

** E.D. Donets et al., Rev. Sci. Instr. 75, (2004)

Some Nuclotron beams

Page 4: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

-32 -16 0 16 32 -32 -16 0 16 32

Y

Parameter @ Units Value

Extraction angle, hor./ ver.   mr 5 / 96

Momentum range Z/A = 1/2 Gev/c/amu 0.6 – 6.8

Momentum spread,   % 0.04 – 0.08

Extraction time   sec 10

Beam emittance Pmax mmmr 2

Beam size in a waist, Pmax mm < 1

Extraction efficiency   % > 90

Beam profiles at the F5 focus.

Deuterons, pbeam = 4.3 GeV/c, x = 2.6 mm, y = 3.0 mm

x, mm y, mm

Nuclotron slow extraction

V.Volkov et al., EPAC 2004An extracted beam spill (Nuclotron Dec. 2003 run)

Page 5: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

f3

f4

f5

f6

VP-1

VP-1

1v

3v

3v

4v

4v

5v

Slowlyextracted beam

6v

Bending magnets

Quadrupole lenses

Dump, shield

Nuclotron external beam lines

Lines Pmax Imax

( GeV/c ) ( ppc )

• VP-1 15 1012

• 1v 9 10 8

• 3v 9 10 9

• 4v 9 10 7

• 5v 12 10 7

• 6v 12 10 7

MARUSYA

STRELA

GIBS

DELTA-SIGMA

FAZA

SPHERA

NIS

Polarized Proton Target

f3 experimental area

Page 6: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

A0, Z0, p0 A0, Z0, p0 + (Ai, Zi, p0)0

A0, Z0

p0Ai/Zi

p0Ak/Zk

Primary beam

Target

Separation system Analyzingdetectors

Projectile fragments

Secondary relativistic fragments beams: a general scheme

0 0

Primary beam dump

Tagging detectors(option)

p0 -- projectile momentum per nucleon

Page 7: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

Secondary relativistic fragment beams: relations

Fragment angular and relative momentum spread in the laboratory frame

Fragment momentum spread in the projectile rest frame

0 90 MeV/cA – projectile mass numberB – fragment mass number

A.S. Goldhaber, Phys. Lett. 53B, p.306

p0 – projectile momentum per nucl.

0 – projectile velocity

m – nucleon mass

A numerical illustration

10B 8B ( A=10, B=8 ) at p0 = 2 GeV/c/nucl.t0 1.3 GeV/nucl.) :

7.5 mr, 1.8 %

Page 8: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

Secondary relativistic fragment beams: rigidity scale neighborhood

Example: 10B 8B fragmentation

-25 -20 -15 -10 -5 0 5 10 15 20 25

3He

7Be

8B

(p-p0)/z, %

Page 9: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

d + A → n + …

The lightest relativistic fragment beams

P 4.5 GeV/c, I*

pol. = 1.1 . 108

Line/setup: 1v(NBL) / PPT, DELTA-SIGMA

Czech. J. Phys., Vol.52, C695

P = 6.0; 9.0 GeV/c, I* 106

Line/setup: 6v / GIBS

JINR Rap. Comm., 6[86]-97, p.61

P 1 – 4.5 GeV/c

I*

pol. = 2 – 4 . 106 , I*

unol. 108

Polarization 0.55

Line/setup: 1v(NBL) / PPT, DELTA-SIGMA

Czech. J. Phys., Vol.51, A345

(*) -- per cycle at Pmax

d + A → n + …

d + A → p + …

+ A → t + …

Page 10: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

Physics of Atomic Nuclei, v.66, 2003, p.1646

Page 11: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

Beam by reactions 6Li + A Nucleus + …

Primary beam:

• 6Li, t = 1.9 GeV/amu, (p = 2.67 GeV/c/amu )• Intensity 5·107 nuclei/cycle (Synchr.)• Beam sizes on a target: x < 4 mm, y < 8 mm

• Target: organic glass, 4.7 g/cm2 , at F5

Secondary beam (4v line):• p/Z = 8.0 GeV/c (Z/A=1/3), p/Z = 5.35 GeV/c (Z/A=1/2);• Intensity 104 nuclei/cycle (Z/A=1/3);

-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60

y1, mm y2, mm

Vertical beam profiles at two positions before emulsion.Beam divergence relatively to the emulsion layers - y < 2.5 mr

y1 12.5

y2 8

40 50 60 70

20 30 40 50 60 70 80 90 100 110 120

20 30 40 50 60 70 80 90 100 110 120

Z=1 Z=2 Z=3

6Li

6He

t

QDC channels

Z/A=1/3

Z/A=1/2

d

Yields ratios, %:

d : = 51 3; 6He : t = 0.85 0.05

Page 12: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

f3

f4

f5

f6

VP-1

VP-1

3v

Extractedbeams: 12C, 10B, 7Li

Target: 5-8 g/cm2, polyeth.

Fragment separation scheme: beam line layout

Page 13: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

2SP-40

f5

Fragment separation scheme: detector layout

S0

-40 -20 0 20 40 -40 -20 0 20 40 -60 -30 0 30 60 -60 -30 0 30 60 -20 -10 0 10 20 -20 -10 0 10 20 -60 -30 0 30 60 -60 -30 0 30 60

-60 -30 0 30 60 -60 -30 0 30 60 -20 -10 0 10 20 -20 -10 0 10 20 -60 -30 0 30 60 -60 -30 0 30 60 -60 -30 0 30 60 -60 -30 0 30 60

• Multiwire ionization chambers (P9a, P10, P13, P13a, P14, P16 )

• Scintillation counter (Si)

x= 6 x= 12

Page 14: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

Fragment separation: an optics scheme and realized resolution

Distance along beam line, m

R=r16/Ex, r16 – linear dispersion, Ex = 2x– envelope size

Bars – normalized strengths of magnetic elements

FWMHp/p 2.7%

Page 15: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

100 150 200 250 300 350

0

200

400

600

800

Z=5 (primary 10B mark)

4 ( 9Be )

3

2

QDC channels

Counts

Secondary fragments beam: 10B + A 9Be + …

Target:• Polyethylene, 8 g/cm2

• Placing – F3 focus

Separation scheme:• VP-1, f3 – f5 + 2SP-40,

• 2SP-40 = 0.22 r

Analyzer:• Plastic scintillator, d=5 mm

9Be fraction in the beam:

• 67 ± 2 %

Primary beam momentum:

p0 = 2.0 GeV/c/nucl.Energy losses spectrum in a plastics

Page 16: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

100 200 300 400 5000

100

200

300

400

C3He

Secondary fragments beam: 12C + A 9C + … ( p0 = 2.0 GeV/c/nucl )

Z6 51%

QDC channels

Energy losses spectrum in a plasticsCounts

Page 17: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

0

50

100

150

100 150 200 250 300 350

Secondary fragments beam: 10B + A 8B + … (p0 = 2.0 GeV/c/nucl )

Z5 62%

8B

10C

7Be3He

QDC channels

Energy losses spectrum in a plasticsCounts

Page 18: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

32 64 96 128 160 192 224 256

Chan.

0

1000

2000

3000

1

z=2

secondary spectraprimary Li-7 reper

3

3

4

Secondary fragments beam: 7Be

Production reaction: 7Li + A 7Be + …

Beam rejection variant 1

Y4 : Y1+2+3 1 : 3.3

50 100 150 200 250

Beam rejection variant 2

Y4 : Y1+2+… 1.9 : 1

7Be

1

2

7Be atom – T1/2 53.4 d (e-cap.)7Be nucleus – stable

Page 19: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

0

5

10

15

20

25

30

35

3H

e +

4H

e

3H

e +

3H

e

4H

e+p

+p

4H

e+d

+p

3H

e+p

+p

3H

e+d

+p

3H

e+d

+d

3H

e+t+

p

p+

p+

p+

d

p+

p+

d+

d

6L

i+p

nb=0nb=1

7Be fragmentation channels

N.G. Peresadko et al., arXive:nucl-ex/0605014 v1

Page 20: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

Conclusion

Nuclotron accelerator facility flexibly provides experiments with a wide set of primary nuclei beams (p … Fe) in the energy range from hundreds MeV to several GeV per nucleon. In-flight production of secondary relativistic nuclear fragment beams are widely practiced at the facility. Secondary beams of the beryllium, boron and carbon isotopes were recently formed to study the nuclei clustering by the nuclear emulsion method.

Page 21: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

End

Page 22: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

-90 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90

x, mm y, mm

Beam profiles

Relativistic tritium beam

Production reaction: + A t + X

x 10 y 10

Beam line scheme: D1..6 – quadrupole doublets, M1..3 – bending magnets, GIBS – setup. TOF base 78 m.

Target

• Triton momentum – 6 GeV/c

• Momentum spread () – 1.6 % ( TOF tagging was used)

• Yeild at the line end – 510-3 I

@ Target – polystyrene, 5 g/cm2

p = 8 GeV/c ( I 109 ppc)

-15 -10 -5 0 5 10 15

Momentum distribution

1.6

p, %

Ref.: S.A. Avramenko et al., JINR Rap. Comm., 6[86]-97, p.61; S.A. Avramenko et al., Nucl. Phys. A 596, p.355

Page 23: XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic

Emuls.

Beam by reactions 6Li + A Nucleus + …

Optics scheme and detectors layout

6Li


Recommended